/*
* linux/arch/arm/plat-omap/mcbsp.c
*
* Copyright (C) 2004 Nokia Corporation
* Author: Samuel Ortiz <samuel.ortiz@nokia.com>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Multichannel mode not supported.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/wait.h>
#include <linux/completion.h>
#include <linux/interrupt.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <plat/dma.h>
#include <plat/mcbsp.h>
/* XXX These "sideways" includes are a sign that something is wrong */
#include "../mach-omap2/cm2xxx_3xxx.h"
#include "../mach-omap2/cm-regbits-34xx.h"
struct omap_mcbsp **mcbsp_ptr;
int omap_mcbsp_count, omap_mcbsp_cache_size;
static void omap_mcbsp_write(struct omap_mcbsp *mcbsp, u16 reg, u32 val)
{
if (cpu_class_is_omap1()) {
((u16 *)mcbsp->reg_cache)[reg / sizeof(u16)] = (u16)val;
__raw_writew((u16)val, mcbsp->io_base + reg);
} else if (cpu_is_omap2420()) {
((u16 *)mcbsp->reg_cache)[reg / sizeof(u32)] = (u16)val;
__raw_writew((u16)val, mcbsp->io_base + reg);
} else {
((u32 *)mcbsp->reg_cache)[reg / sizeof(u32)] = val;
__raw_writel(val, mcbsp->io_base + reg);
}
}
static int omap_mcbsp_read(struct omap_mcbsp *mcbsp, u16 reg, bool from_cache)
{
if (cpu_class_is_omap1()) {
return !from_cache ? __raw_readw(mcbsp->io_base + reg) :
((u16 *)mcbsp->reg_cache)[reg / sizeof(u16)];
} else if (cpu_is_omap2420()) {
return !from_cache ? __raw_readw(mcbsp->io_base + reg) :
((u16 *)mcbsp->reg_cache)[reg / sizeof(u32)];
} else {
return !from_cache ? __raw_readl(mcbsp->io_base + reg) :
((u32 *)mcbsp->reg_cache)[reg / sizeof(u32)];
}
}
#ifdef CONFIG_ARCH_OMAP3
static void omap_mcbsp_st_write(struct omap_mcbsp *mcbsp, u16 reg, u32 val)
{
__raw_writel(val, mcbsp->st_data->io_base_st + reg);
}
static int omap_mcbsp_st_read(struct omap_mcbsp *mcbsp, u16 reg)
{
return __raw_readl(mcbsp->st_data->io_base_st + reg);
}
#endif
#define MCBSP_READ(mcbsp, reg) \
omap_mcbsp_read(mcbsp, OMAP_MCBSP_REG_##reg, 0)
#define MCBSP_WRITE(mcbsp, reg, val) \
omap_mcbsp_write(mcbsp, OMAP_MCBSP_REG_##reg, val)
#define MCBSP_READ_CACHE(mcbsp, reg) \
omap_mcbsp_read(mcbsp, OMAP_MCBSP_REG_##reg, 1)
#define MCBSP_ST_READ(mcbsp, reg) \
omap_mcbsp_st_read(mcbsp, OMAP_ST_REG_##reg)
#define MCBSP_ST_WRITE(mcbsp, reg, val) \
omap_mcbsp_st_write(mcbsp, OMAP_ST_REG_##reg, val)
static void omap_mcbsp_dump_reg(u8 id)
{
struct omap_mcbsp *mcbsp = id_to_mcbsp_ptr(id);
dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
dev_dbg(mcbsp->dev, "DRR2: 0x%04x\n",
MCBSP_READ(mcbsp, DRR2));
dev_dbg(mcbsp->dev, "DRR1: 0x%04x\n",
MCBSP_READ(mcbsp, DRR1));
dev_dbg(mcbsp->dev, "DXR2: 0x%04x\n",
MCBSP_READ(mcbsp, DXR2));
dev_dbg(mcbsp->dev, "DXR1: 0x%04x\n",
MCBSP_READ(mcbsp, DXR1));
dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n",
MCBSP_READ(mcbsp, SPCR2));
dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n",
MCBSP_READ(mcbsp, SPCR1));
dev_dbg(mcbsp->dev, "RCR2: 0x%04x\n",
MCBSP_READ(mcbsp, RCR2));
dev_dbg(mcbsp->dev, "RCR1: 0x%04x\n",
MCBSP_READ(mcbsp, RCR1));
dev_dbg(mcbsp->dev, "XCR2: 0x%04x\n",
MCBSP_READ(mcbsp, XCR2));
dev_dbg(mcbsp->dev, "XCR1: 0x%04x\n",
MCBSP_READ(mcbsp, XCR1));
dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n",
MCBSP_READ(mcbsp, SRGR2));
dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n",
MCBSP_READ(mcbsp, SRGR1));
dev_dbg(mcbsp->dev, "PCR0: 0x%04x\n",
MCBSP_READ(mcbsp, PCR0));
dev_dbg(mcbsp->dev, "***********************\n");
}
static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *dev_id)
{
struct omap_mcbsp *mcbsp_tx = dev_id;
u16 irqst_spcr2;
irqst_spcr2 = MCBSP_READ(mcbsp_tx, SPCR2);
dev_dbg(mcbsp_tx->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
if (irqst_spcr2 & XSYNC_ERR) {
dev_err(mcbsp_tx->dev, "TX Frame Sync Error! : 0x%x\n",
irqst_spcr2);
/* Writing zero to XSYNC_ERR clears the IRQ */
MCBSP_WRITE(mcbsp_tx, SPCR2, MCBSP_READ_CACHE(mcbsp_tx, SPCR2));
} else {
complete(&mcbsp_tx->tx_irq_completion);
}
return IRQ_HANDLED;
}
static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *dev_id)
{
struct omap_mcbsp *mcbsp_rx = dev_id;
u16 irqst_spcr1;
irqst_spcr1 = MCBSP_READ(mcbsp_rx, SPCR1);
dev_dbg(mcbsp_rx->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
if (irqst_spcr1 & RSYNC_ERR) {
dev_err(mcbsp_rx->dev, "RX Frame Sync Error! : 0x%x\n",
irqst_spcr1);
/* Writing zero to RSYNC_ERR clears the IRQ */
MCBSP_WRITE(mcbsp_rx, SPCR1, MCBSP_READ_CACHE(mcbsp_rx, SPCR1));
} else {
complete(&mcbsp_rx->rx_irq_completion);
}
return IRQ_HANDLED;
}
static void omap_mcbsp_tx_dma_callback(int lch, u16 ch_status, void *data)
{
struct omap_mcbsp *mcbsp_dma_tx = data;
dev_dbg(mcbsp_dma_tx->dev, "TX DMA callback : 0x%x\n",
MCBSP_READ(mcbsp_dma_tx, SPCR2));
/* We can free the channels */
omap_free_dma(mcbsp_dma_tx->dma_tx_lch);
mcbsp_dma_tx->dma_tx_lch = -1;
complete(&mcbsp_dma_tx->tx_dma_completion);
}
static void omap_mcbsp_rx_dma_callback(int lch, u16 ch_status, void *data)
{
struct omap_mcbsp *mcbsp_dma_rx = data;
dev_dbg(mcbsp_dma_rx->dev, "RX DMA callback : 0x%x\n",
MCBSP_READ(mcbsp_dma_rx, SPCR2));
/* We can free the channels */
omap_free_dma(mcbsp_dma_rx->dma_rx_lch);
mcbsp_dma_rx->dma_rx_lch = -1;
complete(&mcbsp_dma_rx->rx_dma_completion);
}
/*
* omap_mcbsp_config simply write a config to the
* appropriate McBSP.
