/* * QLogic Fibre Channel HBA Driver * Copyright (c) 2003-2005 QLogic Corporation * * See LICENSE.qla2xxx for copyright and licensing details. */ #include "qla_def.h" #include #include static uint16_t qla2x00_nvram_request(scsi_qla_host_t *, uint32_t); static void qla2x00_nv_deselect(scsi_qla_host_t *); static void qla2x00_nv_write(scsi_qla_host_t *, uint16_t); /* * NVRAM support routines */ /** * qla2x00_lock_nvram_access() - * @ha: HA context */ void qla2x00_lock_nvram_access(scsi_qla_host_t *ha) { uint16_t data; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) { data = RD_REG_WORD(®->nvram); while (data & NVR_BUSY) { udelay(100); data = RD_REG_WORD(®->nvram); } /* Lock resource */ WRT_REG_WORD(®->u.isp2300.host_semaphore, 0x1); RD_REG_WORD(®->u.isp2300.host_semaphore); udelay(5); data = RD_REG_WORD(®->u.isp2300.host_semaphore); while ((data & BIT_0) == 0) { /* Lock failed */ udelay(100); WRT_REG_WORD(®->u.isp2300.host_semaphore, 0x1); RD_REG_WORD(®->u.isp2300.host_semaphore); udelay(5); data = RD_REG_WORD(®->u.isp2300.host_semaphore); } } } /** * qla2x00_unlock_nvram_access() - * @ha: HA context */ void qla2x00_unlock_nvram_access(scsi_qla_host_t *ha) { struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) { WRT_REG_WORD(®->u.isp2300.host_semaphore, 0); RD_REG_WORD(®->u.isp2300.host_semaphore); } } /** * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the * request routine to get the word from NVRAM. * @ha: HA context * @addr: Address in NVRAM to read * * Returns the word read from nvram @addr. */ uint16_t qla2x00_get_nvram_word(scsi_qla_host_t *ha, uint32_t addr) { uint16_t data; uint32_t nv_cmd; nv_cmd = addr << 16; nv_cmd |= NV_READ_OP; data = qla2x00_nvram_request(ha, nv_cmd); return (data); } /** * qla2x00_write_nvram_word() - Write NVRAM data. * @ha: HA context * @addr: Address in NVRAM to write * @data: word to program */ void qla2x00_write_nvram_word(scsi_qla_host_t *ha, uint32_t addr, uint16_t data) { int count; uint16_t word; uint32_t nv_cmd; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; qla2x00_nv_write(ha, NVR_DATA_OUT); qla2x00_nv_write(ha, 0); qla2x00_nv_write(ha, 0); for (word = 0; word < 8; word++) qla2x00_nv_write(ha, NVR_DATA_OUT); qla2x00_nv_deselect(ha); /* Write data */ nv_cmd = (addr << 16) | NV_WRITE_OP; nv_cmd |= data; nv_cmd <<= 5; for (count = 0; count < 27; count++) { if (nv_cmd & BIT_31) qla2x00_nv_write(ha, NVR_DATA_OUT); else qla2x00_nv_write(ha, 0); nv_cmd <<= 1; } qla2x00_nv_deselect(ha); /* Wait for NVRAM to become ready */ WRT_REG_WORD(®->nvram, NVR_SELECT); RD_REG_WORD(®->nvram); /* PCI Posting. */ do { NVRAM_DELAY(); word = RD_REG_WORD(®->nvram); } while ((word & NVR_DATA_IN) == 0); qla2x00_nv_deselect(ha); /* Disable writes */ qla2x00_nv_write(ha, NVR_DATA_OUT); for (count = 0; count < 10; count++) qla2x00_nv_write(ha, 0); qla2x00_nv_deselect(ha); } static int qla2x00_write_nvram_word_tmo(scsi_qla_host_t *ha, uint32_t addr, uint16_t data, uint32_t tmo) { int ret, count; uint16_t word; uint32_t nv_cmd; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; ret = QLA_SUCCESS; qla2x00_nv_write(ha, NVR_DATA_OUT); qla2x00_nv_write(ha, 0); qla2x00_nv_write(ha, 0); for (word = 0; word < 8; word++) qla2x00_nv_write(ha, NVR_DATA_OUT); qla2x00_nv_deselect(ha); /* Write data */ nv_cmd = (addr << 16) | NV_WRITE_OP; nv_cmd |= data; nv_cmd <<= 5; for (count = 0; count < 27; count++) { if (nv_cmd & BIT_31) qla2x00_nv_write(ha, NVR_DATA_OUT); else qla2x00_nv_write(ha, 0); nv_cmd <<= 1; } qla2x00_nv_deselect(ha); /* Wait for NVRAM to become ready */ WRT_REG_WORD(®->nvram, NVR_SELECT); RD_REG_WORD(®->nvram); /* PCI Posting. */ do { NVRAM_DELAY(); word = RD_REG_WORD(®->nvram); if (!