/*
* I/O SAPIC support.
*
* Copyright (C) 1999 Intel Corp.
* Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com>
* Copyright (C) 2000-2002 J.I. Lee <jung-ik.lee@intel.com>
* Copyright (C) 1999-2000, 2002-2003 Hewlett-Packard Co.
* David Mosberger-Tang <davidm@hpl.hp.com>
* Copyright (C) 1999 VA Linux Systems
* Copyright (C) 1999,2000 Walt Drummond <drummond@valinux.com>
*
* 00/04/19 D. Mosberger Rewritten to mirror more closely the x86 I/O APIC code.
* In particular, we now have separate handlers for edge
* and level triggered interrupts.
* 00/10/27 Asit Mallick, Goutham Rao <goutham.rao@intel.com> IRQ vector allocation
* PCI to vector mapping, shared PCI interrupts.
* 00/10/27 D. Mosberger Document things a bit more to make them more understandable.
* Clean up much of the old IOSAPIC cruft.
* 01/07/27 J.I. Lee PCI irq routing, Platform/Legacy interrupts and fixes for
* ACPI S5(SoftOff) support.
* 02/01/23 J.I. Lee iosapic pgm fixes for PCI irq routing from _PRT
* 02/01/07 E. Focht <efocht@ess.nec.de> Redirectable interrupt vectors in
* iosapic_set_affinity(), initializations for
* /proc/irq/#/smp_affinity
* 02/04/02 P. Diefenbaugh Cleaned up ACPI PCI IRQ routing.
* 02/04/18 J.I. Lee bug fix in iosapic_init_pci_irq
* 02/04/30 J.I. Lee bug fix in find_iosapic to fix ACPI PCI IRQ to IOSAPIC mapping
* error
* 02/07/29 T. Kochi Allocate interrupt vectors dynamically
* 02/08/04 T. Kochi Cleaned up terminology (irq, global system interrupt, vector, etc.)
* 02/09/20 D. Mosberger Simplified by taking advantage of ACPI's pci_irq code.
* 03/02/19 B. Helgaas Make pcat_compat system-wide, not per-IOSAPIC.
* Remove iosapic_address & gsi_base from external interfaces.
* Rationalize __init/__devinit attributes.
* 04/12/04 Ashok Raj <ashok.raj@intel.com> Intel Corporation 2004
* Updated to work with irq migration necessary for CPU Hotplug
*/
/*
* Here is what the interrupt logic between a PCI device and the kernel looks like:
*
* (1) A PCI device raises one of the four interrupt pins (INTA, INTB, INTC, INTD). The
* device is uniquely identified by its bus--, and slot-number (the function
* number does not matter here because all functions share the same interrupt
* lines).
*
* (2) The motherboard routes the interrupt line to a pin on a IOSAPIC controller.
* Multiple interrupt lines may have to share the same IOSAPIC pin (if they're level
* triggered and use the same polarity). Each interrupt line has a unique Global
* System Interrupt (GSI) number which can be calculated as the sum of the controller's
* base GSI number and the IOSAPIC pin number to which the line connects.
*
* (3) The IOSAPIC uses an internal routing table entries (RTEs) to map the IOSAPIC pin
* into the IA-64 interrupt vector. This interrupt vector is then sent to the CPU.
*
* (4) The kernel recognizes an interrupt as an IRQ. The IRQ interface is used as
* architecture-independent interrupt handling mechanism in Linux. As an
* IRQ is a number, we have to have IA-64 interrupt vector number <-> IRQ number
* mapping. On smaller systems, we use one-to-one mapping between IA-64 vector and
* IRQ. A platform can implement platform_irq_to_vector(irq) and
* platform_local_vector_to_irq(vector) APIs to differentiate the mapping.
* Please see also include/asm-ia64/hw_irq.h for those APIs.
*
* To sum up, there are three levels of mappings involved:
*
* PCI pin -> global system interrupt (GSI) -> IA-64 vector <-> IRQ
*
* Note: The term "IRQ" is loosely used everywhere in Linux kernel to describe interrupts.
* Now we use "IRQ" only for Linux IRQ's. ISA IRQ (isa_irq) is the only exception in this
* source code.
*/
#include <linux/config.h>
#include <linux/acpi.h>
#include <linux/init.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/string.h>
#include <linux/bootmem.h>
#include <asm/delay.h>
#include <asm/hw_irq.h>
#include <asm/io.h>
#include <asm/iosapic.h>
#include <asm/machvec.h>
#include <asm/processor.h>
#include <asm/ptrace.h>
#include <asm/system.h>
#undef DEBUG_INTERRUPT_ROUTING
#ifdef DEBUG_INTERRUPT_ROUTING
#define DBG(fmt...) printk(fmt)
#else
#define DBG(fmt...)