* You either call this function or set the McBSP registers
* by yourself before calling omap_mcbsp_start().
*/
void omap_mcbsp_config(unsigned int id, const struct omap_mcbsp_reg_cfg *config)
{
struct omap_mcbsp *mcbsp;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return;
}
mcbsp = id_to_mcbsp_ptr(id);
dev_dbg(mcbsp->dev, "Configuring McBSP%d phys_base: 0x%08lx\n",
mcbsp->id, mcbsp->phys_base);
/* We write the given config */
MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
if (cpu_is_omap2430() || cpu_is_omap34xx() || cpu_is_omap44xx()) {
MCBSP_WRITE(mcbsp, XCCR, config->xccr);
MCBSP_WRITE(mcbsp, RCCR, config->rccr);
}
}
EXPORT_SYMBOL(omap_mcbsp_config);
#ifdef CONFIG_ARCH_OMAP3
static void omap_st_on(struct omap_mcbsp *mcbsp)
{
unsigned int w;
/*
* Sidetone uses McBSP ICLK - which must not idle when sidetones
* are enabled or sidetones start sounding ugly.
*/
w = omap2_cm_read_mod_reg(OMAP3430_PER_MOD, CM_AUTOIDLE);
w &= ~(1 << (mcbsp->id - 2));
omap2_cm_write_mod_reg(w, OMAP3430_PER_MOD, CM_AUTOIDLE);
/* Enable McBSP Sidetone */
w = MCBSP_READ(mcbsp, SSELCR);
MCBSP_WRITE(mcbsp, SSELCR, w | SIDETONEEN);
w = MCBSP_ST_READ(mcbsp, SYSCONFIG);
MCBSP_ST_WRITE(mcbsp, SYSCONFIG, w & ~(ST_AUTOIDLE));
/* Enable Sidetone from Sidetone Core */
w = MCBSP_ST_READ(mcbsp, SSELCR);
MCBSP_ST_WRITE(mcbsp, SSELCR, w | ST_SIDETONEEN);
}
static void omap_st_off(struct omap_mcbsp *mcbsp)
{
unsigned int w;
w = MCBSP_ST_READ(mcbsp, SSELCR);
MCBSP_ST_WRITE(mcbsp, SSELCR, w & ~(ST_SIDETONEEN));
w = MCBSP_ST_READ(mcbsp, SYSCONFIG);
MCBSP_ST_WRITE(mcbsp, SYSCONFIG, w | ST_AUTOIDLE);
w = MCBSP_READ(mcbsp, SSELCR);
MCBSP_WRITE(mcbsp, SSELCR, w & ~(SIDETONEEN));
w = omap2_cm_read_mod_reg(OMAP3430_PER_MOD, CM_AUTOIDLE);
w |= 1 << (mcbsp->id - 2);
omap2_cm_write_mod_reg(w, OMAP3430_PER_MOD, CM_AUTOIDLE);
}
static void omap_st_fir_write(struct omap_mcbsp *mcbsp, s16 *fir)
{
u16 val, i;
val = MCBSP_ST_READ(mcbsp, SYSCONFIG);
MCBSP_ST_WRITE(mcbsp, SYSCONFIG, val & ~(ST_AUTOIDLE));
val = MCBSP_ST_READ(mcbsp, SSELCR);
if (val & ST_COEFFWREN)
MCBSP_ST_WRITE(mcbsp, SSELCR, val & ~(ST_COEFFWREN));
MCBSP_ST_WRITE(mcbsp, SSELCR, val | ST_COEFFWREN);
for (i = 0; i < 128; i++)
MCBSP_ST_WRITE(mcbsp, SFIRCR, fir[i]);
i = 0;
val = MCBSP_ST_READ(mcbsp, SSELCR);
while (!(val & ST_COEFFWRDONE) && (++i < 1000))
val = MCBSP_ST_READ(mcbsp, SSELCR);
MCBSP_ST_WRITE(mcbsp, SSELCR, val & ~(ST_COEFFWREN));
if (i == 1000)
dev_err(mcbsp->dev, "McBSP FIR load error!\n");
}
static void omap_st_chgain(struct omap_mcbsp *mcbsp)
{
u16 w;
struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
w = MCBSP_ST_READ(mcbsp, SYSCONFIG);
MCBSP_ST_WRITE(mcbsp, SYSCONFIG, w & ~(ST_AUTOIDLE));
w = MCBSP_ST_READ(mcbsp, SSELCR);
MCBSP_ST_WRITE(mcbsp, SGAINCR, ST_CH0GAIN(st_data->ch0gain) | \
ST_CH1GAIN(st_data->ch1gain));
}
int omap_st_set_chgain(unsigned int id, int channel, s16 chgain)
{
struct omap_mcbsp *mcbsp;
struct omap_mcbsp_st_data *st_data;
int ret = 0;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return -ENODEV;
}
mcbsp = id_to_mcbsp_ptr(id);
st_data = mcbsp->st_data;
if (!st_data)
return -ENOENT;
spin_lock_irq(&mcbsp->lock);
if (channel == 0)
st_data->ch0gain = chgain;
else if (channel == 1)
st_data->ch1gain = chgain;
else
ret = -EINVAL;
if (st_data->enabled)
omap_st_chgain(mcbsp);
spin_unlock_irq(&mcbsp->lock);
return ret;
}
EXPORT_SYMBOL(omap_st_set_chgain);
int omap_st_get_chgain(unsigned int id, int channel, s16 *chgain)
{
struct omap_mcbsp *mcbsp;
struct omap_mcbsp_st_data *st_data;
int ret = 0;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return -ENODEV;
}
mcbsp = id_to_mcbsp_ptr(id);
st_data = mcbsp->st_data;
if (!st_data)
return -ENOENT;
spin_lock_irq(&mcbsp->lock);
if (channel == 0)
*chgain = st_data->ch0gain;
else if (channel == 1)
*chgain = st_data->ch1gain;
else
ret = -EINVAL;
spin_unlock_irq(&mcbsp->lock);
return ret;
}
EXPORT_SYMBOL(omap_st_get_chgain);
static int omap_st_start(struct omap_mcbsp *mcbsp)
{
struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
if (st_data && st_data->enabled && !st_data->running) {
omap_st_fir_write(mcbsp, st_data->taps);
omap_st_chgain(mcbsp);
if (!mcbsp->free) {
omap_st_on(mcbsp);
st_data->running = 1;
}
}
return 0;
}
int omap_st_enable(unsigned int id)
{
struct omap_mcbsp *mcbsp;
struct omap_mcbsp_st_data *st_data;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return -ENODEV;
}
mcbsp = id_to_mcbsp_ptr(id);
st_data = mcbsp->st_data;
if (!st_data)
return -ENODEV;
spin_lock_irq(&mcbsp->lock);
st_data->enabled = 1;
omap_st_start(mcbsp);
spin_unlock_irq(&mcbsp->lock);
return 0;
}
EXPORT_SYMBOL(omap_st_enable);
static int omap_st_stop(struct omap_mcbsp *mcbsp)
{
struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
if (st_data && st_data->running) {
if (!mcbsp->free) {
omap_st_off(mcbsp);
st_data->running = 0;
}
}
return 0;
}
int omap_st_disable(unsigned int id)
{
struct omap_mcbsp *mcbsp;
struct omap_mcbsp_st_data *st_data;
int ret = 0;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return -ENODEV;
}
mcbsp = id_to_mcbsp_ptr(id);
st_data = mcbsp->st_data;
if (!st_data)
return -ENODEV;
spin_lock_irq(&mcbsp->lock);
omap_st_stop(mcbsp);
st_data->enabled = 0;
spin_unlock_irq(&mcbsp->lock);
return ret;
}
EXPORT_SYMBOL(omap_st_disable);
int omap_st_is_enabled(unsigned int id)
{
struct omap_mcbsp *mcbsp;
struct omap_mcbsp_st_data *st_data;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return -ENODEV;
}
mcbsp = id_to_mcbsp_ptr(id);
st_data = mcbsp->st_data;
if (!st_data)
return -ENODEV;
return st_data->enabled;
}
EXPORT_SYMBOL(omap_st_is_enabled);
/*
* omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
* The threshold parameter is 1 based, and it is converted (threshold - 1)
* for the THRSH2 register.
