/* cx25840 - Conexant CX25840 audio/video decoder driver * * Copyright (C) 2004 Ulf Eklund * * Based on the saa7115 driver and on the first verison of Chris Kennedy's * cx25840 driver. * * Changes by Tyler Trafford * - cleanup/rewrite for V4L2 API (2005) * * VBI support by Hans Verkuil . * * NTSC sliced VBI support by Christopher Neufeld * with additional fixes by Hans Verkuil . * * CX23885 support by Steven Toth . * * CX2388[578] IRQ handling, IO Pin mux configuration and other small fixes are * Copyright (C) 2010 Andy Walls * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include "cx25840-core.h" MODULE_DESCRIPTION("Conexant CX25840 audio/video decoder driver"); MODULE_AUTHOR("Ulf Eklund, Chris Kennedy, Hans Verkuil, Tyler Trafford"); MODULE_LICENSE("GPL"); #define CX25840_VID_INT_STAT_REG 0x410 #define CX25840_VID_INT_STAT_BITS 0x0000ffff #define CX25840_VID_INT_MASK_BITS 0xffff0000 #define CX25840_VID_INT_MASK_SHFT 16 #define CX25840_VID_INT_MASK_REG 0x412 #define CX23885_AUD_MC_INT_MASK_REG 0x80c #define CX23885_AUD_MC_INT_STAT_BITS 0xffff0000 #define CX23885_AUD_MC_INT_CTRL_BITS 0x0000ffff #define CX23885_AUD_MC_INT_STAT_SHFT 16 #define CX25840_AUD_INT_CTRL_REG 0x812 #define CX25840_AUD_INT_STAT_REG 0x813 #define CX23885_PIN_CTRL_IRQ_REG 0x123 #define CX23885_PIN_CTRL_IRQ_IR_STAT 0x40 #define CX23885_PIN_CTRL_IRQ_AUD_STAT 0x20 #define CX23885_PIN_CTRL_IRQ_VID_STAT 0x10 #define CX25840_IR_STATS_REG 0x210 #define CX25840_IR_IRQEN_REG 0x214 static int cx25840_debug; module_param_named(debug,cx25840_debug, int, 0644); MODULE_PARM_DESC(debug, "Debugging messages [0=Off (default) 1=On]"); /* ----------------------------------------------------------------------- */ int cx25840_write(struct i2c_client *client, u16 addr, u8 value) { u8 buffer[3]; buffer[0] = addr >> 8; buffer[1] = addr & 0xff; buffer[2] = value; return i2c_master_send(client, buffer, 3); } int cx25840_write4(struct i2c_client *client, u16 addr, u32 value) { u8 buffer[6]; buffer[0] = addr >> 8; buffer[1] = addr & 0xff; buffer[2] = value & 0xff; buffer[3] = (value >> 8) & 0xff; buffer[4] = (value >> 16) & 0xff; buffer[5] = value >> 24; return i2c_master_send(client, buffer, 6); } u8 cx25840_read(struct i2c_client * client, u16 addr) { struct i2c_msg msgs[2]; u8 tx_buf[2], rx_buf[1]; /* Write register address */ tx_buf[0] = addr >> 8; tx_buf[1] = addr & 0xff; msgs[0].addr = client->addr; msgs[0].flags = 0; msgs[0].len = 2; msgs[0].buf = (char *) tx_buf; /* Read data from register */ msgs[1].addr = client->addr; msgs[1].flags = I2C_M_RD; msgs[1].len = 1; msgs[1].buf = (char *) rx_buf; if (i2c_transfer(client->adapter, msgs, 2) < 2) return 0; return rx_buf[0]; } u32 cx25840_read4(struct i2c_client * client, u16 addr) { struct i2c_msg msgs[2]; u8 tx_buf[2], rx_buf[4]; /* Write register address */ tx_buf[0] = addr >> 8; tx_buf[1] = addr & 0xff; msgs[0].addr = client->addr; msgs[0].flags = 0; msgs[0].len = 2; msgs[0].buf = (char *) tx_buf; /* Read data from registers */ msgs[1].addr = client->addr; msgs[1].flags = I2C_M_RD; msgs[1].len = 4; msgs[1].buf = (char *) rx_buf; if (i2c_transfer(client->adapter, msgs, 2) < 2) return 0; return (rx_buf[3] << 24) | (rx_buf[2] << 16) | (rx_buf[1] << 8) | rx_buf[0]; } int cx25840_and_or(struct i2c_client *client, u16 addr, unsigned and_mask, u8 or_value) { return cx25840_write(client, addr, (cx25840_read(client, addr) & and_mask) | or_value); } int cx25840_and_or4(struct i2c_client *client, u16 addr, u32 and_mask, u32 or_value) { return cx25840_write4(client, addr, (cx25840_read4(client, addr) & and_mask) | or_value); } /* ----------------------------------------------------------------------- */ static int set_input(struct i2c_client *client, enum cx25840_video_input vid_input, enum cx25840_audio_input aud_input); /* ----------------------------------------------------------------------- */ static int cx23885_s_io_pin_config(struct v4l2_subdev *sd, size_t n, struct v4l2_subdev_io_pin_config *p) { struct i2c_client *client = v4l2_get_subdevdata(sd); int i; u32 pin_ctrl; u8 gpio_oe, gpio_data, strength; pin_ctrl = cx25840_read4(client, 0x120); gpio_oe = cx25840_read(client, 0x160); gpio_data = cx25840_read(client, 0x164); for (i = 0; i < n; i++) { strength = p[i].strength; if (strength > CX25840_PIN_DRIVE_FAST) strength = CX25840_PIN_DRIVE_FAST; switch (p[i].pin) { case CX23885_PIN_IRQ_N_GPIO16: if (p[i].function != CX23885_PAD_IRQ_N) { /* GPIO16 */ pin_ctrl &= ~(0x1 << 25); } else { /* IRQ_N */ if (p[i].flags & (V4L2_SUBDEV_IO_PIN_DISABLE | V4L2_SUBDEV_IO_PIN_INPUT)) { pin_ctrl &= ~(0x1 << 25); } else { pin_ctrl |= (0x1 << 25); } if (p[i].flags & V4L2_SUBDEV_IO_PIN_ACTIVE_LOW) { pin_ctrl &= ~(0x1 << 24); } else { pin_ctrl |= (0x1 << 24); } } break; case CX23885_PIN_IR_RX_GPIO19: if (p[i].function != CX23885_PAD_GPIO19) { /* IR_RX */ gpio_oe |= (0x1 << 0); pin_ctrl &= ~(0x3 << 18); pin_ctrl |= (strength << 18); } else { /* GPIO19 */ gpio_oe &= ~(0x1 << 0); if (p[i].flags & V4L2_SUBDEV_IO_PIN_SET_VALUE) { gpio_data &= ~(0x1 << 0); gpio_data |= ((p[i].value & 0x1) << 0); } pin_ctrl &= ~(0x3 << 12); pin_ctrl |= (strength << 12); } break; case CX23885_PIN_IR_TX_GPIO20: if (p[i].function != CX23885_PAD_GPIO20) { /* IR_TX */ gpio_oe |= (0x1 << 1); if (p[i].flags & V4L2_SUBDEV_IO_PIN_DISABLE) pin_ctrl &= ~(0x1 << 10); else pin_ctrl |= (0x1 << 10); pin_ctrl &= ~(0x3 << 18); pin_ctrl |= (strength << 18); } else { /* GPIO20 */ gpio_oe &= ~(0x1 << 1); if (p[i].flags & V4L2_SUBDEV_IO_PIN_SET_VALUE) { gpio_data &= ~(0x1 << 1); gpio_data |= ((p[i].value & 0x1) << 1); } pin_ctrl &= ~(0x3 << 12); pin_ctrl |= (strength << 12); } break; case CX23885_PIN_I2S_SDAT_GPIO21: if (p[i].function != CX23885_PAD_GPIO21) { /* I2S_SDAT */ /* TODO: Input or Output config */ gpio_oe |= (0x1 << 2); pin_ctrl &= ~(0x3 << 22); pin_ctrl |= (strength << 22); } else { /* GPIO21 */ gpio_oe &= ~(0x1 << 2); if (p[i].flags & V4L2_SUBDEV_IO_PIN_SET_VALUE) { gpio_data &= ~(0x1 << 2); gpio_data |= ((p[i].value & 0x1) << 2); } pin_ctrl &= ~(0x3 << 12); pin_ctrl |= (strength << 12); } break; case CX23885_PIN_I2S_WCLK_GPIO22: if (p[i].function != CX23885_PAD_GPIO22) { /* I2S_WCLK */ /* TODO: Input or Output config */ gpio_oe |= (0x1 << 3); pin_ctrl &= ~(0x3 << 22); pin_ctrl |= (strength << 22); } else { /* GPIO22 */ gpio_oe &= ~(0x1 << 3); if (p[i].flags & V4L2_SUBDEV_IO_PIN_SET_VALUE) { gpio_data &= ~(0x1 << 3); gpio_data |= ((p[i].value & 0x1) << 3); } pin_ctrl &= ~(0x3 << 12); pin_ctrl |= (strength << 12); } break; case CX23885_PIN_I2S_BCLK_GPIO23: if (p[i].function != CX23885_PAD_GPIO23) { /* I2S_BCLK */ /* TODO: Input or Output config */ gpio_oe |= (0x1 << 4); pin_ctrl &= ~(0x3 << 22); pin_ctrl |= (strength << 22); } else { /* GPIO23 */ gpio_oe &= ~(0x1 << 4); if (p[i].flags & V4L2_SUBDEV_IO_PIN_SET_VALUE) { gpio_data &= ~(0x1 << 4); gpio_data |= ((p[i].value & 0x1) << 4); } pin_ctrl &= ~(0x3 << 12); pin_ctrl |= (strength << 