#endif
#define NR_PREALLOCATE_RTE_ENTRIES (PAGE_SIZE / sizeof(struct iosapic_rte_info))
#define RTE_PREALLOCATED (1)
static DEFINE_SPINLOCK(iosapic_lock);
/* These tables map IA-64 vectors to the IOSAPIC pin that generates this vector. */
struct iosapic_rte_info {
struct list_head rte_list; /* node in list of RTEs sharing the same vector */
char __iomem *addr; /* base address of IOSAPIC */
unsigned int gsi_base; /* first GSI assigned to this IOSAPIC */
char rte_index; /* IOSAPIC RTE index */
int refcnt; /* reference counter */
unsigned int flags; /* flags */
} ____cacheline_aligned;
static struct iosapic_intr_info {
struct list_head rtes; /* RTEs using this vector (empty => not an IOSAPIC interrupt) */
int count; /* # of RTEs that shares this vector */
u32 low32; /* current value of low word of Redirection table entry */
unsigned int dest; /* destination CPU physical ID */
unsigned char dmode : 3; /* delivery mode (see iosapic.h) */
unsigned char polarity: 1; /* interrupt polarity (see iosapic.h) */
unsigned char trigger : 1; /* trigger mode (see iosapic.h) */
} iosapic_intr_info[IA64_NUM_VECTORS];
static struct iosapic {
char __iomem *addr; /* base address of IOSAPIC */
unsigned int gsi_base; /* first GSI assigned to this IOSAPIC */
unsigned short num_rte; /* number of RTE in this IOSAPIC */
int rtes_inuse; /* # of RTEs in use on this IOSAPIC */
#ifdef CONFIG_NUMA
unsigned short node; /* numa node association via pxm */
#endif
} iosapic_lists[NR_IOSAPICS];
static unsigned char pcat_compat __devinitdata; /* 8259 compatibility flag */
static int iosapic_kmalloc_ok;
static LIST_HEAD(free_rte_list);
/*
* Find an IOSAPIC associated with a GSI
*/
static inline int
find_iosapic (unsigned int gsi)
{
int i;
for (i = 0; i < NR_IOSAPICS; i++) {
if ((unsigned) (gsi - iosapic_lists[i].gsi_base) < iosapic_lists[i].num_rte)
return i;
}
return -1;
}
static inline int
_gsi_to_vector (unsigned int gsi)
{
struct iosapic_intr_info *info;
struct iosapic_rte_info *rte;
for (info = iosapic_intr_info; info < iosapic_intr_info + IA64_NUM_VECTORS; ++info)
list_for_each_entry(rte, &info->rtes, rte_list)
if (rte->gsi_base + rte->rte_index == gsi)
return info - iosapic_intr_info;
return -1;
}
/*
* Translate GSI number to the corresponding IA-64 interrupt vector. If no
* entry exists, return -1.
*/
inline int
gsi_to_vector (unsigned int gsi)
{
return _gsi_to_vector(gsi);
}
int
gsi_to_irq (unsigned int gsi)
{
unsigned long flags;
int irq;
/*
* XXX fix me: this assumes an identity mapping vetween IA-64 vector and Linux irq
* numbers...
*/
spin_lock_irqsave(&iosapic_lock, flags);
{
irq = _gsi_to_vector(gsi);
}
spin_unlock_irqrestore(&iosapic_lock, flags);
return irq;
}
static struct iosapic_rte_info *gsi_vector_to_rte(unsigned int gsi, unsigned int vec)
{
struct iosapic_rte_info *rte;
list_for_each_entry(rte, &iosapic_intr_info[vec].rtes, rte_list)
if (rte->gsi_base + rte->rte_index == gsi)
return rte;
return NULL;
}
static void
set_rte (unsigned int gsi, unsigned int vector, unsigned int dest, int mask)
{
unsigned long pol, trigger, dmode;
u32 low32, high32;
char __iomem *addr;
int rte_index;
char redir;
struct iosapic_rte_info *rte;
DBG(KERN_DEBUG"IOSAPIC: routing vector %d to 0x%x\n", vector, dest);
rte = gsi_vector_to_rte(gsi, vector);
if (!rte)
return; /* not an IOSAPIC interrupt */
rte_index = rte->rte_index;
addr = rte->addr;
