Booting the Linux/ppc kernel without Open Firmware
--------------------------------------------------
(c) 2005 Benjamin Herrenschmidt <benh at kernel.crashing.org>,
IBM Corp.
(c) 2005 Becky Bruce <becky.bruce at freescale.com>,
Freescale Semiconductor, FSL SOC and 32-bit additions
May 18, 2005: Rev 0.1 - Initial draft, no chapter III yet.
May 19, 2005: Rev 0.2 - Add chapter III and bits & pieces here or
clarifies the fact that a lot of things are
optional, the kernel only requires a very
small device tree, though it is encouraged
to provide an as complete one as possible.
May 24, 2005: Rev 0.3 - Precise that DT block has to be in RAM
- Misc fixes
- Define version 3 and new format version 16
for the DT block (version 16 needs kernel
patches, will be fwd separately).
String block now has a size, and full path
is replaced by unit name for more
compactness.
linux,phandle is made optional, only nodes
that are referenced by other nodes need it.
"name" property is now automatically
deduced from the unit name
June 1, 2005: Rev 0.4 - Correct confusion between OF_DT_END and
OF_DT_END_NODE in structure definition.
- Change version 16 format to always align
property data to 4 bytes. Since tokens are
already aligned, that means no specific
required alignement between property size
and property data. The old style variable
alignment would make it impossible to do
"simple" insertion of properties using
memove (thanks Milton for
noticing). Updated kernel patch as well
- Correct a few more alignement constraints
- Add a chapter about the device-tree
compiler and the textural representation of
the tree that can be "compiled" by dtc.
November 21, 2005: Rev 0.5
- Additions/generalizations for 32-bit
- Changed to reflect the new arch/powerpc
structure
- Added chapter VI
ToDo:
- Add some definitions of interrupt tree (simple/complex)
- Add some definitions for pci host bridges
- Add some common address format examples
- Add definitions for standard properties and "compatible"
names for cells that are not already defined by the existing
OF spec.
- Compare FSL SOC use of PCI to standard and make sure no new
node definition required.
- Add more information about node definitions for SOC devices
that currently have no standard, like the FSL CPM.
I - Introduction
================
During the recent development of the Linux/ppc64 kernel, and more
specifically, the addition of new platform types outside of the old
IBM pSeries/iSeries pair, it was decided to enforce some strict rules
regarding the kernel entry and bootloader <-> kernel interfaces, in
order to avoid the degeneration that had become the ppc32 kernel entry
point and the way a new platform should be added to the kernel. The
legacy iSeries platform breaks those rules as it predates this scheme,
but no new board support will be accepted in the main tree that
doesn't follows them properly. In addition, since the advent of the
arch/powerpc merged architecture for ppc32 and ppc64, new 32-bit
platforms and 32-bit platforms which move into arch/powerpc will be
required to use these rules as well.
The main requirement that will be defined in more detail below is
the presence of a device-tree whose format is defined after Open
Firmware specification. However, in order to make life easier
to embedded board vendors, the kernel doesn't require the device-tree
to represent every device in the system and only requires some nodes
and properties to be present. This will be described in detail in
section III, but, for example, the kernel does not require you to
create a node for every PCI device in the system. It is a requirement
to have a node for PCI host bridges in order to provide interrupt
routing informations and memory/IO ranges, among others. It is also
recommended to define nodes for on chip devices and other busses that
don't specifically fit in an existing OF specification. This creates a
great flexibility in the way the kernel can then probe those and match
drivers to device, without having to hard code all sorts of tables. It
also makes it more flexible for board vendors to do minor hardware
upgrades without significantly impacting the kernel code or cluttering
it with special cases.
1) Entry point for arch/powerpc
-------------------------------
There is one and one single entry point to the kernel, at the start
of the kernel image. That entry point supports two calling
conventions:
a) Boot from Open Firmware. If your firmware is compatible
with Open Firmware (IEEE 1275) or provides an OF compatible
client interface API (support for "interpret" callback of
forth words isn't required), you can enter the kernel with:
r5 : OF callback pointer as defined by IEEE 1275
bindings to powerpc. Only the 32 bit client interface
is currently supported
r3, r4 : address & length of an initrd if any or 0
The MMU is either on or off; the kernel will run the
trampoline located in arch/powerpc/kernel/prom_init.c to
extract the device-tree and other information from open
firmware and build a flattened device-tree as described
in b). prom_init() will then re-enter the kernel using
the second method. This trampoline code runs in the
context of the firmware, which is supposed to handle all
exceptions during that time.
b) Direct entry with a flattened device-tree block. This entry
point is called by a) after the OF trampoline and can also be
called directly by a bootloader that does not support the Open
Firmware client interface. It is also used by "kexec" to
implement "hot" booting of a new kernel from a previous
running one. This method is what I will describe in more
details in this document, as method a) is simply standard Open
Firmware, and thus should be implemented according to the
various standard documents defining it and its binding to the
PowerPC platform. The entry point definition then becomes:
r3 : physical pointer to the device-tree block
(defined in chapter II) in RAM
r4 : physical pointer to the kernel itself. This is
used by the assembly code to properly disable the MMU
in case you are entering the kernel with MMU enabled
and a non-1:1 mapping.
r5 : NULL (as to differenciate with method a)
Note about SMP entry: Either your firmware puts your other
CPUs in some sleep loop or spin loop in ROM where you can get
them out via a soft reset or some other means, in which case
you don't need to care, or you'll have to enter the kernel
with all CPUs. The way to do that with method b) will be
described in a later revision of this document.
2) Board support
----------------
64-bit kernels:
Board supports (platforms) are not exclusive config options. An
arbitrary set of board supports can be built in a single kernel
image. The kernel will "know" what set of functions to use for a
given platform based on the content of the device-tree. Thus, you
should:
a) add your platform support as a _boolean_ option in
arch/powerpc/Kconfig, following the example of PPC_PSERIES,
PPC_PMAC and PPC_MAPLE. The later is probably a good
example of a board support to start from.
b) create your main platform file as
"arch/powerpc/platforms/myplatform/myboard_setup.c" and add it
to the Makefile under the condition of your CONFIG_
option. This file will define a structure of type "ppc_md"
containing the various callbacks that the generic code will
use to get to your platform specific code
c) Add a reference to your "ppc_md" structure in the
"machines" table in arch/powerpc/kernel/setup_64.c if you are
a 64-bit platform.
d) request and get assigned a platform number (see PLATFORM_*
constants in include/asm-powerpc/processor.h
32-bit embedded kernels:
Currently, board support is essentially an exclusive config option.