*/
void omap_mcbsp_set_tx_threshold(unsigned int id, u16 threshold)
{
struct omap_mcbsp *mcbsp;
if (!cpu_is_omap34xx() && !cpu_is_omap44xx())
return;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return;
}
mcbsp = id_to_mcbsp_ptr(id);
if (threshold && threshold <= mcbsp->max_tx_thres)
MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
}
EXPORT_SYMBOL(omap_mcbsp_set_tx_threshold);
/*
* omap_mcbsp_set_rx_threshold configures the receive threshold in words.
* The threshold parameter is 1 based, and it is converted (threshold - 1)
* for the THRSH1 register.
*/
void omap_mcbsp_set_rx_threshold(unsigned int id, u16 threshold)
{
struct omap_mcbsp *mcbsp;
if (!cpu_is_omap34xx() && !cpu_is_omap44xx())
return;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return;
}
mcbsp = id_to_mcbsp_ptr(id);
if (threshold && threshold <= mcbsp->max_rx_thres)
MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
}
EXPORT_SYMBOL(omap_mcbsp_set_rx_threshold);
/*
* omap_mcbsp_get_max_tx_thres just return the current configured
* maximum threshold for transmission
*/
u16 omap_mcbsp_get_max_tx_threshold(unsigned int id)
{
struct omap_mcbsp *mcbsp;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return -ENODEV;
}
mcbsp = id_to_mcbsp_ptr(id);
return mcbsp->max_tx_thres;
}
EXPORT_SYMBOL(omap_mcbsp_get_max_tx_threshold);
/*
* omap_mcbsp_get_max_rx_thres just return the current configured
* maximum threshold for reception
*/
u16 omap_mcbsp_get_max_rx_threshold(unsigned int id)
{
struct omap_mcbsp *mcbsp;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return -ENODEV;
}
mcbsp = id_to_mcbsp_ptr(id);
return mcbsp->max_rx_thres;
}
EXPORT_SYMBOL(omap_mcbsp_get_max_rx_threshold);
u16 omap_mcbsp_get_fifo_size(unsigned int id)
{
struct omap_mcbsp *mcbsp;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return -ENODEV;
}
mcbsp = id_to_mcbsp_ptr(id);
return mcbsp->pdata->buffer_size;
}
EXPORT_SYMBOL(omap_mcbsp_get_fifo_size);
/*
* omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
*/
u16 omap_mcbsp_get_tx_delay(unsigned int id)
{
struct omap_mcbsp *mcbsp;
u16 buffstat;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return -ENODEV;
}
mcbsp = id_to_mcbsp_ptr(id);
/* Returns the number of free locations in the buffer */
buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
/* Number of slots are different in McBSP ports */
return mcbsp->pdata->buffer_size - buffstat;
}
EXPORT_SYMBOL(omap_mcbsp_get_tx_delay);
/*
* omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
* to reach the threshold value (when the DMA will be triggered to read it)
*/
u16 omap_mcbsp_get_rx_delay(unsigned int id)
{
struct omap_mcbsp *mcbsp;
u16 buffstat, threshold;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return -ENODEV;
}
mcbsp = id_to_mcbsp_ptr(id);
/* Returns the number of used locations in the buffer */
buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
/* RX threshold */
threshold = MCBSP_READ(mcbsp, THRSH1);
/* Return the number of location till we reach the threshold limit */
if (threshold <= buffstat)
return 0;
else
return threshold - buffstat;
}
EXPORT_SYMBOL(omap_mcbsp_get_rx_delay);
/*
* omap_mcbsp_get_dma_op_mode just return the current configured
* operating mode for the mcbsp channel
*/
int omap_mcbsp_get_dma_op_mode(unsigned int id)
{
struct omap_mcbsp *mcbsp;
int dma_op_mode;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%u)\n", __func__, id + 1);
return -ENODEV;
}
mcbsp = id_to_mcbsp_ptr(id);
dma_op_mode = mcbsp->dma_op_mode;
return dma_op_mode;
}
EXPORT_SYMBOL(omap_mcbsp_get_dma_op_mode);
static inline void omap34xx_mcbsp_request(struct omap_mcbsp *mcbsp)
{
/*
* Enable wakup behavior, smart idle and all wakeups
* REVISIT: some wakeups may be unnecessary
*/
if (cpu_is_omap34xx() || cpu_is_omap44xx()) {
u16 syscon;
syscon = MCBSP_READ(mcbsp, SYSCON);
syscon &= ~(ENAWAKEUP | SIDLEMODE(0x03) | CLOCKACTIVITY(0x03));
if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
syscon |= (ENAWAKEUP | SIDLEMODE(0x02) |
CLOCKACTIVITY(0x02));
MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
} else {
syscon |= SIDLEMODE(0x01);
}
MCBSP_WRITE(mcbsp, SYSCON, syscon);
}
}
static inline void omap34xx_mcbsp_free(struct omap_mcbsp *mcbsp)
{
/*
* Disable wakup behavior, smart idle and all wakeups
*/
if (cpu_is_omap34xx() || cpu_is_omap44xx()) {
u16 syscon;
syscon = MCBSP_READ(mcbsp, SYSCON);
syscon &= ~(ENAWAKEUP | SIDLEMODE(0x03) | CLOCKACTIVITY(0x03));
/*
* HW bug workaround - If no_idle mode is taken, we need to
* go to smart_idle before going to always_idle, or the
* device will not hit retention anymore.