pol = iosapic_intr_info[vector].polarity;
trigger = iosapic_intr_info[vector].trigger;
dmode = iosapic_intr_info[vector].dmode;
redir = (dmode == IOSAPIC_LOWEST_PRIORITY) ? 1 : 0;
#ifdef CONFIG_SMP
{
unsigned int irq;
for (irq = 0; irq < NR_IRQS; ++irq)
if (irq_to_vector(irq) == vector) {
set_irq_affinity_info(irq, (int)(dest & 0xffff), redir);
break;
}
}
#endif
low32 = ((pol << IOSAPIC_POLARITY_SHIFT) |
(trigger << IOSAPIC_TRIGGER_SHIFT) |
(dmode << IOSAPIC_DELIVERY_SHIFT) |
((mask ? 1 : 0) << IOSAPIC_MASK_SHIFT) |
vector);
/* dest contains both id and eid */
high32 = (dest << IOSAPIC_DEST_SHIFT);
iosapic_write(addr, IOSAPIC_RTE_HIGH(rte_index), high32);
iosapic_write(addr, IOSAPIC_RTE_LOW(rte_index), low32);
iosapic_intr_info[vector].low32 = low32;
iosapic_intr_info[vector].dest = dest;
}
static void
nop (unsigned int vector)
{
/* do nothing... */
}
static void
mask_irq (unsigned int irq)
{
unsigned long flags;
char __iomem *addr;
u32 low32;
int rte_index;
ia64_vector vec = irq_to_vector(irq);
struct iosapic_rte_info *rte;
if (list_empty(&iosapic_intr_info[vec].rtes))
return; /* not an IOSAPIC interrupt! */
spin_lock_irqsave(&iosapic_lock, flags);
{
/* set only the mask bit */
low32 = iosapic_intr_info[vec].low32 |= IOSAPIC_MASK;
list_for_each_entry(rte, &iosapic_intr_info[vec].rtes, rte_list) {
addr = rte->addr;
rte_index = rte->rte_index;
iosapic_write(addr, IOSAPIC_RTE_LOW(rte_index), low32);
}
}
spin_unlock_irqrestore(&iosapic_lock, flags);
}
static void
unmask_irq (unsigned int irq)
{
unsigned long flags;
char __iomem *addr;
u32 low32;
int rte_index;
ia64_vector vec = irq_to_vector(irq);
struct iosapic_rte_info *rte;
if (list_empty(&iosapic_intr_info[vec].rtes))
return; /* not an IOSAPIC interrupt! */
spin_lock_irqsave(&iosapic_lock, flags);
{
low32 = iosapic_intr_info[vec].low32 &= ~IOSAPIC_MASK;
list_for_each_entry(rte, &iosapic_intr_info[vec].rtes, rte_list) {
addr = rte->addr;
rte_index = rte->rte_index;
iosapic_write(addr, IOSAPIC_RTE_LOW(rte_index), low32);
}
}
spin_unlock_irqrestore(&iosapic_lock, flags);
}
static void
iosapic_set_affinity (unsigned int irq, cpumask_t mask)
{
#ifdef CONFIG_SMP
unsigned long flags;
u32 high32, low32;
int dest, rte_index;
char __iomem *addr;
int redir = (irq & IA64_IRQ_REDIRECTED) ? 1 : 0;
ia64_vector vec;
struct iosapic_rte_info *rte;
irq &= (~IA64_IRQ_REDIRECTED);
vec = irq_to_vector(irq);
if (cpus_empty(mask))
return;
dest = cpu_physical_id(first_cpu(mask));
if (list_empty(&iosapic_intr_info[vec].rtes))
return; /* not an IOSAPIC interrupt */
set_irq_affinity_info(irq, dest, redir);
/* dest contains both id and eid */
high32 = dest << IOSAPIC_DEST_SHIFT;
spin_lock_irqsave(&iosapic_lock, flags);
{
low32 = iosapic_intr_info[vec].low32 & ~(7 << IOSAPIC_DELIVERY_SHIFT);
if (redir)
/* change delivery mode to lowest priority */
low32 |= (IOSAPIC_LOWEST_PRIORITY << IOSAPIC_DELIVERY_SHIFT);
else
/* change delivery mode to fixed */
low32 |= (IOSAPIC_FIXED << IOSAPIC_DELIVERY_SHIFT);
iosapic_intr_info[vec].low32 = low32;
iosapic_intr_info[vec].dest = dest;
list_for_each_entry(rte, &iosapic_intr_info[vec].rtes, rte_list) {
addr = rte->addr;
rte_index = rte->rte_index;
iosapic_write(addr, IOSAPIC_RTE_HIGH(rte_index), high32);
iosapic_write(addr, IOSAPIC_RTE_LOW(rte_index), low32);
}
}
spin_unlock_irqrestore(&iosapic_lock, flags);
#endif
}
/*
* Handlers for level-triggered interrupts.
