/*
$License:
Copyright (C) 2011 InvenSense Corporation, All Rights Reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
$
*/
/**
* @addtogroup MLDL
*
* @{
* @file mldl_cfg.c
* @brief The Motion Library Driver Layer.
*/
/* -------------------------------------------------------------------------- */
#include
#include
#include
#include "mldl_cfg.h"
#include
#include "mpu3050.h"
#include "mlsl.h"
#include "mldl_print_cfg.h"
#include "log.h"
#undef MPL_LOG_TAG
#define MPL_LOG_TAG "mldl_cfg:"
/* -------------------------------------------------------------------------- */
#define SLEEP 1
#define WAKE_UP 0
#define RESET 1
#define STANDBY 1
/* -------------------------------------------------------------------------- */
/**
* @brief Stop the DMP running
*
* @return INV_SUCCESS or non-zero error code
*/
static int dmp_stop(struct mldl_cfg *mldl_cfg, void *gyro_handle)
{
unsigned char user_ctrl_reg;
int result;
if (mldl_cfg->inv_mpu_state->status & MPU_DMP_IS_SUSPENDED)
return INV_SUCCESS;
result = inv_serial_read(gyro_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_USER_CTRL, 1, &user_ctrl_reg);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
user_ctrl_reg = (user_ctrl_reg & (~BIT_FIFO_EN)) | BIT_FIFO_RST;
user_ctrl_reg = (user_ctrl_reg & (~BIT_DMP_EN)) | BIT_DMP_RST;
result = inv_serial_single_write(gyro_handle,
mldl_cfg->mpu_chip_info->addr,
MPUREG_USER_CTRL, user_ctrl_reg);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
mldl_cfg->inv_mpu_state->status |= MPU_DMP_IS_SUSPENDED;
return result;
}
/**
* @brief Starts the DMP running
*
* @return INV_SUCCESS or non-zero error code
*/
static int dmp_start(struct mldl_cfg *mldl_cfg, void *mlsl_handle)
{
unsigned char user_ctrl_reg;
int result;
if ((!(mldl_cfg->inv_mpu_state->status & MPU_DMP_IS_SUSPENDED) &&
mldl_cfg->mpu_gyro_cfg->dmp_enable)
||
((mldl_cfg->inv_mpu_state->status & MPU_DMP_IS_SUSPENDED) &&
!mldl_cfg->mpu_gyro_cfg->dmp_enable))
return INV_SUCCESS;
result = inv_serial_read(mlsl_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_USER_CTRL, 1, &user_ctrl_reg);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
result = inv_serial_single_write(
mlsl_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_USER_CTRL,
((user_ctrl_reg & (~BIT_FIFO_EN))
| BIT_FIFO_RST));
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
result = inv_serial_single_write(
mlsl_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_USER_CTRL, user_ctrl_reg);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
result = inv_serial_read(mlsl_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_USER_CTRL, 1, &user_ctrl_reg);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
user_ctrl_reg |= BIT_DMP_EN;
if (mldl_cfg->mpu_gyro_cfg->fifo_enable)
user_ctrl_reg |= BIT_FIFO_EN;
else
user_ctrl_reg &= ~BIT_FIFO_EN;
user_ctrl_reg |= BIT_DMP_RST;
result = inv_serial_single_write(
mlsl_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_USER_CTRL, user_ctrl_reg);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
mldl_cfg->inv_mpu_state->status &= ~MPU_DMP_IS_SUSPENDED;
return result;
}
static int mpu3050_set_i2c_bypass(struct mldl_cfg *mldl_cfg,
void *mlsl_handle, unsigned char enable)
{
unsigned char b;
int result;
unsigned char status = mldl_cfg->inv_mpu_state->status;
if ((status & MPU_GYRO_IS_BYPASSED && enable) ||
(!(status & MPU_GYRO_IS_BYPASSED) && !enable))
return INV_SUCCESS;
/*---- get current 'USER_CTRL' into b ----*/
result = inv_serial_read(
mlsl_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_USER_CTRL, 1, &b);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
b &= ~BIT_AUX_IF_EN;
if (!enable) {
result = inv_serial_single_write(
mlsl_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_USER_CTRL,
(b | BIT_AUX_IF_EN));
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
} else {
/* Coming out of I2C is tricky due to several erratta. Do not
* modify this algorithm
*/
/*
* 1) wait for the right time and send the command to change
* the aux i2c slave address to an invalid address that will
* get nack'ed
*
* 0x00 is broadcast. 0x7F is unlikely to be used by any aux.
*/
result = inv_serial_single_write(
mlsl_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_AUX_SLV_ADDR, 0x7F);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
/*
* 2) wait enough time for a nack to occur, then go into
* bypass mode:
*/
msleep(2);
result = inv_serial_single_write(
mlsl_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_USER_CTRL, (b));
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
/*
* 3) wait for up to one MPU cycle then restore the slave
* address
*/
msleep(inv_mpu_get_sampling_period_us(mldl_cfg->mpu_gyro_cfg)
/ 1000);
result = inv_serial_single_write(
mlsl_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_AUX_SLV_ADDR,
mldl_cfg->pdata_slave[EXT_SLAVE_TYPE_ACCEL]
->address);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
/*
* 4) reset the ime interface
*/
result = inv_serial_single_write(
mlsl_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_USER_CTRL,
(b | BIT_AUX_IF_RST));
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
msleep(2);
}
if (enable)
mldl_cfg->inv_mpu_state->status |= MPU_GYRO_IS_BYPASSED;
else
mldl_cfg->inv_mpu_state->status &= ~MPU_GYRO_IS_BYPASSED;
return result;
}
/**
* @brief enables/disables the I2C bypass to an external device
* connected to MPU's secondary I2C bus.
* @param enable
* Non-zero to enable pass through.
* @return INV_SUCCESS if successful, a non-zero error code otherwise.
