/*
* Extensible Firmware Interface
*
* Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
*
* Copyright (C) 1999 VA Linux Systems
* Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
* Copyright (C) 1999-2003 Hewlett-Packard Co.
* David Mosberger-Tang <davidm@hpl.hp.com>
* Stephane Eranian <eranian@hpl.hp.com>
*
* All EFI Runtime Services are not implemented yet as EFI only
* supports physical mode addressing on SoftSDV. This is to be fixed
* in a future version. --drummond 1999-07-20
*
* Implemented EFI runtime services and virtual mode calls. --davidm
*
* Goutham Rao: <goutham.rao@intel.com>
* Skip non-WB memory and ignore empty memory ranges.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/time.h>
#include <linux/efi.h>
#include <asm/io.h>
#include <asm/kregs.h>
#include <asm/meminit.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/mca.h>
#define EFI_DEBUG 0
extern efi_status_t efi_call_phys (void *, ...);
struct efi efi;
EXPORT_SYMBOL(efi);
static efi_runtime_services_t *runtime;
static unsigned long mem_limit = ~0UL, max_addr = ~0UL;
#define efi_call_virt(f, args...) (*(f))(args)
#define STUB_GET_TIME(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
{ \
struct ia64_fpreg fr[6]; \
efi_time_cap_t *atc = NULL; \
efi_status_t ret; \
\
if (tc) \
atc = adjust_arg(tc); \
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_SET_TIME(prefix, adjust_arg) \
static efi_status_t \
prefix##_set_time (efi_time_t *tm) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
static efi_status_t \
prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
{ \
struct ia64_fpreg fr[6]; \
efi_time_t *atm = NULL; \
efi_status_t ret; \
\
if (tm) \
atm = adjust_arg(tm); \
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
enabled, atm); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_GET_VARIABLE(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
unsigned long *data_size, void *data) \
{ \
struct ia64_fpreg fr[6]; \
u32 *aattr = NULL; \
efi_status_t ret; \
\
if (attr) \
aattr = adjust_arg(attr); \
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \
adjust_arg(name), adjust_arg(vendor), aattr, \
adjust_arg(data_size), adjust_arg(data)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \
adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_SET_VARIABLE(prefix, adjust_arg) \
static efi_status_t \
prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, \
unsigned long data_size, void *data) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \
adjust_arg(name), adjust_arg(vendor), attr, data_size, \
adjust_arg(data)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_next_high_mono_count (u32 *count) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
__va(runtime->get_next_high_mono_count), adjust_arg(count)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_RESET_SYSTEM(prefix, adjust_arg) \
static void \
prefix##_reset_system (int reset_type, efi_status_t status, \
unsigned long data_size, efi_char16_t *data) \
{ \
struct ia64_fpreg fr[6]; \
efi_char16_t *adata = NULL; \
\
if (data) \
adata = adjust_arg(data); \
\
ia64_save_scratch_fpregs(fr); \
efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \
reset_type, status, data_size, adata); \
/* should not return, but just in case... */ \
ia64_load_scratch_fpregs(fr); \
}
#define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
STUB_GET_TIME(phys, phys_ptr)
STUB_SET_TIME(phys, phys_ptr)
STUB_GET_WAKEUP_TIME(phys, phys_ptr)
STUB_SET_WAKEUP_TIME(phys, phys_ptr)
STUB_GET_VARIABLE(phys, phys_ptr)
STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
STUB_SET_VARIABLE(phys, phys_ptr)
STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
STUB_RESET_SYSTEM(phys, phys_ptr)
#define id(arg) arg
STUB_GET_TIME(virt, id)
STUB_SET_TIME(virt, id)
STUB_GET_WAKEUP_TIME(virt, id)
STUB_SET_WAKEUP_TIME(virt, id)
STUB_GET_VARIABLE(virt, id)
STUB_GET_NEXT_VARIABLE(virt, id)
STUB_SET_VARIABLE(virt, id)
STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
STUB_RESET_SYSTEM(virt, id)
void
efi_gettimeofday (struct timespec *ts)
{
efi_time_t tm;
memset(ts, 0, sizeof(ts));
if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS)
return;
ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
ts->tv_nsec = tm.nanosecond;
}
static int
is_available_memory (efi_memory_desc_t *md)
{
if (!(md->attribute & EFI_MEMORY_WB))
return 0;
switch (md->type) {
case EFI_LOADER_CODE:
case EFI_LOADER_DATA:
case EFI_BOOT_SERVICES_CODE:
case EFI_BOOT_SERVICES_DATA:
case EFI_CONVENTIONAL_MEMORY:
return 1;
}
return 0;
}
/*
* Trim descriptor MD so its starts at address START_ADDR. If the descriptor covers
* memory that is normally available to the kernel, issue a warning that some memory
* is being ignored.