The kernel is configured for a single platform. Part of the reason
for this is to keep kernels on embedded systems small and efficient;
part of this is due to the fact the code is already that way. In the
future, a kernel may support multiple platforms, but only if the
platforms feature the same core architectire. A single kernel build
cannot support both configurations with Book E and configurations
with classic Powerpc architectures.
32-bit embedded platforms that are moved into arch/powerpc using a
flattened device tree should adopt the merged tree practice of
setting ppc_md up dynamically, even though the kernel is currently
built with support for only a single platform at a time. This allows
unification of the setup code, and will make it easier to go to a
multiple-platform-support model in the future.
NOTE: I believe the above will be true once Ben's done with the merge
of the boot sequences.... someone speak up if this is wrong!
To add a 32-bit embedded platform support, follow the instructions
for 64-bit platforms above, with the exception that the Kconfig
option should be set up such that the kernel builds exclusively for
the platform selected. The processor type for the platform should
enable another config option to select the specific board
supported.
NOTE: If ben doesn't merge the setup files, may need to change this to
point to setup_32.c
I will describe later the boot process and various callbacks that
your platform should implement.
II - The DT block format
========================
This chapter defines the actual format of the flattened device-tree
passed to the kernel. The actual content of it and kernel requirements
are described later. You can find example of code manipulating that
format in various places, including arch/powerpc/kernel/prom_init.c
which will generate a flattened device-tree from the Open Firmware
representation, or the fs2dt utility which is part of the kexec tools
which will generate one from a filesystem representation. It is
expected that a bootloader like uboot provides a bit more support,
that will be discussed later as well.
Note: The block has to be in main memory. It has to be accessible in
both real mode and virtual mode with no mapping other than main
memory. If you are writing a simple flash bootloader, it should copy
the block to RAM before passing it to the kernel.
1) Header
---------
The kernel is entered with r3 pointing to an area of memory that is
roughtly described in include/asm-powerpc/prom.h by the structure
boot_param_header:
struct boot_param_header {
u32 magic; /* magic word OF_DT_HEADER */
u32 totalsize; /* total size of DT block */
u32 off_dt_struct; /* offset to structure */
u32 off_dt_strings; /* offset to strings */
u32 off_mem_rsvmap; /* offset to memory reserve map
*/
u32 version; /* format version */
u32 last_comp_version; /* last compatible version */
/* version 2 fields below */
u32 boot_cpuid_phys; /* Which physical CPU id we're
booting on */
/* version 3 fields below */
u32 size_dt_strings; /* size of the strings block */
};
Along with the constants:
/* Definitions used by the flattened device tree */
#define OF_DT_HEADER 0xd00dfeed /* 4: version,
4: total size */
#define OF_DT_BEGIN_NODE 0x1 /* Start node: full name
*/
#define OF_DT_END_NODE 0x2 /* End node */
#define OF_DT_PROP 0x3 /* Property: name off,
size, content */
#define OF_DT_END 0x9
All values in this header are in big endian format, the various
fields in this header are defined more precisely below. All
"offset" values are in bytes from the start of the header; that is
from the value of r3.
- magic
This is a magic value that "marks" the beginning of the
device-tree block header. It contains the value 0xd00dfeed and is
defined by the constant OF_DT_HEADER
- totalsize
This is the total size of the DT block including the header. The
"DT" block should enclose all data structures defined in this
chapter (who are pointed to by offsets in this header). That is,
the device-tree structure, strings, and the memory reserve map.
- off_dt_struct
This is an offset from the beginning of the header to the start
of the "structure" part the device tree. (see 2) device tree)
- off_dt_strings
This is an offset from the beginning of the header to the start
of the "strings" part of the device-tree
- off_mem_rsvmap
This is an offset from the beginning of the header to the start
of the reserved memory map. This map is a list of pairs of 64
bit integers. Each pair is a physical address and a size. The
list is terminated by an entry of size 0. This map provides the
kernel with a list of physical memory areas that are "reserved"
and thus not to be used for memory allocations, especially during
early initialization. The kernel needs to allocate memory during
boot for things like un-flattening the device-tree, allocating an
MMU hash table, etc... Those allocations must be done in such a
way to avoid overriding critical things like, on Open Firmware
capable machines, the RTAS instance, or on some pSeries, the TCE
tables used for the iommu. Typically, the reserve map should
contain _at least_ this DT block itself (header,total_size). If
you are passing an initrd to the kernel, you should reserve it as
well. You do not need to reserve the kernel image itself. The map
should be 64 bit aligned.
- version
This is the version of this structure. Version 1 stops
here. Version 2 adds an additional field boot_cpuid_phys.
Version 3 adds the size of the strings block, allowing the kernel
to reallocate it easily at boot and free up the unused flattened
structure after expansion. Version 16 introduces a new more
"compact" format for the tree itself that is however not backward
compatible. You should always generate a structure of the highest
version defined at the time of your implementation. Currently
that is version 16, unless you explicitly aim at being backward
compatible.
- last_comp_version
Last compatible version. This indicates down to what version of
the DT block you are backward compatible. For example, version 2
is backward compatible with version 1 (that is, a kernel build
for version 1 will be able to boot with a version 2 format). You
should put a 1 in this field if you generate a device tree of
version 1 to 3, or 0x10 if you generate a tree of version 0x10
using the new unit name format.
- boot_cpuid_phys
This field only exist on version 2 headers. It indicate which
physical CPU ID is calling the kernel entry point. This is used,
among others, by kexec. If you are on an SMP system, this value
should match the content of the "reg" property of the CPU node in
the device-tree corresponding to the CPU calling the kernel entry
point (see further chapters for more informations on the required
device-tree contents)
So the typical layout of a DT block (though the various parts don't
need to be in that order) looks like this (addresses go from top to
bottom):
------------------------------
r3 -> | struct boot_param_header |
------------------------------
| (alignment gap) (*) |
------------------------------
| memory reserve map |
------------------------------
| (alignment gap) |
------------------------------
| |
| device-tree structure |
| |
------------------------------
| (alignment gap) |
------------------------------
| |
| device-tree strings |
| |
-----> ------------------------------
|
|
--- (r3 + totalsize)
(*) The alignment gaps are not necessarily present; their presence
and size are dependent on the various alignment requirements of
the individual data blocks.
