/*
* linux/arch/ia64/kernel/time.c
*
* Copyright (C) 1998-2003 Hewlett-Packard Co
* Stephane Eranian <eranian@hpl.hp.com>
* David Mosberger <davidm@hpl.hp.com>
* Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
* Copyright (C) 1999-2000 VA Linux Systems
* Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
*/
#include <linux/cpu.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/profile.h>
#include <linux/sched.h>
#include <linux/time.h>
#include <linux/interrupt.h>
#include <linux/efi.h>
#include <linux/timex.h>
#include <linux/clocksource.h>
#include <asm/machvec.h>
#include <asm/delay.h>
#include <asm/hw_irq.h>
#include <asm/ptrace.h>
#include <asm/sal.h>
#include <asm/sections.h>
#include <asm/system.h>
#include "fsyscall_gtod_data.h"
static cycle_t itc_get_cycles(void);
struct fsyscall_gtod_data_t fsyscall_gtod_data = {
.lock = SEQLOCK_UNLOCKED,
};
struct itc_jitter_data_t itc_jitter_data;
volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
#ifdef CONFIG_IA64_DEBUG_IRQ
unsigned long last_cli_ip;
EXPORT_SYMBOL(last_cli_ip);
#endif
static struct clocksource clocksource_itc = {
.name = "itc",
.rating = 350,
.read = itc_get_cycles,
.mask = CLOCKSOURCE_MASK(64),
.mult = 0, /*to be caluclated*/
.shift = 16,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static struct clocksource *itc_clocksource;
static irqreturn_t
timer_interrupt (int irq, void *dev_id)
{
unsigned long new_itm;
if (unlikely(cpu_is_offline(smp_processor_id()))) {
return IRQ_HANDLED;
}
platform_timer_interrupt(irq, dev_id);
new_itm = local_cpu_data->itm_next;
if (!time_after(ia64_get_itc(), new_itm))
printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
ia64_get_itc(), new_itm);
profile_tick(CPU_PROFILING);
while (1) {
update_process_times(user_mode(get_irq_regs()));
new_itm += local_cpu_data->itm_delta;
if (smp_processor_id() == time_keeper_id) {
/*
* Here we are in the timer irq handler. We have irqs locally
* disabled, but we don't know if the timer_bh is running on
* another CPU. We need to avoid to SMP race by acquiring the
* xtime_lock.
*/
write_seqlock(&xtime_lock);
do_timer(1);
local_cpu_data->itm_next = new_itm;
write_sequnlock(&xtime_lock);
} else
local_cpu_data->itm_next = new_itm;
if (time_after(new_itm, ia64_get_itc()))
break;
/*
* Allow IPIs to interrupt the timer loop.
*/
local_irq_enable();
local_irq_disable();
}
do {
/*
* If we're too close to the next clock tick for
* comfort, we increase the safety margin by
* intentionally dropping the next tick(s). We do NOT
* update itm.next because that would force us to call
* do_timer() which in turn would let our clock run
* too fast (with the potentially devastating effect
* of losing monotony of time).
*/
while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
new_itm += local_cpu_data->itm_delta;
ia64_set_itm(new_itm);
/* double check, in case we got hit by a (slow) PMI: */
} while (time_after_eq(ia64_get_itc(), new_itm));
return IRQ_HANDLED;
}
/*
* Encapsulate access to the itm structure for SMP.
*/
void
ia64_cpu_local_tick (void)
{
int cpu = smp_processor_id();
unsigned long shift = 0, delta;
/* arrange for the cycle counter to generate a timer interrupt: */
ia64_set_itv(IA64_TIMER_VECTOR);
delta = local_cpu_data->itm_delta;
/*
* Stagger the timer tick for each CPU so they don't occur all at (almost) the
* same time:
*/
if (cpu) {
unsigned long hi = 1UL << ia64_fls(cpu);
shift = (2*(cpu - hi) + 1) * delta/hi/2;
}
local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
ia64_set_itm(local_cpu_data->itm_next);
}
static int nojitter;
static int __init nojitter_setup(char *str)
{
nojitter = 1;
printk("Jitter checking for ITC timers disabled\n");
return 1;
}
__setup("nojitter", nojitter_setup);
void __devinit
ia64_init_itm (void)
{
unsigned long platform_base_freq, itc_freq;
struct pal_freq_ratio itc_ratio, proc_ratio;
long status, platform_base_drift, itc_drift;
/*
* According to SAL v2.6, we need to use a SAL call to determine the platform base
* frequency and then a PAL call to determine the frequency ratio between the ITC
* and the base frequency.