*/
static void
trim_bottom (efi_memory_desc_t *md, u64 start_addr)
{
u64 num_skipped_pages;
if (md->phys_addr >= start_addr || !md->num_pages)
return;
num_skipped_pages = (start_addr - md->phys_addr) >> EFI_PAGE_SHIFT;
if (num_skipped_pages > md->num_pages)
num_skipped_pages = md->num_pages;
if (is_available_memory(md))
printk(KERN_NOTICE "efi.%s: ignoring %luKB of memory at 0x%lx due to granule hole "
"at 0x%lx\n", __FUNCTION__,
(num_skipped_pages << EFI_PAGE_SHIFT) >> 10,
md->phys_addr, start_addr - IA64_GRANULE_SIZE);
/*
* NOTE: Don't set md->phys_addr to START_ADDR because that could cause the memory
* descriptor list to become unsorted. In such a case, md->num_pages will be
* zero, so the Right Thing will happen.
*/
md->phys_addr += num_skipped_pages << EFI_PAGE_SHIFT;
md->num_pages -= num_skipped_pages;
}
static void
trim_top (efi_memory_desc_t *md, u64 end_addr)
{
u64 num_dropped_pages, md_end_addr;
md_end_addr = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT);
if (md_end_addr <= end_addr || !md->num_pages)
return;
num_dropped_pages = (md_end_addr - end_addr) >> EFI_PAGE_SHIFT;
if (num_dropped_pages > md->num_pages)
num_dropped_pages = md->num_pages;
if (is_available_memory(md))
printk(KERN_NOTICE "efi.%s: ignoring %luKB of memory at 0x%lx due to granule hole "
"at 0x%lx\n", __FUNCTION__,
(num_dropped_pages << EFI_PAGE_SHIFT) >> 10,
md->phys_addr, end_addr);
md->num_pages -= num_dropped_pages;
}
/*
* Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
* has memory that is available for OS use.
*/
void
efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
{
int prev_valid = 0;
struct range {
u64 start;
u64 end;
} prev, curr;
void *efi_map_start, *efi_map_end, *p, *q;
efi_memory_desc_t *md, *check_md;
u64 efi_desc_size, start, end, granule_addr, last_granule_addr, first_non_wb_addr = 0;
unsigned long total_mem = 0;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
/* skip over non-WB memory descriptors; that's all we're interested in... */
if (!(md->attribute & EFI_MEMORY_WB))
continue;
/*
* granule_addr is the base of md's first granule.
* [granule_addr - first_non_wb_addr) is guaranteed to
* be contiguous WB memory.