12); } break; } } cx25840_write(client, 0x164, gpio_data); cx25840_write(client, 0x160, gpio_oe); cx25840_write4(client, 0x120, pin_ctrl); return 0; } static int common_s_io_pin_config(struct v4l2_subdev *sd, size_t n, struct v4l2_subdev_io_pin_config *pincfg) { struct cx25840_state *state = to_state(sd); if (is_cx2388x(state)) return cx23885_s_io_pin_config(sd, n, pincfg); return 0; } /* ----------------------------------------------------------------------- */ static void init_dll1(struct i2c_client *client) { /* This is the Hauppauge sequence used to * initialize the Delay Lock Loop 1 (ADC DLL). */ cx25840_write(client, 0x159, 0x23); cx25840_write(client, 0x15a, 0x87); cx25840_write(client, 0x15b, 0x06); udelay(10); cx25840_write(client, 0x159, 0xe1); udelay(10); cx25840_write(client, 0x15a, 0x86); cx25840_write(client, 0x159, 0xe0); cx25840_write(client, 0x159, 0xe1); cx25840_write(client, 0x15b, 0x10); } static void init_dll2(struct i2c_client *client) { /* This is the Hauppauge sequence used to * initialize the Delay Lock Loop 2 (ADC DLL). */ cx25840_write(client, 0x15d, 0xe3); cx25840_write(client, 0x15e, 0x86); cx25840_write(client, 0x15f, 0x06); udelay(10); cx25840_write(client, 0x15d, 0xe1); cx25840_write(client, 0x15d, 0xe0); cx25840_write(client, 0x15d, 0xe1); } static void cx25836_initialize(struct i2c_client *client) { /* reset configuration is described on page 3-77 of the CX25836 datasheet */ /* 2. */ cx25840_and_or(client, 0x000, ~0x01, 0x01); cx25840_and_or(client, 0x000, ~0x01, 0x00); /* 3a. */ cx25840_and_or(client, 0x15a, ~0x70, 0x00); /* 3b. */ cx25840_and_or(client, 0x15b, ~0x1e, 0x06); /* 3c. */ cx25840_and_or(client, 0x159, ~0x02, 0x02); /* 3d. */ udelay(10); /* 3e. */ cx25840_and_or(client, 0x159, ~0x02, 0x00); /* 3f. */ cx25840_and_or(client, 0x159, ~0xc0, 0xc0); /* 3g. */ cx25840_and_or(client, 0x159, ~0x01, 0x00); cx25840_and_or(client, 0x159, ~0x01, 0x01); /* 3h. */ cx25840_and_or(client, 0x15b, ~0x1e, 0x10); } static void cx25840_work_handler(struct work_struct *work) { struct cx25840_state *state = container_of(work, struct cx25840_state, fw_work); cx25840_loadfw(state->c); wake_up(&state->fw_wait); } static void cx25840_initialize(struct i2c_client *client) { DEFINE_WAIT(wait); struct cx25840_state *state = to_state(i2c_get_clientdata(client)); struct workqueue_struct *q; /* datasheet startup in numbered steps, refer to page 3-77 */ /* 2. */ cx25840_and_or(client, 0x803, ~0x10, 0x00); /* The default of this register should be 4, but I get 0 instead. * Set this register to 4 manually. */ cx25840_write(client, 0x000, 0x04); /* 3. */ init_dll1(client); init_dll2(client); cx25840_write(client, 0x136, 0x0a); /* 4. */ cx25840_write(client, 0x13c, 0x01); cx25840_write(client, 0x13c, 0x00); /* 5. */ /* Do the firmware load in a work handler to prevent. Otherwise the kernel is blocked waiting for the bit-banging i2c interface to finish uploading the firmware. */ INIT_WORK(&state->fw_work, cx25840_work_handler); init_waitqueue_head(&state->fw_wait); q = create_singlethread_workqueue("cx25840_fw"); prepare_to_wait(&state->fw_wait, &wait, TASK_UNINTERRUPTIBLE); queue_work(q, &state->fw_work); schedule(); finish_wait(&state->fw_wait, &wait); destroy_workqueue(q); /* 6. */ cx25840_write(client, 0x115, 0x8c); cx25840_write(client, 0x116, 0x07); cx25840_write(client, 0x118, 0x02); /* 7. */ cx25840_write(client, 0x4a5, 0x80); cx25840_write(client, 0x4a5, 0x00); cx25840_write(client, 0x402, 0x00); /* 8. */ cx25840_and_or(client, 0x401, ~0x18, 0); cx25840_and_or(client, 0x4a2, ~0x10, 0x10); /* steps 8c and 8d are done in change_input() */ /* 10. */ cx25840_write(client, 0x8d3, 0x1f); cx25840_write(client, 0x8e3, 0x03); cx25840_std_setup(client); /* trial and error says these are needed to get audio */ cx25840_write(client, 0x914, 0xa0); cx25840_write(client, 0x918, 0xa0); cx25840_write(client, 0x919, 0x01); /* stereo prefered */ cx25840_write(client, 0x809, 0x04); /* AC97 shift */ cx25840_write(client, 0x8cf, 0x0f); /* (re)set input */ set_input(client, state->vid_input, state->aud_input); /* start microcontroller */ cx25840_and_or(client, 0x803, ~0x10, 0x10); } static void cx23885_initialize(struct i2c_client *client) { DEFINE_WAIT(wait); struct cx25840_state *state = to_state(i2c_get_clientdata(client)); struct workqueue_struct *q; /* * Come out of digital power down * The CX23888, at least, needs this, otherwise registers aside from * 0x0-0x2 can't be read or written. */ cx25840_write(client, 0x000, 0); /* Internal Reset */ cx25840_and_or(client, 0x102, ~0x01, 0x01); cx25840_and_or(client, 0x102, ~0x01, 0x00); /* Stop microcontroller */ cx25840_and_or(client, 0x803, ~0x10, 0x00); /* DIF in reset? */ cx25840_write(client, 0x398, 0); /* * Trust the default xtal, no division * '885: 28.636363... MHz * '887: 25.000000 MHz * '888: 50.000000 MHz */ cx25840_write(client, 0x2, 0x76); /* Power up all the PLL's and DLL */ cx25840_write(client, 0x1, 0x40); /* Sys PLL */ switch (state->id) { case V4L2_IDENT_CX23888_AV: /* * 50.0 MHz * (0xb + 0xe8ba26/0x2000000)/4 = 5 * 28.636363 MHz * 572.73 MHz before post divide */ cx25840_write4(client, 0x11c, 0x00e8ba26); cx25840_write4(client, 0x118, 0x0000040b); break; case V4L2_IDENT_CX23887_AV: /* * 25.0 MHz * (0x16 + 0x1d1744c/0x2000000)/4 = 5 * 28.636363 MHz * 572.73 MHz before post divide */ cx25840_write4(client, 0x11c, 0x01d1744c); cx25840_write4(client, 0x118, 0x00000416); break; case V4L2_IDENT_CX23885_AV: default: /* * 28.636363 MHz * (0x14 + 0x0/0x2000000)/4 = 5 * 28.636363 MHz * 572.73 MHz before post divide */ cx25840_write4(client, 0x11c, 0x00000000); cx25840_write4(client, 0x118, 0x00000414); break; } /* Disable DIF bypass */ cx25840_write4(client, 0x33c, 0x00000001); /* DIF Src phase inc */ cx25840_write4(client, 0x340, 0x0df7df83); /* * Vid PLL * Setup for a BT.656 pixel clock of 13.5 Mpixels/second * * 28.636363 MHz * (0xf + 0x02be2c9/0x2000000)/4 = 8 * 13.5 MHz * 432.0 MHz before post divide */ cx25840_write4(client, 0x10c, 0x002be2c9); cx25840_write4(client, 0x108, 0x0000040f); /* Luma */ cx25840_write4(client, 0x414, 0x00107d12); /* Chroma */ cx25840_write4(client, 0x420, 0x3d008282); /* * Aux PLL * Initial setup for audio sample clock: * 48 ksps, 16 bits/sample, x160 multiplier = 122.88 MHz * Intial I2S output/master clock(?): * 48 ksps, 16 bits/sample, x16 multiplier = 12.288 MHz */ switch (state->id) { case V4L2_IDENT_CX23888_AV: /* * 50.0 MHz * (0x7 + 0x0bedfa4/0x2000000)/3 = 122.88 MHz * 368.64 MHz before post divide * 122.88 MHz / 0xa = 12.288 MHz */ cx25840_write4(client, 0x114, 0x00bedfa4); cx25840_write4(client, 0x110, 0x000a0307); break; case V4L2_IDENT_CX23887_AV: /* * 25.0 MHz * (0xe + 0x17dbf48/0x2000000)/3 = 122.88 MHz * 368.64 MHz before post divide * 122.88 MHz / 0xa = 12.288 MHz */ cx25840_write4(client, 0x114, 0x017dbf48); cx25840_write4(client, 0x110, 0x000a030e); break; case V4L2_IDENT_CX23885_AV: default: /* * 28.636363 MHz * (0xc + 0x1bf0c9e/0x2000000)/3 = 122.88 MHz * 368.64 MHz before post divide * 122.88 MHz / 0xa = 12.288 MHz */ cx25840_write4(client, 0x114, 0x01bf0c9e); cx25840_write4(client, 0x110, 0x000a030c); break; }; /* ADC2 input select */ cx25840_write(client, 0x102, 0x10); /* VIN1 & VIN5 */ cx25840_write(client, 0x103, 0x11); /* Enable format auto detect */ cx25840_write(client, 0x400, 0); /* Fast subchroma lock */ /* White crush, Chroma AGC & Chroma Killer enabled */ cx25840_write(client, 0x401, 0xe8); /* Select AFE clock pad output source */ cx25840_write(client, 0x144, 0x05); /* Drive GPIO2 direction and values for HVR1700 * where an onboard mux selects the output of demodulator * vs the 417. Failure to set this results in no DTV. * It's safe to set this across all Hauppauge boards * currently, regardless of the board type. */ cx25840_write(client, 0x160, 0x1d); cx25840_write(client, 0x164, 0x00); /* Do the firmware load in a work handler to prevent. Otherwise the kernel is blocked waiting for the bit-banging i2c interface to finish uploading the firmware. */ INIT_WORK(&state->fw_work, cx25840_work_handler); init_waitqueue_head(&state->fw_wait); q = create_singlethread_workqueue("cx25840_fw"); prepare_to_wait(&state->fw_wait, &wait, TASK_UNINTERRUPTIBLE); queue_work(q, &state->fw_work); schedule(); finish_wait(&state->fw_wait, &wait); destroy_workqueue(q); cx25840_std_setup(client); /* (re)set input */ set_input(client, state->vid_input, state->aud_input); /* start microcontroller */ cx25840_and_or(client, 0x803, ~0x10, 0x10); /* Disable and clear video interrupts - we don't use them */ cx25840_write4(client, CX25840_VID_INT_STAT_REG, 0xffffffff); /* Disable and clear audio interrupts - we don't use them */ cx25840_write(client, CX25840_AUD_INT_CTRL_REG, 0xff); cx25840_write(client, CX25840_AUD_INT_STAT_REG, 0xff); } /* ----------------------------------------------------------------------- */ static void cx231xx_initialize(struct i2c_client *client) { DEFINE_WAIT(wait); struct cx25840_state *state = to_state(i2c_get_clientdata(client)); struct workqueue_struct *q; /* Internal Reset */ cx25840_and_or(client, 0x102, ~0x01, 0x01); cx25840_and_or(client, 0x102, ~0x01, 0x00); /* Stop microcontroller */ cx25840_and_or(client, 0x803, ~0x10, 0x00); /* DIF in reset? */ cx25840_write(client, 0x398, 0); /* Trust the default xtal, no division */ /* This changes for the cx23888 products */ cx25840_write(client, 0x2, 0x76); /* Bring down the regulator for AUX clk */ cx25840_write(client, 0x1, 0x40); /* Disable DIF bypass */ cx25840_write4(client, 0x33c, 0x00000001); /* DIF Src phase inc */ cx25840_write4(client, 0x340, 0x0df7df83); /* Luma */ cx25840_write4(client, 0x414, 0x00107d12); /* Chroma */ cx25840_write4(client, 0x420, 0x3d008282); /* ADC2 input select */ cx25840_write(client, 0x102, 0x10); /* VIN1 & VIN5 */ cx25840_write(client, 0x103, 0x11); /* Enable format auto detect */ cx25840_write(client, 0x400, 0); /* Fast subchroma lock */ /* White crush, Chroma AGC & Chroma Killer enabled */ cx25840_write(client, 0x401, 0xe8); /* Do the firmware load in a work handler to prevent. Otherwise the kernel is blocked waiting for the bit-banging i2c interface to finish uploading the firmware. */ INIT_WORK(&state->fw_work, cx25840_work_handler); init_waitqueue_head(&state->fw_wait); q = create_singlethread_workqueue("cx25840_fw"); prepare_to_wait(&state->fw_wait, &wait, TASK_UNINTERRUPTIBLE); queue_work(q, &state->fw_work); schedule(); finish_wait(&state->fw_wait, &wait); destroy_workqueue(q); cx25840_std_setup(client); /* (re)set input */ set_input(client, state->vid_input, state->aud_input); /* start microcontroller */ cx25840_and_or(client, 0x803, ~0x10, 0x10); } /* ----------------------------------------------------------------------- */ void cx25840_std_setup(struct i2c_client *client) { struct cx25840_state *state = to_state(i2c_get_clientdata(client)); v4l2_std_id std = state->std; int hblank, hactive, burst, vblank, vactive, sc; int vblank656, src_decimation; int luma_lpf, uv_lpf, comb; u32 pll_int, pll_frac, pll_post; /* datasheet startup, step 8d */ if (std & ~V4L2_STD_NTSC) cx25840_write(client, 0x49f, 0x11); else cx25840_write(client, 0x49f, 0x14); if (std & V4L2_STD_625_50) { hblank = 132; hactive = 720; burst = 93; vblank = 36; vactive = 580; vblank656 = 40; src_decimation = 0x21f; luma_lpf = 2; if (std & V4L2_STD_SECAM) { uv_lpf = 0; comb = 0; sc = 0x0a425f; } else if (std == V4L2_STD_PAL_Nc) { uv_lpf = 1; comb = 0x20; sc = 556453; } else { uv_lpf = 1; comb = 0x20; sc = 688739; } } else { hactive = 720; hblank = 122; vactive = 487; luma_lpf = 1; uv_lpf = 1; src_decimation = 0x21f; if (std == V4L2_STD_PAL_60) { vblank = 26; vblank656 = 26; burst = 0x5b; luma_lpf = 2; comb = 0x20; sc = 688739; } else if (std == V4L2_STD_PAL_M) { vblank = 20; vblank656 = 24; burst = 0x61; comb = 0x20; sc = 555452; } else { vblank = 26; vblank656 = 26; burst = 0x5b; comb = 0x66; sc = 556063; } } /* DEBUG: Displays configured PLL frequency */ if (!is_cx231xx(state)) { pll_int = cx25840_read(client, 0x108); pll_frac = cx25840_read4(client, 0x10c) & 0x1ffffff; pll_post = cx25840_read(client, 0x109); v4l_dbg(1, cx25840_debug, client, "PLL regs = int: %u, frac: %u, post: %u\n", pll_int, pll_frac, pll_post); if (pll_post) { int fin, fsc; int pll = (28636363L * ((((u64)pll_int) << 25L) + pll_frac)) >> 25L; pll /= pll_post; v4l_dbg(1, cx25840_debug, client, "PLL = %d.%06d MHz\n", pll / 1000000, pll % 1000000); v4l_dbg(1, cx25840_debug, client, "PLL/8 = %d.%06d MHz\n", pll / 8000000, (pll / 8) % 1000000); fin = ((u64)src_decimation * pll) >> 12; v4l_dbg(1, cx25840_debug, client, "ADC Sampling freq = %d.%06d MHz\n", fin / 1000000, fin % 1000000); fsc = (((u64)sc) * pll) >> 24L; v4l_dbg(1, cx25840_debug, client, "Chroma sub-carrier freq = %d.%06d MHz\n", fsc / 1000000, fsc % 1000000); v4l_dbg(1, cx25840_debug, client, "hblank %i, hactive %i, " "vblank %i, vactive %i, vblank656 %i, src_dec %i, " "burst 0x%02x, luma_lpf %i, uv_lpf %i, comb 0x%02x, " "sc 0x%06x\n", hblank, hactive, vblank, vactive, vblank656, src_decimation, burst, luma_lpf, uv_lpf, comb, sc); } } /* Sets horizontal blanking delay and active lines */ cx25840_write(client, 0x470, hblank); cx25840_write(client, 0x471, 0xff & (((hblank >> 8) & 0x3) | (hactive << 4))); cx25840_write(client, 0x472, hactive >> 4); /* Sets burst gate delay */ cx25840_write(client, 0x473, burst); /* Sets vertical blanking delay and active duration */ cx25840_write(client, 0x474, vblank); cx25840_write(client, 0x475, 0xff & (((vblank >> 8) & 0x3) | (vactive << 4))); cx25840_write(client, 0x476, vactive >> 4); cx25840_write(client, 0x477, vblank656); /* Sets src decimation rate */ cx25840_write(client, 0x478, 0xff & src_decimation); cx25840_write(client, 0x479, 0xff & (src_decimation >> 8)); /* Sets Luma and UV Low pass filters */ cx25840_write(client, 0x47a, luma_lpf << 6 | ((uv_lpf << 4) & 0x30)); /* Enables comb filters */ cx25840_write(client, 0x47b, comb); /* Sets SC Step*/ cx25840_write(client, 0x47c, sc); cx25840_write(client, 0x47d, 0xff & sc >> 8); cx25840_write(client, 0x47e, 0xff & sc >> 16); /* Sets VBI parameters */ if (std & V4L2_STD_625_50) { cx25840_write(client, 0x47f, 0x01); state->vbi_line_offset = 5; } else { cx25840_write(client, 0x47f, 0x00); state->vbi_line_offset = 8; } } /* ----------------------------------------------------------------------- */ static void input_change(struct i2c_client *client) { struct cx25840_state *state = to_state(i2c_get_clientdata(client)); v4l2_std_id std = state->std; /* Follow step 8c and 8d of section 3.16 in the cx25840 datasheet */ if (std & V4L2_STD_SECAM) { cx25840_write(client, 0x402, 0); } else { cx25840_write(client, 0x402, 0x04); cx25840_write(client, 0x49f, (std & V4L2_STD_NTSC) ? 