*/
static unsigned int
iosapic_startup_level_irq (unsigned int irq)
{
unmask_irq(irq);
return 0;
}
static void
iosapic_end_level_irq (unsigned int irq)
{
ia64_vector vec = irq_to_vector(irq);
struct iosapic_rte_info *rte;
move_irq(irq);
list_for_each_entry(rte, &iosapic_intr_info[vec].rtes, rte_list)
iosapic_eoi(rte->addr, vec);
}
#define iosapic_shutdown_level_irq mask_irq
#define iosapic_enable_level_irq unmask_irq
#define iosapic_disable_level_irq mask_irq
#define iosapic_ack_level_irq nop
struct hw_interrupt_type irq_type_iosapic_level = {
.typename = "IO-SAPIC-level",
.startup = iosapic_startup_level_irq,
.shutdown = iosapic_shutdown_level_irq,
.enable = iosapic_enable_level_irq,
.disable = iosapic_disable_level_irq,
.ack = iosapic_ack_level_irq,
.end = iosapic_end_level_irq,
.set_affinity = iosapic_set_affinity
};
/*
* Handlers for edge-triggered interrupts.
*/
static unsigned int
iosapic_startup_edge_irq (unsigned int irq)
{
unmask_irq(irq);
/*
* IOSAPIC simply drops interrupts pended while the
* corresponding pin was masked, so we can't know if an
* interrupt is pending already. Let's hope not...
*/
return 0;
}
static void
iosapic_ack_edge_irq (unsigned int irq)
{
irq_desc_t *idesc = irq_descp(irq);
move_irq(irq);
/*
* Once we have recorded IRQ_PENDING already, we can mask the
* interrupt for real. This prevents IRQ storms from unhandled
* devices.
*/
if ((idesc->status & (IRQ_PENDING|IRQ_DISABLED)) == (IRQ_PENDING|IRQ_DISABLED))
mask_irq(irq);
}
#define iosapic_enable_edge_irq unmask_irq
#define iosapic_disable_edge_irq nop
#define iosapic_end_edge_irq nop
struct hw_interrupt_type irq_type_iosapic_edge = {
.typename = "IO-SAPIC-edge",
.startup = iosapic_startup_edge_irq,
.shutdown = iosapic_disable_edge_irq,
.enable = iosapic_enable_edge_irq,
.disable = iosapic_disable_edge_irq,
.ack = iosapic_ack_edge_irq,
.end = iosapic_end_edge_irq,
.set_affinity = iosapic_set_affinity
};
unsigned int
iosapic_version (char __iomem *addr)
{
/*
* IOSAPIC Version Register return 32 bit structure like:
* {
* unsigned int version : 8;
* unsigned int reserved1 : 8;
* unsigned int max_redir : 8;
* unsigned int reserved2 : 8;
* }
*/
return iosapic_read(addr, IOSAPIC_VERSION);
}
static int iosapic_find_sharable_vector (unsigned long trigger, unsigned long pol)
{
int i, vector = -1, min_count = -1;
struct iosapic_intr_info *info;
/*
* shared vectors for edge-triggered interrupts are not
* supported yet
*/
if (trigger == IOSAPIC_EDGE)
return -1;
for (i = IA64_FIRST_DEVICE_VECTOR; i <= IA64_LAST_DEVICE_VECTOR; i++) {
info = &iosapic_intr_info[i];
if (info->trigger == trigger && info->polarity == pol &&
(info->dmode == IOSAPIC_FIXED || info->dmode == IOSAPIC_LOWEST_PRIORITY)) {
if (min_count == -1 || info->count < min_count) {
vector = i;
min_count = info->count;
}
}
}
return vector;
}
/*
* if the given vector is already owned by other,
* assign a new vector for the other and make the vector available
*/
static void __init
iosapic_reassign_vector (int vector)
{
int new_vector;
if (!list_empty(&iosapic_intr_info[vector].rtes)) {
new_vector = assign_irq_vector(AUTO_ASSIGN);
if (new_vector < 0)
panic("%s: out of interrupt vectors!\n", __FUNCTION__);
printk(KERN_INFO "Reassigning vector %d to %d\n", vector, new_vector);
memcpy(&iosapic_intr_info[new_vector], &iosapic_intr_info[vector],
sizeof(struct iosapic_intr_info));
INIT_LIST_HEAD(&iosapic_intr_info[new_vector].rtes);
list_move(iosapic_intr_info[vector].rtes.next, &iosapic_intr_info[new_vector].rtes);
memset(&iosapic_intr_info[vector], 0, sizeof(struct iosapic_intr_info));
iosapic_intr_info[vector].low32 = IOSAPIC_MASK;
INIT_LIST_HEAD(&iosapic_intr_info[vector].rtes);
}
}
static struct iosapic_rte_info *iosapic_alloc_rte (void)
{
int i;
struct iosapic_rte_info *rte;
int preallocated = 0;
if (!iosapic_kmalloc_ok && list_empty(&free_rte_list)) {
rte = alloc_bootmem(sizeof(struct iosapic_rte_info) * NR_PREALLOCATE_RTE_ENTRIES);
if (!rte)
return NULL;
