/*
* IPI management based on arch/arm/kernel/smp.c (Copyright 2002 ARM Limited)
*
* Copyright 2007-2009 Analog Devices Inc.
* Philippe Gerum <rpm@xenomai.org>
*
* Licensed under the GPL-2.
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/cache.h>
#include <linux/profile.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/cpu.h>
#include <linux/smp.h>
#include <linux/seq_file.h>
#include <linux/irq.h>
#include <linux/slab.h>
#include <asm/atomic.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/processor.h>
#include <asm/ptrace.h>
#include <asm/cpu.h>
#include <asm/time.h>
#include <linux/err.h>
/*
* Anomaly notes:
* 05000120 - we always define corelock as 32-bit integer in L2
*/
struct corelock_slot corelock __attribute__ ((__section__(".l2.bss")));
void __cpuinitdata *init_retx_coreb, *init_saved_retx_coreb,
*init_saved_seqstat_coreb, *init_saved_icplb_fault_addr_coreb,
*init_saved_dcplb_fault_addr_coreb;
cpumask_t cpu_possible_map;
EXPORT_SYMBOL(cpu_possible_map);
cpumask_t cpu_online_map;
EXPORT_SYMBOL(cpu_online_map);
#define BFIN_IPI_RESCHEDULE 0
#define BFIN_IPI_CALL_FUNC 1
#define BFIN_IPI_CPU_STOP 2
struct blackfin_flush_data {
unsigned long start;
unsigned long end;
};
void *secondary_stack;
struct smp_call_struct {
void (*func)(void *info);
void *info;
int wait;
cpumask_t pending;
cpumask_t waitmask;
};
static struct blackfin_flush_data smp_flush_data;
static DEFINE_SPINLOCK(stop_lock);
struct ipi_message {
struct list_head list;
unsigned long type;
struct smp_call_struct call_struct;
};
struct ipi_message_queue {
struct list_head head;
spinlock_t lock;
unsigned long count;
};
static DEFINE_PER_CPU(struct ipi_message_queue, ipi_msg_queue);
static void ipi_cpu_stop(unsigned int cpu)
{
spin_lock(&stop_lock);
printk(KERN_CRIT "CPU%u: stopping\n", cpu);
dump_stack();
spin_unlock(&stop_lock);
cpu_clear(cpu, cpu_online_map);
local_irq_disable();
while (1)
SSYNC();
}
static void ipi_flush_icache(void *info)
{
struct blackfin_flush_data *fdata = info;
/* Invalidate the memory holding the bounds of the flushed region. */
blackfin_dcache_invalidate_range((unsigned long)fdata,
(unsigned long)fdata + sizeof(*fdata));
blackfin_icache_flush_range(fdata->start, fdata->end);
}
static void ipi_call_function(unsigned int cpu, struct ipi_message *msg)
{
int wait;
void (*func)(void *info);
void *info;
func = msg->call_struct.func;
info = msg->call_struct.info;
wait = msg->call_struct.wait;
cpu_clear(cpu, msg->call_struct.pending);
func(info);
if (wait) {
#ifdef __ARCH_SYNC_CORE_DCACHE
/*
* 'wait' usually means synchronization between CPUs.
* Invalidate D cache in case shared data was changed
* by func() to ensure cache coherence.
*/
resync_core_dcache();
#endif
cpu_clear(cpu, msg->call_struct.waitmask);
} else
kfree(msg);
}
static irqreturn_t ipi_handler(int irq, void *dev_instance)
{
struct ipi_message *msg;
struct ipi_message_queue *msg_queue;
unsigned int cpu = smp_processor_id();
platform_clear_ipi(cpu);
msg_queue = &__get_cpu_var(ipi_msg_queue);
msg_queue->count++;
spin_lock(&msg_queue->lock);
while (!list_empty(&msg_queue->head)) {
msg = list_entry(msg_queue->head.next, typeof(*msg), list);
list_del(&msg->list);
switch (msg->type) {
case BFIN_IPI_RESCHEDULE:
/* That's the easiest one; leave it to
* return_from_int. */
kfree(msg);
break;
case BFIN_IPI_CALL_FUNC:
spin_unlock(&msg_queue->lock);
ipi_call_function(cpu, msg);
spin_lock(&msg_queue->lock);
break;
case BFIN_IPI_CPU_STOP:
spin_unlock(&msg_queue->lock);
ipi_cpu_stop(cpu);
spin_lock(&msg_queue->lock);
kfree(msg);
break;
default:
printk(KERN_CRIT "CPU%u: Unknown IPI message \
0x%lx\n", cpu, msg->type);
kfree(msg);
break;
}
}
spin_unlock(&msg_queue->lock);
return IRQ_HANDLED;
}
static void ipi_queue_init(void)
{
unsigned int cpu;
struct ipi_message_queue *msg_queue;
for_each_possible_cpu(cpu) {