2) Device tree generalities
---------------------------
This device-tree itself is separated in two different blocks, a
structure block and a strings block. Both need to be aligned to a 4
byte boundary.
First, let's quickly describe the device-tree concept before detailing
the storage format. This chapter does _not_ describe the detail of the
required types of nodes & properties for the kernel, this is done
later in chapter III.
The device-tree layout is strongly inherited from the definition of
the Open Firmware IEEE 1275 device-tree. It's basically a tree of
nodes, each node having two or more named properties. A property can
have a value or not.
It is a tree, so each node has one and only one parent except for the
root node who has no parent.
A node has 2 names. The actual node name is generally contained in a
property of type "name" in the node property list whose value is a
zero terminated string and is mandatory for version 1 to 3 of the
format definition (as it is in Open Firmware). Version 0x10 makes it
optional as it can generate it from the unit name defined below.
There is also a "unit name" that is used to differenciate nodes with
the same name at the same level, it is usually made of the node
name's, the "@" sign, and a "unit address", which definition is
specific to the bus type the node sits on.
The unit name doesn't exist as a property per-se but is included in
the device-tree structure. It is typically used to represent "path" in
the device-tree. More details about the actual format of these will be
below.
The kernel powerpc generic code does not make any formal use of the
unit address (though some board support code may do) so the only real
requirement here for the unit address is to ensure uniqueness of
the node unit name at a given level of the tree. Nodes with no notion
of address and no possible sibling of the same name (like /memory or
/cpus) may omit the unit address in the context of this specification,
or use the "@0" default unit address. The unit name is used to define
a node "full path", which is the concatenation of all parent node
unit names separated with "/".
The root node doesn't have a defined name, and isn't required to have
a name property either if you are using version 3 or earlier of the
format. It also has no unit address (no @ symbol followed by a unit
address). The root node unit name is thus an empty string. The full
path to the root node is "/".
Every node which actually represents an actual device (that is, a node
which isn't only a virtual "container" for more nodes, like "/cpus"
is) is also required to have a "device_type" property indicating the
type of node .
Finally, every node that can be referenced from a property in another
node is required to have a "linux,phandle" property. Real open
firmware implementations provide a unique "phandle" value for every
node that the "prom_init()" trampoline code turns into
"linux,phandle" properties. However, this is made optional if the
flattened device tree is used directly. An example of a node
referencing another node via "phandle" is when laying out the
interrupt tree which will be described in a further version of this
document.
This "linux, phandle" property is a 32 bit value that uniquely
identifies a node. You are free to use whatever values or system of
values, internal pointers, or whatever to generate these, the only
requirement is that every node for which you provide that property has
a unique value for it.
Here is an example of a simple device-tree. In this example, an "o"
designates a node followed by the node unit name. Properties are
presented with their name followed by their content. "content"
represents an ASCII string (zero terminated) value, while <content>
represents a 32 bit hexadecimal value. The various nodes in this
example will be discussed in a later chapter. At this point, it is
only meant to give you a idea of what a device-tree looks like. I have
purposefully kept the "name" and "linux,phandle" properties which
aren't necessary in order to give you a better idea of what the tree
looks like in practice.
/ o device-tree
|- name = "device-tree"
|- model = "MyBoardName"
|- compatible = "MyBoardFamilyName"
|- #address-cells = <2>
|- #size-cells = <2>
|- linux,phandle = <0>
|
o cpus
| | - name = "cpus"
| | - linux,phandle = <1>
| | - #address-cells = <1>
| | - #size-cells = <0>
| |
| o PowerPC,970@0
| |- name = "PowerPC,970"
| |- device_type = "cpu"
| |- reg = <0>
| |- clock-frequency = <5f5e1000>
| |- linux,boot-cpu
| |- linux,phandle = <2>
|
o memory@0
| |- name = "memory"
| |- device_type = "memory"
| |- reg = <00000000 00000000 00000000 20000000>
| |- linux,phandle = <3>
|
o chosen
|- name = "chosen"
|- bootargs = "root=/dev/sda2"
|- linux,platform = <00000600>
|- linux,phandle = <4>
This tree is almost a minimal tree. It pretty much contains the
minimal set of required nodes and properties to boot a linux kernel;
that is, some basic model informations at the root, the CPUs, and the
physical memory layout. It also includes misc information passed
through /chosen, like in this example, the platform type (mandatory)
and the kernel command line arguments (optional).
The /cpus/PowerPC,970@0/linux,boot-cpu property is an example of a
property without a value. All other properties have a value. The
significance of the #address-cells and #size-cells properties will be
explained in chapter IV which defines precisely the required nodes and
properties and their content.
3) Device tree "structure" block
The structure of the device tree is a linearized tree structure. The
"OF_DT_BEGIN_NODE" token starts a new node, and the "OF_DT_END_NODE"
ends that node definition. Child nodes are simply defined before
"OF_DT_END_NODE" (that is nodes within the node). A 'token' is a 32
bit value. The tree has to be "finished" with a OF_DT_END token
Here's the basic structure of a single node:
* token OF_DT_BEGIN_NODE (that is 0x00000001)
* for version 1 to 3, this is the node full path as a zero
terminated string, starting with "/". For version 16 and later,
this is the node unit name only (or an empty string for the
root node)
* [align gap to next 4 bytes boundary]
* for each property:
* token OF_DT_PROP (that is 0x00000003)
* 32 bit value of property value size in bytes (or 0 of no
* value)
* 32 bit value of offset in string block of property name
* property value data if any
* [align gap to next 4 bytes boundary]
* [child nodes if any]
* token OF_DT_END_NODE (that is 0x00000002)
So the node content can be summmarised as a start token, a full path,
a list of properties, a list of child node and an end token. Every
child node is a full node structure itself as defined above.
4) Device tree 'strings" block
In order to save space, property names, which are generally redundant,
are stored separately in the "strings" block. This block is simply the
whole bunch of zero terminated strings for all property names
concatenated together. The device-tree property definitions in the
structure block will contain offset values from the beginning of the
strings block.