*/
granule_addr = GRANULEROUNDDOWN(md->phys_addr);
first_non_wb_addr = max(first_non_wb_addr, granule_addr);
if (first_non_wb_addr < md->phys_addr) {
trim_bottom(md, granule_addr + IA64_GRANULE_SIZE);
granule_addr = GRANULEROUNDDOWN(md->phys_addr);
first_non_wb_addr = max(first_non_wb_addr, granule_addr);
}
for (q = p; q < efi_map_end; q += efi_desc_size) {
check_md = q;
if ((check_md->attribute & EFI_MEMORY_WB) &&
(check_md->phys_addr == first_non_wb_addr))
first_non_wb_addr += check_md->num_pages << EFI_PAGE_SHIFT;
else
break; /* non-WB or hole */
}
last_granule_addr = GRANULEROUNDDOWN(first_non_wb_addr);
if (last_granule_addr < md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT))
trim_top(md, last_granule_addr);
if (is_available_memory(md)) {
if (md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) >= max_addr) {
if (md->phys_addr >= max_addr)
continue;
md->num_pages = (max_addr - md->phys_addr) >> EFI_PAGE_SHIFT;
first_non_wb_addr = max_addr;
}
if (total_mem >= mem_limit)
continue;
if (total_mem + (md->num_pages << EFI_PAGE_SHIFT) > mem_limit) {
unsigned long limit_addr = md->phys_addr;
limit_addr += mem_limit - total_mem;
limit_addr = GRANULEROUNDDOWN(limit_addr);
if (md->phys_addr > limit_addr)
continue;
md->num_pages = (limit_addr - md->phys_addr) >>
EFI_PAGE_SHIFT;
first_non_wb_addr = max_addr = md->phys_addr +
(md->num_pages << EFI_PAGE_SHIFT);
}
total_mem += (md->num_pages << EFI_PAGE_SHIFT);
if (md->num_pages == 0)
continue;
curr.start = PAGE_OFFSET + md->phys_addr;
curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT);
if (!prev_valid) {
prev = curr;
prev_valid = 1;
} else {
if (curr.start < prev.start)
printk(KERN_ERR "Oops: EFI memory table not ordered!\n");
if (prev.end == curr.start) {
/* merge two consecutive memory ranges */
prev.end = curr.end;
} else {
start = PAGE_ALIGN(prev.start);
end = prev.end & PAGE_MASK;
if ((end > start) && (*callback)(start, end, arg) < 0)
return;
prev = curr;
}
}
}
}
if (prev_valid) {
start = PAGE_ALIGN(prev.start);
end = prev.end & PAGE_MASK;
if (end > start)
(*callback)(start, end, arg);
}
}
/*
* Look for the PAL_CODE region reported by EFI and maps it using an
* ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
* Abstraction Layer chapter 11 in ADAG
*/
void *
efi_get_pal_addr (void)
{
void *efi_map_start, *efi_map_end, *p;
efi_memory_desc_t *md;
u64 efi_desc_size;
int pal_code_count = 0;
u64 vaddr, mask;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
if (md->type != EFI_PAL_CODE)
continue;
if (++pal_code_count > 1) {
printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
md->phys_addr);
continue;
}
/*
* The only ITLB entry in region 7 that is used is the one installed by
* __start(). That entry covers a 64MB range.
*/
mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
vaddr = PAGE_OFFSET + md->phys_addr;
/*
* We must check that the PAL mapping won't overlap with the kernel
* mapping.
*
* PAL code is guaranteed to be aligned on a power of 2 between 4k and
* 256KB and that only one ITR is needed to map it. This implies that the
* PAL code is always aligned on its size, i.e., the closest matching page
* size supported by the TLB. Therefore PAL code is guaranteed never to
* cross a 64MB unless it is bigger than 64MB (very unlikely!). So for
* now the following test is enough to determine whether or not we need a
* dedicated ITR for the PAL code.