0x14 : 0x11); } cx25840_and_or(client, 0x401, ~0x60, 0); cx25840_and_or(client, 0x401, ~0x60, 0x60); /* Don't write into audio registers on cx2583x chips */ if (is_cx2583x(state)) return; cx25840_and_or(client, 0x810, ~0x01, 1); if (state->radio) { cx25840_write(client, 0x808, 0xf9); cx25840_write(client, 0x80b, 0x00); } else if (std & V4L2_STD_525_60) { /* Certain Hauppauge PVR150 models have a hardware bug that causes audio to drop out. For these models the audio standard must be set explicitly. To be precise: it affects cards with tuner models 85, 99 and 112 (model numbers from tveeprom). */ int hw_fix = state->pvr150_workaround; if (std == V4L2_STD_NTSC_M_JP) { /* Japan uses EIAJ audio standard */ cx25840_write(client, 0x808, hw_fix ? 0x2f : 0xf7); } else if (std == V4L2_STD_NTSC_M_KR) { /* South Korea uses A2 audio standard */ cx25840_write(client, 0x808, hw_fix ? 0x3f : 0xf8); } else { /* Others use the BTSC audio standard */ cx25840_write(client, 0x808, hw_fix ? 0x1f : 0xf6); } cx25840_write(client, 0x80b, 0x00); } else if (std & V4L2_STD_PAL) { /* Autodetect audio standard and audio system */ cx25840_write(client, 0x808, 0xff); /* Since system PAL-L is pretty much non-existant and not used by any public broadcast network, force 6.5 MHz carrier to be interpreted as System DK, this avoids DK audio detection instability */ cx25840_write(client, 0x80b, 0x00); } else if (std & V4L2_STD_SECAM) { /* Autodetect audio standard and audio system */ cx25840_write(client, 0x808, 0xff); /* If only one of SECAM-DK / SECAM-L is required, then force 6.5MHz carrier, else autodetect it */ if ((std & V4L2_STD_SECAM_DK) && !(std & (V4L2_STD_SECAM_L | V4L2_STD_SECAM_LC))) { /* 6.5 MHz carrier to be interpreted as System DK */ cx25840_write(client, 0x80b, 0x00); } else if (!(std & V4L2_STD_SECAM_DK) && (std & (V4L2_STD_SECAM_L | V4L2_STD_SECAM_LC))) { /* 6.5 MHz carrier to be interpreted as System L */ cx25840_write(client, 0x80b, 0x08); } else { /* 6.5 MHz carrier to be autodetected */ cx25840_write(client, 0x80b, 0x10); } } cx25840_and_or(client, 0x810, ~0x01, 0); } static int set_input(struct i2c_client *client, enum cx25840_video_input vid_input, enum cx25840_audio_input aud_input) { struct cx25840_state *state = to_state(i2c_get_clientdata(client)); u8 is_composite = (vid_input >= CX25840_COMPOSITE1 && vid_input <= CX25840_COMPOSITE8); u8 is_component = (vid_input & CX25840_COMPONENT_ON) == CX25840_COMPONENT_ON; int luma = vid_input & 0xf0; int chroma = vid_input & 0xf00; u8 reg; v4l_dbg(1, cx25840_debug, client, "decoder set video input %d, audio input %d\n", vid_input, aud_input); if (vid_input >= CX25840_VIN1_CH1) { v4l_dbg(1, cx25840_debug, client, "vid_input 0x%x\n", vid_input); reg = vid_input & 0xff; is_composite = !is_component && ((vid_input & CX25840_SVIDEO_ON) != CX25840_SVIDEO_ON); v4l_dbg(1, cx25840_debug, client, "mux cfg 0x%x comp=%d\n", reg, is_composite); } else if (is_composite) { reg = 0xf0 + (vid_input - CX25840_COMPOSITE1); } else { if ((vid_input & ~0xff0) || luma < CX25840_SVIDEO_LUMA1 || luma > CX25840_SVIDEO_LUMA8 || chroma < CX25840_SVIDEO_CHROMA4 || chroma > CX25840_SVIDEO_CHROMA8) { v4l_err(client, "0x%04x is not a valid video input!\n", vid_input); return -EINVAL; } reg = 0xf0 + ((luma - CX25840_SVIDEO_LUMA1) >> 4); if (chroma >= CX25840_SVIDEO_CHROMA7) { reg &= 0x3f; reg |= (chroma - CX25840_SVIDEO_CHROMA7) >> 2; } else { reg &= 0xcf; reg |= (chroma - CX25840_SVIDEO_CHROMA4) >> 4; } } /* The caller has previously prepared the correct routing * configuration in reg (for the cx23885) so we have no * need to attempt to flip bits for earlier av decoders. */ if (!is_cx2388x(state) && !is_cx231xx(state)) { switch (aud_input) { case CX25840_AUDIO_SERIAL: /* do nothing, use serial audio input */ break; case CX25840_AUDIO4: reg &= ~0x30; break; case CX25840_AUDIO5: reg &= ~0x30; reg |= 0x10; break; case CX25840_AUDIO6: reg &= ~0x30; reg |= 0x20; break; case CX25840_AUDIO7: reg &= ~0xc0; break; case CX25840_AUDIO8: reg &= ~0xc0; reg |= 0x40; break; default: v4l_err(client, "0x%04x is not a valid audio input!\n", aud_input); return -EINVAL; } } cx25840_write(client, 0x103, reg); /* Set INPUT_MODE to Composite, S-Video or Component */ if (is_component) cx25840_and_or(client, 0x401, ~0x6, 0x6); else cx25840_and_or(client, 0x401, ~0x6, is_composite ? 0 : 0x02); if (!is_cx2388x(state) && !is_cx231xx(state)) { /* Set CH_SEL_ADC2 to 1 if input comes from CH3 */ cx25840_and_or(client, 0x102, ~0x2, (reg & 0x80) == 0 ? 2 : 0); /* Set DUAL_MODE_ADC2 to 1 if input comes from both CH2&CH3 */ if ((reg & 0xc0) != 0xc0 && (reg & 0x30) != 0x30) cx25840_and_or(client, 0x102, ~0x4, 4); else cx25840_and_or(client, 0x102, ~0x4, 0); } else { /* Set DUAL_MODE_ADC2 to 1 if component*/ cx25840_and_or(client, 0x102, ~0x4, is_component ? 0x4 : 0x0); if (is_composite) { /* ADC2 input select channel 2 */ cx25840_and_or(client, 0x102, ~0x2, 0); } else if (!is_component) { /* S-Video */ if (chroma >= CX25840_SVIDEO_CHROMA7) { /* ADC2 input select channel 3 */ cx25840_and_or(client, 0x102, ~0x2, 2); } else { /* ADC2 input select channel 2 */ cx25840_and_or(client, 0x102, ~0x2, 0); } } } state->vid_input = vid_input; state->aud_input = aud_input; cx25840_audio_set_path(client); input_change(client); if (is_cx2388x(state)) { /* Audio channel 1 src : Parallel 1 */ cx25840_write(client, 0x124, 0x03); /* Select AFE clock pad output source */ cx25840_write(client, 0x144, 0x05); /* I2S_IN_CTL: I2S_IN_SONY_MODE, LEFT SAMPLE on WS=1 */ cx25840_write(client, 0x914, 0xa0); /* I2S_OUT_CTL: * I2S_IN_SONY_MODE, LEFT SAMPLE on WS=1 * I2S_OUT_MASTER_MODE = Master */ cx25840_write(client, 0x918, 0xa0); cx25840_write(client, 0x919, 0x01); } else if (is_cx231xx(state)) { /* Audio channel 1 src : Parallel 1 */ cx25840_write(client, 0x124, 0x03); /* I2S_IN_CTL: I2S_IN_SONY_MODE, LEFT SAMPLE on WS=1 */ cx25840_write(client, 0x914, 0xa0); /* I2S_OUT_CTL: * I2S_IN_SONY_MODE, LEFT SAMPLE on WS=1 * I2S_OUT_MASTER_MODE = Master */ cx25840_write(client, 0x918, 0xa0); cx25840_write(client, 0x919, 0x01); } return 