/*
* x86 SMP booting functions
*
* (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
* (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
*
* Much of the core SMP work is based on previous work by Thomas Radke, to
* whom a great many thanks are extended.
*
* Thanks to Intel for making available several different Pentium,
* Pentium Pro and Pentium-II/Xeon MP machines.
* Original development of Linux SMP code supported by Caldera.
*
* This code is released under the GNU General Public License version 2 or
* later.
*
* Fixes
* Felix Koop : NR_CPUS used properly
* Jose Renau : Handle single CPU case.
* Alan Cox : By repeated request 8) - Total BogoMIPS report.
* Greg Wright : Fix for kernel stacks panic.
* Erich Boleyn : MP v1.4 and additional changes.
* Matthias Sattler : Changes for 2.1 kernel map.
* Michel Lespinasse : Changes for 2.1 kernel map.
* Michael Chastain : Change trampoline.S to gnu as.
* Alan Cox : Dumb bug: 'B' step PPro's are fine
* Ingo Molnar : Added APIC timers, based on code
* from Jose Renau
* Ingo Molnar : various cleanups and rewrites
* Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
* Maciej W. Rozycki : Bits for genuine 82489DX APICs
* Martin J. Bligh : Added support for multi-quad systems
* Dave Jones : Report invalid combinations of Athlon CPUs.
* Rusty Russell : Hacked into shape for new "hotplug" boot process. */
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/kernel_stat.h>
#include <linux/smp_lock.h>
#include <linux/bootmem.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/percpu.h>
#include <linux/delay.h>
#include <linux/mc146818rtc.h>
#include <asm/tlbflush.h>
#include <asm/desc.h>
#include <asm/arch_hooks.h>
#include <asm/nmi.h>
#include <mach_apic.h>
#include <mach_wakecpu.h>
#include <smpboot_hooks.h>
/* Set if we find a B stepping CPU */
static int __devinitdata smp_b_stepping;
/* Number of siblings per CPU package */
int smp_num_siblings = 1;
#ifdef CONFIG_X86_HT
EXPORT_SYMBOL(smp_num_siblings);
#endif
/* Last level cache ID of each logical CPU */
int cpu_llc_id[NR_CPUS] __cpuinitdata = {[0 ... NR_CPUS-1] = BAD_APICID};
/* representing HT siblings of each logical CPU */
cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(cpu_sibling_map);
/* representing HT and core siblings of each logical CPU */
cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(cpu_core_map);
/* bitmap of online cpus */
cpumask_t cpu_online_map __read_mostly;
EXPORT_SYMBOL(cpu_online_map);
cpumask_t cpu_callin_map;
cpumask_t cpu_callout_map;
EXPORT_SYMBOL(cpu_callout_map);
cpumask_t cpu_possible_map;
EXPORT_SYMBOL(cpu_possible_map);
static cpumask_t smp_commenced_mask;
/* TSC's upper 32 bits can't be written in eariler CPU (before prescott), there
* is no way to resync one AP against BP. TBD: for prescott and above, we
* should use IA64's algorithm
*/
static int __devinitdata tsc_sync_disabled;
/* Per CPU bogomips and other parameters */
struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
EXPORT_SYMBOL(cpu_data);
u8 x86_cpu_to_apicid[NR_CPUS] __read_mostly =
{ [0 ... NR_CPUS-1] = 0xff };
EXPORT_SYMBOL(x86_cpu_to_apicid);
u8 apicid_2_node[MAX_APICID];
/*
* Trampoline 80x86 program as an array.
*/
extern unsigned char trampoline_data [];
extern unsigned char trampoline_end [];
static unsigned char *trampoline_base;
static int trampoline_exec;
static void map_cpu_to_logical_apicid(void);
/* State of each CPU. */
DEFINE_PER_CPU(int, cpu_state) = { 0 };
/*
* Currently trivial. Write the real->protected mode
* bootstrap into the page concerned. The caller
* has made sure it's suitably aligned.
*/
static unsigned long __devinit setup_trampoline(void)
{
memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data);
return virt_to_phys(trampoline_base);
}
/*
* We are called very early to get the low memory for the
* SMP bootup trampoline page.
*/
void __init smp_alloc_memory(void)
{
trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE);
/*
* Has to be in very low memory so we can execute
* real-mode AP code.
*/
if (__pa(trampoline_base) >= 0x9F000)
BUG();
/*
* Make the SMP trampoline executable:
*/
trampoline_exec = set_kernel_exec((unsigned long)trampoline_base, 1);
}
/*
* The bootstrap kernel entry code has set these up. Save them for
* a given CPU
*/
static void __devinit smp_store_cpu_info(int id)
{
struct cpuinfo_x86 *c = cpu_data + id;
*c = boot_cpu_data;
if (id!=0)
identify_cpu(c);
/*
* Mask B, Pentium, but not Pentium MMX
*/
if (c->x86_vendor == X86_VENDOR_INTEL &&
c->x86 == 5 &&
c->x86_mask >= 1 && c->x86_mask <= 4 &&
c->x86_model <= 3)
/*
* Remember we have B step Pentia with bugs
*/
smp_b_stepping = 1;
/*
* Certain Athlons might work (for various values of 'work') in SMP
* but they are not certified as MP capable.