*/
syscon |= SIDLEMODE(0x02);
MCBSP_WRITE(mcbsp, SYSCON, syscon);
syscon &= ~(SIDLEMODE(0x03));
MCBSP_WRITE(mcbsp, SYSCON, syscon);
MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
}
}
#else
static inline void omap34xx_mcbsp_request(struct omap_mcbsp *mcbsp) {}
static inline void omap34xx_mcbsp_free(struct omap_mcbsp *mcbsp) {}
static inline void omap_st_start(struct omap_mcbsp *mcbsp) {}
static inline void omap_st_stop(struct omap_mcbsp *mcbsp) {}
#endif
/*
* We can choose between IRQ based or polled IO.
* This needs to be called before omap_mcbsp_request().
*/
int omap_mcbsp_set_io_type(unsigned int id, omap_mcbsp_io_type_t io_type)
{
struct omap_mcbsp *mcbsp;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return -ENODEV;
}
mcbsp = id_to_mcbsp_ptr(id);
spin_lock(&mcbsp->lock);
if (!mcbsp->free) {
dev_err(mcbsp->dev, "McBSP%d is currently in use\n",
mcbsp->id);
spin_unlock(&mcbsp->lock);
return -EINVAL;
}
mcbsp->io_type = io_type;
spin_unlock(&mcbsp->lock);
return 0;
}
EXPORT_SYMBOL(omap_mcbsp_set_io_type);
int omap_mcbsp_request(unsigned int id)
{
struct omap_mcbsp *mcbsp;
void *reg_cache;
int err;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return -ENODEV;
}
mcbsp = id_to_mcbsp_ptr(id);
reg_cache = kzalloc(omap_mcbsp_cache_size, GFP_KERNEL);
if (!reg_cache) {
return -ENOMEM;
}
spin_lock(&mcbsp->lock);
if (!mcbsp->free) {
dev_err(mcbsp->dev, "McBSP%d is currently in use\n",
mcbsp->id);
err = -EBUSY;
goto err_kfree;
}
mcbsp->free = false;
mcbsp->reg_cache = reg_cache;
spin_unlock(&mcbsp->lock);
if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->request)
mcbsp->pdata->ops->request(id);
clk_enable(mcbsp->iclk);
clk_enable(mcbsp->fclk);
/* Do procedure specific to omap34xx arch, if applicable */
omap34xx_mcbsp_request(mcbsp);
/*
* Make sure that transmitter, receiver and sample-rate generator are
* not running before activating IRQs.
*/
MCBSP_WRITE(mcbsp, SPCR1, 0);
MCBSP_WRITE(mcbsp, SPCR2, 0);
if (mcbsp->io_type == OMAP_MCBSP_IRQ_IO) {
/* We need to get IRQs here */
init_completion(&mcbsp->tx_irq_completion);
err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler,
0, "McBSP", (void *)mcbsp);
if (err != 0) {
dev_err(mcbsp->dev, "Unable to request TX IRQ %d "
"for McBSP%d\n", mcbsp->tx_irq,
mcbsp->id);
goto err_clk_disable;
}
if (mcbsp->rx_irq) {
init_completion(&mcbsp->rx_irq_completion);
err = request_irq(mcbsp->rx_irq,
omap_mcbsp_rx_irq_handler,
0, "McBSP", (void *)mcbsp);
if (err != 0) {
dev_err(mcbsp->dev, "Unable to request RX IRQ %d "
"for McBSP%d\n", mcbsp->rx_irq,
mcbsp->id);
goto err_free_irq;
}
}
}
return 0;
err_free_irq:
free_irq(mcbsp->tx_irq, (void *)mcbsp);
err_clk_disable:
if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->free)
mcbsp->pdata->ops->free(id);
/* Do procedure specific to omap34xx arch, if applicable */
omap34xx_mcbsp_free(mcbsp);
clk_disable(mcbsp->fclk);
clk_disable(mcbsp->iclk);
spin_lock(&mcbsp->lock);
mcbsp->free = true;
mcbsp->reg_cache = NULL;
err_kfree:
spin_unlock(&mcbsp->lock);
kfree(reg_cache);
return err;
}
EXPORT_SYMBOL(omap_mcbsp_request);
void omap_mcbsp_free(unsigned int id)
{
struct omap_mcbsp *mcbsp;
void *reg_cache;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return;
}
mcbsp = id_to_mcbsp_ptr(id);
if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->free)
mcbsp->pdata->ops->free(id);
/* Do procedure specific to omap34xx arch, if applicable */
omap34xx_mcbsp_free(mcbsp);
clk_disable(mcbsp->fclk);
clk_disable(mcbsp->iclk);
if (mcbsp->io_type == OMAP_MCBSP_IRQ_IO) {
/* Free IRQs */
if (mcbsp->rx_irq)
free_irq(mcbsp->rx_irq, (void *)mcbsp);
free_irq(mcbsp->tx_irq, (void *)mcbsp);
}
reg_cache = mcbsp->reg_cache;
spin_lock(&mcbsp->lock);
if (mcbsp->free)
dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
else
mcbsp->free = true;
mcbsp->reg_cache = NULL;
spin_unlock(&mcbsp->lock);
if (reg_cache)
kfree(reg_cache);
}
EXPORT_SYMBOL(omap_mcbsp_free);
/*
* Here we start the McBSP, by enabling transmitter, receiver or both.
* If no transmitter or receiver is active prior calling, then sample-rate
* generator and frame sync are started.
*/
void omap_mcbsp_start(unsigned int id, int tx, int rx)
{
struct omap_mcbsp *mcbsp;
int enable_srg = 0;
u16 w;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return;
}
mcbsp = id_to_mcbsp_ptr(id);
if (cpu_is_omap34xx())
omap_st_start(mcbsp);
mcbsp->rx_word_length = (MCBSP_READ_CACHE(mcbsp, RCR1) >> 5) & 0x7;
mcbsp->tx_word_length = (MCBSP_READ_CACHE(mcbsp, XCR1) >> 5) & 0x7;
/* Only enable SRG, if McBSP is master */
w = MCBSP_READ_CACHE(mcbsp, PCR0);
if (w & (FSXM | FSRM | CLKXM | CLKRM))
enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
if (enable_srg) {
/* Start the sample generator */
w = MCBSP_READ_CACHE(mcbsp, SPCR2);
MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
}
/* Enable transmitter and receiver */
tx &= 1;
w = MCBSP_READ_CACHE(mcbsp, SPCR2);
MCBSP_WRITE(mcbsp, SPCR2, w | tx);
rx &= 1;
w = MCBSP_READ_CACHE(mcbsp, SPCR1);
MCBSP_WRITE(mcbsp, SPCR1, w | rx);
/*
* Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
* REVISIT: 100us may give enough time for two CLKSRG, however
* due to some unknown PM related, clock gating etc. reason it
* is now at 500us.