0; } /* ----------------------------------------------------------------------- */ static int set_v4lstd(struct i2c_client *client) { struct cx25840_state *state = to_state(i2c_get_clientdata(client)); u8 fmt = 0; /* zero is autodetect */ u8 pal_m = 0; /* First tests should be against specific std */ if (state->std == V4L2_STD_NTSC_M_JP) { fmt = 0x2; } else if (state->std == V4L2_STD_NTSC_443) { fmt = 0x3; } else if (state->std == V4L2_STD_PAL_M) { pal_m = 1; fmt = 0x5; } else if (state->std == V4L2_STD_PAL_N) { fmt = 0x6; } else if (state->std == V4L2_STD_PAL_Nc) { fmt = 0x7; } else if (state->std == V4L2_STD_PAL_60) { fmt = 0x8; } else { /* Then, test against generic ones */ if (state->std & V4L2_STD_NTSC) fmt = 0x1; else if (state->std & V4L2_STD_PAL) fmt = 0x4; else if (state->std & V4L2_STD_SECAM) fmt = 0xc; } v4l_dbg(1, cx25840_debug, client, "changing video std to fmt %i\n",fmt); /* Follow step 9 of section 3.16 in the cx25840 datasheet. Without this PAL may display a vertical ghosting effect. This happens for example with the Yuan MPC622. */ if (fmt >= 4 && fmt < 8) { /* Set format to NTSC-M */ cx25840_and_or(client, 0x400, ~0xf, 1); /* Turn off LCOMB */ cx25840_and_or(client, 0x47b, ~6, 0); } cx25840_and_or(client, 0x400, ~0xf, fmt); cx25840_and_or(client, 0x403, ~0x3, pal_m); cx25840_std_setup(client); if (!is_cx2583x(state)) input_change(client); return 0; } /* ----------------------------------------------------------------------- */ static int cx25840_s_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_subdev *sd = to_sd(ctrl); struct i2c_client *client = v4l2_get_subdevdata(sd); switch (ctrl->id) { case V4L2_CID_BRIGHTNESS: cx25840_write(client, 0x414, ctrl->val - 128); break; case V4L2_CID_CONTRAST: cx25840_write(client, 0x415, ctrl->val << 1); break; case V4L2_CID_SATURATION: cx25840_write(client, 0x420, ctrl->val << 1); cx25840_write(client, 0x421, ctrl->val << 1); break; case V4L2_CID_HUE: cx25840_write(client, 0x422, ctrl->val); break; default: return -EINVAL; } return 0; } /* ----------------------------------------------------------------------- */ static int cx25840_s_mbus_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt) { struct cx25840_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); int HSC, VSC, Vsrc, Hsrc, filter, Vlines; int is_50Hz = !(state->std & V4L2_STD_525_60); if (fmt->code != V4L2_MBUS_FMT_FIXED) return -EINVAL; fmt->field = V4L2_FIELD_INTERLACED; fmt->colorspace = V4L2_COLORSPACE_SMPTE170M; Vsrc = (cx25840_read(client, 0x476) & 0x3f) << 4; Vsrc |= (cx25840_read(client, 0x475) & 0xf0) >> 4; Hsrc = (cx25840_read(client, 0x472) & 0x3f) << 4; Hsrc |= (cx25840_read(client, 0x471) & 0xf0) >> 4; Vlines = fmt->height + (is_50Hz ? 4 : 7); if ((fmt->width * 16 < Hsrc) || (Hsrc < fmt->width) || (Vlines * 8 < Vsrc) || (Vsrc < Vlines)) { v4l_err(client, "%dx%d is not a valid size!\n", fmt->width, fmt->height); return -ERANGE; } HSC = (Hsrc * (1 << 20)) / fmt->width - (1 << 20); VSC = (1 << 16) - (Vsrc * (1 << 9) / Vlines - (1 << 9)); VSC &= 0x1fff; if (fmt->width >= 385) filter = 0; else if (fmt->width > 192) filter = 1; else if (fmt->width > 96) filter = 2; else filter = 3; v4l_dbg(1, cx25840_debug, client, "decoder set size %dx%d -> scale %ux%u\n", fmt->width, fmt->height, HSC, VSC); /* HSCALE=HSC */ cx25840_write(client, 0x418, HSC & 0xff); cx25840_write(client, 0x419, (HSC >> 8) & 0xff); cx25840_write(client, 0x41a, HSC >> 16); /* VSCALE=VSC */ cx25840_write(client, 0x41c, VSC & 0xff); cx25840_write(client, 0x41d, VSC >> 8); /* VS_INTRLACE=1 VFILT=filter */ cx25840_write(client, 0x41e, 0x8 | filter); return 0; } /* ----------------------------------------------------------------------- */ static void log_video_status(struct i2c_client *client) { static const char *const fmt_strs[] = { "0x0", "NTSC-M", "NTSC-J", "NTSC-4.43", "PAL-BDGHI", "PAL-M", "PAL-N", "PAL-Nc", "PAL-60", "0x9", "0xA", "0xB", "SECAM", "0xD", "0xE", "0xF" }; struct cx25840_state *state = to_state(i2c_get_clientdata(client)); u8 vidfmt_sel = cx25840_read(client, 0x400) & 0xf; u8 gen_stat1 = cx25840_read(client, 0x40d); u8 gen_stat2 = cx25840_read(client, 0x40e); int vid_input = state->vid_input; v4l_info(client, "Video signal: %spresent\n", (gen_stat2 & 0x20) ? "" : "not "); v4l_info(client, "Detected format: %s\n", fmt_strs[gen_stat1 & 0xf]); v4l_info(client, "Specified standard: %s\n", vidfmt_sel ? fmt_strs[vidfmt_sel] : "automatic detection"); if (vid_input >= CX25840_COMPOSITE1 && vid_input <= CX25840_COMPOSITE8) { v4l_info(client, "Specified video input: Composite %d\n", vid_input - CX25840_COMPOSITE1 + 1); } else { v4l_info(client, "Specified video input: S-Video (Luma In%d, Chroma In%d)\n", (vid_input & 0xf0) >> 4, (vid_input & 0xf00) >> 8); } v4l_info(client, "Specified audioclock freq: %d Hz\n", state->audclk_freq); } /* ----------------------------------------------------------------------- */ static void log_audio_status(struct i2c_client *client) { struct cx25840_state *state = to_state(i2c_get_clientdata(client)); u8 download_ctl = cx25840_read(client, 0x803); u8 mod_det_stat0 = cx25840_read(client, 0x804); u8 mod_det_stat1 = cx25840_read(client, 0x805); u8 audio_config = cx25840_read(client, 0x808); u8 pref_mode = cx25840_read(client, 0x809); u8 afc0 = cx25840_read(client, 0x80b); u8 mute_ctl = cx25840_read(client, 0x8d3); int aud_input = state->aud_input; char *p; switch (mod_det_stat0) { case 0x00: p = "mono"; break; case 0x01: p = "stereo"; break; case 0x02: p = "dual"; break; case 0x04: p = "tri"; break; case 0x10: p = "mono with SAP"; break; case 0x11: p = "stereo with SAP"; break; case 0x12: p = "dual with SAP"; break; case 0x14: p = "tri with SAP"; break; case 0xfe: p = "forced mode"; break; default: p = "not defined"; } v4l_info(client, "Detected audio mode: %s\n", p); switch (mod_det_stat1) { case 0x00: p = "not defined"; break; case 0x01: p = "EIAJ"; break; case 0x02: p = "A2-M"; break; case 0x03: p = "A2-BG"; break; case 0x04: p = "A2-DK1"; break; case 0x05: p = "A2-DK2"; break; case 0x06: p = "A2-DK3"; break; case 0x07: p = "A1 (6.0 MHz FM Mono)"; break; case 0x08: p = "AM-L"; break; case 0x09: p = "NICAM-BG"; break; case 0x0a: p = "NICAM-DK"; break; case 0x0b: p = "NICAM-I"; break; case 0x0c: p = "NICAM-L"; break; case 0x0d: p = "BTSC/EIAJ/A2-M Mono (4.5 MHz FMMono)"; break; case 0x0e: p = "IF FM Radio"; break; case 0x0f: p = "BTSC"; break; case 0x10: p = "high-deviation FM"; break; case 0x11: p = "very high-deviation FM"; break; case 0xfd: p = "unknown audio standard"; break; case 0xfe: p = "forced audio standard"; break; case 0xff: p = "no detected audio standard"; break; default: p = "not defined"; } v4l_info(client, "Detected audio standard: %s\n", p); v4l_info(client, "Audio microcontroller: %s\n", (download_ctl & 0x10) ? ((mute_ctl & 0x2) ? "detecting" : "running") : "stopped"); switch (audio_config >> 4) { case 0x00: p = "undefined"; break; case 