--tmo) { ret = QLA_FUNCTION_FAILED; break; } } while ((word & NVR_DATA_IN) == 0); qla2x00_nv_deselect(ha); /* Disable writes */ qla2x00_nv_write(ha, NVR_DATA_OUT); for (count = 0; count < 10; count++) qla2x00_nv_write(ha, 0); qla2x00_nv_deselect(ha); return ret; } /** * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from * NVRAM. * @ha: HA context * @nv_cmd: NVRAM command * * Bit definitions for NVRAM command: * * Bit 26 = start bit * Bit 25, 24 = opcode * Bit 23-16 = address * Bit 15-0 = write data * * Returns the word read from nvram @addr. */ static uint16_t qla2x00_nvram_request(scsi_qla_host_t *ha, uint32_t nv_cmd) { uint8_t cnt; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; uint16_t data = 0; uint16_t reg_data; /* Send command to NVRAM. */ nv_cmd <<= 5; for (cnt = 0; cnt < 11; cnt++) { if (nv_cmd & BIT_31) qla2x00_nv_write(ha, NVR_DATA_OUT); else qla2x00_nv_write(ha, 0); nv_cmd <<= 1; } /* Read data from NVRAM. */ for (cnt = 0; cnt < 16; cnt++) { WRT_REG_WORD(®->nvram, NVR_SELECT | NVR_CLOCK); RD_REG_WORD(®->nvram); /* PCI Posting. */ NVRAM_DELAY(); data <<= 1; reg_data = RD_REG_WORD(®->nvram); if (reg_data & NVR_DATA_IN) data |= BIT_0; WRT_REG_WORD(®->nvram, NVR_SELECT); RD_REG_WORD(®->nvram); /* PCI Posting. */ NVRAM_DELAY(); } /* Deselect chip. */ WRT_REG_WORD(®->nvram, NVR_DESELECT); RD_REG_WORD(®->nvram); /* PCI Posting. */ NVRAM_DELAY(); return (data); } /** * qla2x00_nv_write() - Clean NVRAM operations. * @ha: HA context */ static void qla2x00_nv_deselect(scsi_qla_host_t *ha) { struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; WRT_REG_WORD(®->nvram, NVR_DESELECT); RD_REG_WORD(®->nvram); /* PCI Posting. */ NVRAM_DELAY(); } /** * qla2x00_nv_write() - Prepare for NVRAM read/write operation. * @ha: HA context * @data: Serial interface selector */ static void qla2x00_nv_write(scsi_qla_host_t *ha, uint16_t data) { struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; WRT_REG_WORD(®->nvram, data | NVR_SELECT | NVR_WRT_ENABLE); RD_REG_WORD(®->nvram); /* PCI Posting. */ NVRAM_DELAY(); WRT_REG_WORD(®->nvram, data | NVR_SELECT| NVR_CLOCK | NVR_WRT_ENABLE); RD_REG_WORD(®->nvram); /* PCI Posting. */ NVRAM_DELAY(); WRT_REG_WORD(®->nvram, data | NVR_SELECT | NVR_WRT_ENABLE); RD_REG_WORD(®->nvram); /* PCI Posting. */ NVRAM_DELAY(); } /** * qla2x00_clear_nvram_protection() - * @ha: HA context */ static int qla2x00_clear_nvram_protection(scsi_qla_host_t *ha) { int ret, stat; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; uint32_t word; uint16_t wprot, wprot_old; /* Clear NVRAM write protection. */ ret = QLA_FUNCTION_FAILED; wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, 0)); stat = qla2x00_write_nvram_word_tmo(ha, 0, __constant_cpu_to_le16(0x1234), 100000); wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, 0)); if (stat != QLA_SUCCESS || wprot != __constant_cpu_to_le16(0x1234)) { /* Write enable. */ qla2x00_nv_write(ha, NVR_DATA_OUT); qla2x00_nv_write(ha, 0); qla2x00_nv_write(ha, 0); for (word = 0; word < 8; word++) qla2x00_nv_write(ha, NVR_DATA_OUT); qla2x00_nv_deselect(ha); /* Enable protection register. */ qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); qla2x00_nv_write(ha, NVR_PR_ENABLE); qla2x00_nv_write(ha, NVR_PR_ENABLE); for (word = 0; word < 8; word++) qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE); qla2x00_nv_deselect(ha); /* Clear protection register (ffff is cleared). */ qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); for (word = 0; word < 8; word++) qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE); qla2x00_nv_deselect(ha); /* Wait for NVRAM to become ready. */ WRT_REG_WORD(®->nvram, NVR_SELECT); RD_REG_WORD(®->nvram); /* PCI Posting. */ do { NVRAM_DELAY(); word = RD_REG_WORD(®->nvram); } while ((word & NVR_DATA_IN) == 0); ret = QLA_SUCCESS; } else qla2x00_write_nvram_word(ha, 0, wprot_old); return ret; } static void qla2x00_set_nvram_protection(scsi_qla_host_t *ha, int stat) { struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; uint32_t word; if (stat != QLA_SUCCESS) return; /* Set NVRAM write protection. */ /* Write enable. */ qla2x00_nv_write(ha, NVR_DATA_OUT); qla2x00_nv_write(ha, 0); qla2x00_nv_write(ha, 0); for (word = 0; word < 8; word++) qla2x00_nv_write(ha, NVR_DATA_OUT); qla2x00_nv_deselect(ha); /* Enable protection register. */ qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); qla2x00_nv_write(ha, NVR_PR_ENABLE); qla2x00_nv_write(ha, NVR_PR_ENABLE); for (word = 0; word < 8; word++) qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE); qla2x00_nv_deselect(ha); /* Enable protection register. */ qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); qla2x00_nv_write(ha, NVR_PR_ENABLE); qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); for (word = 0; word < 8; word++) qla2x00_nv_write(ha, NVR_PR_ENABLE); qla2x00_nv_deselect(ha); /* Wait for NVRAM to become ready. */ WRT_REG_WORD(®->nvram, NVR_SELECT); RD_REG_WORD(®->nvram); /* PCI Posting. */ do { NVRAM_DELAY(); word = RD_REG_WORD(®->nvram); } while ((word & NVR_DATA_IN) == 0); } /*****************************************************************************/ /* Flash Manipulation Routines */ /*****************************************************************************/ static inline uint32_t flash_conf_to_access_addr(uint32_t faddr) { return FARX_ACCESS_FLASH_CONF | faddr; } static inline uint32_t flash_data_to_access_addr(uint32_t faddr) { return FARX_ACCESS_FLASH_DATA | faddr; } static inline uint32_t nvram_conf_to_access_addr(uint32_t naddr) { return FARX_ACCESS_NVRAM_CONF | naddr; } static inline uint32_t nvram_data_to_access_addr(uint32_t naddr) { return FARX_ACCESS_NVRAM_DATA | naddr; } uint32_t qla24xx_read_flash_dword(scsi_qla_host_t *ha, uint32_t addr) { int rval; uint32_t cnt, data; struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; WRT_REG_DWORD(®->flash_addr, addr & ~FARX_DATA_FLAG); /* Wait for READ cycle to complete. */ rval = QLA_SUCCESS; for (cnt = 3000; (RD_REG_DWORD(®->flash_addr) & FARX_DATA_FLAG) == 0 && rval == QLA_SUCCESS; cnt--) { if (cnt) udelay(10); else rval = QLA_FUNCTION_TIMEOUT; } /* TODO: What happens if we time out? */ data = 0xDEADDEAD; if (rval == QLA_SUCCESS) data = RD_REG_DWORD(®->flash_data); return data; } uint32_t * qla24xx_read_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr, uint32_t dwords) { uint32_t i; /* Dword reads to flash. */ for (i = 0; i < dwords; i++, faddr++) dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha, flash_data_to_access_addr(faddr))); return dwptr; } int qla24xx_write_flash_dword(scsi_qla_host_t *ha, uint32_t addr, uint32_t data) { int rval; uint32_t cnt; struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; WRT_REG_DWORD(®->flash_data, data); RD_REG_DWORD(®->flash_data); /* PCI Posting. */ WRT_REG_DWORD(®->flash_addr, addr | FARX_DATA_FLAG); /* Wait for Write cycle to complete. */ rval = QLA_SUCCESS; for (cnt = 500000; (RD_REG_DWORD(®->flash_addr) & FARX_DATA_FLAG) && rval == QLA_SUCCESS; cnt--) { if (cnt) udelay(10); else rval = QLA_FUNCTION_TIMEOUT; } return rval; } void qla24xx_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id, uint8_t *flash_id) { uint32_t ids; ids = qla24xx_read_flash_dword(ha, flash_data_to_access_addr(0xd03ab)); *man_id = LSB(ids); *flash_id = MSB(ids); } int qla24xx_write_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr, uint32_t dwords) { int ret; uint32_t liter; uint32_t sec_mask, rest_addr, conf_addr; uint32_t fdata; uint8_t