/*
* linux/arch/arm/vfp/vfpmodule.c
*
* Copyright (C) 2004 ARM Limited.
* Written by Deep Blue Solutions Limited.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <asm/thread_notify.h>
#include <asm/vfp.h>
#include "vfpinstr.h"
#include "vfp.h"
/*
* Our undef handlers (in entry.S)
*/
void vfp_testing_entry(void);
void vfp_support_entry(void);
void vfp_null_entry(void);
void (*vfp_vector)(void) = vfp_null_entry;
union vfp_state *last_VFP_context[NR_CPUS];
/*
* Dual-use variable.
* Used in startup: set to non-zero if VFP checks fail
* After startup, holds VFP architecture
*/
unsigned int VFP_arch;
/*
* Per-thread VFP initialization.
*/
static void vfp_thread_flush(struct thread_info *thread)
{
union vfp_state *vfp = &thread->vfpstate;
unsigned int cpu;
memset(vfp, 0, sizeof(union vfp_state));
vfp->hard.fpexc = FPEXC_EN;
vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
/*
* Disable VFP to ensure we initialize it first. We must ensure
* that the modification of last_VFP_context[] and hardware disable
* are done for the same CPU and without preemption.
*/
cpu = get_cpu();
if (last_VFP_context[cpu] == vfp)
last_VFP_context[cpu] = NULL;
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
put_cpu();
}
static void vfp_thread_exit(struct thread_info *thread)
{
/* release case: Per-thread VFP cleanup. */
union vfp_state *vfp = &thread->vfpstate;
unsigned int cpu = get_cpu();
if (last_VFP_context[cpu] == vfp)
last_VFP_context[cpu] = NULL;
put_cpu();
}
/*
* When this function is called with the following 'cmd's, the following
* is true while this function is being run:
* THREAD_NOFTIFY_SWTICH:
* - the previously running thread will not be scheduled onto another CPU.
* - the next thread to be run (v) will not be running on another CPU.
* - thread->cpu is the local CPU number
* - not preemptible as we're called in the middle of a thread switch
* THREAD_NOTIFY_FLUSH:
* - the thread (v) will be running on the local CPU, so
* v === current_thread_info()
* - thread->cpu is the local CPU number at the time it is accessed,
* but may change at any time.
* - we could be preempted if tree preempt rcu is enabled, so
* it is unsafe to use thread->cpu.
* THREAD_NOTIFY_EXIT
* - the thread (v) will be running on the local CPU, so
* v === current_thread_info()
* - thread->cpu is the local CPU number at the time it is accessed,
* but may change at any time.
* - we could be preempted if tree preempt rcu is enabled, so
* it is unsafe to use thread->cpu.
*/
static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
{
struct thread_info *thread = v;
if (likely(cmd == THREAD_NOTIFY_SWITCH)) {
u32 fpexc = fmrx(FPEXC);
#ifdef CONFIG_SMP
unsigned int cpu = thread->cpu;
/*
* On SMP, if VFP is enabled, save the old state in
* case the thread migrates to a different CPU. The
* restoring is done lazily.
*/
if ((fpexc & FPEXC_EN) && last_VFP_context[cpu]) {
vfp_save_state(last_VFP_context[cpu], fpexc);
last_VFP_context[cpu]->hard.cpu = cpu;
}
/*
* Thread migration, just force the reloading of the
* state on the new CPU in case the VFP registers
* contain stale data.
*/
if (thread->vfpstate.hard.cpu != cpu)
last_VFP_context[cpu] = NULL;
#endif
/*
* Always disable VFP so we can lazily save/restore the
* old state.
*/
fmxr(FPEXC, fpexc & ~FPEXC_EN);
return NOTIFY_DONE;
}
if (cmd == THREAD_NOTIFY_FLUSH)
vfp_thread_flush(thread);
else
vfp_thread_exit(thread);
return NOTIFY_DONE;
}
static struct notifier_block vfp_notifier_block = {
.notifier_call = vfp_notifier,
};
/*
* Raise a SIGFPE for the current process.
* sicode describes the signal being raised.
*/
void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
{
siginfo_t info;
memset(&info, 0, sizeof(info));
info.si_signo = SIGFPE;
info.si_code = sicode;
info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
/*
* This is the same as NWFPE, because it's not clear what
* this is used for
*/
current->thread.error_code = 0;
current->thread.trap_no = 6;
send_sig_info(SIGFPE, &info, current);
}
static void vfp_panic(char *reason, u32 inst)
{
int i;
printk(KERN_ERR "VFP: Error: %s\n", reason);
printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
fmrx(FPEXC), fmrx(FPSCR), inst);
for (i = 0; i < 32; i += 2)
printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
i, vfp_get_float(i), i+1, vfp_get_float(i+1));
}
/*
* Process bitmask of exception conditions.