*/
static int mpu_set_i2c_bypass(struct mldl_cfg *mldl_cfg, void *mlsl_handle,
unsigned char enable)
{
return mpu3050_set_i2c_bypass(mldl_cfg, mlsl_handle, enable);
}
#define NUM_OF_PROD_REVS (ARRAY_SIZE(prod_rev_map))
/* NOTE : when not indicated, product revision
is considered an 'npp'; non production part */
struct prod_rev_map_t {
unsigned char silicon_rev;
unsigned short gyro_trim;
};
#define OLDEST_PROD_REV_SUPPORTED 11
static struct prod_rev_map_t prod_rev_map[] = {
{0, 0},
{MPU_SILICON_REV_A4, 131}, /* 1 A? OBSOLETED */
{MPU_SILICON_REV_A4, 131}, /* 2 | */
{MPU_SILICON_REV_A4, 131}, /* 3 | */
{MPU_SILICON_REV_A4, 131}, /* 4 | */
{MPU_SILICON_REV_A4, 131}, /* 5 | */
{MPU_SILICON_REV_A4, 131}, /* 6 | */
{MPU_SILICON_REV_A4, 131}, /* 7 | */
{MPU_SILICON_REV_A4, 131}, /* 8 | */
{MPU_SILICON_REV_A4, 131}, /* 9 | */
{MPU_SILICON_REV_A4, 131}, /* 10 V */
{MPU_SILICON_REV_B1, 131}, /* 11 B1 */
{MPU_SILICON_REV_B1, 131}, /* 12 | */
{MPU_SILICON_REV_B1, 131}, /* 13 | */
{MPU_SILICON_REV_B1, 131}, /* 14 V */
{MPU_SILICON_REV_B4, 131}, /* 15 B4 */
{MPU_SILICON_REV_B4, 131}, /* 16 | */
{MPU_SILICON_REV_B4, 131}, /* 17 | */
{MPU_SILICON_REV_B4, 131}, /* 18 | */
{MPU_SILICON_REV_B4, 115}, /* 19 | */
{MPU_SILICON_REV_B4, 115}, /* 20 V */
{MPU_SILICON_REV_B6, 131}, /* 21 B6 (B6/A9) */
{MPU_SILICON_REV_B4, 115}, /* 22 B4 (B7/A10) */
{MPU_SILICON_REV_B6, 0}, /* 23 B6 */
{MPU_SILICON_REV_B6, 0}, /* 24 | */
{MPU_SILICON_REV_B6, 0}, /* 25 | */
{MPU_SILICON_REV_B6, 131}, /* 26 V (B6/A11) */
};
/**
* @internal
* @brief Get the silicon revision ID from OTP for MPU3050.
* The silicon revision number is in read from OTP bank 0,
* ADDR6[7:2]. The corresponding ID is retrieved by lookup
* in a map.
*
* @param mldl_cfg
* a pointer to the mldl config data structure.
* @param mlsl_handle
* an file handle to the serial communication device the
* device is connected to.
*
* @return 0 on success, a non-zero error code otherwise.
*/
static int inv_get_silicon_rev_mpu3050(
struct mldl_cfg *mldl_cfg, void *mlsl_handle)
{
int result;
unsigned char index = 0x00;
unsigned char bank =
(BIT_PRFTCH_EN | BIT_CFG_USER_BANK | MPU_MEM_OTP_BANK_0);
unsigned short mem_addr = ((bank << 8) | 0x06);
struct mpu_chip_info *mpu_chip_info = mldl_cfg->mpu_chip_info;
result = inv_serial_read(mlsl_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_PRODUCT_ID, 1,
&mpu_chip_info->product_id);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
result = inv_serial_read_mem(
mlsl_handle, mldl_cfg->mpu_chip_info->addr,
mem_addr, 1, &index);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
index >>= 2;
/* clean the prefetch and cfg user bank bits */
result = inv_serial_single_write(
mlsl_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_BANK_SEL, 0);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
if (index < OLDEST_PROD_REV_SUPPORTED || index >= NUM_OF_PROD_REVS) {
mpu_chip_info->silicon_revision = 0;
mpu_chip_info->gyro_sens_trim = 0;
MPL_LOGE("Unsupported Product Revision Detected : %d\n", index);
return INV_ERROR_INVALID_MODULE;
}
mpu_chip_info->product_revision = index;
mpu_chip_info->silicon_revision = prod_rev_map[index].silicon_rev;
mpu_chip_info->gyro_sens_trim = prod_rev_map[index].gyro_trim;
if (mpu_chip_info->gyro_sens_trim == 0) {
MPL_LOGE("gyro sensitivity trim is 0"
" - unsupported non production part.\n");
return INV_ERROR_INVALID_MODULE;
}
return result;
}
#define inv_get_silicon_rev inv_get_silicon_rev_mpu3050
/**
* @brief Enable / Disable the use MPU's secondary I2C interface level
* shifters.
* When enabled the secondary I2C interface to which the external
* device is connected runs at VDD voltage (main supply).
* When disabled the 2nd interface runs at VDDIO voltage.
* See the device specification for more details.
*
* @note using this API may produce unpredictable results, depending on how
* the MPU and slave device are setup on the target platform.
* Use of this API should entirely be restricted to system
* integrators. Once the correct value is found, there should be no
* need to change the level shifter at runtime.
*
* @pre Must be called after inv_serial_start().
* @note Typically called before inv_dmp_open().
*
* @param[in] enable:
* 0 to run at VDDIO (default),
* 1 to run at VDD.
*
* @return INV_SUCCESS if successfull, a non-zero error code otherwise.
*/
static int inv_mpu_set_level_shifter_bit(struct mldl_cfg *mldl_cfg,
void *mlsl_handle, unsigned char enable)
{
int result;
unsigned char regval;
unsigned char reg;
unsigned char mask;
if (0 == mldl_cfg->mpu_chip_info->silicon_revision)
return INV_ERROR_INVALID_PARAMETER;
/*-- on parts before B6 the VDDIO bit is bit 7 of ACCEL_BURST_ADDR --
NOTE: this is incompatible with ST accelerometers where the VDDIO
bit MUST be set to enable ST's internal logic to autoincrement
the register address on burst reads --*/
if ((mldl_cfg->mpu_chip_info->silicon_revision & 0xf)
< MPU_SILICON_REV_B6) {
reg = MPUREG_ACCEL_BURST_ADDR;
mask = 0x80;
} else {
/*-- on B6 parts the VDDIO bit was moved to FIFO_EN2 =>
the mask is always 0x04 --*/
reg = MPUREG_FIFO_EN2;
mask = 0x04;
}
result = inv_serial_read(mlsl_handle, mldl_cfg->mpu_chip_info->addr,
reg, 1, ®val);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
if (enable)
regval |= mask;
else
regval &= ~mask;
result = inv_serial_single_write(
mlsl_handle, mldl_cfg->mpu_chip_info->addr, reg, regval);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
return result;
return INV_SUCCESS;
}
/**
* @internal
* @brief This function controls the power management on the MPU device.
* The entire chip can be put to low power sleep mode, or individual
* gyros can be turned on/off.
*
* Putting the device into sleep mode depending upon the changing needs
* of the associated applications is a recommended method for reducing
* power consuption. It is a safe opearation in that sleep/wake up of
* gyros while running will not result in any interruption of data.
*
* Although it is entirely allowed to put the device into full sleep
* while running the DMP, it is not recomended because it will disrupt
* the ongoing calculations carried on inside the DMP and consequently
* the sensor fusion algorithm. Furthermore, while in sleep mode
* read & write operation from the app processor on both registers and
* memory are disabled and can only regained by restoring the MPU in
* normal power mode.