for (i = 0; i < NR_PREALLOCATE_RTE_ENTRIES; i++, rte++)
list_add(&rte->rte_list, &free_rte_list);
}
if (!list_empty(&free_rte_list)) {
rte = list_entry(free_rte_list.next, struct iosapic_rte_info, rte_list);
list_del(&rte->rte_list);
preallocated++;
} else {
rte = kmalloc(sizeof(struct iosapic_rte_info), GFP_ATOMIC);
if (!rte)
return NULL;
}
memset(rte, 0, sizeof(struct iosapic_rte_info));
if (preallocated)
rte->flags |= RTE_PREALLOCATED;
return rte;
}
static void iosapic_free_rte (struct iosapic_rte_info *rte)
{
if (rte->flags & RTE_PREALLOCATED)
list_add_tail(&rte->rte_list, &free_rte_list);
else
kfree(rte);
}
static inline int vector_is_shared (int vector)
{
return (iosapic_intr_info[vector].count > 1);
}
static void
register_intr (unsigned int gsi, int vector, unsigned char delivery,
unsigned long polarity, unsigned long trigger)
{
irq_desc_t *idesc;
struct hw_interrupt_type *irq_type;
int rte_index;
int index;
unsigned long gsi_base;
void __iomem *iosapic_address;
struct iosapic_rte_info *rte;
index = find_iosapic(gsi);
if (index < 0) {
printk(KERN_WARNING "%s: No IOSAPIC for GSI %u\n", __FUNCTION__, gsi);
return;
}
iosapic_address = iosapic_lists[index].addr;
gsi_base = iosapic_lists[index].gsi_base;
rte = gsi_vector_to_rte(gsi, vector);
if (!rte) {
rte = iosapic_alloc_rte();
if (!rte) {
printk(KERN_WARNING "%s: cannot allocate memory\n", __FUNCTION__);
return;
}
rte_index = gsi - gsi_base;
rte->rte_index = rte_index;
rte->addr = iosapic_address;
rte->gsi_base = gsi_base;
rte->refcnt++;
list_add_tail(&rte->rte_list, &iosapic_intr_info[vector].rtes);
iosapic_intr_info[vector].count++;
iosapic_lists[index].rtes_inuse++;
}
else if (vector_is_shared(vector)) {
struct iosapic_intr_info *info = &iosapic_intr_info[vector];
if (info->trigger != trigger || info->polarity != polarity) {
printk (KERN_WARNING "%s: cannot override the interrupt\n", __FUNCTION__);
return;
}
}
iosapic_intr_info[vector].polarity = polarity;
iosapic_intr_info[vector].dmode = delivery;
iosapic_intr_info[vector].trigger = trigger;
if (trigger == IOSAPIC_EDGE)
irq_type = &irq_type_iosapic_edge;
else
irq_type = &irq_type_iosapic_level;
idesc = irq_descp(vector);
if (idesc->handler != irq_type) {
if (idesc->handler != &no_irq_type)
printk(KERN_WARNING "%s: changing vector %d from %s to %s\n",
__FUNCTION__, vector, idesc->handler->typename, irq_type->typename);
idesc->handler = irq_type;
}
}
static unsigned int
get_target_cpu (unsigned int gsi, int vector)
{
#ifdef CONFIG_SMP
static int cpu = -1;
/*
* In case of vector shared by multiple RTEs, all RTEs that
* share the vector need to use the same destination CPU.
*/
if (!list_empty(&iosapic_intr_info[vector].rtes))
return iosapic_intr_info[vector].dest;
/*
* If the platform supports redirection via XTP, let it
* distribute interrupts.
*/
if (smp_int_redirect & SMP_IRQ_REDIRECTION)
return cpu_physical_id(smp_processor_id());
/*
* Some interrupts (ACPI SCI, for instance) are registered
* before the BSP is marked as online.
*/
if (!cpu_online(smp_processor_id()))
return cpu_physical_id(smp_processor_id());
#ifdef CONFIG_NUMA
{
int num_cpus, cpu_index, iosapic_index, numa_cpu, i = 0;
cpumask_t cpu_mask;
iosapic_index = find_iosapic(gsi);
if (iosapic_index < 0 ||
iosapic_lists[iosapic_index].node == MAX_NUMNODES)
goto skip_numa_setup;
cpu_mask = node_to_cpumask(iosapic_lists[iosapic_index].node);
for_each_cpu_mask(numa_cpu, cpu_mask) {
if (!cpu_online(numa_cpu))
cpu_clear(numa_cpu, cpu_mask);
}
num_cpus = cpus_weight(cpu_mask);
if (!num_cpus)
goto skip_numa_setup;
/* Use vector assigment to distribute across cpus in node */
cpu_index = vector % num_cpus;
for (numa_cpu = first_cpu(cpu_mask) ; i < cpu_index ; i++)
numa_cpu = next_cpu(numa_cpu, cpu_mask);
if (numa_cpu != NR_CPUS)
return cpu_physical_id(numa_cpu);
}
skip_numa_setup:
#endif
/*
* Otherwise, round-robin interrupt vectors across all the
* processors. (It'd be nice if we could be smarter in the
* case of NUMA.)