*/
udelay(500);
if (enable_srg) {
/* Start frame sync */
w = MCBSP_READ_CACHE(mcbsp, SPCR2);
MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
}
if (cpu_is_omap2430() || cpu_is_omap34xx() || cpu_is_omap44xx()) {
/* Release the transmitter and receiver */
w = MCBSP_READ_CACHE(mcbsp, XCCR);
w &= ~(tx ? XDISABLE : 0);
MCBSP_WRITE(mcbsp, XCCR, w);
w = MCBSP_READ_CACHE(mcbsp, RCCR);
w &= ~(rx ? RDISABLE : 0);
MCBSP_WRITE(mcbsp, RCCR, w);
}
/* Dump McBSP Regs */
omap_mcbsp_dump_reg(id);
}
EXPORT_SYMBOL(omap_mcbsp_start);
void omap_mcbsp_stop(unsigned int id, int tx, int rx)
{
struct omap_mcbsp *mcbsp;
int idle;
u16 w;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return;
}
mcbsp = id_to_mcbsp_ptr(id);
/* Reset transmitter */
tx &= 1;
if (cpu_is_omap2430() || cpu_is_omap34xx() || cpu_is_omap44xx()) {
w = MCBSP_READ_CACHE(mcbsp, XCCR);
w |= (tx ? XDISABLE : 0);
MCBSP_WRITE(mcbsp, XCCR, w);
}
w = MCBSP_READ_CACHE(mcbsp, SPCR2);
MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
/* Reset receiver */
rx &= 1;
if (cpu_is_omap2430() || cpu_is_omap34xx() || cpu_is_omap44xx()) {
w = MCBSP_READ_CACHE(mcbsp, RCCR);
w |= (rx ? RDISABLE : 0);
MCBSP_WRITE(mcbsp, RCCR, w);
}
w = MCBSP_READ_CACHE(mcbsp, SPCR1);
MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
if (idle) {
/* Reset the sample rate generator */
w = MCBSP_READ_CACHE(mcbsp, SPCR2);
MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
}
if (cpu_is_omap34xx())
omap_st_stop(mcbsp);
}
EXPORT_SYMBOL(omap_mcbsp_stop);
/* polled mcbsp i/o operations */
int omap_mcbsp_pollwrite(unsigned int id, u16 buf)
{
struct omap_mcbsp *mcbsp;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return -ENODEV;
}
mcbsp = id_to_mcbsp_ptr(id);
MCBSP_WRITE(mcbsp, DXR1, buf);
/* if frame sync error - clear the error */
if (MCBSP_READ(mcbsp, SPCR2) & XSYNC_ERR) {
/* clear error */
MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2));
/* resend */
return -1;
} else {
/* wait for transmit confirmation */
int attemps = 0;
while (!(MCBSP_READ(mcbsp, SPCR2) & XRDY)) {
if (attemps++ > 1000) {
MCBSP_WRITE(mcbsp, SPCR2,
MCBSP_READ_CACHE(mcbsp, SPCR2) &
(~XRST));
udelay(10);
MCBSP_WRITE(mcbsp, SPCR2,
MCBSP_READ_CACHE(mcbsp, SPCR2) |
(XRST));
udelay(10);
dev_err(mcbsp->dev, "Could not write to"
" McBSP%d Register\n", mcbsp->id);
return -2;
}
}
}
return 0;
}
EXPORT_SYMBOL(omap_mcbsp_pollwrite);
int omap_mcbsp_pollread(unsigned int id, u16 *buf)
{
struct omap_mcbsp *mcbsp;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return -ENODEV;
}
mcbsp = id_to_mcbsp_ptr(id);
/* if frame sync error - clear the error */
if (MCBSP_READ(mcbsp, SPCR1) & RSYNC_ERR) {
/* clear error */
MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1));
/* resend */
return -1;
} else {
/* wait for recieve confirmation */
int attemps = 0;
while (!(MCBSP_READ(mcbsp, SPCR1) & RRDY)) {
if (attemps++ > 1000) {
MCBSP_WRITE(mcbsp, SPCR1,
MCBSP_READ_CACHE(mcbsp, SPCR1) &
(~RRST));
udelay(10);
MCBSP_WRITE(mcbsp, SPCR1,
MCBSP_READ_CACHE(mcbsp, SPCR1) |
(RRST));
udelay(10);
dev_err(mcbsp->dev, "Could not read from"
" McBSP%d Register\n", mcbsp->id);
return -2;
}
}
}
*buf = MCBSP_READ(mcbsp, DRR1);
return 0;
}
EXPORT_SYMBOL(omap_mcbsp_pollread);
/*
* IRQ based word transmission.
*/
void omap_mcbsp_xmit_word(unsigned int id, u32 word)
{
struct omap_mcbsp *mcbsp;
omap_mcbsp_word_length word_length;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return;
}
mcbsp = id_to_mcbsp_ptr(id);
word_length = mcbsp->tx_word_length;
wait_for_completion(&mcbsp->tx_irq_completion);
if (word_length > OMAP_MCBSP_WORD_16)
MCBSP_WRITE(mcbsp, DXR2, word >> 16);
MCBSP_WRITE(mcbsp, DXR1, word & 0xffff);
}
EXPORT_SYMBOL(omap_mcbsp_xmit_word);
u32 omap_mcbsp_recv_word(unsigned int id)
{
struct omap_mcbsp *mcbsp;
u16 word_lsb, word_msb = 0;
omap_mcbsp_word_length word_length;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return -ENODEV;
}
mcbsp = id_to_mcbsp_ptr(id);
word_length = mcbsp->rx_word_length;
wait_for_completion(&mcbsp->rx_irq_completion);
if (word_length > OMAP_MCBSP_WORD_16)
word_msb = MCBSP_READ(mcbsp, DRR2);
word_lsb = MCBSP_READ(mcbsp, DRR1);
return (word_lsb | (word_msb << 16));
}
EXPORT_SYMBOL(omap_mcbsp_recv_word);
int omap_mcbsp_spi_master_xmit_word_poll(unsigned int id, u32 word)
{
struct omap_mcbsp *mcbsp;
omap_mcbsp_word_length tx_word_length;
omap_mcbsp_word_length rx_word_length;
u16 spcr2, spcr1, attempts = 0, word_lsb, word_msb = 0;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return -ENODEV;
}
mcbsp = id_to_mcbsp_ptr(id);
tx_word_length = mcbsp->tx_word_length;
rx_word_length = mcbsp->rx_word_length;
if (tx_word_length != rx_word_length)
return -EINVAL;
/* First we wait for the transmitter to be ready */
spcr2 = MCBSP_READ(mcbsp, SPCR2);
while (!(spcr2 & XRDY)) {
spcr2 = MCBSP_READ(mcbsp, SPCR2);
if (attempts++ > 1000) {
/* We must reset the transmitter */
MCBSP_WRITE(mcbsp, SPCR2,
MCBSP_READ_CACHE(mcbsp, SPCR2) & (~XRST));
udelay(10);
MCBSP_WRITE(mcbsp, SPCR2,
MCBSP_READ_CACHE(mcbsp, SPCR2) | XRST);
udelay(10);
dev_err(mcbsp->dev, "McBSP%d transmitter not "
"ready\n", mcbsp->id);
return -EAGAIN;
}
}
/* Now we can push the data */
if (tx_word_length > OMAP_MCBSP_WORD_16)
MCBSP_WRITE(mcbsp, DXR2, word >> 16);
MCBSP_WRITE(mcbsp, DXR1, word & 0xffff);
/* We wait for the receiver to be ready */