man_id, flash_id; struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; ret = QLA_SUCCESS; qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id); DEBUG9(printk("%s(%ld): Flash man_id=%d flash_id=%d\n", __func__, ha->host_no, man_id, flash_id)); conf_addr = flash_conf_to_access_addr(0x03d8); switch (man_id) { case 0xbf: /* STT flash. */ rest_addr = 0x1fff; sec_mask = 0x3e000; if (flash_id == 0x80) conf_addr = flash_conf_to_access_addr(0x0352); break; case 0x13: /* ST M25P80. */ rest_addr = 0x3fff; sec_mask = 0x3c000; break; default: /* Default to 64 kb sector size. */ rest_addr = 0x3fff; sec_mask = 0x3c000; break; } /* Enable flash write. */ WRT_REG_DWORD(®->ctrl_status, RD_REG_DWORD(®->ctrl_status) | CSRX_FLASH_ENABLE); RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */ /* Disable flash write-protection. */ qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0); do { /* Loop once to provide quick error exit. */ for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) { /* Are we at the beginning of a sector? */ if ((faddr & rest_addr) == 0) { fdata = (faddr & sec_mask) << 2; ret = qla24xx_write_flash_dword(ha, conf_addr, (fdata & 0xff00) |((fdata << 16) & 0xff0000) | ((fdata >> 16) & 0xff)); if (ret != QLA_SUCCESS) { DEBUG9(printk("%s(%ld) Unable to flash " "sector: address=%x.\n", __func__, ha->host_no, faddr)); break; } } ret = qla24xx_write_flash_dword(ha, flash_data_to_access_addr(faddr), cpu_to_le32(*dwptr)); if (ret != QLA_SUCCESS) { DEBUG9(printk("%s(%ld) Unable to program flash " "address=%x data=%x.\n", __func__, ha->host_no, faddr, *dwptr)); break; } } } while (0); /* Enable flash write-protection. */ qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0x9c); /* Disable flash write. */ WRT_REG_DWORD(®->ctrl_status, RD_REG_DWORD(®->ctrl_status) & ~CSRX_FLASH_ENABLE); RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */ return ret; } uint8_t * qla2x00_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr, uint32_t bytes) { uint32_t i; uint16_t *wptr; /* Word reads to NVRAM via registers. */ wptr = (uint16_t *)buf; qla2x00_lock_nvram_access(ha); for (i = 0; i < bytes >> 1; i++, naddr++) wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha, naddr)); qla2x00_unlock_nvram_access(ha); return buf; } uint8_t * qla24xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr, uint32_t bytes) { uint32_t i; uint32_t *dwptr; /* Dword reads to flash. */ dwptr = (uint32_t *)buf; for (i = 0; i < bytes >> 2; i++, naddr++) dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha, nvram_data_to_access_addr(naddr))); return buf; } int qla2x00_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr, uint32_t bytes) { int ret, stat; uint32_t i; uint16_t *wptr; ret = QLA_SUCCESS; qla2x00_lock_nvram_access(ha); /* Disable NVRAM write-protection. */ stat = qla2x00_clear_nvram_protection(ha); wptr = (uint16_t *)buf; for (i = 0; i < bytes >> 1; i++, naddr++) { qla2x00_write_nvram_word(ha, naddr, cpu_to_le16(*wptr)); wptr++; } /* Enable NVRAM write-protection. */ qla2x00_set_nvram_protection(ha, stat); qla2x00_unlock_nvram_access(ha); return ret; } int qla24xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr, uint32_t bytes) { int ret; uint32_t i; uint32_t *dwptr; struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; ret = QLA_SUCCESS; /* Enable flash write. */ WRT_REG_DWORD(®->ctrl_status, RD_REG_DWORD(®->ctrl_status) | CSRX_FLASH_ENABLE); RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */ /* Disable NVRAM write-protection. */ qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101), 0); qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101), 0); /* Dword writes to flash. */ dwptr = (uint32_t *)buf; for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) { ret = qla24xx_write_flash_dword(ha, nvram_data_to_access_addr(naddr), cpu_to_le32(*dwptr)); if (ret != QLA_SUCCESS) { DEBUG9(printk("%s(%ld) Unable to program " "nvram address=%x data=%x.