*/
do {
if (++cpu >= NR_CPUS)
cpu = 0;
} while (!cpu_online(cpu));
return cpu_physical_id(cpu);
#else
return cpu_physical_id(smp_processor_id());
#endif
}
/*
* ACPI can describe IOSAPIC interrupts via static tables and namespace
* methods. This provides an interface to register those interrupts and
* program the IOSAPIC RTE.
*/
int
iosapic_register_intr (unsigned int gsi,
unsigned long polarity, unsigned long trigger)
{
int vector, mask = 1;
unsigned int dest;
unsigned long flags;
struct iosapic_rte_info *rte;
u32 low32;
again:
/*
* If this GSI has already been registered (i.e., it's a
* shared interrupt, or we lost a race to register it),
* don't touch the RTE.
*/
spin_lock_irqsave(&iosapic_lock, flags);
{
vector = gsi_to_vector(gsi);
if (vector > 0) {
rte = gsi_vector_to_rte(gsi, vector);
rte->refcnt++;
spin_unlock_irqrestore(&iosapic_lock, flags);
return vector;
}
}
spin_unlock_irqrestore(&iosapic_lock, flags);
/* If vector is running out, we try to find a sharable vector */
vector = assign_irq_vector(AUTO_ASSIGN);
if (vector < 0) {
vector = iosapic_find_sharable_vector(trigger, polarity);
if (vector < 0)
panic("%s: out of interrupt vectors!\n", __FUNCTION__);
}
spin_lock_irqsave(&irq_descp(vector)->lock, flags);
spin_lock(&iosapic_lock);
{
if (gsi_to_vector(gsi) > 0) {
if (list_empty(&iosapic_intr_info[vector].rtes))
free_irq_vector(vector);
spin_unlock(&iosapic_lock);
spin_unlock_irqrestore(&irq_descp(vector)->lock, flags);
goto again;
}
dest = get_target_cpu(gsi, vector);
register_intr(gsi, vector, IOSAPIC_LOWEST_PRIORITY,
polarity, trigger);
/*
* If the vector is shared and already unmasked for
* other interrupt sources, don't mask it.
*/
low32 = iosapic_intr_info[vector].low32;
if (vector_is_shared(vector) && !(low32 & IOSAPIC_MASK))
mask = 0;
set_rte(gsi, vector, dest, mask);
}
spin_unlock(&iosapic_lock);
spin_unlock_irqrestore(&irq_descp(vector)->lock, flags);
printk(KERN_INFO "GSI %u (%s, %s) -> CPU %d (0x%04x) vector %d\n",
gsi, (trigger == IOSAPIC_EDGE ? "edge" : "level"),
(polarity == IOSAPIC_POL_HIGH ? "high" : "low"),
cpu_logical_id(dest), dest, vector);
return vector;
}
void
iosapic_unregister_intr (unsigned int gsi)
{
unsigned long flags;
int irq, vector, index;
irq_desc_t *idesc;
u32 low32;
unsigned long trigger, polarity;
unsigned int dest;
struct iosapic_rte_info *rte;
/*
* If the irq associated with the gsi is not found,
* iosapic_unregister_intr() is unbalanced. We need to check
* this again after getting locks.