*/
if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) {
if (num_possible_cpus() == 1)
goto valid_k7;
/* Athlon 660/661 is valid. */
if ((c->x86_model==6) && ((c->x86_mask==0) || (c->x86_mask==1)))
goto valid_k7;
/* Duron 670 is valid */
if ((c->x86_model==7) && (c->x86_mask==0))
goto valid_k7;
/*
* Athlon 662, Duron 671, and Athlon >model 7 have capability bit.
* It's worth noting that the A5 stepping (662) of some Athlon XP's
* have the MP bit set.
* See http://www.heise.de/newsticker/data/jow-18.10.01-000 for more.
*/
if (((c->x86_model==6) && (c->x86_mask>=2)) ||
((c->x86_model==7) && (c->x86_mask>=1)) ||
(c->x86_model> 7))
if (cpu_has_mp)
goto valid_k7;
/* If we get here, it's not a certified SMP capable AMD system. */
add_taint(TAINT_UNSAFE_SMP);
}
valid_k7:
;
}
/*
* TSC synchronization.
*
* We first check whether all CPUs have their TSC's synchronized,
* then we print a warning if not, and always resync.
*/
static struct {
atomic_t start_flag;
atomic_t count_start;
atomic_t count_stop;
unsigned long long values[NR_CPUS];
} tsc __initdata = {
.start_flag = ATOMIC_INIT(0),
.count_start = ATOMIC_INIT(0),
.count_stop = ATOMIC_INIT(0),
};
#define NR_LOOPS 5
static void __init synchronize_tsc_bp(void)
{
int i;
unsigned long long t0;
unsigned long long sum, avg;
long long delta;
unsigned int one_usec;
int buggy = 0;
printk(KERN_INFO "checking TSC synchronization across %u CPUs: ", num_booting_cpus());
/* convert from kcyc/sec to cyc/usec */
one_usec = cpu_khz / 1000;
atomic_set(&tsc.start_flag, 1);
wmb();
/*
* We loop a few times to get a primed instruction cache,
* then the last pass is more or less synchronized and
* the BP and APs set their cycle counters to zero all at
* once. This reduces the chance of having random offsets
* between the processors, and guarantees that the maximum
* delay between the cycle counters is never bigger than
* the latency of information-passing (cachelines) between
* two CPUs.
*/
for (i = 0; i < NR_LOOPS; i++) {
/*
* all APs synchronize but they loop on '== num_cpus'
*/
while (atomic_read(&tsc.count_start) != num_booting_cpus()-1)
cpu_relax();
atomic_set(&tsc.count_stop, 0);
wmb();
/*
* this lets the APs save their current TSC:
*/
atomic_inc(&tsc.count_start);
rdtscll(tsc.values[smp_processor_id()]);
/*
* We clear the TSC in the last loop:
*/
if (i == NR_LOOPS-1)
write_tsc(0, 0);
/*
* Wait for all APs to leave the synchronization point:
*/
while (atomic_read(&tsc.count_stop) != num_booting_cpus()-1)
cpu_relax();
atomic_set(&tsc.count_start, 0);
wmb();
atomic_inc(&tsc.count_stop);
}
sum = 0;
for (i = 0; i < NR_CPUS; i++) {
if (cpu_isset(i, cpu_callout_map)) {
t0 = tsc.values[i];
sum += t0;
}
}
avg = sum;
do_div(avg, num_booting_cpus());
for (i = 0; i < NR_CPUS; i++) {
if (!cpu_isset(i, cpu_callout_map))
continue;
delta = tsc.values[i] - avg;
if (delta < 0)
delta = -delta;
/*
* We report bigger than 2 microseconds clock differences.
*/
if (delta > 2*one_usec) {
long long realdelta;
if (!buggy) {
buggy = 1;
printk("\n");
}
realdelta = delta;
do_div(realdelta, one_usec);
if (tsc.values[i] < avg)
realdelta = -realdelta;
if (realdelta)
printk(KERN_INFO "CPU#%d had %Ld usecs TSC "
"skew, fixed it up.\n", i, realdelta);
}
}
if (!buggy)
printk("passed.\n");
}
static void __init synchronize_tsc_ap(void)
{
int i;
/*
* Not every cpu is online at the time
* this gets called, so we first wait for the BP to
* finish SMP initialization:
*/
while (!atomic_read(&tsc.start_flag))
cpu_relax();
for (i = 0; i < NR_LOOPS; i++) {
atomic_inc(&tsc.count_start);
while (atomic_read(&tsc.count_start) != num_booting_cpus())
cpu_relax();
rdtscll(tsc.values[smp_processor_id()]);
if (i == NR_LOOPS-1)
write_tsc(0, 0);
atomic_inc(&tsc.count_stop);
while (atomic_read(&tsc.count_stop) != num_booting_cpus())
cpu_relax();
}
}
#undef NR_LOOPS
extern void calibrate_delay(void);
static atomic_t init_deasserted;
static void __devinit smp_callin(void)
{
int cpuid, phys_id;
unsigned long timeout;
/*
* If waken up by an INIT in an 82489DX configuration
* we may get here before an INIT-deassert IPI reaches
* our local APIC. We have to wait for the IPI or we'll
* lock up on an APIC access.