\n", __func__, ha->host_no, naddr, *dwptr)); break; } } /* Enable NVRAM write-protection. */ qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101), 0x8c); /* Disable flash write. */ WRT_REG_DWORD(®->ctrl_status, RD_REG_DWORD(®->ctrl_status) & ~CSRX_FLASH_ENABLE); RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */ return ret; } static inline void qla2x00_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags) { if (IS_QLA2322(ha)) { /* Flip all colors. */ if (ha->beacon_color_state == QLA_LED_ALL_ON) { /* Turn off. */ ha->beacon_color_state = 0; *pflags = GPIO_LED_ALL_OFF; } else { /* Turn on. */ ha->beacon_color_state = QLA_LED_ALL_ON; *pflags = GPIO_LED_RGA_ON; } } else { /* Flip green led only. */ if (ha->beacon_color_state == QLA_LED_GRN_ON) { /* Turn off. */ ha->beacon_color_state = 0; *pflags = GPIO_LED_GREEN_OFF_AMBER_OFF; } else { /* Turn on. */ ha->beacon_color_state = QLA_LED_GRN_ON; *pflags = GPIO_LED_GREEN_ON_AMBER_OFF; } } } void qla2x00_beacon_blink(struct scsi_qla_host *ha) { uint16_t gpio_enable; uint16_t gpio_data; uint16_t led_color = 0; unsigned long flags; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; if (ha->pio_address) reg = (struct device_reg_2xxx __iomem *)ha->pio_address; spin_lock_irqsave(&ha->hardware_lock, flags); /* Save the Original GPIOE. */ if (ha->pio_address) { gpio_enable = RD_REG_WORD_PIO(®->gpioe); gpio_data = RD_REG_WORD_PIO(®->gpiod); } else { gpio_enable = RD_REG_WORD(®->gpioe); gpio_data = RD_REG_WORD(®->gpiod); } /* Set the modified gpio_enable values */ gpio_enable |= GPIO_LED_MASK; if (ha->pio_address) { WRT_REG_WORD_PIO(®->gpioe, gpio_enable); } else { WRT_REG_WORD(®->gpioe, gpio_enable); RD_REG_WORD(®->gpioe); } qla2x00_flip_colors(ha, &led_color); /* Clear out any previously set LED color. */ gpio_data &= ~GPIO_LED_MASK; /* Set the new input LED color to GPIOD. */ gpio_data |= led_color; /* Set the modified gpio_data values */ if (ha->pio_address) { WRT_REG_WORD_PIO(®->gpiod, gpio_data); } else { WRT_REG_WORD(®->gpiod, gpio_data); RD_REG_WORD(®->gpiod); } spin_unlock_irqrestore(&ha->hardware_lock, flags); } int qla2x00_beacon_on(struct scsi_qla_host *ha) { uint16_t gpio_enable; uint16_t gpio_data; unsigned long flags; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING; ha->fw_options[1] |= FO1_DISABLE_GPIO6_7; if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) { qla_printk(KERN_WARNING, ha, "Unable to update fw options (beacon on).\n"); return QLA_FUNCTION_FAILED; } if (ha->pio_address) reg = (struct device_reg_2xxx __iomem *)ha->pio_address; /* Turn off LEDs. */ spin_lock_irqsave(&ha->hardware_lock, flags); if (ha->pio_address) { gpio_enable = RD_REG_WORD_PIO(®->gpioe); gpio_data = RD_REG_WORD_PIO(®->gpiod); } else { gpio_enable = RD_REG_WORD(®->gpioe); gpio_data = RD_REG_WORD(®->gpiod); } gpio_enable |= GPIO_LED_MASK; /* Set the modified gpio_enable values. */ if (ha->pio_address) { WRT_REG_WORD_PIO(®->gpioe, gpio_enable); } else { WRT_REG_WORD(®->gpioe, gpio_enable); RD_REG_WORD(®->gpioe); } /* Clear out previously set LED colour. */ gpio_data &= ~GPIO_LED_MASK; if (ha->pio_address) { WRT_REG_WORD_PIO(®->gpiod, gpio_data); } else { WRT_REG_WORD(®->gpiod, gpio_data); RD_REG_WORD(®->gpiod); } spin_unlock_irqrestore(&ha->hardware_lock, flags); /* * Let the per HBA timer kick off the blinking process based on * the following flags. No need to do anything else now. */ ha->beacon_blink_led = 1; ha->beacon_color_state = 0; return QLA_SUCCESS; } int qla2x00_beacon_off(struct