*/
irq = gsi_to_irq(gsi);
if (irq < 0) {
printk(KERN_ERR "iosapic_unregister_intr(%u) unbalanced\n", gsi);
WARN_ON(1);
return;
}
vector = irq_to_vector(irq);
idesc = irq_descp(irq);
spin_lock_irqsave(&idesc->lock, flags);
spin_lock(&iosapic_lock);
{
if ((rte = gsi_vector_to_rte(gsi, vector)) == NULL) {
printk(KERN_ERR "iosapic_unregister_intr(%u) unbalanced\n", gsi);
WARN_ON(1);
goto out;
}
if (--rte->refcnt > 0)
goto out;
/* Mask the interrupt */
low32 = iosapic_intr_info[vector].low32 | IOSAPIC_MASK;
iosapic_write(rte->addr, IOSAPIC_RTE_LOW(rte->rte_index), low32);
/* Remove the rte entry from the list */
list_del(&rte->rte_list);
iosapic_intr_info[vector].count--;
iosapic_free_rte(rte);
index = find_iosapic(gsi);
iosapic_lists[index].rtes_inuse--;
WARN_ON(iosapic_lists[index].rtes_inuse < 0);
trigger = iosapic_intr_info[vector].trigger;
polarity = iosapic_intr_info[vector].polarity;
dest = iosapic_intr_info[vector].dest;
printk(KERN_INFO "GSI %u (%s, %s) -> CPU %d (0x%04x) vector %d unregistered\n",
gsi, (trigger == IOSAPIC_EDGE ? "edge" : "level"),
(polarity == IOSAPIC_POL_HIGH ? "high" : "low"),
cpu_logical_id(dest), dest, vector);
if (list_empty(&iosapic_intr_info[vector].rtes)) {
/* Sanity check */
BUG_ON(iosapic_intr_info[vector].count);
/* Clear the interrupt controller descriptor */
idesc->handler = &no_irq_type;
/* Clear the interrupt information */
memset(&iosapic_intr_info[vector], 0, sizeof(struct iosapic_intr_info));
iosapic_intr_info[vector].low32 |= IOSAPIC_MASK;
INIT_LIST_HEAD(&iosapic_intr_info[vector].rtes);
if (idesc->action) {
printk(KERN_ERR "interrupt handlers still exist on IRQ %u\n", irq);
WARN_ON(1);
}
/* Free the interrupt vector */
free_irq_vector(vector);
}
}
out:
spin_unlock(&iosapic_lock);
spin_unlock_irqrestore(&idesc->lock, flags);
}
/*
* ACPI calls this when it finds an entry for a platform interrupt.
* Note that the irq_base and IOSAPIC address must be set in iosapic_init().
*/
int __init
iosapic_register_platform_intr (u32 int_type, unsigned int gsi,
int iosapic_vector, u16 eid, u16 id,
unsigned long polarity, unsigned long trigger)
{
static const char * const name[] = {"unknown", "PMI", "INIT", "CPEI"};
unsigned char delivery;
int vector, mask = 0;
unsigned int dest = ((id << 8) | eid) & 0xffff;
switch (int_type) {
case ACPI_INTERRUPT_PMI:
vector = iosapic_vector;
/*
* since PMI vector is alloc'd by FW(ACPI) not by kernel,
* we need to make sure the vector is available
*/
iosapic_reassign_vector(vector);
delivery = IOSAPIC_PMI;
break;
case ACPI_INTERRUPT_INIT:
vector = assign_irq_vector(AUTO_ASSIGN);
if (vector < 0)
panic("%s: out of interrupt vectors!\n", __FUNCTION__);
delivery = IOSAPIC_INIT;
break;
case ACPI_INTERRUPT_CPEI:
vector = IA64_CPE_VECTOR;
delivery = IOSAPIC_LOWEST_PRIORITY;
mask = 1;
break;
default:
printk(KERN_ERR "iosapic_register_platform_irq(): invalid int type 0x%x\n", int_type);
return -1;
}
register_intr(gsi, vector, delivery, polarity, trigger);
printk(KERN_INFO "PLATFORM int %s (0x%x): GSI %u (%s, %s) -> CPU %d (0x%04x) vector %d\n",
int_type < ARRAY_SIZE(name) ? name[int_type] : "unknown",
int_type, gsi, (trigger == IOSAPIC_EDGE ? "edge" : "level"),
(polarity == IOSAPIC_POL_HIGH ? "high" : "low"),
cpu_logical_id(dest), dest, vector);
set_rte(gsi, vector, dest, mask);
return vector;
}
/*
* ACPI calls this when it finds an entry for a legacy ISA IRQ override.
* Note that the gsi_base and IOSAPIC address must be set in iosapic_init().
*/
void __init
iosapic_override_isa_irq (unsigned int isa_irq, unsigned int gsi,
unsigned long polarity,
unsigned long trigger)
{
int vector;
unsigned int dest = cpu_physical_id(smp_processor_id());
vector = isa_irq_to_vector(isa_irq);
register_intr(gsi, vector, IOSAPIC_LOWEST_PRIORITY, polarity, trigger);
DBG("ISA: IRQ %u -> GSI %u (%s,%s) -> CPU %d (0x%04x) vector %d\n",
isa_irq, gsi, trigger == IOSAPIC_EDGE ? "edge" : "level",
polarity == IOSAPIC_POL_HIGH ? "high" : "low",
cpu_logical_id(dest), dest, vector);
set_rte(gsi, vector, dest, 1);
}
void __init
iosapic_system_init (int system_pcat_compat)
{
int vector;
for (vector = 0; vector < IA64_NUM_VECTORS; ++vector) {
iosapic_intr_info[vector].low32 = IOSAPIC_MASK;
INIT_LIST_HEAD(&iosapic_intr_info[vector].rtes); /* mark as unused */
}
pcat_compat = system_pcat_compat;
if (pcat_compat) {
/*
* Disable the compatibility mode interrupts (8259 style), needs IN/OUT support
* enabled.