*/
static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
{
int si_code = 0;
pr_debug("VFP: raising exceptions %08x\n", exceptions);
if (exceptions == VFP_EXCEPTION_ERROR) {
vfp_panic("unhandled bounce", inst);
vfp_raise_sigfpe(0, regs);
return;
}
/*
* If any of the status flags are set, update the FPSCR.
* Comparison instructions always return at least one of
* these flags set.
*/
if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
fpscr |= exceptions;
fmxr(FPSCR, fpscr);
#define RAISE(stat,en,sig) \
if (exceptions & stat && fpscr & en) \
si_code = sig;
/*
* These are arranged in priority order, least to highest.
*/
RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
if (si_code)
vfp_raise_sigfpe(si_code, regs);
}
/*
* Emulate a VFP instruction.
*/
static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
{
u32 exceptions = VFP_EXCEPTION_ERROR;
pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
if (INST_CPRTDO(inst)) {
if (!INST_CPRT(inst)) {
/*
* CPDO
*/
if (vfp_single(inst)) {
exceptions = vfp_single_cpdo(inst, fpscr);
} else {
exceptions = vfp_double_cpdo(inst, fpscr);
}
} else {
/*
* A CPRT instruction can not appear in FPINST2, nor
* can it cause an exception. Therefore, we do not
* have to emulate it.
*/
}
} else {
/*
* A CPDT instruction can not appear in FPINST2, nor can
* it cause an exception. Therefore, we do not have to
* emulate it.
*/
}
return exceptions & ~VFP_NAN_FLAG;
}
/*
* Package up a bounce condition.
*/
void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
{
u32 fpscr, orig_fpscr, fpsid, exceptions;
pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
/*
* At this point, FPEXC can have the following configuration:
*
* EX DEX IXE
* 0 1 x - synchronous exception
* 1 x 0 - asynchronous exception
* 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
* 0 0 1 - synchronous on VFP9 (non-standard subarch 1
* implementation), undefined otherwise
*
* Clear various bits and enable access to the VFP so we can
* handle the bounce.
*/
fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
fpsid = fmrx(FPSID);
orig_fpscr = fpscr = fmrx(FPSCR);
/*
* Check for the special VFP subarch 1 and FPSCR.IXE bit case
*/
if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
&& (fpscr & FPSCR_IXE)) {
/*
* Synchronous exception, emulate the trigger instruction
*/
goto emulate;
}
if (fpexc & FPEXC_EX) {
#ifndef CONFIG_CPU_FEROCEON
/*
* Asynchronous exception. The instruction is read from FPINST
* and the interrupted instruction has to be restarted.
*/
trigger = fmrx(FPINST);
regs->ARM_pc -= 4;
#endif
} else if (!(fpexc & FPEXC_DEX)) {
/*
* Illegal combination of bits. It can be caused by an
* unallocated VFP instruction but with FPSCR.IXE set and not
* on VFP subarch 1.
*/
vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
goto exit;
}
/*
* Modify fpscr to indicate the number of iterations remaining.
* If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
* whether FPEXC.VECITR or FPSCR.LEN is used.
*/
if (fpexc & (FPEXC_EX | FPEXC_VV)) {
u32 len;
len = fpexc + (1 << FPEXC_LENGTH_BIT);
fpscr &= ~FPSCR_LENGTH_MASK;
fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
}
/*
* Handle the first FP instruction. We used to take note of the
* FPEXC bounce reason, but this appears to be unreliable.
* Emulate the bounced instruction instead.
*/
exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
if (exceptions)
vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
/*
* If there isn't a second FP instruction, exit now. Note that
* the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
*/
if (fpexc ^ (FPEXC_EX | FPEXC_FP2V))
goto exit;
/*
* The barrier() here prevents fpinst2 being read
* before the condition above.