*/
wait_for_init_deassert(&init_deasserted);
/*
* (This works even if the APIC is not enabled.)
*/
phys_id = GET_APIC_ID(apic_read(APIC_ID));
cpuid = smp_processor_id();
if (cpu_isset(cpuid, cpu_callin_map)) {
printk("huh, phys CPU#%d, CPU#%d already present??\n",
phys_id, cpuid);
BUG();
}
Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
/*
* STARTUP IPIs are fragile beasts as they might sometimes
* trigger some glue motherboard logic. Complete APIC bus
* silence for 1 second, this overestimates the time the
* boot CPU is spending to send the up to 2 STARTUP IPIs
* by a factor of two. This should be enough.
*/
/*
* Waiting 2s total for startup (udelay is not yet working)
*/
timeout = jiffies + 2*HZ;
while (time_before(jiffies, timeout)) {
/*
* Has the boot CPU finished it's STARTUP sequence?
*/
if (cpu_isset(cpuid, cpu_callout_map))
break;
rep_nop();
}
if (!time_before(jiffies, timeout)) {
printk("BUG: CPU%d started up but did not get a callout!\n",
cpuid);
BUG();
}
/*
* the boot CPU has finished the init stage and is spinning
* on callin_map until we finish. We are free to set up this
* CPU, first the APIC. (this is probably redundant on most
* boards)
*/
Dprintk("CALLIN, before setup_local_APIC().\n");
smp_callin_clear_local_apic();
setup_local_APIC();
map_cpu_to_logical_apicid();
/*
* Get our bogomips.
*/
calibrate_delay();
Dprintk("Stack at about %p\n",&cpuid);
/*
* Save our processor parameters
*/
smp_store_cpu_info(cpuid);
disable_APIC_timer();
/*
* Allow the master to continue.
*/
cpu_set(cpuid, cpu_callin_map);
/*
* Synchronize the TSC with the BP
*/
if (cpu_has_tsc && cpu_khz && !tsc_sync_disabled)
synchronize_tsc_ap();
}
static int cpucount;
/* maps the cpu to the sched domain representing multi-core */
cpumask_t cpu_coregroup_map(int cpu)
{
struct cpuinfo_x86 *c = cpu_data + cpu;
/*
* For perf, we return last level cache shared map.
* And for power savings, we return cpu_core_map
*/
if (sched_mc_power_savings || sched_smt_power_savings)
return cpu_core_map[cpu];
else
return c->llc_shared_map;
}
/* representing cpus for which sibling maps can be computed */
static cpumask_t cpu_sibling_setup_map;
static inline void
set_cpu_sibling_map(int cpu)
{
int i;
struct cpuinfo_x86 *c = cpu_data;
cpu_set(cpu, cpu_sibling_setup_map);
if (smp_num_siblings > 1) {
for_each_cpu_mask(i, cpu_sibling_setup_map) {
if (c[cpu].phys_proc_id == c[i].phys_proc_id &&
c[cpu].cpu_core_id == c[i].cpu_core_id) {
cpu_set(i, cpu_sibling_map[cpu]);
cpu_set(cpu, cpu_sibling_map[i]);
cpu_set(i, cpu_core_map[cpu]);
cpu_set(cpu, cpu_core_map[i]);
cpu_set(i, c[cpu].llc_shared_map);
cpu_set(cpu, c[i].llc_shared_map);
}
}
} else {
cpu_set(cpu, cpu_sibling_map[cpu]);
}
cpu_set(cpu, c[cpu].llc_shared_map);
if (current_cpu_data.x86_max_cores == 1) {
cpu_core_map[cpu] = cpu_sibling_map[cpu];
c[cpu].booted_cores = 1;
return;
}
for_each_cpu_mask(i, cpu_sibling_setup_map) {
if (cpu_llc_id[cpu] != BAD_APICID &&
cpu_llc_id[cpu] == cpu_llc_id[i]) {
cpu_set(i, c[cpu].llc_shared_map);
cpu_set(cpu, c[i].llc_shared_map);
}
if (c[cpu].phys_proc_id == c[i].phys_proc_id) {
cpu_set(i, cpu_core_map[cpu]);
cpu_set(cpu, cpu_core_map[i]);
/*
* Does this new cpu bringup a new core?
*/
if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
/*
* for each core in package, increment
* the booted_cores for this new cpu
*/
if (first_cpu(cpu_sibling_map[i]) == i)
c[cpu].booted_cores++;
/*
* increment the core count for all
* the other cpus in this package
*/
if (i != cpu)
c[i].booted_cores++;
} else if (i != cpu && !c[cpu].booted_cores)
c[cpu].booted_cores = c[i].booted_cores;
}
}
}
/*
* Activate a secondary processor.
*/
static void __devinit start_secondary(void *unused)
{
/*
* Dont put anything before smp_callin(), SMP
* booting is too fragile that we want to limit the
* things done here to the most necessary things.