msg_queue = &per_cpu(ipi_msg_queue, cpu);
INIT_LIST_HEAD(&msg_queue->head);
spin_lock_init(&msg_queue->lock);
msg_queue->count = 0;
}
}
int smp_call_function(void (*func)(void *info), void *info, int wait)
{
unsigned int cpu;
cpumask_t callmap;
unsigned long flags;
struct ipi_message_queue *msg_queue;
struct ipi_message *msg;
callmap = cpu_online_map;
cpu_clear(smp_processor_id(), callmap);
if (cpus_empty(callmap))
return 0;
msg = kmalloc(sizeof(*msg), GFP_ATOMIC);
if (!msg)
return -ENOMEM;
INIT_LIST_HEAD(&msg->list);
msg->call_struct.func = func;
msg->call_struct.info = info;
msg->call_struct.wait = wait;
msg->call_struct.pending = callmap;
msg->call_struct.waitmask = callmap;
msg->type = BFIN_IPI_CALL_FUNC;
for_each_cpu_mask(cpu, callmap) {
msg_queue = &per_cpu(ipi_msg_queue, cpu);
spin_lock_irqsave(&msg_queue->lock, flags);
list_add_tail(&msg->list, &msg_queue->head);
spin_unlock_irqrestore(&msg_queue->lock, flags);
platform_send_ipi_cpu(cpu);
}
if (wait) {
while (!cpus_empty(msg->call_struct.waitmask))
blackfin_dcache_invalidate_range(
(unsigned long)(&msg->call_struct.waitmask),
(unsigned long)(&msg->call_struct.waitmask));
#ifdef __ARCH_SYNC_CORE_DCACHE
/*
* Invalidate D cache in case shared data was changed by
* other processors to ensure cache coherence.
*/
resync_core_dcache();
#endif
kfree(msg);
}
return 0;
}
EXPORT_SYMBOL_GPL(smp_call_function);
int smp_call_function_single(int cpuid, void (*func) (void *info), void *info,
int wait)
{
unsigned int cpu = cpuid;
cpumask_t callmap;
unsigned long flags;
struct ipi_message_queue *msg_queue;
struct ipi_message *msg;
if (cpu_is_offline(cpu))
return 0;
cpus_clear(callmap);
cpu_set(cpu, callmap);
msg = kmalloc(sizeof(*msg), GFP_ATOMIC);
if (!msg)
return -ENOMEM;
INIT_LIST_HEAD(&msg->list);
msg->call_struct.func = func;
msg->call_struct.info = info;
msg->call_struct.wait = wait;
msg->call_struct.pending = callmap;
msg->call_struct.waitmask = callmap;
msg->type = BFIN_IPI_CALL_FUNC;
msg_queue = &per_cpu(ipi_msg_queue, cpu);
spin_lock_irqsave(&msg_queue->lock, flags);
list_add_tail(&msg->list, &msg_queue->head);
spin_unlock_irqrestore(&msg_queue->lock, flags);
platform_send_ipi_cpu(cpu);
if (wait) {
while (!cpus_empty(msg->call_struct.waitmask))
blackfin_dcache_invalidate_range(
(unsigned long)(&msg->call_struct.waitmask),
(unsigned long)(&msg->call_struct.waitmask));
#ifdef __ARCH_SYNC_CORE_DCACHE
/*
* Invalidate D cache in case shared data was changed by
* other processors to ensure cache coherence.
*/
resync_core_dcache();
#endif
kfree(msg);
}
return 0;
}
EXPORT_SYMBOL_GPL(smp_call_function_single);
void smp_send_reschedule(int cpu)
{
unsigned long flags;
struct ipi_message_queue *msg_queue;
struct ipi_message *msg;
if (cpu_is_offline(cpu))
return;
msg = kzalloc(sizeof(*msg), GFP_ATOMIC);
if (!msg)
return;
INIT_LIST_HEAD(&msg->list);
msg->type = BFIN_IPI_RESCHEDULE;
msg_queue = &per_cpu(ipi_msg_queue, cpu);
spin_lock_irqsave(&msg_queue->lock, flags);
list_add_tail(&msg->list, &msg_queue->head);
spin_unlock_irqrestore(&msg_queue->lock, flags);
platform_send_ipi_cpu(cpu);
return;
}
void smp_send_stop(void)
{
unsigned int cpu;
cpumask_t callmap;
unsigned long flags;
struct ipi_message_queue *msg_queue;
struct ipi_message *msg;
callmap = cpu_online_map;
cpu_clear(smp_processor_id(), callmap);
if (cpus_empty(callmap))
return;
msg = kzalloc(sizeof(*msg), GFP_ATOMIC);
if (!msg)
return;
INIT_LIST_HEAD(&msg->list);
msg->type = BFIN_IPI_CPU_STOP;
for_each_cpu_mask(cpu, callmap) {
msg_queue = &per_cpu(ipi_msg_queue, cpu);
spin_lock_irqsave(&msg_queue->lock, flags);
list_add_tail(&msg->list, &msg_queue->head);
spin_unlock_irqrestore(&msg_queue->lock, flags);
platform_send_ipi_cpu(cpu);
}
return;
}
int __cpuinit __cpu_up(unsigned int cpu)
{
int ret;
static struct task_struct *idle;
if (idle)
free_task(idle);