*/
status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
&platform_base_freq, &platform_base_drift);
if (status != 0) {
printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
} else {
status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
if (status != 0)
printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
}
if (status != 0) {
/* invent "random" values */
printk(KERN_ERR
"SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
platform_base_freq = 100000000;
platform_base_drift = -1; /* no drift info */
itc_ratio.num = 3;
itc_ratio.den = 1;
}
if (platform_base_freq < 40000000) {
printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
platform_base_freq);
platform_base_freq = 75000000;
platform_base_drift = -1;
}
if (!proc_ratio.den)
proc_ratio.den = 1; /* avoid division by zero */
if (!itc_ratio.den)
itc_ratio.den = 1; /* avoid division by zero */
itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
"ITC freq=%lu.%03luMHz", smp_processor_id(),
platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
if (platform_base_drift != -1) {
itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
printk("+/-%ldppm\n", itc_drift);
} else {
itc_drift = -1;
printk("\n");
}
local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
local_cpu_data->itc_freq = itc_freq;
local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
+ itc_freq/2)/itc_freq;
if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
#ifdef CONFIG_SMP
/* On IA64 in an SMP configuration ITCs are never accurately synchronized.
* Jitter compensation requires a cmpxchg which may limit
* the scalability of the syscalls for retrieving time.
* The ITC synchronization is usually successful to within a few
* ITC ticks but this is not a sure thing. If you need to improve
* timer performance in SMP situations then boot the kernel with the
* "nojitter" option. However, doing so may result in time fluctuating (maybe
* even going backward) if the ITC offsets between the individual CPUs
* are too large.
*/
if (!nojitter)
itc_jitter_data.itc_jitter = 1;
#endif
} else
/*
* ITC is drifty and we have not synchronized the ITCs in smpboot.c.
* ITC values may fluctuate significantly between processors.
* Clock should not be used for hrtimers. Mark itc as only
* useful for boot and testing.
*
* Note that jitter compensation is off! There is no point of
* synchronizing ITCs since they may be large differentials
* that change over time.
*
* The only way to fix this would be to repeatedly sync the
* ITCs. Until that time we have to avoid ITC.
*/
clocksource_itc.rating = 50;
/* Setup the CPU local timer tick */
ia64_cpu_local_tick();
if (!itc_clocksource) {
/* Sort out mult/shift values: */
clocksource_itc.mult =
clocksource_hz2mult(local_cpu_data->itc_freq,
clocksource_itc.shift);
clocksource_register(&clocksource_itc);
itc_clocksource = &clocksource_itc;
}
}
static cycle_t itc_get_cycles(void)
{
u64 lcycle, now, ret;
if (!itc_jitter_data.itc_jitter)
return get_cycles();
lcycle = itc_jitter_data.itc_lastcycle;
now = get_cycles();
if (lcycle && time_after(lcycle, now))
return lcycle;
/*
* Keep track of the last timer value returned.
* In an SMP environment, you could lose out in contention of
* cmpxchg. If so, your cmpxchg returns new value which the
* winner of contention updated to. Use the new value instead.
*/
ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
if (unlikely(ret != lcycle))
return ret;
return now;
}
static struct irqaction timer_irqaction = {
.handler = timer_interrupt,
.flags = IRQF_DISABLED | IRQF_IRQPOLL,
.name = "timer"
};
void __devinit ia64_disable_timer(void)
{
ia64_set_itv(1 << 16);
}
void __init
time_init (void)
{
register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
efi_gettimeofday(&xtime);
ia64_init_itm();
/*
* Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
* tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
*/
set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
}
/*
* Generic udelay assumes that if preemption is allowed and the thread
* migrates to another CPU, that the ITC values are synchronized across
* all CPUs.
*/
static void
ia64_itc_udelay (unsigned long usecs)
{
unsigned long start = ia64_get_itc();
unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
while (time_before(ia64_get_itc(), end))
cpu_relax();
}
void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
void
udelay (unsigned long usecs)
{
(*ia64_udelay)(usecs);
}
EXPORT_SYMBOL(udelay);
static unsigned long long ia64_itc_printk_clock(void)
{
if (ia64_get_kr(IA64_KR_PER_CPU_DATA))
return sched_clock();
return 0;
}
static unsigned long long ia64_default_printk_clock(void)
{
return (unsigned long long)(jiffies_64 - INITIAL_JIFFIES) *
(1000000000/HZ);
}
unsigned long long (*ia64_printk_clock)(void) = &ia64_default_printk_clock;
unsigned long long printk_clock(void)
{
return ia64_printk_clock();
}
void __init
ia64_setup_printk_clock(void)
{
if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT))
ia64_printk_clock = ia64_itc_printk_clock;
}
/* IA64 doesn't cache the timezone */
void update_vsyscall_tz(void)
{
}
void update_vsyscall(struct timespec *wall, struct clocksource *c)
{
unsigned long flags;
write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
/* copy fsyscall clock data */
fsyscall_gtod_data.clk_mask = c->mask;
fsyscall_gtod_data.clk_mult = c->mult;
fsyscall_gtod_data.clk_shift = c->shift;
fsyscall_gtod_data.clk_fsys_mmio = c->fsys_mmio;
fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
/* copy kernel time structures */
fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
fsyscall_gtod_data.monotonic_time.tv_sec = wall_to_monotonic.tv_sec
+ wall->tv_sec;
fsyscall_gtod_data.monotonic_time.tv_nsec = wall_to_monotonic.tv_nsec
+ wall->tv_nsec;
/* normalize */
while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
fsyscall_gtod_data.monotonic_time.tv_sec++;
}
write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);
}