spcr1 = MCBSP_READ(mcbsp, SPCR1);
while (!(spcr1 & RRDY)) {
spcr1 = MCBSP_READ(mcbsp, SPCR1);
if (attempts++ > 1000) {
/* We must reset the receiver */
MCBSP_WRITE(mcbsp, SPCR1,
MCBSP_READ_CACHE(mcbsp, SPCR1) & (~RRST));
udelay(10);
MCBSP_WRITE(mcbsp, SPCR1,
MCBSP_READ_CACHE(mcbsp, SPCR1) | RRST);
udelay(10);
dev_err(mcbsp->dev, "McBSP%d receiver not "
"ready\n", mcbsp->id);
return -EAGAIN;
}
}
/* Receiver is ready, let's read the dummy data */
if (rx_word_length > OMAP_MCBSP_WORD_16)
word_msb = MCBSP_READ(mcbsp, DRR2);
word_lsb = MCBSP_READ(mcbsp, DRR1);
return 0;
}
EXPORT_SYMBOL(omap_mcbsp_spi_master_xmit_word_poll);
int omap_mcbsp_spi_master_recv_word_poll(unsigned int id, u32 *word)
{
struct omap_mcbsp *mcbsp;
u32 clock_word = 0;
omap_mcbsp_word_length tx_word_length;
omap_mcbsp_word_length rx_word_length;
u16 spcr2, spcr1, attempts = 0, word_lsb, word_msb = 0;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return -ENODEV;
}
mcbsp = id_to_mcbsp_ptr(id);
tx_word_length = mcbsp->tx_word_length;
rx_word_length = mcbsp->rx_word_length;
if (tx_word_length != rx_word_length)
return -EINVAL;
/* First we wait for the transmitter to be ready */
spcr2 = MCBSP_READ(mcbsp, SPCR2);
while (!(spcr2 & XRDY)) {
spcr2 = MCBSP_READ(mcbsp, SPCR2);
if (attempts++ > 1000) {
/* We must reset the transmitter */
MCBSP_WRITE(mcbsp, SPCR2,
MCBSP_READ_CACHE(mcbsp, SPCR2) & (~XRST));
udelay(10);
MCBSP_WRITE(mcbsp, SPCR2,
MCBSP_READ_CACHE(mcbsp, SPCR2) | XRST);
udelay(10);
dev_err(mcbsp->dev, "McBSP%d transmitter not "
"ready\n", mcbsp->id);
return -EAGAIN;
}
}
/* We first need to enable the bus clock */
if (tx_word_length > OMAP_MCBSP_WORD_16)
MCBSP_WRITE(mcbsp, DXR2, clock_word >> 16);
MCBSP_WRITE(mcbsp, DXR1, clock_word & 0xffff);
/* We wait for the receiver to be ready */
spcr1 = MCBSP_READ(mcbsp, SPCR1);
while (!(spcr1 & RRDY)) {
spcr1 = MCBSP_READ(mcbsp, SPCR1);
if (attempts++ > 1000) {
/* We must reset the receiver */
MCBSP_WRITE(mcbsp, SPCR1,
MCBSP_READ_CACHE(mcbsp, SPCR1) & (~RRST));
udelay(10);
MCBSP_WRITE(mcbsp, SPCR1,
MCBSP_READ_CACHE(mcbsp, SPCR1) | RRST);
udelay(10);
dev_err(mcbsp->dev, "McBSP%d receiver not "
"ready\n", mcbsp->id);
return -EAGAIN;
}
}
/* Receiver is ready, there is something for us */
if (rx_word_length > OMAP_MCBSP_WORD_16)
word_msb = MCBSP_READ(mcbsp, DRR2);
word_lsb = MCBSP_READ(mcbsp, DRR1);
word[0] = (word_lsb | (word_msb << 16));
return 0;
}
EXPORT_SYMBOL(omap_mcbsp_spi_master_recv_word_poll);
/*
* Simple DMA based buffer rx/tx routines.
* Nothing fancy, just a single buffer tx/rx through DMA.
* The DMA resources are released once the transfer is done.
* For anything fancier, you should use your own customized DMA
* routines and callbacks.
*/
int omap_mcbsp_xmit_buffer(unsigned int id, dma_addr_t buffer,
unsigned int length)
{
struct omap_mcbsp *mcbsp;
int dma_tx_ch;
int src_port = 0;
int dest_port = 0;
int sync_dev = 0;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return -ENODEV;
}
mcbsp = id_to_mcbsp_ptr(id);
if (omap_request_dma(mcbsp->dma_tx_sync, "McBSP TX",
omap_mcbsp_tx_dma_callback,
mcbsp,
&dma_tx_ch)) {
dev_err(mcbsp->dev, " Unable to request DMA channel for "
"McBSP%d TX. Trying IRQ based TX\n",
mcbsp->id);
return -EAGAIN;
}
mcbsp->dma_tx_lch = dma_tx_ch;
dev_err(mcbsp->dev, "McBSP%d TX DMA on channel %d\n", mcbsp->id,
dma_tx_ch);
init_completion(&mcbsp->tx_dma_completion);
if (cpu_class_is_omap1()) {
src_port = OMAP_DMA_PORT_TIPB;
dest_port = OMAP_DMA_PORT_EMIFF;
}
if (cpu_class_is_omap2())
sync_dev = mcbsp->dma_tx_sync;
omap_set_dma_transfer_params(mcbsp->dma_tx_lch,
OMAP_DMA_DATA_TYPE_S16,
length >> 1, 1,
OMAP_DMA_SYNC_ELEMENT,
sync_dev, 0);
omap_set_dma_dest_params(mcbsp->dma_tx_lch,
src_port,
OMAP_DMA_AMODE_CONSTANT,
mcbsp->phys_base + OMAP_MCBSP_REG_DXR1,
0, 0);
omap_set_dma_src_params(mcbsp->dma_tx_lch,
dest_port,
OMAP_DMA_AMODE_POST_INC,
buffer,
0, 0);
omap_start_dma(mcbsp->dma_tx_lch);
wait_for_completion(&mcbsp->tx_dma_completion);
return 0;
}
EXPORT_SYMBOL(omap_mcbsp_xmit_buffer);
int omap_mcbsp_recv_buffer(unsigned int id, dma_addr_t buffer,
unsigned int length)
{
struct omap_mcbsp *mcbsp;
int dma_rx_ch;
int src_port = 0;
int dest_port = 0;
int sync_dev = 0;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return -ENODEV;
}
mcbsp = id_to_mcbsp_ptr(id);
if (omap_request_dma(mcbsp->dma_rx_sync, "McBSP RX",
omap_mcbsp_rx_dma_callback,
mcbsp,
&dma_rx_ch)) {
dev_err(mcbsp->dev, "Unable to request DMA channel for "
"McBSP%d RX. Trying IRQ based RX\n",
mcbsp->id);
return -EAGAIN;
}
mcbsp->dma_rx_lch = dma_rx_ch;
dev_err(mcbsp->dev, "McBSP%d RX DMA on channel %d\n", mcbsp->id,
dma_rx_ch);
init_completion(&mcbsp->rx_dma_completion);
if (cpu_class_is_omap1()) {
src_port = OMAP_DMA_PORT_TIPB;
dest_port = OMAP_DMA_PORT_EMIFF;
}
if (cpu_class_is_omap2())
sync_dev = mcbsp->dma_rx_sync;
omap_set_dma_transfer_params(mcbsp->dma_rx_lch,
OMAP_DMA_DATA_TYPE_S16,
length >> 1, 1,
OMAP_DMA_SYNC_ELEMENT,
sync_dev, 0);
omap_set_dma_src_params(mcbsp->dma_rx_lch,
src_port,
OMAP_DMA_AMODE_CONSTANT,
mcbsp->phys_base + OMAP_MCBSP_REG_DRR1,
0, 0);
omap_set_dma_dest_params(mcbsp->dma_rx_lch,
dest_port,
OMAP_DMA_AMODE_POST_INC,
buffer,
0, 0);
omap_start_dma(mcbsp->dma_rx_lch);
wait_for_completion(&mcbsp->rx_dma_completion);
return 0;
}
EXPORT_SYMBOL(omap_mcbsp_recv_buffer);
/*
* SPI wrapper.