III - Required content of the device tree
=========================================
WARNING: All "linux,*" properties defined in this document apply only
to a flattened device-tree. If your platform uses a real
implementation of Open Firmware or an implementation compatible with
the Open Firmware client interface, those properties will be created
by the trampoline code in the kernel's prom_init() file. For example,
that's where you'll have to add code to detect your board model and
set the platform number. However, when using the flattened device-tree
entry point, there is no prom_init() pass, and thus you have to
provide those properties yourself.
1) Note about cells and address representation
----------------------------------------------
The general rule is documented in the various Open Firmware
documentations. If you chose to describe a bus with the device-tree
and there exist an OF bus binding, then you should follow the
specification. However, the kernel does not require every single
device or bus to be described by the device tree.
In general, the format of an address for a device is defined by the
parent bus type, based on the #address-cells and #size-cells
property. In the absence of such a property, the parent's parent
values are used, etc... The kernel requires the root node to have
those properties defining addresses format for devices directly mapped
on the processor bus.
Those 2 properties define 'cells' for representing an address and a
size. A "cell" is a 32 bit number. For example, if both contain 2
like the example tree given above, then an address and a size are both
composed of 2 cells, and each is a 64 bit number (cells are
concatenated and expected to be in big endian format). Another example
is the way Apple firmware defines them, with 2 cells for an address
and one cell for a size. Most 32-bit implementations should define
#address-cells and #size-cells to 1, which represents a 32-bit value.
Some 32-bit processors allow for physical addresses greater than 32
bits; these processors should define #address-cells as 2.
"reg" properties are always a tuple of the type "address size" where
the number of cells of address and size is specified by the bus
#address-cells and #size-cells. When a bus supports various address
spaces and other flags relative to a given address allocation (like
prefetchable, etc...) those flags are usually added to the top level
bits of the physical address. For example, a PCI physical address is
made of 3 cells, the bottom two containing the actual address itself
while the top cell contains address space indication, flags, and pci
bus & device numbers.
For busses that support dynamic allocation, it's the accepted practice
to then not provide the address in "reg" (keep it 0) though while
providing a flag indicating the address is dynamically allocated, and
then, to provide a separate "assigned-addresses" property that
contains the fully allocated addresses. See the PCI OF bindings for
details.
In general, a simple bus with no address space bits and no dynamic
allocation is preferred if it reflects your hardware, as the existing
kernel address parsing functions will work out of the box. If you
define a bus type with a more complex address format, including things
like address space bits, you'll have to add a bus translator to the
prom_parse.c file of the recent kernels for your bus type.
The "reg" property only defines addresses and sizes (if #size-cells
is
non-0) within a given bus. In order to translate addresses upward
(that is into parent bus addresses, and possibly into cpu physical
addresses), all busses must contain a "ranges" property. If the
"ranges" property is missing at a given level, it's assumed that
translation isn't possible. The format of the "ranges" proprety for a
bus is a list of:
bus address, parent bus address, size
"bus address" is in the format of the bus this bus node is defining,
that is, for a PCI bridge, it would be a PCI address. Thus, (bus
address, size) defines a range of addresses for child devices. "parent
bus address" is in the format of the parent bus of this bus. For
example, for a PCI host controller, that would be a CPU address. For a
PCI<->ISA bridge, that would be a PCI address. It defines the base
address in the parent bus where the beginning of that range is mapped.
For a new 64 bit powerpc board, I recommend either the 2/2 format or
Apple's 2/1 format which is slightly more compact since sizes usually
fit in a single 32 bit word. New 32 bit powerpc boards should use a
1/1 format, unless the processor supports physical addresses greater
than 32-bits, in which case a 2/1 format is recommended.
2) Note about "compatible" properties
-------------------------------------
These properties are optional, but recommended in devices and the root
node. The format of a "compatible" property is a list of concatenated
zero terminated strings. They allow a device to express its
compatibility with a family of similar devices, in some cases,
allowing a single driver to match against several devices regardless
of their actual names.
3) Note about "name" properties
-------------------------------
While earlier users of Open Firmware like OldWorld macintoshes tended
to use the actual device name for the "name" property, it's nowadays
considered a good practice to use a name that is closer to the device
class (often equal to device_type). For example, nowadays, ethernet
controllers are named "ethernet", an additional "model" property
defining precisely the chip type/model, and "compatible" property
defining the family in case a single driver can driver more than one
of these chips. However, the kernel doesn't generally put any
restriction on the "name" property; it is simply considered good
practice to follow the standard and its evolutions as closely as
possible.
Note also that the new format version 16 makes the "name" property
optional. If it's absent for a node, then the node's unit name is then
used to reconstruct the name. That is, the part of the unit name
before the "@" sign is used (or the entire unit name if no "@" sign
is present).
4) Note about node and property names and character set
-------------------------------------------------------
While open firmware provides more flexible usage of 8859-1, this
specification enforces more strict rules. Nodes and properties should
be comprised only of ASCII characters 'a' to 'z', '0' to
'9', ',', '.', '_', '+', '#', '?', and '-'. Node names additionally
allow uppercase characters 'A' to 'Z' (property names should be
lowercase. The fact that vendors like Apple don't respect this rule is
irrelevant here). Additionally, node and property names should always
begin with a character in the range 'a' to 'z' (or 'A' to 'Z' for node
names).
The maximum number of characters for both nodes and property names
is 31. In the case of node names, this is only the leftmost part of
a unit name (the pure "name" property), it doesn't include the unit
address which can extend beyond that limit.
5) Required nodes and properties
--------------------------------
These are all that are currently required. However, it is strongly
recommended that you expose PCI host bridges as documented in the
PCI binding to open firmware, and your interrupt tree as documented
in OF interrupt tree specification.
a) The root node
The root node requires some properties to be present:
- model : this is your board name/model
- #address-cells : address representation for "root" devices
- #size-cells: the size representation for "root" devices
- device_type : This property shouldn't be necessary. However, if
you decide to create a device_type for your root node, make sure it
is _not_ "chrp" unless your platform is a pSeries or PAPR compliant
one for 64-bit, or a CHRP-type machine for 32-bit as this will
matched by the kernel this way.
Additionally, some recommended properties are:
- compatible : the board "family" generally finds its way here,
for example, if you have 2 board models with a similar layout,
that typically get driven by the same platform code in the
kernel, you would use a different "model" property but put a
value in "compatible". The kernel doesn't directly use that
value (see /chosen/linux,platform for how the kernel chooses a
platform type) but it is generally useful.