0x01: p = "BTSC"; break; case 0x02: p = "EIAJ"; break; case 0x03: p = "A2-M"; break; case 0x04: p = "A2-BG"; break; case 0x05: p = "A2-DK1"; break; case 0x06: p = "A2-DK2"; break; case 0x07: p = "A2-DK3"; break; case 0x08: p = "A1 (6.0 MHz FM Mono)"; break; case 0x09: p = "AM-L"; break; case 0x0a: p = "NICAM-BG"; break; case 0x0b: p = "NICAM-DK"; break; case 0x0c: p = "NICAM-I"; break; case 0x0d: p = "NICAM-L"; break; case 0x0e: p = "FM radio"; break; case 0x0f: p = "automatic detection"; break; default: p = "undefined"; } v4l_info(client, "Configured audio standard: %s\n", p); if ((audio_config >> 4) < 0xF) { switch (audio_config & 0xF) { case 0x00: p = "MONO1 (LANGUAGE A/Mono L+R channel for BTSC, EIAJ, A2)"; break; case 0x01: p = "MONO2 (LANGUAGE B)"; break; case 0x02: p = "MONO3 (STEREO forced MONO)"; break; case 0x03: p = "MONO4 (NICAM ANALOG-Language C/Analog Fallback)"; break; case 0x04: p = "STEREO"; break; case 0x05: p = "DUAL1 (AB)"; break; case 0x06: p = "DUAL2 (AC) (FM)"; break; case 0x07: p = "DUAL3 (BC) (FM)"; break; case 0x08: p = "DUAL4 (AC) (AM)"; break; case 0x09: p = "DUAL5 (BC) (AM)"; break; case 0x0a: p = "SAP"; break; default: p = "undefined"; } v4l_info(client, "Configured audio mode: %s\n", p); } else { switch (audio_config & 0xF) { case 0x00: p = "BG"; break; case 0x01: p = "DK1"; break; case 0x02: p = "DK2"; break; case 0x03: p = "DK3"; break; case 0x04: p = "I"; break; case 0x05: p = "L"; break; case 0x06: p = "BTSC"; break; case 0x07: p = "EIAJ"; break; case 0x08: p = "A2-M"; break; case 0x09: p = "FM Radio"; break; case 0x0f: p = "automatic standard and mode detection"; break; default: p = "undefined"; } v4l_info(client, "Configured audio system: %s\n", p); } if (aud_input) { v4l_info(client, "Specified audio input: Tuner (In%d)\n", aud_input); } else { v4l_info(client, "Specified audio input: External\n"); } switch (pref_mode & 0xf) { case 0: p = "mono/language A"; break; case 1: p = "language B"; break; case 2: p = "language C"; break; case 3: p = "analog fallback"; break; case 4: p = "stereo"; break; case 5: p = "language AC"; break; case 6: p = "language BC"; break; case 7: p = "language AB"; break; default: p = "undefined"; } v4l_info(client, "Preferred audio mode: %s\n", p); if ((audio_config & 0xf) == 0xf) { switch ((afc0 >> 3) & 0x3) { case 0: p = "system DK"; break; case 1: p = "system L"; break; case 2: p = "autodetect"; break; default: p = "undefined"; } v4l_info(client, "Selected 65 MHz format: %s\n", p); switch (afc0 & 0x7) { case 0: p = "chroma"; break; case 1: p = "BTSC"; break; case 2: p = "EIAJ"; break; case 3: p = "A2-M"; break; case 4: p = "autodetect"; break; default: p = "undefined"; } v4l_info(client, "Selected 45 MHz format: %s\n", p); } } /* ----------------------------------------------------------------------- */ /* This load_fw operation must be called to load the driver's firmware. Without this the audio standard detection will fail and you will only get mono. Since loading the firmware is often problematic when the driver is compiled into the kernel I recommend postponing calling this function until the first open of the video device. Another reason for postponing it is that loading this firmware takes a long time (seconds) due to the slow i2c bus speed. So it will speed up the boot process if you can avoid loading the fw as long as the video device isn't used. */ static int cx25840_load_fw(struct v4l2_subdev *sd) { struct cx25840_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); if (!state->is_initialized) { /* initialize and load firmware */ state->is_initialized = 1; if (is_cx2583x(state)) cx25836_initialize(client); else if (is_cx2388x(state)) cx23885_initialize(client); else if (is_cx231xx(state)) cx231xx_initialize(client); else cx25840_initialize(client); } return 0; } #ifdef CONFIG_VIDEO_ADV_DEBUG static int cx25840_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg) { struct i2c_client *client = v4l2_get_subdevdata(sd); if (!v4l2_chip_match_i2c_client(client, ®->match)) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; reg->size = 1; reg->val = cx25840_read(client, reg->reg & 0x0fff); return 0; } static int cx25840_s_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg) { struct i2c_client *client = v4l2_get_subdevdata(sd); if (!v4l2_chip_match_i2c_client(client, ®->match)) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; cx25840_write(client, reg->reg & 0x0fff, reg->val & 0xff); return 0; } #endif static int cx25840_s_audio_stream(struct v4l2_subdev *sd, int enable) { struct cx25840_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); u8 v; if (is_cx2583x(state) || is_cx2388x(state) || is_cx231xx(state)) return 0; v4l_dbg(1, cx25840_debug, client, "%s audio output\n", enable ? "enable" : "disable"); if (enable) { v = cx25840_read(client, 0x115) | 0x80; cx25840_write(client, 0x115, v); v = cx25840_read(client, 0x116) | 0x03; cx25840_write(client, 0x116, v); } else { v = cx25840_read(client, 0x115) & ~(0x80); cx25840_write(client, 0x115, v); v = cx25840_read(client, 0x116) & ~(0x03); cx25840_write(client, 0x116, v); } return 0; } static int cx25840_s_stream(struct v4l2_subdev *sd, int enable) { struct cx25840_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); u8 v; v4l_dbg(1, cx25840_debug, client, "%s video output\n", enable ? "enable" : "disable"); if (enable) { if (is_cx2388x(state) || is_cx231xx(state)) { v = cx25840_read(client, 0x421) | 0x0b; cx25840_write(client, 0x421, v); } else { v = cx25840_read(client, 0x115) | 0x0c; cx25840_write(client, 0x115, v); v = cx25840_read(client, 0x116) | 0x04; cx25840_write(client, 0x116, v); } } else { if (is_cx2388x(state) || is_cx231xx(state)) { v = cx25840_read(client, 0x421) & ~(0x0b); cx25840_write(client, 0x421, v); } else { v = cx25840_read(client, 0x115) & ~(0x0c); cx25840_write(client, 0x115, v); v = cx25840_read(client, 0x116) & ~(0x04); cx25840_write(client, 0x116, v); } } return 0; } static int cx25840_s_std(struct v4l2_subdev *sd, v4l2_std_id std) { struct cx25840_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); if (state->radio == 0 && state->std == std) return 0; state->radio = 0; state->std = std; return set_v4lstd(client); } static int cx25840_s_radio(struct v4l2_subdev *sd) { struct cx25840_state *state = to_state(sd); state->radio = 1; return 0; } static int cx25840_s_video_routing(struct v4l2_subdev *sd, u32 input, u32 output, u32 config) { struct cx25840_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); return set_input(client, input, state->aud_input); } static int cx25840_s_audio_routing(struct v4l2_subdev *sd, u32 input, u32 output, u32 config) { struct cx25840_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); return set_input(client, state->vid_input, input); } static int cx25840_s_frequency(struct v4l2_subdev *sd, struct v4l2_frequency *freq) { struct i2c_client *client = v4l2_get_subdevdata(sd); input_change(client); return 0; } static int cx25840_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *vt) { struct cx25840_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); u8 vpres = cx25840_read(client, 0x40e) & 0x20; u8 mode; int val = 0; if (state->radio) return 0; vt->signal = vpres ? 