* Disabling any of the gyro axis will reduce the associated power
* consuption from the PLL but will not stop the DMP from running
* state.
*
* @param reset
* Non-zero to reset the device. Note that this setting
* is volatile and the corresponding register bit will
* clear itself right after being applied.
* @param sleep
* Non-zero to put device into full sleep.
* @param disable_gx
* Non-zero to disable gyro X.
* @param disable_gy
* Non-zero to disable gyro Y.
* @param disable_gz
* Non-zero to disable gyro Z.
*
* @return INV_SUCCESS if successfull; a non-zero error code otherwise.
*/
static int mpu3050_pwr_mgmt(struct mldl_cfg *mldl_cfg,
void *mlsl_handle,
unsigned char reset,
unsigned char sleep,
unsigned char disable_gx,
unsigned char disable_gy,
unsigned char disable_gz)
{
unsigned char b;
int result;
result =
inv_serial_read(mlsl_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_PWR_MGM, 1, &b);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
/* If we are awake, we need to put it in bypass before resetting */
if ((!(b & BIT_SLEEP)) && reset)
result = mpu_set_i2c_bypass(mldl_cfg, mlsl_handle, 1);
/* Reset if requested */
if (reset) {
MPL_LOGV("Reset MPU3050\n");
result = inv_serial_single_write(
mlsl_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_PWR_MGM, b | BIT_H_RESET);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
msleep(5);
/* Some chips are awake after reset and some are asleep,
* check the status */
result = inv_serial_read(
mlsl_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_PWR_MGM, 1, &b);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
}
/* Update the suspended state just in case we return early */
if (b & BIT_SLEEP) {
mldl_cfg->inv_mpu_state->status |= MPU_GYRO_IS_SUSPENDED;
mldl_cfg->inv_mpu_state->status |= MPU_DEVICE_IS_SUSPENDED;
} else {
mldl_cfg->inv_mpu_state->status &= ~MPU_GYRO_IS_SUSPENDED;
mldl_cfg->inv_mpu_state->status &= ~MPU_DEVICE_IS_SUSPENDED;
}
/* if power status match requested, nothing else's left to do */
if ((b & (BIT_SLEEP | BIT_STBY_XG | BIT_STBY_YG | BIT_STBY_ZG)) ==
(((sleep != 0) * BIT_SLEEP) |
((disable_gx != 0) * BIT_STBY_XG) |
((disable_gy != 0) * BIT_STBY_YG) |
((disable_gz != 0) * BIT_STBY_ZG))) {
return INV_SUCCESS;
}
/*
* This specific transition between states needs to be reinterpreted:
* (1,1,1,1) -> (0,1,1,1) has to become
* (1,1,1,1) -> (1,0,0,0) -> (0,1,1,1)
* where
* (1,1,1,1) is (sleep=1,disable_gx=1,disable_gy=1,disable_gz=1)
*/
if ((b & (BIT_SLEEP | BIT_STBY_XG | BIT_STBY_YG | BIT_STBY_ZG)) ==
(BIT_SLEEP | BIT_STBY_XG | BIT_STBY_YG | BIT_STBY_ZG)
&& ((!sleep) && disable_gx && disable_gy && disable_gz)) {
result = mpu3050_pwr_mgmt(mldl_cfg, mlsl_handle, 0, 1, 0, 0, 0);
if (result)
return result;
b |= BIT_SLEEP;
b &= ~(BIT_STBY_XG | BIT_STBY_YG | BIT_STBY_ZG);
}
if ((b & BIT_SLEEP) != ((sleep != 0) * BIT_SLEEP)) {
if (sleep) {
result = mpu_set_i2c_bypass(mldl_cfg, mlsl_handle, 1);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
b |= BIT_SLEEP;
result =
inv_serial_single_write(
mlsl_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_PWR_MGM, b);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
mldl_cfg->inv_mpu_state->status |=
MPU_GYRO_IS_SUSPENDED;
mldl_cfg->inv_mpu_state->status |=
MPU_DEVICE_IS_SUSPENDED;
} else {
b &= ~BIT_SLEEP;
result =
inv_serial_single_write(
mlsl_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_PWR_MGM, b);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
mldl_cfg->inv_mpu_state->status &=
~MPU_GYRO_IS_SUSPENDED;
mldl_cfg->inv_mpu_state->status &=
~MPU_DEVICE_IS_SUSPENDED;
msleep(5);
}
}
/*---
WORKAROUND FOR PUTTING GYRO AXIS in STAND-BY MODE
1) put one axis at a time in stand-by
---*/
if ((b & BIT_STBY_XG) != ((disable_gx != 0) * BIT_STBY_XG)) {
b ^= BIT_STBY_XG;
result = inv_serial_single_write(
mlsl_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_PWR_MGM, b);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
}
if ((b & BIT_STBY_YG) != ((disable_gy != 0) * BIT_STBY_YG)) {
b ^= BIT_STBY_YG;
result = inv_serial_single_write(
mlsl_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_PWR_MGM, b);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
}
if ((b & BIT_STBY_ZG) != ((disable_gz != 0) * BIT_STBY_ZG)) {
b ^= BIT_STBY_ZG;
result = inv_serial_single_write(
mlsl_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_PWR_MGM, b);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
}
return INV_SUCCESS;
}
/**
* @brief sets the clock source for the gyros.
* @param mldl_cfg
* a pointer to the struct mldl_cfg data structure.
* @param gyro_handle
* an handle to the serial device the gyro is assigned to.
* @return ML_SUCCESS if successful, a non-zero error code otherwise.
