blob: afe209e1e1f85fb299e9822ea07a49b13cc29ecf (
plain) (
tree)
|
|
/*
* linux/arch/arm/mm/mmap.c
*/
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/shm.h>
#include <linux/sched.h>
#include <linux/io.h>
#include <linux/random.h>
#include <asm/cputype.h>
#include <asm/system.h>
#define COLOUR_ALIGN(addr,pgoff) \
((((addr)+SHMLBA-1)&~(SHMLBA-1)) + \
(((pgoff)<<PAGE_SHIFT) & (SHMLBA-1)))
/*
* We need to ensure that shared mappings are correctly aligned to
* avoid aliasing issues with VIPT caches. We need to ensure that
* a specific page of an object is always mapped at a multiple of
* SHMLBA bytes.
*
* We unconditionally provide this function for all cases, however
* in the VIVT case, we optimise out the alignment rules.
*/
unsigned long
arch_get_unmapped_area(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff, unsigned long flags)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
unsigned long start_addr;
#if defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K)
unsigned int cache_type;
int do_align = 0, aliasing = 0;
/*
* We only need to do colour alignment if either the I or D
* caches alias. This is indicated by bits 9 and 21 of the
* cache type register.
*/
cache_type = read_cpuid_cachetype();
if (cache_type != read_cpuid_id()) {
aliasing = (cache_type | cache_type >> 12) & (1 << 11);
if (aliasing)
do_align = filp || flags & MAP_SHARED;
}
#else
#define do_align 0
#define aliasing 0
#endif
/*
* We enforce the MAP_FIXED case.
*/
if (flags & MAP_FIXED) {
if (aliasing && flags & MAP_SHARED &&
(addr - (pgoff << PAGE_SHIFT)) & (SHMLBA - 1))
return -EINVAL;
return addr;
}
if (len > TASK_SIZE)
return -ENOMEM;
if (addr) {
if (do_align)
addr = COLOUR_ALIGN(addr, pgoff);
else
addr = PAGE_ALIGN(addr);
vma = find_vma(mm, addr);
if (TASK_SIZE - len >= addr &&
(!vma || addr + len <= vma->vm_start))
return addr;
}
if (len > mm->cached_hole_size) {
start_addr = addr = mm->free_area_cache;
} else {
start_addr = addr = TASK_UNMAPPED_BASE;
mm->cached_hole_size = 0;
}
/* 8 bits of randomness in 20 address space bits */
if (current->flags & PF_RANDOMIZE)
addr += (get_random_int() % (1 << 8)) << PAGE_SHIFT;
full_search:
if (do_align)
addr = COLOUR_ALIGN(addr, pgoff);
else
addr = PAGE_ALIGN(addr);
for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
/* At this point: (!vma || addr < vma->vm_end). */
if (TASK_SIZE - len < addr) {
/*
* Start a new search - just in case we missed
* some holes.
*/
if (start_addr != TASK_UNMAPPED_BASE) {
start_addr = addr = TASK_UNMAPPED_BASE;
mm->cached_hole_size = 0;
goto full_search;
}
return -ENOMEM;
}
if (!vma || addr + len <= vma->vm_start) {
/*
* Remember the place where we stopped the search:
*/
mm->free_area_cache = addr + len;
return addr;
}
if (addr + mm->cached_hole_size < vma->vm_start)
mm->cached_hole_size = vma->vm_start - addr;
addr = vma->vm_end;
if (do_align)
addr = COLOUR_ALIGN(addr, pgoff);
}
}
/*
* You really shouldn't be using read() or write() on /dev/mem. This
* might go away in the future.
*/
int valid_phys_addr_range(unsigned long addr, size_t size)
{
if (addr < PHYS_OFFSET)
return 0;
if (addr + size > __pa(high_memory - 1) + 1)
return 0;
return 1;
}
/*
* We don't use supersection mappings for mmap() on /dev/mem, which
* means that we can't map the memory area above the 4G barrier into
* userspace.
*/
int valid_mmap_phys_addr_range(unsigned long pfn, size_t size)
{
return !(pfn + (size >> PAGE_SHIFT) > 0x00100000);
}
#ifdef CONFIG_STRICT_DEVMEM
#include <linux/ioport.h>
/*
* devmem_is_allowed() checks to see if /dev/mem access to a certain
* address is valid. The argument is a physical page number.
* We mimic x86 here by disallowing access to system RAM as well as
* device-exclusive MMIO regions. This effectively disable read()/write()
* on /dev/mem.
*/
int devmem_is_allowed(unsigned long pfn)
{
if (iomem_is_exclusive(pfn << PAGE_SHIFT))
return 0;
if (!page_is_ram(pfn))
return 1;
return 0;
}
#endif
|