*/
cpu_init();
preempt_disable();
smp_callin();
while (!cpu_isset(smp_processor_id(), smp_commenced_mask))
rep_nop();
setup_secondary_APIC_clock();
if (nmi_watchdog == NMI_IO_APIC) {
disable_8259A_irq(0);
enable_NMI_through_LVT0(NULL);
enable_8259A_irq(0);
}
enable_APIC_timer();
/*
* low-memory mappings have been cleared, flush them from
* the local TLBs too.
*/
local_flush_tlb();
/* This must be done before setting cpu_online_map */
set_cpu_sibling_map(raw_smp_processor_id());
wmb();
/*
* We need to hold call_lock, so there is no inconsistency
* between the time smp_call_function() determines number of
* IPI receipients, and the time when the determination is made
* for which cpus receive the IPI. Holding this
* lock helps us to not include this cpu in a currently in progress
* smp_call_function().
*/
lock_ipi_call_lock();
cpu_set(smp_processor_id(), cpu_online_map);
unlock_ipi_call_lock();
per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
/* We can take interrupts now: we're officially "up". */
local_irq_enable();
wmb();
cpu_idle();
}
/*
* Everything has been set up for the secondary
* CPUs - they just need to reload everything
* from the task structure
* This function must not return.
*/
void __devinit initialize_secondary(void)
{
/*
* We don't actually need to load the full TSS,
* basically just the stack pointer and the eip.
*/
asm volatile(
"movl %0,%%esp\n\t"
"jmp *%1"
:
:"r" (current->thread.esp),"r" (current->thread.eip));
}
extern struct {
void * esp;
unsigned short ss;
} stack_start;
#ifdef CONFIG_NUMA
/* which logical CPUs are on which nodes */
cpumask_t node_2_cpu_mask[MAX_NUMNODES] __read_mostly =
{ [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE };
EXPORT_SYMBOL(node_2_cpu_mask);
/* which node each logical CPU is on */
int cpu_2_node[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 };
EXPORT_SYMBOL(cpu_2_node);
/* set up a mapping between cpu and node. */
static inline void map_cpu_to_node(int cpu, int node)
{
printk("Mapping cpu %d to node %d\n", cpu, node);
cpu_set(cpu, node_2_cpu_mask[node]);
cpu_2_node[cpu] = node;
}
/* undo a mapping between cpu and node. */
static inline void unmap_cpu_to_node(int cpu)
{
int node;
printk("Unmapping cpu %d from all nodes\n", cpu);
for (node = 0; node < MAX_NUMNODES; node ++)
cpu_clear(cpu, node_2_cpu_mask[node]);
cpu_2_node[cpu] = 0;
}
#else /* !CONFIG_NUMA */
#define map_cpu_to_node(cpu, node) ({})
#define unmap_cpu_to_node(cpu) ({})
#endif /* CONFIG_NUMA */
u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
static void map_cpu_to_logical_apicid(void)
{
int cpu = smp_processor_id();
int apicid = logical_smp_processor_id();
int node = apicid_to_node(apicid);
if (!node_online(node))
node = first_online_node;
cpu_2_logical_apicid[cpu] = apicid;
map_cpu_to_node(cpu, node);
}
static void unmap_cpu_to_logical_apicid(int cpu)
{
cpu_2_logical_apicid[cpu] = BAD_APICID;
unmap_cpu_to_node(cpu);
}
#if APIC_DEBUG
static inline void __inquire_remote_apic(int apicid)
{
int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
char *names[] = { "ID", "VERSION", "SPIV" };
int timeout, status;
printk("Inquiring remote APIC #%d...\n", apicid);
for (i = 0; i < ARRAY_SIZE(regs); i++) {
printk("... APIC #%d %s: ", apicid, names[i]);
/*
* Wait for idle.
*/
apic_wait_icr_idle();
apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
timeout = 0;
do {
udelay(100);
status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
switch (status) {
case APIC_ICR_RR_VALID:
status = apic_read(APIC_RRR);
printk("%08x\n", status);
break;
default:
printk("failed\n");
}
}
}
#endif
#ifdef WAKE_SECONDARY_VIA_NMI
/*
* Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
* INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
* won't ... remember to clear down the APIC, etc later.
*/
static int __devinit
wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip)
{
unsigned long send_status = 0, accept_status = 0;
int timeout, maxlvt;
/* Target chip */
apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid));
/* Boot on the stack */
/* Kick the second */
apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL);
Dprintk("Waiting for send to finish...\n");
timeout = 0;
do {
Dprintk("+");
udelay(100);
send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
} while (send_status && (timeout++ < 1000));
/*
* Give the other CPU some time to accept the IPI.
*/
udelay(200);
/*
* Due to the Pentium erratum 3AP.
*/
maxlvt = get_maxlvt();
if (maxlvt > 3) {
apic_read_around(APIC_SPIV);
apic_write(APIC_ESR, 0);
}
accept_status = (apic_read(APIC_ESR) & 0xEF);
Dprintk("NMI sent.\n");
if (send_status)
printk("APIC never delivered???\n");
if (accept_status)
printk("APIC delivery error (%lx).\n", accept_status);
return (send_status | accept_status);
}
#endif /* WAKE_SECONDARY_VIA_NMI */
#ifdef WAKE_SECONDARY_VIA_INIT
static int __devinit
wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip)
{
unsigned long send_status = 0, accept_status = 0;
int maxlvt, timeout, num_starts, j;
/*
* Be paranoid about clearing APIC errors.