*/
static int mpu_set_clock_source(void *gyro_handle, struct mldl_cfg *mldl_cfg)
{
int result;
unsigned char cur_clk_src;
unsigned char reg;
/* clock source selection */
result = inv_serial_read(gyro_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_PWR_MGM, 1, ®);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
cur_clk_src = reg & BITS_CLKSEL;
reg &= ~BITS_CLKSEL;
result = inv_serial_single_write(
gyro_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_PWR_MGM, mldl_cfg->mpu_gyro_cfg->clk_src | reg);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
/* TODO : workarounds to be determined and implemented */
return result;
}
/**
* Configures the MPU I2C Master
*
* @mldl_cfg Handle to the configuration data
* @gyro_handle handle to the gyro communictation interface
* @slave Can be Null if turning off the slave
* @slave_pdata Can be null if turning off the slave
* @slave_id enum ext_slave_type to determine which index to use
*
*
* This fucntion configures the slaves by:
* 1) Setting up the read
* a) Read Register
* b) Read Length
* 2) Set up the data trigger (MPU6050 only)
* a) Set trigger write register
* b) Set Trigger write value
* 3) Set up the divider (MPU6050 only)
* 4) Set the slave bypass mode depending on slave
*
* returns INV_SUCCESS or non-zero error code
*/
static int mpu_set_slave_mpu3050(struct mldl_cfg *mldl_cfg,
void *gyro_handle,
struct ext_slave_descr *slave,
struct ext_slave_platform_data *slave_pdata,
int slave_id)
{
int result;
unsigned char reg;
unsigned char slave_reg;
unsigned char slave_len;
unsigned char slave_endian;
unsigned char slave_address;
if (slave_id != EXT_SLAVE_TYPE_ACCEL)
return 0;
result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, true);
if (NULL == slave || NULL == slave_pdata) {
slave_reg = 0;
slave_len = 0;
slave_endian = 0;
slave_address = 0;
mldl_cfg->inv_mpu_state->i2c_slaves_enabled = 0;
} else {
slave_reg = slave->read_reg;
slave_len = slave->read_len;
slave_endian = slave->endian;
slave_address = slave_pdata->address;
mldl_cfg->inv_mpu_state->i2c_slaves_enabled = 1;
}
/* Address */
result = inv_serial_single_write(gyro_handle,
mldl_cfg->mpu_chip_info->addr,
MPUREG_AUX_SLV_ADDR, slave_address);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
/* Register */
result = inv_serial_read(gyro_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_ACCEL_BURST_ADDR, 1, ®);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
reg = ((reg & 0x80) | slave_reg);
result = inv_serial_single_write(gyro_handle,
mldl_cfg->mpu_chip_info->addr,
MPUREG_ACCEL_BURST_ADDR, reg);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
/* Length */
result = inv_serial_read(gyro_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_USER_CTRL, 1, ®);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
reg = (reg & ~BIT_AUX_RD_LENG);
result = inv_serial_single_write(
gyro_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_USER_CTRL, reg);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
return result;
}
static int mpu_set_slave(struct mldl_cfg *mldl_cfg,
void *gyro_handle,
struct ext_slave_descr *slave,
struct ext_slave_platform_data *slave_pdata,
int slave_id)
{
return mpu_set_slave_mpu3050(mldl_cfg, gyro_handle, slave,
slave_pdata, slave_id);
}
/**
* Check to see if the gyro was reset by testing a couple of registers known
* to change on reset.
*
* @mldl_cfg mldl configuration structure
* @gyro_handle handle used to communicate with the gyro
*
* @return INV_SUCCESS or non-zero error code
*/
static int mpu_was_reset(struct mldl_cfg *mldl_cfg, void *gyro_handle)
{
int result = INV_SUCCESS;
unsigned char reg;
result = inv_serial_read(gyro_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_DMP_CFG_2, 1, ®);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
if (mldl_cfg->mpu_gyro_cfg->dmp_cfg2 != reg)
return true;
if (0 != mldl_cfg->mpu_gyro_cfg->dmp_cfg1)
return false;
/* Inconclusive assume it was reset */
return true;
}
int inv_mpu_set_firmware(struct mldl_cfg *mldl_cfg, void *mlsl_handle,
const unsigned char *data, int size)
{
int bank, offset, write_size;
int result;
unsigned char read[MPU_MEM_BANK_SIZE];
if (mldl_cfg->inv_mpu_state->status & MPU_DEVICE_IS_SUSPENDED) {
#if INV_CACHE_DMP == 1
memcpy(mldl_cfg->mpu_ram->ram, data, size);
return INV_SUCCESS;
#else
LOG_RESULT_LOCATION(INV_ERROR_MEMORY_SET);
return INV_ERROR_MEMORY_SET;
#endif
}
if (!(mldl_cfg->inv_mpu_state->status & MPU_DMP_IS_SUSPENDED)) {
LOG_RESULT_LOCATION(INV_ERROR_MEMORY_SET);
return INV_ERROR_MEMORY_SET;
}
/* Write and verify memory */
for (bank = 0; size > 0; bank++,
size -= write_size,
data += write_size) {
if (size > MPU_MEM_BANK_SIZE)
write_size = MPU_MEM_BANK_SIZE;
else
write_size = size;
result = inv_serial_write_mem(mlsl_handle,
mldl_cfg->mpu_chip_info->addr,
((bank << 8) | 0x00),
write_size,
data);
if (result) {
LOG_RESULT_LOCATION(result);
MPL_LOGE("Write mem error in bank %d\n", bank);
return result;
}
result = inv_serial_read_mem(mlsl_handle,
mldl_cfg->mpu_chip_info->addr,
((bank << 8) | 0x00),
write_size,
read);
if (result) {
LOG_RESULT_LOCATION(result);
MPL_LOGE("Read mem error in bank %d\n", bank);
return result;
}
#define ML_SKIP_CHECK 20
for (offset = 0; offset < write_size; offset++) {
/* skip the register memory locations */
if (bank == 0 && offset < ML_SKIP_CHECK)
continue;
if (data[offset] != read[offset]) {
result = INV_ERROR_SERIAL_WRITE;
break;
}
}
if (result != INV_SUCCESS) {
LOG_RESULT_LOCATION(result);
MPL_LOGE("Read data mismatch at bank %d, offset %d\n",
bank, offset);
return result;
}
}
return INV_SUCCESS;
}
static int gyro_resume(struct mldl_cfg *mldl_cfg, void *gyro_handle,
unsigned long sensors)
{
int result;
int ii;
unsigned char reg;