0xffff : 0x0; if (is_cx2583x(state)) return 0; vt->capability |= V4L2_TUNER_CAP_STEREO | V4L2_TUNER_CAP_LANG1 | V4L2_TUNER_CAP_LANG2 | V4L2_TUNER_CAP_SAP; mode = cx25840_read(client, 0x804); /* get rxsubchans and audmode */ if ((mode & 0xf) == 1) val |= V4L2_TUNER_SUB_STEREO; else val |= V4L2_TUNER_SUB_MONO; if (mode == 2 || mode == 4) val = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2; if (mode & 0x10) val |= V4L2_TUNER_SUB_SAP; vt->rxsubchans = val; vt->audmode = state->audmode; return 0; } static int cx25840_s_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *vt) { struct cx25840_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); if (state->radio || is_cx2583x(state)) return 0; switch (vt->audmode) { case V4L2_TUNER_MODE_MONO: /* mono -> mono stereo -> mono bilingual -> lang1 */ cx25840_and_or(client, 0x809, ~0xf, 0x00); break; case V4L2_TUNER_MODE_STEREO: case V4L2_TUNER_MODE_LANG1: /* mono -> mono stereo -> stereo bilingual -> lang1 */ cx25840_and_or(client, 0x809, ~0xf, 0x04); break; case V4L2_TUNER_MODE_LANG1_LANG2: /* mono -> mono stereo -> stereo bilingual -> lang1/lang2 */ cx25840_and_or(client, 0x809, ~0xf, 0x07); break; case V4L2_TUNER_MODE_LANG2: /* mono -> mono stereo -> stereo bilingual -> lang2 */ cx25840_and_or(client, 0x809, ~0xf, 0x01); break; default: return -EINVAL; } state->audmode = vt->audmode; return 0; } static int cx25840_reset(struct v4l2_subdev *sd, u32 val) { struct cx25840_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); if (is_cx2583x(state)) cx25836_initialize(client); else if (is_cx2388x(state)) cx23885_initialize(client); else if (is_cx231xx(state)) cx231xx_initialize(client); else cx25840_initialize(client); return 0; } static int cx25840_g_chip_ident(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip) { struct cx25840_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); return v4l2_chip_ident_i2c_client(client, chip, state->id, state->rev); } static int cx25840_log_status(struct v4l2_subdev *sd) { struct cx25840_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); log_video_status(client); if (!is_cx2583x(state)) log_audio_status(client); cx25840_ir_log_status(sd); v4l2_ctrl_handler_log_status(&state->hdl, sd->name); return 0; } static int cx23885_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled) { struct cx25840_state *state = to_state(sd); struct i2c_client *c = v4l2_get_subdevdata(sd); u8 irq_stat, aud_stat, aud_en, ir_stat, ir_en; u32 vid_stat, aud_mc_stat; bool block_handled; int ret = 0; irq_stat = cx25840_read(c, CX23885_PIN_CTRL_IRQ_REG); v4l_dbg(2, cx25840_debug, c, "AV Core IRQ status (entry): %s %s %s\n", irq_stat & CX23885_PIN_CTRL_IRQ_IR_STAT ? "ir" : " ", irq_stat & CX23885_PIN_CTRL_IRQ_AUD_STAT ? "aud" : " ", irq_stat & CX23885_PIN_CTRL_IRQ_VID_STAT ? "vid" : " "); if ((is_cx23885(state) || is_cx23887(state))) { ir_stat = cx25840_read(c, CX25840_IR_STATS_REG); ir_en = cx25840_read(c, CX25840_IR_IRQEN_REG); v4l_dbg(2, cx25840_debug, c, "AV Core ir IRQ status: %#04x disables: %#04x\n", ir_stat, ir_en); if (irq_stat & CX23885_PIN_CTRL_IRQ_IR_STAT) { block_handled = false; ret = cx25840_ir_irq_handler(sd, status, &block_handled); if (block_handled) *handled = true; } } aud_stat = cx25840_read(c, CX25840_AUD_INT_STAT_REG); aud_en = cx25840_read(c, CX25840_AUD_INT_CTRL_REG); v4l_dbg(2, cx25840_debug, c, "AV Core audio IRQ status: %#04x disables: %#04x\n", aud_stat, aud_en); aud_mc_stat = cx25840_read4(c, CX23885_AUD_MC_INT_MASK_REG); v4l_dbg(2, cx25840_debug, c, "AV Core audio MC IRQ status: %#06x enables: %#06x\n", aud_mc_stat >> CX23885_AUD_MC_INT_STAT_SHFT, aud_mc_stat & CX23885_AUD_MC_INT_CTRL_BITS); if (irq_stat & CX23885_PIN_CTRL_IRQ_AUD_STAT) { if (aud_stat) { cx25840_write(c, CX25840_AUD_INT_STAT_REG, aud_stat); *handled = true; } } vid_stat = cx25840_read4(c, CX25840_VID_INT_STAT_REG); v4l_dbg(2, cx25840_debug, c, "AV Core video IRQ status: %#06x disables: %#06x\n", vid_stat & CX25840_VID_INT_STAT_BITS, vid_stat >> CX25840_VID_INT_MASK_SHFT); if (irq_stat & CX23885_PIN_CTRL_IRQ_VID_STAT) { if (vid_stat & CX25840_VID_INT_STAT_BITS) { cx25840_write4(c, CX25840_VID_INT_STAT_REG, vid_stat); *handled = true; } } irq_stat = cx25840_read(c, CX23885_PIN_CTRL_IRQ_REG); v4l_dbg(2, cx25840_debug, c, "AV Core IRQ status (exit): %s %s %s\n", irq_stat & CX23885_PIN_CTRL_IRQ_IR_STAT ? "ir" : " ", irq_stat & CX23885_PIN_CTRL_IRQ_AUD_STAT ? "aud" : " ", irq_stat & CX23885_PIN_CTRL_IRQ_VID_STAT ? "vid" : " "); return ret; } static int cx25840_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled) { struct cx25840_state *state = to_state(sd); *handled = false; /* Only support the CX2388[578] AV Core for now */ if (is_cx2388x(state)) return cx23885_irq_handler(sd, status, handled); return -ENODEV; } /* ----------------------------------------------------------------------- */ static const struct v4l2_ctrl_ops cx25840_ctrl_ops = { .s_ctrl = cx25840_s_ctrl, }; static const struct v4l2_subdev_core_ops cx25840_core_ops = { .log_status = cx25840_log_status, .g_chip_ident = cx25840_g_chip_ident, .g_ctrl = v4l2_subdev_g_ctrl, .s_ctrl = v4l2_subdev_s_ctrl, .s_ext_ctrls = v4l2_subdev_s_ext_ctrls, .try_ext_ctrls = v4l2_subdev_try_ext_ctrls, .g_ext_ctrls = v4l2_subdev_g_ext_ctrls, .queryctrl = v4l2_subdev_queryctrl, .querymenu = v4l2_subdev_querymenu, .s_std = cx25840_s_std, .reset = cx25840_reset, .load_fw = cx25840_load_fw, .s_io_pin_config = common_s_io_pin_config, #ifdef CONFIG_VIDEO_ADV_DEBUG .g_register = cx25840_g_register, .s_register = cx25840_s_register, #endif .interrupt_service_routine = cx25840_irq_handler, }; static const struct v4l2_subdev_tuner_ops cx25840_tuner_ops = { .s_frequency = cx25840_s_frequency, .s_radio = cx25840_s_radio, .g_tuner = cx25840_g_tuner, .s_tuner = cx25840_s_tuner, }; static const struct v4l2_subdev_audio_ops cx25840_audio_ops = { .s_clock_freq = cx25840_s_clock_freq, .s_routing = cx25840_s_audio_routing, .s_stream = cx25840_s_audio_stream, }; static const struct v4l2_subdev_video_ops cx25840_video_ops = { .s_routing = cx25840_s_video_routing, .s_mbus_fmt = cx25840_s_mbus_fmt, .s_stream = cx25840_s_stream, }; static const struct v4l2_subdev_vbi_ops cx25840_vbi_ops = { .decode_vbi_line = cx25840_decode_vbi_line, .s_raw_fmt = cx25840_s_raw_fmt, .s_sliced_fmt = cx25840_s_sliced_fmt, .g_sliced_fmt = cx25840_g_sliced_fmt, }; static const struct v4l2_subdev_ops cx25840_ops = { .core = &cx25840_core_ops, .tuner = &cx25840_tuner_ops, .audio = &cx25840_audio_ops, .video = &cx25840_video_ops, .vbi = &cx25840_vbi_ops, .ir = &cx25840_ir_ops, }; /* ----------------------------------------------------------------------- */ static u32 