*/
if (APIC_INTEGRATED(apic_version[phys_apicid])) {
apic_read_around(APIC_SPIV);
apic_write(APIC_ESR, 0);
apic_read(APIC_ESR);
}
Dprintk("Asserting INIT.\n");
/*
* Turn INIT on target chip
*/
apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
/*
* Send IPI
*/
apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
| APIC_DM_INIT);
Dprintk("Waiting for send to finish...\n");
timeout = 0;
do {
Dprintk("+");
udelay(100);
send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
} while (send_status && (timeout++ < 1000));
mdelay(10);
Dprintk("Deasserting INIT.\n");
/* Target chip */
apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
/* Send IPI */
apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
Dprintk("Waiting for send to finish...\n");
timeout = 0;
do {
Dprintk("+");
udelay(100);
send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
} while (send_status && (timeout++ < 1000));
atomic_set(&init_deasserted, 1);
/*
* Should we send STARTUP IPIs ?
*
* Determine this based on the APIC version.
* If we don't have an integrated APIC, don't send the STARTUP IPIs.
*/
if (APIC_INTEGRATED(apic_version[phys_apicid]))
num_starts = 2;
else
num_starts = 0;
/*
* Run STARTUP IPI loop.
*/
Dprintk("#startup loops: %d.\n", num_starts);
maxlvt = get_maxlvt();
for (j = 1; j <= num_starts; j++) {
Dprintk("Sending STARTUP #%d.\n",j);
apic_read_around(APIC_SPIV);
apic_write(APIC_ESR, 0);
apic_read(APIC_ESR);
Dprintk("After apic_write.\n");
/*
* STARTUP IPI
*/
/* Target chip */
apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
/* Boot on the stack */
/* Kick the second */
apic_write_around(APIC_ICR, APIC_DM_STARTUP
| (start_eip >> 12));
/*
* Give the other CPU some time to accept the IPI.
*/
udelay(300);
Dprintk("Startup point 1.\n");
Dprintk("Waiting for send to finish...\n");
timeout = 0;
do {
Dprintk("+");
udelay(100);
send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
} while (send_status && (timeout++ < 1000));
/*
* Give the other CPU some time to accept the IPI.
*/
udelay(200);
/*
* Due to the Pentium erratum 3AP.
*/
if (maxlvt > 3) {
apic_read_around(APIC_SPIV);
apic_write(APIC_ESR, 0);
}
accept_status = (apic_read(APIC_ESR) & 0xEF);
if (send_status || accept_status)
break;
}
Dprintk("After Startup.\n");
if (send_status)
printk("APIC never delivered???\n");
if (accept_status)
printk("APIC delivery error (%lx).\n", accept_status);
return (send_status | accept_status);
}
#endif /* WAKE_SECONDARY_VIA_INIT */
extern cpumask_t cpu_initialized;
static inline int alloc_cpu_id(void)
{
cpumask_t tmp_map;
int cpu;
cpus_complement(tmp_map, cpu_present_map);
cpu = first_cpu(tmp_map);
if (cpu >= NR_CPUS)
return -ENODEV;
return cpu;
}
#ifdef CONFIG_HOTPLUG_CPU
static struct task_struct * __devinitdata cpu_idle_tasks[NR_CPUS];
static inline struct task_struct * alloc_idle_task(int cpu)
{
struct task_struct *idle;
if ((idle = cpu_idle_tasks[cpu]) != NULL) {
/* initialize thread_struct. we really want to avoid destroy
* idle tread
*/
idle->thread.esp = (unsigned long)task_pt_regs(idle);
init_idle(idle, cpu);
return idle;
}
idle = fork_idle(cpu);
if (!IS_ERR(idle))
cpu_idle_tasks[cpu] = idle;
return idle;
}
#else
#define alloc_idle_task(cpu) fork_idle(cpu)
#endif
static int __devinit do_boot_cpu(int apicid, int cpu)
/*
* NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
* (ie clustered apic addressing mode), this is a LOGICAL apic ID.
* Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu.
*/
{
struct task_struct *idle;
unsigned long boot_error;
int timeout;
unsigned long start_eip;
unsigned short nmi_high = 0, nmi_low = 0;
++cpucount;
alternatives_smp_switch(1);
/*
* We can't use kernel_thread since we must avoid to
* reschedule the child.
*/
idle = alloc_idle_task(cpu);
if (IS_ERR(idle))
panic("failed fork for CPU %d", cpu);
idle->thread.eip = (unsigned long) start_secondary;
/* start_eip had better be page-aligned! */
start_eip = setup_trampoline();
/* So we see what's up */
printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip);
/* Stack for startup_32 can be just as for start_secondary onwards */
stack_start.esp = (void *) idle->thread.esp;
irq_ctx_init(cpu);
x86_cpu_to_apicid[cpu] = apicid;
/*
* This grunge runs the startup process for
* the targeted processor.