The root node is also generally where you add additional properties
specific to your board like the serial number if any, that sort of
thing. It is recommended that if you add any "custom" property whose
name may clash with standard defined ones, you prefix them with your
vendor name and a comma.
b) The /cpus node
This node is the parent of all individual CPU nodes. It doesn't
have any specific requirements, though it's generally good practice
to have at least:
#address-cells = <00000001>
#size-cells = <00000000>
This defines that the "address" for a CPU is a single cell, and has
no meaningful size. This is not necessary but the kernel will assume
that format when reading the "reg" properties of a CPU node, see
below
c) The /cpus/* nodes
So under /cpus, you are supposed to create a node for every CPU on
the machine. There is no specific restriction on the name of the
CPU, though It's common practice to call it PowerPC,<name>. For
example, Apple uses PowerPC,G5 while IBM uses PowerPC,970FX.
Required properties:
- device_type : has to be "cpu"
- reg : This is the physical cpu number, it's a single 32 bit cell
and is also used as-is as the unit number for constructing the
unit name in the full path. For example, with 2 CPUs, you would
have the full path:
/cpus/PowerPC,970FX@0
/cpus/PowerPC,970FX@1
(unit addresses do not require leading zeroes)
- d-cache-line-size : one cell, L1 data cache line size in bytes
- i-cache-line-size : one cell, L1 instruction cache line size in
bytes
- d-cache-size : one cell, size of L1 data cache in bytes
- i-cache-size : one cell, size of L1 instruction cache in bytes
- linux, boot-cpu : Should be defined if this cpu is the boot cpu.
Recommended properties:
- timebase-frequency : a cell indicating the frequency of the
timebase in Hz. This is not directly used by the generic code,
but you are welcome to copy/paste the pSeries code for setting
the kernel timebase/decrementer calibration based on this
value.
- clock-frequency : a cell indicating the CPU core clock frequency
in Hz. A new property will be defined for 64 bit values, but if
your frequency is < 4Ghz, one cell is enough. Here as well as
for the above, the common code doesn't use that property, but
you are welcome to re-use the pSeries or Maple one. A future
kernel version might provide a common function for this.
You are welcome to add any property you find relevant to your board,
like some information about the mechanism used to soft-reset the
CPUs. For example, Apple puts the GPIO number for CPU soft reset
lines in there as a "soft-reset" property since they start secondary
CPUs by soft-resetting them.
d) the /memory node(s)
To define the physical memory layout of your board, you should
create one or more memory node(s). You can either create a single
node with all memory ranges in its reg property, or you can create
several nodes, as you wish. The unit address (@ part) used for the
full path is the address of the first range of memory defined by a
given node. If you use a single memory node, this will typically be
@0.
Required properties:
- device_type : has to be "memory"
- reg : This property contains all the physical memory ranges of
your board. It's a list of addresses/sizes concatenated
together, with the number of cells of each defined by the
#address-cells and #size-cells of the root node. For example,
with both of these properties being 2 like in the example given
earlier, a 970 based machine with 6Gb of RAM could typically
have a "reg" property here that looks like:
00000000 00000000 00000000 80000000
00000001 00000000 00000001 00000000
That is a range starting at 0 of 0x80000000 bytes and a range
starting at 0x100000000 and of 0x100000000 bytes. You can see
that there is no memory covering the IO hole between 2Gb and
4Gb. Some vendors prefer splitting those ranges into smaller
segments, but the kernel doesn't care.
e) The /chosen node
This node is a bit "special". Normally, that's where open firmware
puts some variable environment information, like the arguments, or
phandle pointers to nodes like the main interrupt controller, or the
default input/output devices.
This specification makes a few of these mandatory, but also defines
some linux-specific properties that would be normally constructed by
the prom_init() trampoline when booting with an OF client interface,
but that you have to provide yourself when using the flattened format.
Required properties:
- linux,platform : This is your platform number as assigned by the
architecture maintainers
Recommended properties:
- bootargs : This zero-terminated string is passed as the kernel
command line
- linux,stdout-path : This is the full path to your standard
console device if any. Typically, if you have serial devices on
your board, you may want to put the full path to the one set as
the default console in the firmware here, for the kernel to pick
it up as it's own default console. If you look at the funciton
set_preferred_console() in arch/ppc64/kernel/setup.c, you'll see
that the kernel tries to find out the default console and has
knowledge of various types like 8250 serial ports. You may want
to extend this function to add your own.
- interrupt-controller : This is one cell containing a phandle
value that matches the "linux,phandle" property of your main
interrupt controller node. May be used for interrupt routing.
Note that u-boot creates and fills in the chosen node for platforms
that use it.
f) the /soc<SOCname> node
This node is used to represent a system-on-a-chip (SOC) and must be
present if the processor is a SOC. The top-level soc node contains
information that is global to all devices on the SOC. The node name
should contain a unit address for the SOC, which is the base address
of the memory-mapped register set for the SOC. The name of an soc
node should start with "soc", and the remainder of the name should
represent the part number for the soc. For example, the MPC8540's
soc node would be called "soc8540".
Required properties:
- device_type : Should be "soc"
- ranges : Should be defined as specified in 1) to describe the
translation of SOC addresses for memory mapped SOC registers.
- bus-frequency: Contains the bus frequency for the SOC node.
Typically, the value of this field is filled in by the boot
loader.
Recommended properties:
- reg : This property defines the address and size of the
memory-mapped registers that are used for the SOC node itself.
It does not include the child device registers - these will be
defined inside each child node. The address specified in the
"reg" property should match the unit address of the SOC node.
- #address-cells : Address representation for "soc" devices. The
format of this field may vary depending on whether or not the
device registers are memory mapped. For memory mapped
registers, this field represents the number of cells needed to
represent the address of the registers. For SOCs that do not
use MMIO, a special address format should be defined that
contains enough cells to represent the required information.
See 1) above for more details on defining #address-cells.
- #size-cells : Size representation for "soc" devices
- #interrupt-cells : Defines the width of cells used to represent
interrupts. Typically this value is <2>, which includes a
32-bit number that represents the interrupt number, and a
32-bit number that represents the interrupt sense and level.