get_cx2388x_ident(struct i2c_client *client) { u32 ret; /* Come out of digital power down */ cx25840_write(client, 0x000, 0); /* Detecting whether the part is cx23885/7/8 is more * difficult than it needs to be. No ID register. Instead we * probe certain registers indicated in the datasheets to look * for specific defaults that differ between the silicon designs. */ /* It's either 885/7 if the IR Tx Clk Divider register exists */ if (cx25840_read4(client, 0x204) & 0xffff) { /* CX23885 returns bogus repetitive byte values for the DIF, * which doesn't exist for it. (Ex. 8a8a8a8a or 31313131) */ ret = cx25840_read4(client, 0x300); if (((ret & 0xffff0000) >> 16) == (ret & 0xffff)) { /* No DIF */ ret = V4L2_IDENT_CX23885_AV; } else { /* CX23887 has a broken DIF, but the registers * appear valid (but unsed), good enough to detect. */ ret = V4L2_IDENT_CX23887_AV; } } else if (cx25840_read4(client, 0x300) & 0x0fffffff) { /* DIF PLL Freq Word reg exists; chip must be a CX23888 */ ret = V4L2_IDENT_CX23888_AV; } else { v4l_err(client, "Unable to detect h/w, assuming cx23887\n"); ret = V4L2_IDENT_CX23887_AV; } /* Back into digital power down */ cx25840_write(client, 0x000, 2); return ret; } static int cx25840_probe(struct i2c_client *client, const struct i2c_device_id *did) { struct cx25840_state *state; struct v4l2_subdev *sd; int default_volume; u32 id = V4L2_IDENT_NONE; u16 device_id; /* Check if the adapter supports the needed features */ if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -EIO; v4l_dbg(1, cx25840_debug, client, "detecting cx25840 client on address 0x%x\n", client->addr << 1); device_id = cx25840_read(client, 0x101) << 8; device_id |= cx25840_read(client, 0x100); v4l_dbg(1, cx25840_debug, client, "device_id = 0x%04x\n", device_id); /* The high byte of the device ID should be * 0x83 for the cx2583x and 0x84 for the cx2584x */ if ((device_id & 0xff00) == 0x8300) { id = V4L2_IDENT_CX25836 + ((device_id >> 4) & 0xf) - 6; } else if ((device_id & 0xff00) == 0x8400) { id = V4L2_IDENT_CX25840 + ((device_id >> 4) & 0xf); } else if (device_id == 0x0000) { id = get_cx2388x_ident(client); } else if ((device_id & 0xfff0) == 0x5A30) { /* The CX23100 (0x5A3C = 23100) doesn't have an A/V decoder */ id = V4L2_IDENT_CX2310X_AV; } else if ((device_id & 0xff) == (device_id >> 8)) { v4l_err(client, "likely a confused/unresponsive cx2388[578] A/V decoder" " found @ 0x%x (%s)\n", client->addr << 1, client->adapter->name); v4l_err(client, "A method to reset it from the cx25840 driver" " software is not known at this time\n"); return -ENODEV; } else { v4l_dbg(1, cx25840_debug, client, "cx25840 not found\n"); return -ENODEV; } state = kzalloc(sizeof(struct cx25840_state), GFP_KERNEL); if (state == NULL) return -ENOMEM; sd = &state->sd; v4l2_i2c_subdev_init(sd, client, &cx25840_ops); switch (id) { case V4L2_IDENT_CX23885_AV: v4l_info(client, "cx23885 A/V decoder found @ 0x%x (%s)\n", client->addr << 1, client->adapter->name); break; case V4L2_IDENT_CX23887_AV: v4l_info(client, "cx23887 A/V decoder found @ 0x%x (%s)\n", client->addr << 1, client->adapter->name); break; case V4L2_IDENT_CX23888_AV: v4l_info(client, "cx23888 A/V decoder found @ 0x%x (%s)\n", client->addr << 1, client->adapter->name); break; case V4L2_IDENT_CX2310X_AV: v4l_info(client, "cx%d A/V decoder found @ 0x%x (%s)\n", device_id, client->addr << 1, client->adapter->name); break; case V4L2_IDENT_CX25840: case V4L2_IDENT_CX25841: case V4L2_IDENT_CX25842: case V4L2_IDENT_CX25843: /* Note: revision '(device_id & 0x0f) == 2' was never built. The marking skips from 0x1 == 22 to 0x3 == 23. */ v4l_info(client, "cx25%3x-2%x found @ 0x%x (%s)\n", (device_id & 0xfff0) >> 4, (device_id & 0x0f) < 3 ? (device_id & 0x0f) + 1 : (device_id & 0x0f), client->addr << 1, client->adapter->name); break; case V4L2_IDENT_CX25836: case V4L2_IDENT_CX25837: default: v4l_info(client, "cx25%3x-%x found @ 0x%x (%s)\n", (device_id & 0xfff0) >> 4, device_id & 0x0f, client->addr << 1, client->adapter->name); break; } state->c = client; state->vid_input = CX25840_COMPOSITE7; state->aud_input = CX25840_AUDIO8; state->audclk_freq = 48000; state->audmode = V4L2_TUNER_MODE_LANG1; state->vbi_line_offset = 8; state->id = id; state->rev = device_id; v4l2_ctrl_handler_init(&state->hdl, 9); v4l2_ctrl_new_std(&state->hdl, &cx25840_ctrl_ops, V4L2_CID_BRIGHTNESS, 0, 255, 1, 128); v4l2_ctrl_new_std(&state->hdl, &cx25840_ctrl_ops, V4L2_CID_CONTRAST, 0, 127, 1, 64); v4l2_ctrl_new_std(&state->hdl, &cx25840_ctrl_ops, V4L2_CID_SATURATION, 0, 127, 1, 64); v4l2_ctrl_new_std(&state->hdl, &cx25840_ctrl_ops, V4L2_CID_HUE, -128, 127, 1, 0); if (!is_cx2583x(state)) { default_volume = cx25840_read(client, 0x8d4); /* * Enforce the legacy PVR-350/MSP3400 to PVR-150/CX25843 volume * scale mapping limits to avoid -ERANGE errors when * initializing the volume control */ if (default_volume > 228) { /* Bottom out at -96 dB, v4l2 vol range 0x2e00-0x2fff */ default_volume = 228; cx25840_write(client, 0x8d4, 228); } else if (default_volume < 20) { /* Top out at + 8 dB, v4l2 vol range 0xfe00-0xffff */ default_volume = 20; cx25840_write(client, 0x8d4, 20); } default_volume = (((228 - default_volume) >> 1) + 23) << 9; state->volume = v4l2_ctrl_new_std(&state->hdl, &cx25840_audio_ctrl_ops, V4L2_CID_AUDIO_VOLUME, 0, 65535, 65535 / 100, default_volume); state->mute = v4l2_ctrl_new_std(&state->hdl, &cx25840_audio_ctrl_ops, V4L2_CID_AUDIO_MUTE, 0, 1, 1, 0); v4l2_ctrl_new_std(&state->hdl, &cx25840_audio_ctrl_ops, V4L2_CID_AUDIO_BALANCE, 0, 65535, 65535 / 100, 32768); v4l2_ctrl_new_std(&state->hdl, &cx25840_audio_ctrl_ops, V4L2_CID_AUDIO_BASS, 0, 65535, 65535 / 100, 32768); v4l2_ctrl_new_std(&state->hdl, &cx25840_audio_ctrl_ops, V4L2_CID_AUDIO_TREBLE, 0, 65535, 65535 / 100, 32768); } sd->ctrl_handler = &state->hdl; if (state->hdl.error) { int err = state->hdl.error; v4l2_ctrl_handler_free(&state->hdl); kfree(state); return err; } v4l2_ctrl_cluster(2, &state->volume); v4l2_ctrl_handler_setup(&state->hdl); if (client->dev.platform_data) { struct cx25840_platform_data *pdata = client->dev.platform_data; state->pvr150_workaround = pdata->pvr150_workaround; } cx25840_ir_probe(sd); return 0; } static int cx25840_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct cx25840_state *state = to_state(sd); cx25840_ir_remove(sd); v4l2_device_unregister_subdev(sd); v4l2_ctrl_handler_free(&state->hdl); kfree(state); return 0; } static const struct i2c_device_id cx25840_id[] = { { "cx25840", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, cx25840_id); static struct i2c_driver cx25840_driver = { .driver = { .owner = THIS_MODULE, .name = "cx25840", }, .probe = cx25840_probe, .remove = cx25840_remove, .id_table = cx25840_id, }; static __init int init_cx25840(void) { return i2c_add_driver(&cx25840_driver); } static __exit void exit_cx25840(void) { i2c_del_driver(&cx25840_driver); } module_init(init_cx25840); module_exit(exit_cx25840);