*/
atomic_set(&init_deasserted, 0);
Dprintk("Setting warm reset code and vector.\n");
store_NMI_vector(&nmi_high, &nmi_low);
smpboot_setup_warm_reset_vector(start_eip);
/*
* Starting actual IPI sequence...
*/
boot_error = wakeup_secondary_cpu(apicid, start_eip);
if (!boot_error) {
/*
* allow APs to start initializing.
*/
Dprintk("Before Callout %d.\n", cpu);
cpu_set(cpu, cpu_callout_map);
Dprintk("After Callout %d.\n", cpu);
/*
* Wait 5s total for a response
*/
for (timeout = 0; timeout < 50000; timeout++) {
if (cpu_isset(cpu, cpu_callin_map))
break; /* It has booted */
udelay(100);
}
if (cpu_isset(cpu, cpu_callin_map)) {
/* number CPUs logically, starting from 1 (BSP is 0) */
Dprintk("OK.\n");
printk("CPU%d: ", cpu);
print_cpu_info(&cpu_data[cpu]);
Dprintk("CPU has booted.\n");
} else {
boot_error= 1;
if (*((volatile unsigned char *)trampoline_base)
== 0xA5)
/* trampoline started but...? */
printk("Stuck ??\n");
else
/* trampoline code not run */
printk("Not responding.\n");
inquire_remote_apic(apicid);
}
}
if (boot_error) {
/* Try to put things back the way they were before ... */
unmap_cpu_to_logical_apicid(cpu);
cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */
cpucount--;
} else {
x86_cpu_to_apicid[cpu] = apicid;
cpu_set(cpu, cpu_present_map);
}
/* mark "stuck" area as not stuck */
*((volatile unsigned long *)trampoline_base) = 0;
return boot_error;
}
#ifdef CONFIG_HOTPLUG_CPU
void cpu_exit_clear(void)
{
int cpu = raw_smp_processor_id();
idle_task_exit();
cpucount --;
cpu_uninit();
irq_ctx_exit(cpu);
cpu_clear(cpu, cpu_callout_map);
cpu_clear(cpu, cpu_callin_map);
cpu_clear(cpu, smp_commenced_mask);
unmap_cpu_to_logical_apicid(cpu);
}
struct warm_boot_cpu_info {
struct completion *complete;
int apicid;
int cpu;
};
static void __cpuinit do_warm_boot_cpu(void *p)
{
struct warm_boot_cpu_info *info = p;
do_boot_cpu(info->apicid, info->cpu);
complete(info->complete);
}
static int __cpuinit __smp_prepare_cpu(int cpu)
{
DECLARE_COMPLETION_ONSTACK(done);
struct warm_boot_cpu_info info;
struct work_struct task;
int apicid, ret;
struct Xgt_desc_struct *cpu_gdt_descr = &per_cpu(cpu_gdt_descr, cpu);
apicid = x86_cpu_to_apicid[cpu];
if (apicid == BAD_APICID) {
ret = -ENODEV;
goto exit;
}
/*
* the CPU isn't initialized at boot time, allocate gdt table here.
* cpu_init will initialize it
*/
if (!cpu_gdt_descr->address) {
cpu_gdt_descr->address = get_zeroed_page(GFP_KERNEL);
if (!cpu_gdt_descr->address)
printk(KERN_CRIT "CPU%d failed to allocate GDT\n", cpu);
ret = -ENOMEM;
goto exit;
}
info.complete = &done;
info.apicid = apicid;
info.cpu = cpu;
INIT_WORK(&task, do_warm_boot_cpu, &info);
tsc_sync_disabled = 1;
/* init low mem mapping */
clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
KERNEL_PGD_PTRS);
flush_tlb_all();
schedule_work(&task);
wait_for_completion(&done);
tsc_sync_disabled = 0;
zap_low_mappings();
ret = 0;
exit:
return ret;
}
#endif
static void smp_tune_scheduling (void)
{
unsigned long cachesize; /* kB */
unsigned long bandwidth = 350; /* MB/s */
/*
* Rough estimation for SMP scheduling, this is the number of
* cycles it takes for a fully memory-limited process to flush
* the SMP-local cache.
*
* (For a P5 this pretty much means we will choose another idle
* CPU almost always at wakeup time (this is due to the small
* L1 cache), on PIIs it's around 50-100 usecs, depending on
* the cache size)
*/
if (!cpu_khz) {
/*
* this basically disables processor-affinity
* scheduling on SMP without a TSC.
*/
return;
} else {
cachesize = boot_cpu_data.x86_cache_size;
if (cachesize == -1) {
cachesize = 16; /* Pentiums, 2x8kB cache */
bandwidth = 100;
}
max_cache_size = cachesize * 1024;
}
}
/*
* Cycle through the processors sending APIC IPIs to boot each.