idle = fork_idle(cpu);
if (IS_ERR(idle)) {
printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
return PTR_ERR(idle);
}
secondary_stack = task_stack_page(idle) + THREAD_SIZE;
ret = platform_boot_secondary(cpu, idle);
secondary_stack = NULL;
return ret;
}
static void __cpuinit setup_secondary(unsigned int cpu)
{
unsigned long ilat;
bfin_write_IMASK(0);
CSYNC();
ilat = bfin_read_ILAT();
CSYNC();
bfin_write_ILAT(ilat);
CSYNC();
/* Enable interrupt levels IVG7-15. IARs have been already
* programmed by the boot CPU. */
bfin_irq_flags |= IMASK_IVG15 |
IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 |
IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW;
}
void __cpuinit secondary_start_kernel(void)
{
unsigned int cpu = smp_processor_id();
struct mm_struct *mm = &init_mm;
if (_bfin_swrst & SWRST_DBL_FAULT_B) {
printk(KERN_EMERG "CoreB Recovering from DOUBLE FAULT event\n");
#ifdef CONFIG_DEBUG_DOUBLEFAULT
printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
(int)init_saved_seqstat_coreb & SEQSTAT_EXCAUSE, init_saved_retx_coreb);
printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr_coreb);
printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr_coreb);
#endif
printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
init_retx_coreb);
}
/*
* We want the D-cache to be enabled early, in case the atomic
* support code emulates cache coherence (see
* __ARCH_SYNC_CORE_DCACHE).
*/
init_exception_vectors();
bfin_setup_caches(cpu);
local_irq_disable();
/* Attach the new idle task to the global mm. */
atomic_inc(&mm->mm_users);
atomic_inc(&mm->mm_count);
current->active_mm = mm;
preempt_disable();
setup_secondary(cpu);
platform_secondary_init(cpu);
/* setup local core timer */
bfin_local_timer_setup();
local_irq_enable();
/*
* Calibrate loops per jiffy value.
* IRQs need to be enabled here - D-cache can be invalidated
* in timer irq handler, so core B can read correct jiffies.
*/
calibrate_delay();
cpu_idle();
}
void __init smp_prepare_boot_cpu(void)
{
}
void __init smp_prepare_cpus(unsigned int max_cpus)
{
platform_prepare_cpus(max_cpus);
ipi_queue_init();
platform_request_ipi(&ipi_handler);
}
void __init smp_cpus_done(unsigned int max_cpus)
{
unsigned long bogosum = 0;
unsigned int cpu;
for_each_online_cpu(cpu)
bogosum += loops_per_jiffy;
printk(KERN_INFO "SMP: Total of %d processors activated "
"(%lu.%02lu BogoMIPS).\n",
num_online_cpus(),
bogosum / (500000/HZ),
(bogosum / (5000/HZ)) % 100);
}
void smp_icache_flush_range_others(unsigned long start, unsigned long end)
{
smp_flush_data.start = start;
smp_flush_data.end = end;
if (smp_call_function(&ipi_flush_icache, &smp_flush_data, 0))
printk(KERN_WARNING "SMP: failed to run I-cache flush request on other CPUs\n");
}
EXPORT_SYMBOL_GPL(smp_icache_flush_range_others);
#ifdef __ARCH_SYNC_CORE_ICACHE
unsigned long icache_invld_count[NR_CPUS];
void resync_core_icache(void)
{
unsigned int cpu = get_cpu();
blackfin_invalidate_entire_icache();
icache_invld_count[cpu]++;
put_cpu();
}
EXPORT_SYMBOL(resync_core_icache);
#endif
#ifdef __ARCH_SYNC_CORE_DCACHE
unsigned long dcache_invld_count[NR_CPUS];
unsigned long barrier_mask __attribute__ ((__section__(".l2.bss")));
void resync_core_dcache(void)
{
unsigned int cpu = get_cpu();
blackfin_invalidate_entire_dcache();
dcache_invld_count[cpu]++;
put_cpu();
}
EXPORT_SYMBOL(resync_core_dcache);
#endif
#ifdef CONFIG_HOTPLUG_CPU
int __cpuexit __cpu_disable(void)
{
unsigned int cpu = smp_processor_id();
if (cpu == 0)
return -EPERM;
set_cpu_online(cpu, false);
return 0;
}
static DECLARE_COMPLETION(cpu_killed);
int __cpuexit __cpu_die(unsigned int cpu)
{
return wait_for_completion_timeout(&cpu_killed, 5000);
}
void cpu_die(void)
{
complete(&cpu_killed);
atomic_dec(&init_mm.mm_users);
atomic_dec(&init_mm.mm_count);
local_irq_disable();
platform_cpu_die();
}
#endif