scsi_qla_host *ha) { int rval = QLA_SUCCESS; ha->beacon_blink_led = 0; /* Set the on flag so when it gets flipped it will be off. */ if (IS_QLA2322(ha)) ha->beacon_color_state = QLA_LED_ALL_ON; else ha->beacon_color_state = QLA_LED_GRN_ON; ha->isp_ops.beacon_blink(ha); /* This turns green LED off */ ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING; ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7; rval = qla2x00_set_fw_options(ha, ha->fw_options); if (rval != QLA_SUCCESS) qla_printk(KERN_WARNING, ha, "Unable to update fw options (beacon off).\n"); return rval; } static inline void qla24xx_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags) { /* Flip all colors. */ if (ha->beacon_color_state == QLA_LED_ALL_ON) { /* Turn off. */ ha->beacon_color_state = 0; *pflags = 0; } else { /* Turn on. */ ha->beacon_color_state = QLA_LED_ALL_ON; *pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON; } } void qla24xx_beacon_blink(struct scsi_qla_host *ha) { uint16_t led_color = 0; uint32_t gpio_data; unsigned long flags; struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; /* Save the Original GPIOD. */ spin_lock_irqsave(&ha->hardware_lock, flags); gpio_data = RD_REG_DWORD(®->gpiod); /* Enable the gpio_data reg for update. */ gpio_data |= GPDX_LED_UPDATE_MASK; WRT_REG_DWORD(®->gpiod, gpio_data); gpio_data = RD_REG_DWORD(®->gpiod); /* Set the color bits. */ qla24xx_flip_colors(ha, &led_color); /* Clear out any previously set LED color. */ gpio_data &= ~GPDX_LED_COLOR_MASK; /* Set the new input LED color to GPIOD. */ gpio_data |= led_color; /* Set the modified gpio_data values. */ WRT_REG_DWORD(®->gpiod, gpio_data); gpio_data = RD_REG_DWORD(®->gpiod); spin_unlock_irqrestore(&ha->hardware_lock, flags); } int qla24xx_beacon_on(struct scsi_qla_host *ha) { uint32_t gpio_data; unsigned long flags; struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; if (ha->beacon_blink_led == 0) { /* Enable firmware for update */ ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL; if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) return QLA_FUNCTION_FAILED; if (qla2x00_get_fw_options(ha, ha->fw_options) != QLA_SUCCESS) { qla_printk(KERN_WARNING, ha, "Unable to update fw options (beacon on).\n"); return QLA_FUNCTION_FAILED; } spin_lock_irqsave(&ha->hardware_lock, flags); gpio_data = RD_REG_DWORD(®->gpiod); /* Enable the gpio_data reg for update. */ gpio_data |= GPDX_LED_UPDATE_MASK; WRT_REG_DWORD(®->gpiod, gpio_data); RD_REG_DWORD(®->gpiod); spin_unlock_irqrestore(&ha->hardware_lock, flags); } /* So all colors blink together. */ ha->beacon_color_state = 0; /* Let the per HBA timer kick off the blinking process. */ ha->beacon_blink_led = 1; return QLA_SUCCESS; } int qla24xx_beacon_off(struct scsi_qla_host *ha) { uint32_t gpio_data; unsigned long flags; struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; ha->beacon_blink_led = 0; ha->beacon_color_state = QLA_LED_ALL_ON; ha->isp_ops.beacon_blink(ha); /* Will flip to all off. */ /* Give control back to firmware. */ spin_lock_irqsave(&ha->hardware_lock, flags); gpio_data = RD_REG_DWORD(®->gpiod); /* Disable the gpio_data reg for update. */ gpio_data &= ~GPDX_LED_UPDATE_MASK; WRT_REG_DWORD(®->gpiod, gpio_data); RD_REG_DWORD(®->gpiod); spin_unlock_irqrestore(&ha->hardware_lock, flags); ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL; if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) { qla_printk(KERN_WARNING, ha, "Unable to update fw options (beacon off).\n"); return QLA_FUNCTION_FAILED; } if (qla2x00_get_fw_options(ha, ha->fw_options) != QLA_SUCCESS) { qla_printk(KERN_WARNING, ha, "Unable to get fw options (beacon off).\n"); return QLA_FUNCTION_FAILED; } return QLA_SUCCESS; }