This field is only needed if the SOC contains an interrupt
controller.
The SOC node may contain child nodes for each SOC device that the
platform uses. Nodes should not be created for devices which exist
on the SOC but are not used by a particular platform. See chapter VI
for more information on how to specify devices that are part of an
SOC.
Example SOC node for the MPC8540:
soc8540@e0000000 {
#address-cells = <1>;
#size-cells = <1>;
#interrupt-cells = <2>;
device_type = "soc";
ranges = <00000000 e0000000 00100000>
reg = <e0000000 00003000>;
bus-frequency = <0>;
}
IV - "dtc", the device tree compiler
====================================
dtc source code can be found at
<http://ozlabs.org/~dgibson/dtc/dtc.tar.gz>
WARNING: This version is still in early development stage; the
resulting device-tree "blobs" have not yet been validated with the
kernel. The current generated bloc lacks a useful reserve map (it will
be fixed to generate an empty one, it's up to the bootloader to fill
it up) among others. The error handling needs work, bugs are lurking,
etc...
dtc basically takes a device-tree in a given format and outputs a
device-tree in another format. The currently supported formats are:
Input formats:
-------------
- "dtb": "blob" format, that is a flattened device-tree block
with
header all in a binary blob.
- "dts": "source" format. This is a text file containing a
"source" for a device-tree. The format is defined later in this
chapter.
- "fs" format. This is a representation equivalent to the
output of /proc/device-tree, that is nodes are directories and
properties are files
Output formats:
---------------
- "dtb": "blob" format
- "dts": "source" format
- "asm": assembly language file. This is a file that can be
sourced by gas to generate a device-tree "blob". That file can
then simply be added to your Makefile. Additionally, the
assembly file exports some symbols that can be used.
The syntax of the dtc tool is
dtc [-I <input-format>] [-O <output-format>]
[-o output-filename] [-V output_version] input_filename
The "output_version" defines what versio of the "blob" format will be
generated. Supported versions are 1,2,3 and 16. The default is
currently version 3 but that may change in the future to version 16.
Additionally, dtc performs various sanity checks on the tree, like the
uniqueness of linux, phandle properties, validity of strings, etc...
The format of the .dts "source" file is "C" like, supports C and C++
style comments.
/ {
}
The above is the "device-tree" definition. It's the only statement
supported currently at the toplevel.
/ {
property1 = "string_value"; /* define a property containing a 0
* terminated string
*/
property2 = <1234abcd>; /* define a property containing a
* numerical 32 bits value (hexadecimal)
*/
property3 = <12345678 12345678 deadbeef>;
/* define a property containing 3
* numerical 32 bits values (cells) in
* hexadecimal
*/
property4 = [0a 0b 0c 0d de ea ad be ef];
/* define a property whose content is
* an arbitrary array of bytes
*/
childnode@addresss { /* define a child node named "childnode"
* whose unit name is "childnode at
* address"
*/
childprop = "hello\n"; /* define a property "childprop" of
* childnode (in this case, a string)
*/
};
};
Nodes can contain other nodes etc... thus defining the hierarchical
structure of the tree.
Strings support common escape sequences from C: "\n", "\t", "\r",
"\(octal value)", "\x(hex value)".
It is also suggested that you pipe your source file through cpp (gcc
preprocessor) so you can use #include's, #define for constants, etc...
Finally, various options are planned but not yet implemented, like
automatic generation of phandles, labels (exported to the asm file so
you can point to a property content and change it easily from whatever
you link the device-tree with), label or path instead of numeric value
in some cells to "point" to a node (replaced by a phandle at compile
time), export of reserve map address to the asm file, ability to
specify reserve map content at compile time, etc...
We may provide a .h include file with common definitions of that
proves useful for some properties (like building PCI properties or
interrupt maps) though it may be better to add a notion of struct
definitions to the compiler...
V - Recommendations for a bootloader
====================================
Here are some various ideas/recommendations that have been proposed
while all this has been defined and implemented.
- The bootloader may want to be able to use the device-tree itself
and may want to manipulate it (to add/edit some properties,
like physical memory size or kernel arguments). At this point, 2
choices can be made. Either the bootloader works directly on the
flattened format, or the bootloader has its own internal tree
representation with pointers (similar to the kernel one) and
re-flattens the tree when booting the kernel. The former is a bit
more difficult to edit/modify, the later requires probably a bit
more code to handle the tree structure. Note that the structure
format has been designed so it's relatively easy to "insert"
properties or nodes or delete them by just memmoving things
around. It contains no internal offsets or pointers for this
purpose.
- An example of code for iterating nodes & retreiving properties
directly from the flattened tree format can be found in the kernel
file arch/ppc64/kernel/prom.c, look at scan_flat_dt() function,
it's usage in early_init_devtree(), and the corresponding various
early_init_dt_scan_*() callbacks. That code can be re-used in a
GPL bootloader, and as the author of that code, I would be happy
do discuss possible free licencing to any vendor who wishes to
integrate all or part of this code into a non-GPL bootloader.
VI - System-on-a-chip devices and nodes
=======================================
Many companies are now starting to develop system-on-a-chip
processors, where the processor core (cpu) and many peripheral devices
exist on a single piece of silicon. For these SOCs, an SOC node
should be used that defines child nodes for the devices that make
up the SOC. While platforms are not required to use this model in
order to boot the kernel, it is highly encouraged that all SOC
implementations define as complete a flat-device-tree as possible to
describe the devices on the SOC. This will allow for the
genericization of much of the kernel code.
1) Defining child nodes of an SOC
---------------------------------
Each device that is part of an SOC may have its own node entry inside
the SOC node. For each device that is included in the SOC, the unit
address property represents the address offset for this device's
memory-mapped registers in the parent's address space. The parent's
address space is defined by the "ranges" property in the top-level soc
node. The "reg" property for each node that exists directly under the
SOC node should contain the address mapping from the child address space
to the parent SOC address space and the size of the device's
memory-mapped register file.
For many devices that may exist inside an SOC, there are predefined
specifications for the format of the device tree node. All SOC child
nodes should follow these specifications, except where noted in this
document.
See appendix A for an example partial SOC node definition for the
MPC8540.
2) Specifying interrupt information for SOC devices
---------------------------------------------------
Each device that is part of an SOC and which generates interrupts
should have the following properties:
- interrupt-parent : contains the phandle of the interrupt
controller which handles interrupts for this device
- interrupts : a list of tuples representing the interrupt
number and the interrupt sense and level for each interupt
for this device.