unsigned char regs[7];
/* Wake up the part */
result = mpu3050_pwr_mgmt(mldl_cfg, gyro_handle, false, false,
!(sensors & INV_X_GYRO),
!(sensors & INV_Y_GYRO),
!(sensors & INV_Z_GYRO));
if (!(mldl_cfg->inv_mpu_state->status & MPU_GYRO_NEEDS_CONFIG) &&
!mpu_was_reset(mldl_cfg, gyro_handle)) {
return INV_SUCCESS;
}
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
result = inv_serial_single_write(
gyro_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_INT_CFG,
(mldl_cfg->mpu_gyro_cfg->int_config |
mldl_cfg->pdata->int_config));
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
result = inv_serial_single_write(
gyro_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_SMPLRT_DIV, mldl_cfg->mpu_gyro_cfg->divider);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
result = mpu_set_clock_source(gyro_handle, mldl_cfg);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
reg = DLPF_FS_SYNC_VALUE(mldl_cfg->mpu_gyro_cfg->ext_sync,
mldl_cfg->mpu_gyro_cfg->full_scale,
mldl_cfg->mpu_gyro_cfg->lpf);
result = inv_serial_single_write(
gyro_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_DLPF_FS_SYNC, reg);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
result = inv_serial_single_write(
gyro_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_DMP_CFG_1, mldl_cfg->mpu_gyro_cfg->dmp_cfg1);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
result = inv_serial_single_write(
gyro_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_DMP_CFG_2, mldl_cfg->mpu_gyro_cfg->dmp_cfg2);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
/* Write and verify memory */
#if INV_CACHE_DMP != 0
inv_mpu_set_firmware(mldl_cfg, gyro_handle,
mldl_cfg->mpu_ram->ram, mldl_cfg->mpu_ram->length);
#endif
result = inv_serial_single_write(
gyro_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_XG_OFFS_TC, mldl_cfg->mpu_offsets->tc[0]);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
result = inv_serial_single_write(
gyro_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_YG_OFFS_TC, mldl_cfg->mpu_offsets->tc[1]);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
result = inv_serial_single_write(
gyro_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_ZG_OFFS_TC, mldl_cfg->mpu_offsets->tc[2]);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
regs[0] = MPUREG_X_OFFS_USRH;
for (ii = 0; ii < ARRAY_SIZE(mldl_cfg->mpu_offsets->gyro); ii++) {
regs[1 + ii * 2] =
(unsigned char)(mldl_cfg->mpu_offsets->gyro[ii] >> 8)
& 0xff;
regs[1 + ii * 2 + 1] =
(unsigned char)(mldl_cfg->mpu_offsets->gyro[ii] & 0xff);
}
result = inv_serial_write(gyro_handle, mldl_cfg->mpu_chip_info->addr,
7, regs);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
/* Configure slaves */
result = inv_mpu_set_level_shifter_bit(mldl_cfg, gyro_handle,
mldl_cfg->pdata->level_shifter);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
mldl_cfg->inv_mpu_state->status &= ~MPU_GYRO_NEEDS_CONFIG;
return result;
}
int gyro_config(void *mlsl_handle,
struct mldl_cfg *mldl_cfg,
struct ext_slave_config *data)
{
struct mpu_gyro_cfg *mpu_gyro_cfg = mldl_cfg->mpu_gyro_cfg;
struct mpu_chip_info *mpu_chip_info = mldl_cfg->mpu_chip_info;
struct mpu_offsets *mpu_offsets = mldl_cfg->mpu_offsets;
int ii;
if (!data->data)
return INV_ERROR_INVALID_PARAMETER;
switch (data->key) {
case MPU_SLAVE_INT_CONFIG:
mpu_gyro_cfg->int_config = *((__u8 *)data->data);
break;
case MPU_SLAVE_EXT_SYNC:
mpu_gyro_cfg->ext_sync = *((__u8 *)data->data);
break;
case MPU_SLAVE_FULL_SCALE:
mpu_gyro_cfg->full_scale = *((__u8 *)data->data);
break;
case MPU_SLAVE_LPF:
mpu_gyro_cfg->lpf = *((__u8 *)data->data);
break;
case MPU_SLAVE_CLK_SRC:
mpu_gyro_cfg->clk_src = *((__u8 *)data->data);
break;
case MPU_SLAVE_DIVIDER:
mpu_gyro_cfg->divider = *((__u8 *)data->data);
break;
case MPU_SLAVE_DMP_ENABLE:
mpu_gyro_cfg->dmp_enable = *((__u8 *)data->data);
break;
case MPU_SLAVE_FIFO_ENABLE:
mpu_gyro_cfg->fifo_enable = *((__u8 *)data->data);
break;
case MPU_SLAVE_DMP_CFG1:
mpu_gyro_cfg->dmp_cfg1 = *((__u8 *)data->data);
break;
case MPU_SLAVE_DMP_CFG2:
mpu_gyro_cfg->dmp_cfg2 = *((__u8 *)data->data);
break;
case MPU_SLAVE_TC:
for (ii = 0; ii < GYRO_NUM_AXES; ii++)
mpu_offsets->tc[ii] = ((__u8 *)data->data)[ii];
break;
case MPU_SLAVE_GYRO:
for (ii = 0; ii < GYRO_NUM_AXES; ii++)
mpu_offsets->gyro[ii] = ((__u16 *)data->data)[ii];
break;
case MPU_SLAVE_ADDR:
mpu_chip_info->addr = *((__u8 *)data->data);
break;
case MPU_SLAVE_PRODUCT_REVISION:
mpu_chip_info->product_revision = *((__u8 *)data->data);
break;
case MPU_SLAVE_SILICON_REVISION:
mpu_chip_info->silicon_revision = *((__u8 *)data->data);
break;
case MPU_SLAVE_PRODUCT_ID:
mpu_chip_info->product_id = *((__u8 *)data->data);
break;
case MPU_SLAVE_GYRO_SENS_TRIM:
mpu_chip_info->gyro_sens_trim = *((__u16 *)data->data);
break;
case MPU_SLAVE_ACCEL_SENS_TRIM:
mpu_chip_info->accel_sens_trim = *((__u16 *)data->data);
break;
case MPU_SLAVE_RAM:
if (data->len != mldl_cfg->mpu_ram->length)
return INV_ERROR_INVALID_PARAMETER;
memcpy(mldl_cfg->mpu_ram->ram, data->data, data->len);
break;
default:
LOG_RESULT_LOCATION(INV_ERROR_FEATURE_NOT_IMPLEMENTED);
return INV_ERROR_FEATURE_NOT_IMPLEMENTED;
};
mldl_cfg->inv_mpu_state->status |= MPU_GYRO_NEEDS_CONFIG;
return INV_SUCCESS;
}
int gyro_get_config(void *mlsl_handle,
struct mldl_cfg *mldl_cfg,
struct ext_slave_config *data)
{
struct mpu_gyro_cfg *mpu_gyro_cfg = mldl_cfg->mpu_gyro_cfg;
struct mpu_chip_info *mpu_chip_info = mldl_cfg->mpu_chip_info;
struct mpu_offsets *mpu_offsets = mldl_cfg->mpu_offsets;
int ii;
if (!data->data)
return INV_ERROR_INVALID_PARAMETER;
switch (data->key) {
case MPU_SLAVE_INT_CONFIG:
*((__u8 *)data->data) = mpu_gyro_cfg->int_config;
break;
case MPU_SLAVE_EXT_SYNC:
*((__u8 *)data->data) = mpu_gyro_cfg->ext_sync;
break;
case MPU_SLAVE_FULL_SCALE:
*((__u8 *)data->data) = mpu_gyro_cfg->full_scale;
break;
case MPU_SLAVE_LPF:
*((__u8 *)data->data) = mpu_gyro_cfg->lpf;
break;
case MPU_SLAVE_CLK_SRC:
*((__u8 *)data->data) = mpu_gyro_cfg->clk_src;
break;
case MPU_SLAVE_DIVIDER:
*((__u8 *)data->data) = mpu_gyro_cfg->divider;
break;
case MPU_SLAVE_DMP_ENABLE:
*((__u8 *)data->data) = mpu_gyro_cfg->dmp_enable;
break;
case MPU_SLAVE_FIFO_ENABLE:
*((__u8 *)data->data) = mpu_gyro_cfg->fifo_enable;
break;
case MPU_SLAVE_DMP_CFG1:
*((__u8 *)data->data) = mpu_gyro_cfg->dmp_cfg1;
break;
case MPU_SLAVE_DMP_CFG2:
*((__u8 *)data->data) = mpu_gyro_cfg->dmp_cfg2;
break;
case MPU_SLAVE_TC:
for (ii = 0; ii < GYRO_NUM_AXES; ii++)
((__u8 *)data->data)[ii] = mpu_offsets->tc[ii];
break;
case MPU_SLAVE_GYRO:
for (ii = 0; ii < GYRO_NUM_AXES; ii++)
((__u16 *)data->data)[ii] = mpu_offsets->gyro[ii];
break;
case MPU_SLAVE_ADDR:
*((__u8 *)data->data) = mpu_chip_info->addr;
break;
case MPU_SLAVE_PRODUCT_REVISION:
*((__u8 *)data->data) = mpu_chip_info->product_revision;
break;
case MPU_SLAVE_SILICON_REVISION:
*((__u8 *)data->data) = mpu_chip_info->silicon_revision;
break;
case MPU_SLAVE_PRODUCT_ID:
*((__u8 *)data->data) = mpu_chip_info->product_id;
break;
case MPU_SLAVE_GYRO_SENS_TRIM:
*((__u16 *)data->data) = mpu_chip_info->gyro_sens_trim;
break;
case MPU_SLAVE_ACCEL_SENS_TRIM:
*((__u16 *)data->data) = mpu_chip_info->accel_sens_trim;
break;
case MPU_SLAVE_RAM:
if (data->len != mldl_cfg->mpu_ram->length)
return INV_ERROR_INVALID_PARAMETER;
memcpy(data->data, mldl_cfg->mpu_ram->ram, data->len);
break;
default:
LOG_RESULT_LOCATION(INV_ERROR_FEATURE_NOT_IMPLEMENTED);
return INV_ERROR_FEATURE_NOT_IMPLEMENTED;
};
return INV_SUCCESS;
}
/*******************************************************************************
*******************************************************************************
* Exported functions
*******************************************************************************
******************************************************************************/
/**
* Initializes the pdata structure to defaults.
*
* Opens the device to read silicon revision, product id and whoami.
*
* @mldl_cfg
* The internal device configuration data structure.
* @mlsl_handle
* The serial communication handle.
*
* @return INV_SUCCESS if silicon revision, product id and woami are supported
* by this software.
*/
int inv_mpu_open(struct mldl_cfg *mldl_cfg,
void *gyro_handle,
void *accel_handle,
void *compass_handle, void *pressure_handle)
{
int result;
void *slave_handle[EXT_SLAVE_NUM_TYPES];
int ii;
/* Default is Logic HIGH, pushpull, latch disabled, anyread to clear */
ii = 0;
mldl_cfg->inv_mpu_cfg->ignore_system_suspend = false;
mldl_cfg->mpu_gyro_cfg->int_config = BIT_DMP_INT_EN;
mldl_cfg->mpu_gyro_cfg->clk_src = MPU_CLK_SEL_PLLGYROZ;
mldl_cfg->mpu_gyro_cfg->lpf = MPU_FILTER_42HZ;
mldl_cfg->mpu_gyro_cfg->full_scale = MPU_FS_2000DPS;
mldl_cfg->mpu_gyro_cfg->divider = 4;
mldl_cfg->mpu_gyro_cfg->dmp_enable = 1;
mldl_cfg->mpu_gyro_cfg->fifo_enable = 1;
mldl_cfg->mpu_gyro_cfg->ext_sync = 0;
mldl_cfg->mpu_gyro_cfg->dmp_cfg1 = 0;
mldl_cfg->mpu_gyro_cfg->dmp_cfg2 = 0;
mldl_cfg->inv_mpu_state->status =
MPU_DMP_IS_SUSPENDED |
MPU_GYRO_IS_SUSPENDED |
MPU_ACCEL_IS_SUSPENDED |
MPU_COMPASS_IS_SUSPENDED |
MPU_PRESSURE_IS_SUSPENDED |
MPU_DEVICE_IS_SUSPENDED;
mldl_cfg->inv_mpu_state->i2c_slaves_enabled = 0;
slave_handle[EXT_SLAVE_TYPE_GYROSCOPE] = gyro_handle;
slave_handle[EXT_SLAVE_TYPE_ACCEL] = accel_handle;
slave_handle[EXT_SLAVE_TYPE_COMPASS] = compass_handle;
slave_handle[EXT_SLAVE_TYPE_PRESSURE] = pressure_handle;
if (mldl_cfg->mpu_chip_info->addr == 0) {
LOG_RESULT_LOCATION(INV_ERROR_INVALID_PARAMETER);
return INV_ERROR_INVALID_PARAMETER;
}
/*
* Reset,
* Take the DMP out of sleep, and
* read the product_id, sillicon rev and whoami
*/
mldl_cfg->inv_mpu_state->status |= MPU_GYRO_IS_BYPASSED;
result = mpu3050_pwr_mgmt(mldl_cfg, gyro_handle, RESET, 0, 0, 0, 0);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
result = inv_get_silicon_rev(mldl_cfg, gyro_handle);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
/* Get the factory temperature compensation offsets */
result = inv_serial_read(gyro_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_XG_OFFS_TC, 1,
&mldl_cfg->mpu_offsets->tc[0]);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
result = inv_serial_read(gyro_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_YG_OFFS_TC, 1,
&mldl_cfg->mpu_offsets->tc[1]);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
result = inv_serial_read(gyro_handle, mldl_cfg->mpu_chip_info->addr,
MPUREG_ZG_OFFS_TC, 1,
&mldl_cfg->mpu_offsets->tc[2]);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
/* Into bypass mode before sleeping and calling the slaves init */
result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, true);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
result = inv_mpu_set_level_shifter_bit(mldl_cfg, gyro_handle,
mldl_cfg->pdata->level_shifter);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
#if INV_CACHE_DMP != 0
result = mpu3050_pwr_mgmt(mldl_cfg, gyro_handle, 0, SLEEP, 0, 0, 0);
#endif
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
return result;
}
/**
* Close the mpu interface
*
* @mldl_cfg pointer to the configuration structure
* @mlsl_handle pointer to the serial layer handle
*
* @return INV_SUCCESS or non-zero error code
*/
int inv_mpu_close(struct mldl_cfg *mldl_cfg,
void *gyro_handle,
void *accel_handle,
void *compass_handle,
void *pressure_handle)
{
return 0;
}
/**
* @brief resume the MPU device and all the other sensor
* devices from their low power state.