*/
static int boot_cpu_logical_apicid;
/* Where the IO area was mapped on multiquad, always 0 otherwise */
void *xquad_portio;
#ifdef CONFIG_X86_NUMAQ
EXPORT_SYMBOL(xquad_portio);
#endif
static void __init smp_boot_cpus(unsigned int max_cpus)
{
int apicid, cpu, bit, kicked;
unsigned long bogosum = 0;
/*
* Setup boot CPU information
*/
smp_store_cpu_info(0); /* Final full version of the data */
printk("CPU%d: ", 0);
print_cpu_info(&cpu_data[0]);
boot_cpu_physical_apicid = GET_APIC_ID(apic_read(APIC_ID));
boot_cpu_logical_apicid = logical_smp_processor_id();
x86_cpu_to_apicid[0] = boot_cpu_physical_apicid;
current_thread_info()->cpu = 0;
smp_tune_scheduling();
set_cpu_sibling_map(0);
/*
* If we couldn't find an SMP configuration at boot time,
* get out of here now!
*/
if (!smp_found_config && !acpi_lapic) {
printk(KERN_NOTICE "SMP motherboard not detected.\n");
smpboot_clear_io_apic_irqs();
phys_cpu_present_map = physid_mask_of_physid(0);
if (APIC_init_uniprocessor())
printk(KERN_NOTICE "Local APIC not detected."
" Using dummy APIC emulation.\n");
map_cpu_to_logical_apicid();
cpu_set(0, cpu_sibling_map[0]);
cpu_set(0, cpu_core_map[0]);
return;
}
/*
* Should not be necessary because the MP table should list the boot
* CPU too, but we do it for the sake of robustness anyway.
* Makes no sense to do this check in clustered apic mode, so skip it
*/
if (!check_phys_apicid_present(boot_cpu_physical_apicid)) {
printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
boot_cpu_physical_apicid);
physid_set(hard_smp_processor_id(), phys_cpu_present_map);
}
/*
* If we couldn't find a local APIC, then get out of here now!
*/
if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && !cpu_has_apic) {
printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
boot_cpu_physical_apicid);
printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
smpboot_clear_io_apic_irqs();
phys_cpu_present_map = physid_mask_of_physid(0);
cpu_set(0, cpu_sibling_map[0]);
cpu_set(0, cpu_core_map[0]);
return;
}
verify_local_APIC();
/*
* If SMP should be disabled, then really disable it!
*/
if (!max_cpus) {
smp_found_config = 0;
printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
smpboot_clear_io_apic_irqs();
phys_cpu_present_map = physid_mask_of_physid(0);
cpu_set(0, cpu_sibling_map[0]);
cpu_set(0, cpu_core_map[0]);
return;
}
connect_bsp_APIC();
setup_local_APIC();
map_cpu_to_logical_apicid();
setup_portio_remap();
/*
* Scan the CPU present map and fire up the other CPUs via do_boot_cpu
*
* In clustered apic mode, phys_cpu_present_map is a constructed thus:
* bits 0-3 are quad0, 4-7 are quad1, etc. A perverse twist on the
* clustered apic ID.
*/
Dprintk("CPU present map: %lx\n", physids_coerce(phys_cpu_present_map));
kicked = 1;
for (bit = 0; kicked < NR_CPUS && bit < MAX_APICS; bit++) {
apicid = cpu_present_to_apicid(bit);
/*
* Don't even attempt to start the boot CPU!
*/
if ((apicid == boot_cpu_apicid) || (apicid == BAD_APICID))
continue;
if (!check_apicid_present(bit))
continue;
if (max_cpus <= cpucount+1)
continue;
if (((cpu = alloc_cpu_id()) <= 0) || do_boot_cpu(apicid, cpu))
printk("CPU #%d not responding - cannot use it.\n",
apicid);
else
++kicked;
}
/*
* Cleanup possible dangling ends...
*/
smpboot_restore_warm_reset_vector();
/*
* Allow the user to impress friends.
*/
Dprintk("Before bogomips.\n");
for (cpu = 0; cpu < NR_CPUS; cpu++)
if (cpu_isset(cpu, cpu_callout_map))
bogosum += cpu_data[cpu].loops_per_jiffy;
printk(KERN_INFO
"Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
cpucount+1,
bogosum/(500000/HZ),
(bogosum/(5000/HZ))%100);
Dprintk("Before bogocount - setting activated=1.\n");
if (smp_b_stepping)
printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n");
/*
* Don't taint if we are running SMP kernel on a single non-MP
* approved Athlon
*/
if (tainted & TAINT_UNSAFE_SMP) {
if (cpucount)
printk (KERN_INFO "WARNING: This combination of AMD processors is not suitable for SMP.\n");
else
tainted &= ~TAINT_UNSAFE_SMP;
}
Dprintk("Boot done.\n");
/*
* construct cpu_sibling_map[], so that we can tell sibling CPUs
* efficiently.