* Since SPI setup is much simpler than the generic McBSP one,
* this wrapper just need an omap_mcbsp_spi_cfg structure as an input.
* Once this is done, you can call omap_mcbsp_start().
*/
void omap_mcbsp_set_spi_mode(unsigned int id,
const struct omap_mcbsp_spi_cfg *spi_cfg)
{
struct omap_mcbsp *mcbsp;
struct omap_mcbsp_reg_cfg mcbsp_cfg;
if (!omap_mcbsp_check_valid_id(id)) {
printk(KERN_ERR "%s: Invalid id (%d)\n", __func__, id + 1);
return;
}
mcbsp = id_to_mcbsp_ptr(id);
memset(&mcbsp_cfg, 0, sizeof(struct omap_mcbsp_reg_cfg));
/* SPI has only one frame */
mcbsp_cfg.rcr1 |= (RWDLEN1(spi_cfg->word_length) | RFRLEN1(0));
mcbsp_cfg.xcr1 |= (XWDLEN1(spi_cfg->word_length) | XFRLEN1(0));
/* Clock stop mode */
if (spi_cfg->clk_stp_mode == OMAP_MCBSP_CLK_STP_MODE_NO_DELAY)
mcbsp_cfg.spcr1 |= (1 << 12);
else
mcbsp_cfg.spcr1 |= (3 << 11);
/* Set clock parities */
if (spi_cfg->rx_clock_polarity == OMAP_MCBSP_CLK_RISING)
mcbsp_cfg.pcr0 |= CLKRP;
else
mcbsp_cfg.pcr0 &= ~CLKRP;
if (spi_cfg->tx_clock_polarity == OMAP_MCBSP_CLK_RISING)
mcbsp_cfg.pcr0 &= ~CLKXP;
else
mcbsp_cfg.pcr0 |= CLKXP;
/* Set SCLKME to 0 and CLKSM to 1 */
mcbsp_cfg.pcr0 &= ~SCLKME;
mcbsp_cfg.srgr2 |= CLKSM;
/* Set FSXP */
if (spi_cfg->fsx_polarity == OMAP_MCBSP_FS_ACTIVE_HIGH)
mcbsp_cfg.pcr0 &= ~FSXP;
else
mcbsp_cfg.pcr0 |= FSXP;
if (spi_cfg->spi_mode == OMAP_MCBSP_SPI_MASTER) {
mcbsp_cfg.pcr0 |= CLKXM;
mcbsp_cfg.srgr1 |= CLKGDV(spi_cfg->clk_div - 1);
mcbsp_cfg.pcr0 |= FSXM;
mcbsp_cfg.srgr2 &= ~FSGM;
mcbsp_cfg.xcr2 |= XDATDLY(1);
mcbsp_cfg.rcr2 |= RDATDLY(1);
} else {
mcbsp_cfg.pcr0 &= ~CLKXM;
mcbsp_cfg.srgr1 |= CLKGDV(1);
mcbsp_cfg.pcr0 &= ~FSXM;
mcbsp_cfg.xcr2 &= ~XDATDLY(3);
mcbsp_cfg.rcr2 &= ~RDATDLY(3);
}
mcbsp_cfg.xcr2 &= ~XPHASE;
mcbsp_cfg.rcr2 &= ~RPHASE;
omap_mcbsp_config(id, &mcbsp_cfg);
}
EXPORT_SYMBOL(omap_mcbsp_set_spi_mode);
#ifdef CONFIG_ARCH_OMAP3
#define max_thres(m) (mcbsp->pdata->buffer_size)
#define valid_threshold(m, val) ((val) <= max_thres(m))
#define THRESHOLD_PROP_BUILDER(prop) \
static ssize_t prop##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \
\
return sprintf(buf, "%u\n", mcbsp->prop); \
} \
\
static ssize_t prop##_store(struct device *dev, \
struct device_attribute *attr, \
const char *buf, size_t size) \
{ \
struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \
unsigned long val; \
int status; \
\
status = strict_strtoul(buf, 0, &val); \
if (status) \
return status; \
\
if (!valid_threshold(mcbsp, val)) \
return -EDOM; \
\
mcbsp->prop = val; \
return size; \
} \
\
static DEVICE_ATTR(prop, 0644, prop##_show, prop##_store);
THRESHOLD_PROP_BUILDER(max_tx_thres);
THRESHOLD_PROP_BUILDER(max_rx_thres);
static const char *dma_op_modes[] = {
"element", "threshold", "frame",
};
static ssize_t dma_op_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
int dma_op_mode, i = 0;
ssize_t len = 0;
const char * const *s;
dma_op_mode = mcbsp->dma_op_mode;
for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
if (dma_op_mode == i)
len += sprintf(buf + len, "[%s] ", *s);
else
len += sprintf(buf + len, "%s ", *s);
}
len += sprintf(buf + len, "\n");
return len;
}
static ssize_t dma_op_mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
const char * const *s;
int i = 0;
for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++)
if (sysfs_streq(buf, *s))
break;
if (i == ARRAY_SIZE(dma_op_modes))
return -EINVAL;
spin_lock_irq(&mcbsp->lock);
if (!mcbsp->free) {
size = -EBUSY;
goto unlock;
}
mcbsp->dma_op_mode = i;
unlock:
spin_unlock_irq(&mcbsp->lock);
return size;
}
static DEVICE_ATTR(dma_op_mode, 0644, dma_op_mode_show, dma_op_mode_store);
static ssize_t st_taps_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
ssize_t status = 0;
int i;
spin_lock_irq(&mcbsp->lock);
for (i = 0; i < st_data->nr_taps; i++)
status += sprintf(&buf[status], (i ? ", %d" : "%d"),
st_data->taps[i]);
if (i)
status += sprintf(&buf[status], "\n");
spin_unlock_irq(&mcbsp->lock);
return status;
}
static ssize_t st_taps_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
int val, tmp, status, i = 0;
spin_lock_irq(&mcbsp->lock);
memset(st_data->taps, 0, sizeof(st_data->taps));
st_data->nr_taps = 0;
do {
status = sscanf(buf, "%d%n", &val, &tmp);
if (status < 0 || status == 0) {
size = -EINVAL;
goto out;
}
if (val < -32768 || val > 32767) {
size = -EINVAL;
goto out;
}
st_data->taps[i++] = val;
buf += tmp;
if (*buf != ',')
break;
buf++;
} while (1);
st_data->nr_taps = i;
out:
spin_unlock_irq(&mcbsp->lock);
return size;
}
static DEVICE_ATTR(st_taps, 0644, st_taps_show, st_taps_store);
static const struct attribute *additional_attrs[] = {
&dev_attr_max_tx_thres.attr,
&dev_attr_max_rx_thres.attr,
&dev_attr_dma_op_mode.attr,
NULL,
};
static const struct attribute_group additional_attr_group = {
.attrs = (struct attribute **)additional_attrs,
};
static inline int __devinit omap_additional_add(struct device *dev)
{
return sysfs_create_group(&dev->kobj, &additional_attr_group);
}
static inline void __devexit omap_additional_remove(struct device *dev)
{
sysfs_remove_group(&dev->kobj, &additional_attr_group);
}
static const struct attribute *sidetone_attrs[] = {
&dev_attr_st_taps.attr,
NULL,
};
static const struct attribute_group sidetone_attr_group = {
.attrs = (struct attribute **)sidetone_attrs,
};
static int __devinit omap_st_add(struct omap_mcbsp *mcbsp)
{
struct omap_mcbsp_platform_data *pdata = mcbsp->pdata;
struct omap_mcbsp_st_data *st_data;
int err;
st_data = kzalloc(sizeof(*mcbsp->st_data), GFP_KERNEL);
if (!st_data) {
err = -ENOMEM;
goto err1;
}
st_data->io_base_st = ioremap(pdata->phys_base_st, SZ_4K);
if (!st_data->io_base_st) {
err = -ENOMEM;
goto err2;
}
err = sysfs_create_group(&mcbsp->dev->kobj, &sidetone_attr_group);
if (err)
goto err3;
mcbsp->st_data = st_data;
return 0;
err3:
iounmap(st_data->io_base_st);
err2:
kfree(st_data);
err1:
return err;
}
static void __devexit omap_st_remove(struct omap_mcbsp *mcbsp)
{
struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
if (st_data) {
sysfs_remove_group(&mcbsp->dev->kobj, &sidetone_attr_group);
iounmap(st_data->io_base_st);
kfree(st_data);
}
}
static inline void __devinit omap34xx_device_init(struct omap_mcbsp *mcbsp)
{
mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
if (cpu_is_omap34xx()) {
/*
* Initially configure the maximum thresholds to a safe value.