*
* @mldl_cfg
* pointer to the configuration structure
* @gyro_handle
* the main file handle to the MPU device.
* @accel_handle
* an handle to the accelerometer device, if sitting
* onto a separate bus. Can match mlsl_handle if
* the accelerometer device operates on the same
* primary bus of MPU.
* @compass_handle
* an handle to the compass device, if sitting
* onto a separate bus. Can match mlsl_handle if
* the compass device operates on the same
* primary bus of MPU.
* @pressure_handle
* an handle to the pressure sensor device, if sitting
* onto a separate bus. Can match mlsl_handle if
* the pressure sensor device operates on the same
* primary bus of MPU.
* @resume_gyro
* whether resuming the gyroscope device is
* actually needed (if the device supports low power
* mode of some sort).
* @resume_accel
* whether resuming the accelerometer device is
* actually needed (if the device supports low power
* mode of some sort).
* @resume_compass
* whether resuming the compass device is
* actually needed (if the device supports low power
* mode of some sort).
* @resume_pressure
* whether resuming the pressure sensor device is
* actually needed (if the device supports low power
* mode of some sort).
* @return INV_SUCCESS or a non-zero error code.
*/
int inv_mpu_resume(struct mldl_cfg *mldl_cfg,
void *gyro_handle,
void *accel_handle,
void *compass_handle,
void *pressure_handle,
unsigned long sensors)
{
int result = INV_SUCCESS;
int ii;
bool resume_slave[EXT_SLAVE_NUM_TYPES];
bool resume_dmp = sensors & INV_DMP_PROCESSOR;
void *slave_handle[EXT_SLAVE_NUM_TYPES];
resume_slave[EXT_SLAVE_TYPE_GYROSCOPE] =
(sensors & (INV_X_GYRO | INV_Y_GYRO | INV_Z_GYRO));
resume_slave[EXT_SLAVE_TYPE_ACCEL] =
sensors & INV_THREE_AXIS_ACCEL;
resume_slave[EXT_SLAVE_TYPE_COMPASS] =
sensors & INV_THREE_AXIS_COMPASS;
resume_slave[EXT_SLAVE_TYPE_PRESSURE] =
sensors & INV_THREE_AXIS_PRESSURE;
slave_handle[EXT_SLAVE_TYPE_GYROSCOPE] = gyro_handle;
slave_handle[EXT_SLAVE_TYPE_ACCEL] = accel_handle;
slave_handle[EXT_SLAVE_TYPE_COMPASS] = compass_handle;
slave_handle[EXT_SLAVE_TYPE_PRESSURE] = pressure_handle;
mldl_print_cfg(mldl_cfg);
/* Skip the Gyro since slave[EXT_SLAVE_TYPE_GYROSCOPE] is NULL */
for (ii = EXT_SLAVE_TYPE_ACCEL; ii < EXT_SLAVE_NUM_TYPES; ii++) {
if (resume_slave[ii] &&
((!mldl_cfg->slave[ii]) ||
(!mldl_cfg->slave[ii]->resume))) {
LOG_RESULT_LOCATION(INV_ERROR_INVALID_PARAMETER);
return INV_ERROR_INVALID_PARAMETER;
}
}
if ((resume_slave[EXT_SLAVE_TYPE_GYROSCOPE] || resume_dmp)
&& ((mldl_cfg->inv_mpu_state->status & MPU_GYRO_IS_SUSPENDED) ||
(mldl_cfg->inv_mpu_state->status & MPU_GYRO_NEEDS_CONFIG))) {
result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, 1);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
result = dmp_stop(mldl_cfg, gyro_handle);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
result = gyro_resume(mldl_cfg, gyro_handle, sensors);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
}
for (ii = 0; ii < EXT_SLAVE_NUM_TYPES; ii++) {
if (!mldl_cfg->slave[ii] ||
!mldl_cfg->pdata_slave[ii] ||
!resume_slave[ii] ||
!(mldl_cfg->inv_mpu_state->status & (1 << ii)))
continue;
if (EXT_SLAVE_BUS_SECONDARY ==
mldl_cfg->pdata_slave[ii]->bus) {
result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle,
true);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
}
result = mldl_cfg->slave[ii]->resume(slave_handle[ii],
mldl_cfg->slave[ii],
mldl_cfg->pdata_slave[ii]);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
mldl_cfg->inv_mpu_state->status &= ~(1 << ii);
}
for (ii = 0; ii < EXT_SLAVE_NUM_TYPES; ii++) {
if (resume_dmp &&
!(mldl_cfg->inv_mpu_state->status & (1 << ii)) &&
mldl_cfg->pdata_slave[ii] &&
EXT_SLAVE_BUS_SECONDARY == mldl_cfg->pdata_slave[ii]->bus) {
result = mpu_set_slave(mldl_cfg,
gyro_handle,
mldl_cfg->slave[ii],
mldl_cfg->pdata_slave[ii],
mldl_cfg->slave[ii]->type);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
}
}
/* Turn on the master i2c iterface if necessary */
if (resume_dmp) {
result = mpu_set_i2c_bypass(
mldl_cfg, gyro_handle,
!(mldl_cfg->inv_mpu_state->i2c_slaves_enabled));
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
/* Now start */
result = dmp_start(mldl_cfg, gyro_handle);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
}
mldl_cfg->inv_mpu_cfg->requested_sensors = sensors;
return result;
}
/**
* @brief suspend the MPU device and all the other sensor
* devices into their low power state.
* @mldl_cfg
* a pointer to the struct mldl_cfg internal data
* structure.
* @gyro_handle
* the main file handle to the MPU device.
* @accel_handle
* an handle to the accelerometer device, if sitting
* onto a separate bus. Can match gyro_handle if
* the accelerometer device operates on the same
* primary bus of MPU.
* @compass_handle
* an handle to the compass device, if sitting
* onto a separate bus. Can match gyro_handle if
* the compass device operates on the same
* primary bus of MPU.
* @pressure_handle
* an handle to the pressure sensor device, if sitting
* onto a separate bus. Can match gyro_handle if
* the pressure sensor device operates on the same
* primary bus of MPU.
* @accel
* whether suspending the accelerometer device is
* actually needed (if the device supports low power
* mode of some sort).
* @compass
* whether suspending the compass device is
* actually needed (if the device supports low power
* mode of some sort).
* @pressure
* whether suspending the pressure sensor device is
* actually needed (if the device supports low power
* mode of some sort).