*/
for (cpu = 0; cpu < NR_CPUS; cpu++) {
cpus_clear(cpu_sibling_map[cpu]);
cpus_clear(cpu_core_map[cpu]);
}
cpu_set(0, cpu_sibling_map[0]);
cpu_set(0, cpu_core_map[0]);
smpboot_setup_io_apic();
setup_boot_APIC_clock();
/*
* Synchronize the TSC with the AP
*/
if (cpu_has_tsc && cpucount && cpu_khz)
synchronize_tsc_bp();
}
/* These are wrappers to interface to the new boot process. Someone
who understands all this stuff should rewrite it properly. --RR 15/Jul/02 */
void __init smp_prepare_cpus(unsigned int max_cpus)
{
smp_commenced_mask = cpumask_of_cpu(0);
cpu_callin_map = cpumask_of_cpu(0);
mb();
smp_boot_cpus(max_cpus);
}
void __devinit smp_prepare_boot_cpu(void)
{
cpu_set(smp_processor_id(), cpu_online_map);
cpu_set(smp_processor_id(), cpu_callout_map);
cpu_set(smp_processor_id(), cpu_present_map);
cpu_set(smp_processor_id(), cpu_possible_map);
per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
}
#ifdef CONFIG_HOTPLUG_CPU
static void
remove_siblinginfo(int cpu)
{
int sibling;
struct cpuinfo_x86 *c = cpu_data;
for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
cpu_clear(cpu, cpu_core_map[sibling]);
/*
* last thread sibling in this cpu core going down
*/
if (cpus_weight(cpu_sibling_map[cpu]) == 1)
c[sibling].booted_cores--;
}
for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
cpu_clear(cpu, cpu_sibling_map[sibling]);
cpus_clear(cpu_sibling_map[cpu]);
cpus_clear(cpu_core_map[cpu]);
c[cpu].phys_proc_id = 0;
c[cpu].cpu_core_id = 0;
cpu_clear(cpu, cpu_sibling_setup_map);
}
int __cpu_disable(void)
{
cpumask_t map = cpu_online_map;
int cpu = smp_processor_id();
/*
* Perhaps use cpufreq to drop frequency, but that could go
* into generic code.
*
* We won't take down the boot processor on i386 due to some
* interrupts only being able to be serviced by the BSP.
* Especially so if we're not using an IOAPIC -zwane
*/
if (cpu == 0)
return -EBUSY;
if (nmi_watchdog == NMI_LOCAL_APIC)
stop_apic_nmi_watchdog(NULL);
clear_local_APIC();
/* Allow any queued timer interrupts to get serviced */
local_irq_enable();
mdelay(1);
local_irq_disable();
remove_siblinginfo(cpu);
cpu_clear(cpu, map);
fixup_irqs(map);
/* It's now safe to remove this processor from the online map */
cpu_clear(cpu, cpu_online_map);
return 0;
}
void __cpu_die(unsigned int cpu)
{
/* We don't do anything here: idle task is faking death itself. */
unsigned int i;
for (i = 0; i < 10; i++) {
/* They ack this in play_dead by setting CPU_DEAD */
if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
printk ("CPU %d is now offline\n", cpu);
if (1 == num_online_cpus())
alternatives_smp_switch(0);
return;
}
msleep(100);
}
printk(KERN_ERR "CPU %u didn't die...\n", cpu);
}
#else /* ... !CONFIG_HOTPLUG_CPU */
int __cpu_disable(void)
{
return -ENOSYS;
}
void __cpu_die(unsigned int cpu)
{
/* We said "no" in __cpu_disable */
BUG();
}
#endif /* CONFIG_HOTPLUG_CPU */
int __devinit __cpu_up(unsigned int cpu)
{
#ifdef CONFIG_HOTPLUG_CPU
int ret=0;
/*
* We do warm boot only on cpus that had booted earlier
* Otherwise cold boot is all handled from smp_boot_cpus().
* cpu_callin_map is set during AP kickstart process. Its reset
* when a cpu is taken offline from cpu_exit_clear().
*/
if (!cpu_isset(cpu, cpu_callin_map))
ret = __smp_prepare_cpu(cpu);
if (ret)
return -EIO;
#endif
/* In case one didn't come up */
if (!cpu_isset(cpu, cpu_callin_map)) {
printk(KERN_DEBUG "skipping cpu%d, didn't come online\n", cpu);
local_irq_enable();
return -EIO;
}
local_irq_enable();
per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
/* Unleash the CPU! */
cpu_set(cpu, smp_commenced_mask);
while (!cpu_isset(cpu, cpu_online_map))
cpu_relax();
return 0;
}
void __init smp_cpus_done(unsigned int max_cpus)
{
#ifdef CONFIG_X86_IO_APIC
setup_ioapic_dest();
#endif
zap_low_mappings();
#ifndef CONFIG_HOTPLUG_CPU
/*
* Disable executability of the SMP trampoline:
*/
set_kernel_exec((unsigned long)trampoline_base, trampoline_exec);
#endif
}
void __init smp_intr_init(void)
{
/*
* IRQ0 must be given a fixed assignment and initialized,
* because it's used before the IO-APIC is set up.
*/
set_intr_gate(FIRST_DEVICE_VECTOR, interrupt[0]);
/*
* The reschedule interrupt is a CPU-to-CPU reschedule-helper
* IPI, driven by wakeup.
*/
set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
/* IPI for invalidation */
set_intr_gate(INVALIDATE_TLB_VECTOR, invalidate_interrupt);
/* IPI for generic function call */
set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
}
/*
* If the BIOS enumerates physical processors before logical,
* maxcpus=N at enumeration-time can be used to disable HT.
*/
static int __init parse_maxcpus(char *arg)
{
extern unsigned int maxcpus;
maxcpus = simple_strtoul(arg, NULL, 0);
return 0;
}
early_param("maxcpus", parse_maxcpus);