* The McBSP FIFO usage with these values should not go under
* 16 locations.
* If the whole FIFO without safety buffer is used, than there
* is a possibility that the DMA will be not able to push the
* new data on time, causing channel shifts in runtime.
*/
mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
/*
* REVISIT: Set dmap_op_mode to THRESHOLD as default
* for mcbsp2 instances.
*/
if (omap_additional_add(mcbsp->dev))
dev_warn(mcbsp->dev,
"Unable to create additional controls\n");
if (mcbsp->id == 2 || mcbsp->id == 3)
if (omap_st_add(mcbsp))
dev_warn(mcbsp->dev,
"Unable to create sidetone controls\n");
} else {
mcbsp->max_tx_thres = -EINVAL;
mcbsp->max_rx_thres = -EINVAL;
}
}
static inline void __devexit omap34xx_device_exit(struct omap_mcbsp *mcbsp)
{
if (cpu_is_omap34xx()) {
omap_additional_remove(mcbsp->dev);
if (mcbsp->id == 2 || mcbsp->id == 3)
omap_st_remove(mcbsp);
}
}
#else
static inline void __devinit omap34xx_device_init(struct omap_mcbsp *mcbsp) {}
static inline void __devexit omap34xx_device_exit(struct omap_mcbsp *mcbsp) {}
#endif /* CONFIG_ARCH_OMAP3 */
/*
* McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
* 730 has only 2 McBSP, and both of them are MPU peripherals.
*/
static int __devinit omap_mcbsp_probe(struct platform_device *pdev)
{
struct omap_mcbsp_platform_data *pdata = pdev->dev.platform_data;
struct omap_mcbsp *mcbsp;
int id = pdev->id - 1;
int ret = 0;
if (!pdata) {
dev_err(&pdev->dev, "McBSP device initialized without"
"platform data\n");
ret = -EINVAL;
goto exit;
}
dev_dbg(&pdev->dev, "Initializing OMAP McBSP (%d).\n", pdev->id);
if (id >= omap_mcbsp_count) {
dev_err(&pdev->dev, "Invalid McBSP device id (%d)\n", id);
ret = -EINVAL;
goto exit;
}
mcbsp = kzalloc(sizeof(struct omap_mcbsp), GFP_KERNEL);
if (!mcbsp) {
ret = -ENOMEM;
goto exit;
}
spin_lock_init(&mcbsp->lock);
mcbsp->id = id + 1;
mcbsp->free = true;
mcbsp->dma_tx_lch = -1;
mcbsp->dma_rx_lch = -1;
mcbsp->phys_base = pdata->phys_base;
mcbsp->io_base = ioremap(pdata->phys_base, SZ_4K);
if (!mcbsp->io_base) {
ret = -ENOMEM;
goto err_ioremap;
}
/* Default I/O is IRQ based */
mcbsp->io_type = OMAP_MCBSP_IRQ_IO;
mcbsp->tx_irq = pdata->tx_irq;
mcbsp->rx_irq = pdata->rx_irq;
mcbsp->dma_rx_sync = pdata->dma_rx_sync;
mcbsp->dma_tx_sync = pdata->dma_tx_sync;
mcbsp->iclk = clk_get(&pdev->dev, "ick");
if (IS_ERR(mcbsp->iclk)) {
ret = PTR_ERR(mcbsp->iclk);
dev_err(&pdev->dev, "unable to get ick: %d\n", ret);
goto err_iclk;
}
mcbsp->fclk = clk_get(&pdev->dev, "fck");
if (IS_ERR(mcbsp->fclk)) {
ret = PTR_ERR(mcbsp->fclk);
dev_err(&pdev->dev, "unable to get fck: %d\n", ret);
goto err_fclk;
}
mcbsp->pdata = pdata;
mcbsp->dev = &pdev->dev;
mcbsp_ptr[id] = mcbsp;
platform_set_drvdata(pdev, mcbsp);
/* Initialize mcbsp properties for OMAP34XX if needed / applicable */
omap34xx_device_init(mcbsp);
return 0;
err_fclk:
clk_put(mcbsp->iclk);
err_iclk:
iounmap(mcbsp->io_base);
err_ioremap:
kfree(mcbsp);
exit:
return ret;
}
static int __devexit omap_mcbsp_remove(struct platform_device *pdev)
{
struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
platform_set_drvdata(pdev, NULL);
if (mcbsp) {
if (mcbsp->pdata && mcbsp->pdata->ops &&
mcbsp->pdata->ops->free)
mcbsp->pdata->ops->free(mcbsp->id);
omap34xx_device_exit(mcbsp);
clk_put(mcbsp->fclk);
clk_put(mcbsp->iclk);
iounmap(mcbsp->io_base);
kfree(mcbsp);
}
return 0;
}
static struct platform_driver omap_mcbsp_driver = {
.probe = omap_mcbsp_probe,
.remove = __devexit_p(omap_mcbsp_remove),
.driver = {
.name = "omap-mcbsp",
},
};
int __init omap_mcbsp_init(void)
{
/* Register the McBSP driver */
return platform_driver_register(&omap_mcbsp_driver);
}