*/
if ((vaddr & mask) == (KERNEL_START & mask)) {
printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
__FUNCTION__);
continue;
}
if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE)
panic("Woah! PAL code size bigger than a granule!");
#if EFI_DEBUG
mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
smp_processor_id(), md->phys_addr,
md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
#endif
return __va(md->phys_addr);
}
printk(KERN_WARNING "%s: no PAL-code memory-descriptor found",
__FUNCTION__);
return NULL;
}
void
efi_map_pal_code (void)
{
void *pal_vaddr = efi_get_pal_addr ();
u64 psr;
if (!pal_vaddr)
return;
/*
* Cannot write to CRx with PSR.ic=1
*/
psr = ia64_clear_ic();
ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
IA64_GRANULE_SHIFT);
ia64_set_psr(psr); /* restore psr */
ia64_srlz_i();
}
void __init
efi_init (void)
{
void *efi_map_start, *efi_map_end;
efi_config_table_t *config_tables;
efi_char16_t *c16;
u64 efi_desc_size;
char *cp, *end, vendor[100] = "unknown";
extern char saved_command_line[];
int i;
/* it's too early to be able to use the standard kernel command line support... */
for (cp = saved_command_line; *cp; ) {
if (memcmp(cp, "mem=", 4) == 0) {
cp += 4;
mem_limit = memparse(cp, &end);
if (end != cp)
break;
cp = end;
} else if (memcmp(cp, "max_addr=", 9) == 0) {
cp += 9;
max_addr = GRANULEROUNDDOWN(memparse(cp, &end));
if (end != cp)
break;
cp = end;
} else {
while (*cp != ' ' && *cp)
++cp;
while (*cp == ' ')
++cp;
}
}
if (max_addr != ~0UL)
printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
efi.systab = __va(ia64_boot_param->efi_systab);
/*
* Verify the EFI Table
*/
if (efi.systab == NULL)
panic("Woah! Can't find EFI system table.\n");
if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
panic("Woah! EFI system table signature incorrect\n");
if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
printk(KERN_WARNING "Warning: EFI system table major version mismatch: "
"got %d.%02d, expected %d.%02d\n",
efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff,
EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff);
config_tables = __va(efi.systab->tables);
/* Show what we know for posterity */
c16 = __va(efi.systab->fw_vendor);
if (c16) {
for (i = 0;i < (int) sizeof(vendor) && *c16; ++i)
vendor[i] = *c16++;
vendor[i] = '\0';
}
printk(KERN_INFO "EFI v%u.%.02u by %s:",
efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
for (i = 0; i < (int) efi.systab->nr_tables; i++) {
if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
efi.mps = __va(config_tables[i].table);
printk(" MPS=0x%lx", config_tables[i].table);
} else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
efi.acpi20 = __va(config_tables[i].table);
printk(" ACPI 2.0=0x%lx", config_tables[i].table);
} else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
efi.acpi = __va(config_tables[i].table);
printk(" ACPI=0x%lx", config_tables[i].table);
} else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
efi.smbios = __va(config_tables[i].table);
printk(" SMBIOS=0x%lx", config_tables[i].table);
} else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
efi.sal_systab = __va(config_tables[i].table);
printk(" SALsystab=0x%lx", config_tables[i].table);
} else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
efi.hcdp = __va(config_tables[i].table);
printk(" HCDP=0x%lx", config_tables[i].table);
}
}
printk("\n");
runtime = __va(efi.systab->runtime);
efi.get_time = phys_get_time;
efi.set_time = phys_set_time;
efi.get_wakeup_time = phys_get_wakeup_time;
efi.set_wakeup_time = phys_set_wakeup_time;
efi.get_variable = phys_get_variable;
efi.get_next_variable = phys_get_next_variable;
efi.set_variable = phys_set_variable;
efi.get_next_high_mono_count = phys_get_next_high_mono_count;
efi.reset_system = phys_reset_system;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
#if EFI_DEBUG
/* print EFI memory map: */
{
efi_memory_desc_t *md;
void *p;
for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
md = p;
printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
i, md->type, md->attribute, md->phys_addr,
md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
md->num_pages >> (20 - EFI_PAGE_SHIFT));
}
}
#endif
efi_map_pal_code();
efi_enter_virtual_mode();
}
void
efi_enter_virtual_mode (void)
{
void *efi_map_start, *efi_map_end, *p;
efi_memory_desc_t *md;
efi_status_t status;
u64 efi_desc_size;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
if (md->attribute & EFI_MEMORY_RUNTIME) {
/*
* Some descriptors have multiple bits set, so the order of
* the tests is relevant.