*/
barrier();
trigger = fmrx(FPINST2);
emulate:
exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
if (exceptions)
vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
exit:
preempt_enable();
}
static void vfp_enable(void *unused)
{
u32 access = get_copro_access();
/*
* Enable full access to VFP (cp10 and cp11)
*/
set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
}
#ifdef CONFIG_PM
#include <linux/sysdev.h>
static int vfp_pm_suspend(struct sys_device *dev, pm_message_t state)
{
struct thread_info *ti = current_thread_info();
u32 fpexc = fmrx(FPEXC);
/* if vfp is on, then save state for resumption */
if (fpexc & FPEXC_EN) {
printk(KERN_DEBUG "%s: saving vfp state\n", __func__);
vfp_save_state(&ti->vfpstate, fpexc);
/* disable, just in case */
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
}
/* clear any information we had about last context state */
memset(last_VFP_context, 0, sizeof(last_VFP_context));
return 0;
}
static int vfp_pm_resume(struct sys_device *dev)
{
/* ensure we have access to the vfp */
vfp_enable(NULL);
/* and disable it to ensure the next usage restores the state */
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
return 0;
}
static struct sysdev_class vfp_pm_sysclass = {
.name = "vfp",
.suspend = vfp_pm_suspend,
.resume = vfp_pm_resume,
};
static struct sys_device vfp_pm_sysdev = {
.cls = &vfp_pm_sysclass,
};
static void vfp_pm_init(void)
{
sysdev_class_register(&vfp_pm_sysclass);
sysdev_register(&vfp_pm_sysdev);
}
#else
static inline void vfp_pm_init(void) { }
#endif /* CONFIG_PM */
void vfp_sync_hwstate(struct thread_info *thread)
{
unsigned int cpu = get_cpu();
/*
* If the thread we're interested in is the current owner of the
* hardware VFP state, then we need to save its state.
*/
if (last_VFP_context[cpu] == &thread->vfpstate) {
u32 fpexc = fmrx(FPEXC);
/*
* Save the last VFP state on this CPU.
*/
fmxr(FPEXC, fpexc | FPEXC_EN);
vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
fmxr(FPEXC, fpexc);
}
put_cpu();
}
void vfp_flush_hwstate(struct thread_info *thread)
{
unsigned int cpu = get_cpu();
/*
* If the thread we're interested in is the current owner of the
* hardware VFP state, then we need to save its state.
*/
if (last_VFP_context[cpu] == &thread->vfpstate) {
u32 fpexc = fmrx(FPEXC);
fmxr(FPEXC, fpexc & ~FPEXC_EN);
/*
* Set the context to NULL to force a reload the next time
* the thread uses the VFP.
*/
last_VFP_context[cpu] = NULL;
}
#ifdef CONFIG_SMP
/*
* For SMP we still have to take care of the case where the thread
* migrates to another CPU and then back to the original CPU on which
* the last VFP user is still the same thread. Mark the thread VFP
* state as belonging to a non-existent CPU so that the saved one will
* be reloaded in the above case.
*/
thread->vfpstate.hard.cpu = NR_CPUS;
#endif
put_cpu();
}
#include <linux/smp.h>
/*
* VFP support code initialisation.
*/
static int __init vfp_init(void)
{
unsigned int vfpsid;
unsigned int cpu_arch = cpu_architecture();
if (cpu_arch >= CPU_ARCH_ARMv6)
vfp_enable(NULL);
/*
* First check that there is a VFP that we can use.
* The handler is already setup to just log calls, so
* we just need to read the VFPSID register.
*/
vfp_vector = vfp_testing_entry;
barrier();
vfpsid = fmrx(FPSID);
barrier();
vfp_vector = vfp_null_entry;
printk(KERN_INFO "VFP support v0.3: ");
if (VFP_arch)
printk("not present\n");
else if (vfpsid & FPSID_NODOUBLE) {
printk("no double precision support\n");
} else {
smp_call_function(vfp_enable, NULL, 1);
VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; /* Extract the architecture version */
printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
(vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
vfp_vector = vfp_support_entry;
thread_register_notifier(&vfp_notifier_block);
vfp_pm_init();
/*
* We detected VFP, and the support code is
* in place; report VFP support to userspace.
*/
elf_hwcap |= HWCAP_VFP;
#ifdef CONFIG_VFPv3
if (VFP_arch >= 2) {
elf_hwcap |= HWCAP_VFPv3;
/*
* Check for VFPv3 D16. CPUs in this configuration
* only have 16 x 64bit registers.
*/
if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1)
elf_hwcap |= HWCAP_VFPv3D16;
}
#endif
#ifdef CONFIG_NEON
/*
* Check for the presence of the Advanced SIMD
* load/store instructions, integer and single
* precision floating point operations.
*/
if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100)
elf_hwcap |= HWCAP_NEON;
#endif
}
return 0;
}
late_initcall(vfp_init);