*/
printk(KERN_INFO "%s: Disabling PC-AT compatible 8259 interrupts\n", __FUNCTION__);
outb(0xff, 0xA1);
outb(0xff, 0x21);
}
}
static inline int
iosapic_alloc (void)
{
int index;
for (index = 0; index < NR_IOSAPICS; index++)
if (!iosapic_lists[index].addr)
return index;
printk(KERN_WARNING "%s: failed to allocate iosapic\n", __FUNCTION__);
return -1;
}
static inline void
iosapic_free (int index)
{
memset(&iosapic_lists[index], 0, sizeof(iosapic_lists[0]));
}
static inline int
iosapic_check_gsi_range (unsigned int gsi_base, unsigned int ver)
{
int index;
unsigned int gsi_end, base, end;
/* check gsi range */
gsi_end = gsi_base + ((ver >> 16) & 0xff);
for (index = 0; index < NR_IOSAPICS; index++) {
if (!iosapic_lists[index].addr)
continue;
base = iosapic_lists[index].gsi_base;
end = base + iosapic_lists[index].num_rte - 1;
if (gsi_base < base && gsi_end < base)
continue;/* OK */
if (gsi_base > end && gsi_end > end)
continue; /* OK */
return -EBUSY;
}
return 0;
}
int __devinit
iosapic_init (unsigned long phys_addr, unsigned int gsi_base)
{
int num_rte, err, index;
unsigned int isa_irq, ver;
char __iomem *addr;
unsigned long flags;
spin_lock_irqsave(&iosapic_lock, flags);
{
addr = ioremap(phys_addr, 0);
ver = iosapic_version(addr);
if ((err = iosapic_check_gsi_range(gsi_base, ver))) {
iounmap(addr);
spin_unlock_irqrestore(&iosapic_lock, flags);
return err;
}
/*
* The MAX_REDIR register holds the highest input pin
* number (starting from 0).
* We add 1 so that we can use it for number of pins (= RTEs)
*/
num_rte = ((ver >> 16) & 0xff) + 1;
index = iosapic_alloc();
iosapic_lists[index].addr = addr;
iosapic_lists[index].gsi_base = gsi_base;
iosapic_lists[index].num_rte = num_rte;
#ifdef CONFIG_NUMA
iosapic_lists[index].node = MAX_NUMNODES;
#endif
}
spin_unlock_irqrestore(&iosapic_lock, flags);
if ((gsi_base == 0) && pcat_compat) {
/*
* Map the legacy ISA devices into the IOSAPIC data. Some of these may
* get reprogrammed later on with data from the ACPI Interrupt Source
* Override table.
*/
for (isa_irq = 0; isa_irq < 16; ++isa_irq)
iosapic_override_isa_irq(isa_irq, isa_irq, IOSAPIC_POL_HIGH, IOSAPIC_EDGE);
}
return 0;
}
#ifdef CONFIG_HOTPLUG
int
iosapic_remove (unsigned int gsi_base)
{
int index, err = 0;
unsigned long flags;
spin_lock_irqsave(&iosapic_lock, flags);
{
index = find_iosapic(gsi_base);
if (index < 0) {
printk(KERN_WARNING "%s: No IOSAPIC for GSI base %u\n",
__FUNCTION__, gsi_base);
goto out;
}
if (iosapic_lists[index].rtes_inuse) {
err = -EBUSY;
printk(KERN_WARNING "%s: IOSAPIC for GSI base %u is busy\n",
__FUNCTION__, gsi_base);
goto out;
}
iounmap(iosapic_lists[index].addr);
iosapic_free(index);
}
out:
spin_unlock_irqrestore(&iosapic_lock, flags);
return err;
}
#endif /* CONFIG_HOTPLUG */
#ifdef CONFIG_NUMA
void __devinit
map_iosapic_to_node(unsigned int gsi_base, int node)
{
int index;
index = find_iosapic(gsi_base);
if (index < 0) {
printk(KERN_WARNING "%s: No IOSAPIC for GSI %u\n",
__FUNCTION__, gsi_base);
return;
}
iosapic_lists[index].node = node;
return;
}
#endif
static int __init iosapic_enable_kmalloc (void)
{
iosapic_kmalloc_ok = 1;
return 0;
}
core_initcall (iosapic_enable_kmalloc);