This information is used by the kernel to build the interrupt table
for the interrupt controllers in the system.
Sense and level information should be encoded as follows:
Devices connected to openPIC-compatible controllers should encode
sense and polarity as follows:
0 = low to high edge sensitive type enabled
1 = active low level sensitive type enabled
2 = active high level sensitive type enabled
3 = high to low edge sensitive type enabled
ISA PIC interrupt controllers should adhere to the ISA PIC
encodings listed below:
0 = active low level sensitive type enabled
1 = active high level sensitive type enabled
2 = high to low edge sensitive type enabled
3 = low to high edge sensitive type enabled
3) Representing devices without a current OF specification
----------------------------------------------------------
Currently, there are many devices on SOCs that do not have a standard
representation pre-defined as part of the open firmware
specifications, mainly because the boards that contain these SOCs are
not currently booted using open firmware. This section contains
descriptions for the SOC devices for which new nodes have been
defined; this list will expand as more and more SOC-containing
platforms are moved over to use the flattened-device-tree model.
a) MDIO IO device
The MDIO is a bus to which the PHY devices are connected. For each
device that exists on this bus, a child node should be created. See
the definition of the PHY node below for an example of how to define
a PHY.
Required properties:
- reg : Offset and length of the register set for the device
- device_type : Should be "mdio"
- compatible : Should define the compatible device type for the
mdio. Currently, this is most likely to be "gianfar"
Example:
mdio@24520 {
reg = <24520 20>;
device_type = "mdio";
compatible = "gianfar";
ethernet-phy@0 {
......
};
};
b) Gianfar-compatible ethernet nodes
Required properties:
- device_type : Should be "network"
- model : Model of the device. Can be "TSEC", "eTSEC", or "FEC"
- compatible : Should be "gianfar"
- reg : Offset and length of the register set for the device
- mac-address : List of bytes representing the ethernet address of
this controller
- interrupts : <a b> where a is the interrupt number and b is a
field that represents an encoding of the sense and level
information for the interrupt. This should be encoded based on
the information in section 2) depending on the type of interrupt
controller you have.
- interrupt-parent : the phandle for the interrupt controller that
services interrupts for this device.
- phy-handle : The phandle for the PHY connected to this ethernet
controller.
Example:
ethernet@24000 {
#size-cells = <0>;
device_type = "network";
model = "TSEC";
compatible = "gianfar";
reg = <24000 1000>;
mac-address = [ 00 E0 0C 00 73 00 ];
interrupts = <d 3 e 3 12 3>;
interrupt-parent = <40000>;
phy-handle = <2452000>
};
c) PHY nodes
Required properties:
- device_type : Should be "ethernet-phy"
- interrupts : <a b> where a is the interrupt number and b is a
field that represents an encoding of the sense and level
information for the interrupt. This should be encoded based on
the information in section 2) depending on the type of interrupt
controller you have.
- interrupt-parent : the phandle for the interrupt controller that
services interrupts for this device.
- reg : The ID number for the phy, usually a small integer
- linux,phandle : phandle for this node; likely referenced by an
ethernet controller node.
Example:
ethernet-phy@0 {
linux,phandle = <2452000>
interrupt-parent = <40000>;
interrupts = <35 1>;
reg = <0>;
device_type = "ethernet-phy";
};
d) Interrupt controllers
Some SOC devices contain interrupt controllers that are different
from the standard Open PIC specification. The SOC device nodes for
these types of controllers should be specified just like a standard
OpenPIC controller. Sense and level information should be encoded
as specified in section 2) of this chapter for each device that
specifies an interrupt.
Example :
pic@40000 {
linux,phandle = <40000>;
clock-frequency = <0>;
interrupt-controller;
#address-cells = <0>;
reg = <40000 40000>;
built-in;
compatible = "chrp,open-pic";
device_type = "open-pic";
big-endian;
};
e) I2C
Required properties :
- device_type : Should be "i2c"
- reg : Offset and length of the register set for the device
Recommended properties :
- compatible : Should be "fsl-i2c" for parts compatible with
Freescale I2C specifications.
- interrupts : <a b> where a is the interrupt number and b is a
field that represents an encoding of the sense and level
information for the interrupt. This should be encoded based on
the information in section 2) depending on the type of interrupt
controller you have.
- interrupt-parent : the phandle for the interrupt controller that
services interrupts for this device.
- dfsrr : boolean; if defined, indicates that this I2C device has
a digital filter sampling rate register
- fsl5200-clocking : boolean; if defined, indicated that this device
uses the FSL 5200 clocking mechanism.
Example :
i2c@3000 {
interrupt-parent = <40000>;
interrupts = <1b 3>;
reg = <3000 18>;
device_type = "i2c";
compatible = "fsl-i2c";
dfsrr;
};
f) Freescale SOC USB controllers
The device node for a USB controller that is part of a Freescale
SOC is as described in the document "Open Firmware Recommended
Practice : Universal Serial Bus" with the following modifications
and additions :
Required properties :
- compatible : Should be "fsl-usb2-mph" for multi port host usb
controllers, or "fsl-usb2-dr" for dual role usb controllers
- phy_type : For multi port host usb controllers, should be one of
"ulpi", or "serial". For dual role usb controllers, should be
one of "ulpi", "utmi", "utmi_wide", or "serial".
- reg : Offset and length of the register set for the device
- port0 : boolean; if defined, indicates port0 is connected for
fsl-usb2-mph compatible controllers. Either this property or
"port1" (or both) must be defined for "fsl-usb2-mph" compatible
controllers.
- port1 : boolean; if defined, indicates port1 is connected for
fsl-usb2-mph compatible controllers. Either this property or
"port0" (or both) must be defined for "fsl-usb2-mph" compatible
controllers.
Recommended properties :
- interrupts : <a b> where a is the interrupt number and b is a
field that represents an encoding of the sense and level
information for the interrupt. This should be encoded based on
the information in section 2) depending on the type of interrupt
controller you have.
- interrupt-parent : the phandle for the interrupt controller that
services interrupts for this device.