*/
if (md->attribute & EFI_MEMORY_WB) {
md->virt_addr = (u64) __va(md->phys_addr);
} else if (md->attribute & EFI_MEMORY_UC) {
md->virt_addr = (u64) ioremap(md->phys_addr, 0);
} else if (md->attribute & EFI_MEMORY_WC) {
#if 0
md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
| _PAGE_D
| _PAGE_MA_WC
| _PAGE_PL_0
| _PAGE_AR_RW));
#else
printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
md->virt_addr = (u64) ioremap(md->phys_addr, 0);
#endif
} else if (md->attribute & EFI_MEMORY_WT) {
#if 0
md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
| _PAGE_D | _PAGE_MA_WT
| _PAGE_PL_0
| _PAGE_AR_RW));
#else
printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
md->virt_addr = (u64) ioremap(md->phys_addr, 0);
#endif
}
}
}
status = efi_call_phys(__va(runtime->set_virtual_address_map),
ia64_boot_param->efi_memmap_size,
efi_desc_size, ia64_boot_param->efi_memdesc_version,
ia64_boot_param->efi_memmap);
if (status != EFI_SUCCESS) {
printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
"(status=%lu)\n", status);
return;
}
/*
* Now that EFI is in virtual mode, we call the EFI functions more efficiently:
*/
efi.get_time = virt_get_time;
efi.set_time = virt_set_time;
efi.get_wakeup_time = virt_get_wakeup_time;
efi.set_wakeup_time = virt_set_wakeup_time;
efi.get_variable = virt_get_variable;
efi.get_next_variable = virt_get_next_variable;
efi.set_variable = virt_set_variable;
efi.get_next_high_mono_count = virt_get_next_high_mono_count;
efi.reset_system = virt_reset_system;
}
/*
* Walk the EFI memory map looking for the I/O port range. There can only be one entry of
* this type, other I/O port ranges should be described via ACPI.
*/
u64
efi_get_iobase (void)
{
void *efi_map_start, *efi_map_end, *p;
efi_memory_desc_t *md;
u64 efi_desc_size;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
if (md->attribute & EFI_MEMORY_UC)
return md->phys_addr;
}
}
return 0;
}
u32
efi_mem_type (unsigned long phys_addr)
{
void *efi_map_start, *efi_map_end, *p;
efi_memory_desc_t *md;
u64 efi_desc_size;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
return md->type;
}
return 0;
}
u64
efi_mem_attributes (unsigned long phys_addr)
{
void *efi_map_start, *efi_map_end, *p;
efi_memory_desc_t *md;
u64 efi_desc_size;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
return md->attribute;
}
return 0;
}
EXPORT_SYMBOL(efi_mem_attributes);
int
valid_phys_addr_range (unsigned long phys_addr, unsigned long *size)
{
void *efi_map_start, *efi_map_end, *p;
efi_memory_desc_t *md;
u64 efi_desc_size;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT)) {
if (!(md->attribute & EFI_MEMORY_WB))
return 0;
if (*size > md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - phys_addr)
*size = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - phys_addr;
return 1;
}
}
return 0;
}
int __init
efi_uart_console_only(void)
{
efi_status_t status;
char *s, name[] = "ConOut";
efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
efi_char16_t *utf16, name_utf16[32];
unsigned char data[1024];
unsigned long size = sizeof(data);
struct efi_generic_dev_path *hdr, *end_addr;
int uart = 0;
/* Convert to UTF-16 */
utf16 = name_utf16;
s = name;
while (*s)
*utf16++ = *s++ & 0x7f;
*utf16 = 0;
status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
if (status != EFI_SUCCESS) {
printk(KERN_ERR "No EFI %s variable?\n", name);
return 0;
}
hdr = (struct efi_generic_dev_path *) data;
end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
while (hdr < end_addr) {
if (hdr->type == EFI_DEV_MSG &&
hdr->sub_type == EFI_DEV_MSG_UART)
uart = 1;
else if (hdr->type == EFI_DEV_END_PATH ||
hdr->type == EFI_DEV_END_PATH2) {
if (!uart)
return 0;
if (hdr->sub_type == EFI_DEV_END_ENTIRE)
return 1;
uart = 0;
}
hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
}
printk(KERN_ERR "Malformed %s value\n", name);
return 0;
}