* @return INV_SUCCESS or a non-zero error code.
*/
int inv_mpu_suspend(struct mldl_cfg *mldl_cfg,
void *gyro_handle,
void *accel_handle,
void *compass_handle,
void *pressure_handle,
unsigned long sensors)
{
int result = INV_SUCCESS;
int ii;
struct ext_slave_descr **slave = mldl_cfg->slave;
struct ext_slave_platform_data **pdata_slave = mldl_cfg->pdata_slave;
bool suspend_dmp = ((sensors & INV_DMP_PROCESSOR) == INV_DMP_PROCESSOR);
bool suspend_slave[EXT_SLAVE_NUM_TYPES];
void *slave_handle[EXT_SLAVE_NUM_TYPES];
suspend_slave[EXT_SLAVE_TYPE_GYROSCOPE] =
((sensors & (INV_X_GYRO | INV_Y_GYRO | INV_Z_GYRO))
== (INV_X_GYRO | INV_Y_GYRO | INV_Z_GYRO));
suspend_slave[EXT_SLAVE_TYPE_ACCEL] =
((sensors & INV_THREE_AXIS_ACCEL) == INV_THREE_AXIS_ACCEL);
suspend_slave[EXT_SLAVE_TYPE_COMPASS] =
((sensors & INV_THREE_AXIS_COMPASS) == INV_THREE_AXIS_COMPASS);
suspend_slave[EXT_SLAVE_TYPE_PRESSURE] =
((sensors & INV_THREE_AXIS_PRESSURE) ==
INV_THREE_AXIS_PRESSURE);
slave_handle[EXT_SLAVE_TYPE_GYROSCOPE] = gyro_handle;
slave_handle[EXT_SLAVE_TYPE_ACCEL] = accel_handle;
slave_handle[EXT_SLAVE_TYPE_COMPASS] = compass_handle;
slave_handle[EXT_SLAVE_TYPE_PRESSURE] = pressure_handle;
if (suspend_dmp) {
result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, 1);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
result = dmp_stop(mldl_cfg, gyro_handle);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
}
/* Gyro */
if (suspend_slave[EXT_SLAVE_TYPE_GYROSCOPE] &&
!(mldl_cfg->inv_mpu_state->status & MPU_GYRO_IS_SUSPENDED)) {
result = mpu3050_pwr_mgmt(
mldl_cfg, gyro_handle, 0,
suspend_dmp && suspend_slave[EXT_SLAVE_TYPE_GYROSCOPE],
(unsigned char)(sensors & INV_X_GYRO),
(unsigned char)(sensors & INV_Y_GYRO),
(unsigned char)(sensors & INV_Z_GYRO));
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
}
for (ii = 0; ii < EXT_SLAVE_NUM_TYPES; ii++) {
bool is_suspended = mldl_cfg->inv_mpu_state->status & (1 << ii);
if (!slave[ii] || !pdata_slave[ii] ||
is_suspended || !suspend_slave[ii])
continue;
if (EXT_SLAVE_BUS_SECONDARY == pdata_slave[ii]->bus) {
result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, 1);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
}
result = slave[ii]->suspend(slave_handle[ii],
slave[ii],
pdata_slave[ii]);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
if (EXT_SLAVE_BUS_SECONDARY == pdata_slave[ii]->bus) {
result = mpu_set_slave(mldl_cfg, gyro_handle,
NULL, NULL,
slave[ii]->type);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
}
mldl_cfg->inv_mpu_state->status |= (1 << ii);
}
/* Re-enable the i2c master if there are configured slaves and DMP */
if (!suspend_dmp) {
result = mpu_set_i2c_bypass(
mldl_cfg, gyro_handle,
!(mldl_cfg->inv_mpu_state->i2c_slaves_enabled));
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
}
mldl_cfg->inv_mpu_cfg->requested_sensors = (~sensors) & INV_ALL_SENSORS;
return result;
}
int inv_mpu_slave_read(struct mldl_cfg *mldl_cfg,
void *gyro_handle,
void *slave_handle,
struct ext_slave_descr *slave,
struct ext_slave_platform_data *pdata,
unsigned char *data)
{
int result;
int bypass_result;
int remain_bypassed = true;
if (NULL == slave || NULL == slave->read) {
LOG_RESULT_LOCATION(INV_ERROR_INVALID_CONFIGURATION);
return INV_ERROR_INVALID_CONFIGURATION;
}
if ((EXT_SLAVE_BUS_SECONDARY == pdata->bus)
&& (!(mldl_cfg->inv_mpu_state->status & MPU_GYRO_IS_BYPASSED))) {
remain_bypassed = false;
result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, 1);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
}
result = slave->read(slave_handle, slave, pdata, data);
if (!remain_bypassed) {
bypass_result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, 0);
if (bypass_result) {
LOG_RESULT_LOCATION(bypass_result);
return bypass_result;
}
}
return result;
}
int inv_mpu_slave_config(struct mldl_cfg *mldl_cfg,
void *gyro_handle,
void *slave_handle,
struct ext_slave_config *data,
struct ext_slave_descr *slave,
struct ext_slave_platform_data *pdata)
{
int result;
int remain_bypassed = true;
if (NULL == slave || NULL == slave->config) {
LOG_RESULT_LOCATION(INV_ERROR_INVALID_CONFIGURATION);
return INV_ERROR_INVALID_CONFIGURATION;
}
if (data->apply && (EXT_SLAVE_BUS_SECONDARY == pdata->bus)
&& (!(mldl_cfg->inv_mpu_state->status & MPU_GYRO_IS_BYPASSED))) {
remain_bypassed = false;
result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, 1);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
}
result = slave->config(slave_handle, slave, pdata, data);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
if (!remain_bypassed) {
result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, 0);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
}
return result;
}
int inv_mpu_get_slave_config(struct mldl_cfg *mldl_cfg,
void *gyro_handle,
void *slave_handle,
struct ext_slave_config *data,
struct ext_slave_descr *slave,
struct ext_slave_platform_data *pdata)
{
int result;
int remain_bypassed = true;
if (NULL == slave || NULL == slave->get_config) {
LOG_RESULT_LOCATION(INV_ERROR_INVALID_CONFIGURATION);
return INV_ERROR_INVALID_CONFIGURATION;
}
if (data->apply && (EXT_SLAVE_BUS_SECONDARY == pdata->bus)
&& (!(mldl_cfg->inv_mpu_state->status & MPU_GYRO_IS_BYPASSED))) {
remain_bypassed = false;
result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, 1);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
}
result = slave->get_config(slave_handle, slave, pdata, data);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
if (!remain_bypassed) {
result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, 0);
if (result) {
LOG_RESULT_LOCATION(result);
return result;
}
}
return result;
}
/**
* @}
*/