Example multi port host usb controller device node :
usb@22000 {
device_type = "usb";
compatible = "fsl-usb2-mph";
reg = <22000 1000>;
#address-cells = <1>;
#size-cells = <0>;
interrupt-parent = <700>;
interrupts = <27 1>;
phy_type = "ulpi";
port0;
port1;
};
Example dual role usb controller device node :
usb@23000 {
device_type = "usb";
compatible = "fsl-usb2-dr";
reg = <23000 1000>;
#address-cells = <1>;
#size-cells = <0>;
interrupt-parent = <700>;
interrupts = <26 1>;
phy = "ulpi";
};
g) Freescale SOC SEC Security Engines
Required properties:
- device_type : Should be "crypto"
- model : Model of the device. Should be "SEC1" or "SEC2"
- compatible : Should be "talitos"
- reg : Offset and length of the register set for the device
- interrupts : <a b> where a is the interrupt number and b is a
field that represents an encoding of the sense and level
information for the interrupt. This should be encoded based on
the information in section 2) depending on the type of interrupt
controller you have.
- interrupt-parent : the phandle for the interrupt controller that
services interrupts for this device.
- num-channels : An integer representing the number of channels
available.
- channel-fifo-len : An integer representing the number of
descriptor pointers each channel fetch fifo can hold.
- exec-units-mask : The bitmask representing what execution units
(EUs) are available. It's a single 32 bit cell. EU information
should be encoded following the SEC's Descriptor Header Dword
EU_SEL0 field documentation, i.e. as follows:
bit 0 = reserved - should be 0
bit 1 = set if SEC has the ARC4 EU (AFEU)
bit 2 = set if SEC has the DES/3DES EU (DEU)
bit 3 = set if SEC has the message digest EU (MDEU)
bit 4 = set if SEC has the random number generator EU (RNG)
bit 5 = set if SEC has the public key EU (PKEU)
bit 6 = set if SEC has the AES EU (AESU)
bit 7 = set if SEC has the Kasumi EU (KEU)
bits 8 through 31 are reserved for future SEC EUs.
- descriptor-types-mask : The bitmask representing what descriptors
are available. It's a single 32 bit cell. Descriptor type
information should be encoded following the SEC's Descriptor
Header Dword DESC_TYPE field documentation, i.e. as follows:
bit 0 = set if SEC supports the aesu_ctr_nonsnoop desc. type
bit 1 = set if SEC supports the ipsec_esp descriptor type
bit 2 = set if SEC supports the common_nonsnoop desc. type
bit 3 = set if SEC supports the 802.11i AES ccmp desc. type
bit 4 = set if SEC supports the hmac_snoop_no_afeu desc. type
bit 5 = set if SEC supports the srtp descriptor type
bit 6 = set if SEC supports the non_hmac_snoop_no_afeu desc.type
bit 7 = set if SEC supports the pkeu_assemble descriptor type
bit 8 = set if SEC supports the aesu_key_expand_output desc.type
bit 9 = set if SEC supports the pkeu_ptmul descriptor type
bit 10 = set if SEC supports the common_nonsnoop_afeu desc. type
bit 11 = set if SEC supports the pkeu_ptadd_dbl descriptor type
..and so on and so forth.
Example:
/* MPC8548E */
crypto@30000 {
device_type = "crypto";
model = "SEC2";
compatible = "talitos";
reg = <30000 10000>;
interrupts = <1d 3>;
interrupt-parent = <40000>;
num-channels = <4>;
channel-fifo-len = <18>;
exec-units-mask = <000000fe>;
descriptor-types-mask = <012b0ebf>;
};
More devices will be defined as this spec matures.
Appendix A - Sample SOC node for MPC8540
========================================
Note that the #address-cells and #size-cells for the SoC node
in this example have been explicitly listed; these are likely
not necessary as they are usually the same as the root node.
soc8540@e0000000 {
#address-cells = <1>;
#size-cells = <1>;
#interrupt-cells = <2>;
device_type = "soc";
ranges = <00000000 e0000000 00100000>
reg = <e0000000 00003000>;
bus-frequency = <0>;
mdio@24520 {
reg = <24520 20>;
device_type = "mdio";
compatible = "gianfar";
ethernet-phy@0 {
linux,phandle = <2452000>
interrupt-parent = <40000>;
interrupts = <35 1>;
reg = <0>;
device_type = "ethernet-phy";
};
ethernet-phy@1 {
linux,phandle = <2452001>
interrupt-parent = <40000>;
interrupts = <35 1>;
reg = <1>;
device_type = "ethernet-phy";
};
ethernet-phy@3 {
linux,phandle = <2452002>
interrupt-parent = <40000>;
interrupts = <35 1>;
reg = <3>;
device_type = "ethernet-phy";
};
};
ethernet@24000 {
#size-cells = <0>;
device_type = "network";
model = "TSEC";
compatible = "gianfar";
reg = <24000 1000>;
mac-address = [ 00 E0 0C 00 73 00 ];
interrupts = <d 3 e 3 12 3>;
interrupt-parent = <40000>;
phy-handle = <2452000>;
};
ethernet@25000 {
#address-cells = <1>;
#size-cells = <0>;
device_type = "network";
model = "TSEC";
compatible = "gianfar";
reg = <25000 1000>;
mac-address = [ 00 E0 0C 00 73 01 ];
interrupts = <13 3 14 3 18 3>;
interrupt-parent = <40000>;
phy-handle = <2452001>;
};
ethernet@26000 {
#address-cells = <1>;
#size-cells = <0>;
device_type = "network";
model = "FEC";
compatible = "gianfar";
reg = <26000 1000>;
mac-address = [ 00 E0 0C 00 73 02 ];
interrupts = <19 3>;
interrupt-parent = <40000>;
phy-handle = <2452002>;
};
serial@4500 {
device_type = "serial";
compatible = "ns16550";
reg = <4500 100>;
clock-frequency = <0>;
interrupts = <1a 3>;
interrupt-parent = <40000>;
};
pic@40000 {
linux,phandle = <40000>;
clock-frequency = <0>;
interrupt-controller;
#address-cells = <0>;
reg = <40000 40000>;
built-in;
compatible = "chrp,open-pic";
device_type = "open-pic";
big-endian;
};
i2c@3000 {
interrupt-parent = <40000>;
interrupts = <1b 3>;
reg = <3000 18>;
device_type = "i2c";
compatible = "fsl-i2c";
dfsrr;
};
};