/* * Freescale MPC85xx, MPC83xx DMA Engine support * * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved. * * Author: * Zhang Wei , Jul 2007 * Ebony Zhu , May 2007 * * Description: * DMA engine driver for Freescale MPC8540 DMA controller, which is * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc. * The support for MPC8349 DMA contorller is also added. * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include "fsldma.h" static void dma_init(struct fsl_dma_chan *fsl_chan) { /* Reset the channel */ DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 0, 32); switch (fsl_chan->feature & FSL_DMA_IP_MASK) { case FSL_DMA_IP_85XX: /* Set the channel to below modes: * EIE - Error interrupt enable * EOSIE - End of segments interrupt enable (basic mode) * EOLNIE - End of links interrupt enable */ DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EIE | FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32); break; case FSL_DMA_IP_83XX: /* Set the channel to below modes: * EOTIE - End-of-transfer interrupt enable */ DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EOTIE, 32); break; } } static void set_sr(struct fsl_dma_chan *fsl_chan, u32 val) { DMA_OUT(fsl_chan, &fsl_chan->reg_base->sr, val, 32); } static u32 get_sr(struct fsl_dma_chan *fsl_chan) { return DMA_IN(fsl_chan, &fsl_chan->reg_base->sr, 32); } static void set_desc_cnt(struct fsl_dma_chan *fsl_chan, struct fsl_dma_ld_hw *hw, u32 count) { hw->count = CPU_TO_DMA(fsl_chan, count, 32); } static void set_desc_src(struct fsl_dma_chan *fsl_chan, struct fsl_dma_ld_hw *hw, dma_addr_t src) { u64 snoop_bits; snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0; hw->src_addr = CPU_TO_DMA(fsl_chan, snoop_bits | src, 64); } static void set_desc_dest(struct fsl_dma_chan *fsl_chan, struct fsl_dma_ld_hw *hw, dma_addr_t dest) { u64 snoop_bits; snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0; hw->dst_addr = CPU_TO_DMA(fsl_chan, snoop_bits | dest, 64); } static void set_desc_next(struct fsl_dma_chan *fsl_chan, struct fsl_dma_ld_hw *hw, dma_addr_t next) { u64 snoop_bits; snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) ? FSL_DMA_SNEN : 0; hw->next_ln_addr = CPU_TO_DMA(fsl_chan, snoop_bits | next, 64); } static void set_cdar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr) { DMA_OUT(fsl_chan, &fsl_chan->reg_base->cdar, addr | FSL_DMA_SNEN, 64); } static dma_addr_t get_cdar(struct fsl_dma_chan *fsl_chan) { return DMA_IN(fsl_chan, &fsl_chan->reg_base->cdar, 64) & ~FSL_DMA_SNEN; } static void set_ndar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr) { DMA_OUT(fsl_chan, &fsl_chan->reg_base->ndar, addr, 64); } static dma_addr_t get_ndar(struct fsl_dma_chan *fsl_chan) { return DMA_IN(fsl_chan, &fsl_chan->reg_base->ndar, 64); } static u32 get_bcr(struct fsl_dma_chan *fsl_chan) { return DMA_IN(fsl_chan, &fsl_chan->reg_base->bcr, 32); } static int dma_is_idle(struct fsl_dma_chan *fsl_chan) { u32 sr = get_sr(fsl_chan); return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH); } static void dma_start(struct fsl_dma_chan *fsl_chan) { u32 mr_set = 0;; if (fsl_chan->feature & FSL_DMA_CHAN_PAUSE_EXT) { DMA_OUT(fsl_chan, &fsl_chan->reg_base->bcr, 0, 32); mr_set |= FSL_DMA_MR_EMP_EN; } else DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & ~FSL_DMA_MR_EMP_EN, 32); if (fsl_chan->feature & FSL_DMA_CHAN_START_EXT) mr_set |= FSL_DMA_MR_EMS_EN; else mr_set |= FSL_DMA_MR_CS; DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | mr_set, 32); } static void dma_halt(struct fsl_dma_chan *fsl_chan) { int i = 0; DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | FSL_DMA_MR_CA, 32); DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA), 32); while (!dma_is_idle(fsl_chan) && (i++ < 100)) udelay(10); if (i >= 100 && !dma_is_idle(fsl_chan)) dev_err(fsl_chan->dev, "DMA halt timeout!\n"); } static void set_ld_eol(struct fsl_dma_chan *fsl_chan, struct fsl_desc_sw *desc) { desc->hw.next_ln_addr = CPU_TO_DMA(fsl_chan, DMA_TO_CPU(fsl_chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL, 64); } static void append_ld_queue(struct fsl_dma_chan *fsl_chan, struct fsl_desc_sw *new_desc) { struct fsl_desc_sw *queue_tail = to_fsl_desc(fsl_chan->ld_queue.prev); if (list_empty(&fsl_chan->ld_queue)) return; /* Link to the new descriptor physical address and * Enable End-of-segment interrupt for * the last link descriptor. * (the previous node's next link descriptor) * * For FSL_DMA_IP_83xx, the snoop enable bit need be set. */ queue_tail->hw.next_ln_addr = CPU_TO_DMA(fsl_chan, new_desc->async_tx.phys | FSL_DMA_EOSIE | (((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) ? FSL_DMA_SNEN : 0), 64); } /** * fsl_chan_set_src_loop_size - Set source address hold transfer size * @fsl_chan : Freescale DMA channel * @size : Address loop size, 0 for disable loop * * The set source address hold transfer size. The source * address hold or loop transfer size is when the DMA transfer * data from source address (SA), if the loop size is 4, the DMA will * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA, * SA + 1 ... and so on. */ static void fsl_chan_set_src_loop_size(struct fsl_dma_chan *fsl_chan, int size) { switch (size) { case 0: DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & (~FSL_DMA_MR_SAHE), 32); break; case 1: case 2: case 4: case 8: DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | FSL_DMA_MR_SAHE | (__ilog2(size) << 14), 32); break; } } /** * fsl_chan_set_dest_loop_size - Set destination address hold transfer size * @fsl_chan : Freescale DMA channel * @size : Address loop size, 0 for disable loop * * The set destination address hold transfer size. The destination * address hold or loop transfer size is when the DMA transfer * data to destination address (TA), if the loop size is 4, the DMA will * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA, * TA + 1 ... and so on. */ static void fsl_chan_set_dest_loop_size(struct fsl_dma_chan *fsl_chan, int size) { switch (size) { case 0: DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & (~FSL_DMA_MR_DAHE), 32); break; case 1: case 2: case 4: case 8: DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | FSL_DMA_MR_DAHE | (__ilog2(size) << 16), 32); break; } } /** * fsl_chan_toggle_ext_pause - Toggle channel external pause status * @fsl_chan : Freescale DMA channel * @size : Pause control size, 0 for disable external pause control. * The maximum is 1024. * * The Freescale DMA channel can be controlled by the external * signal DREQ#. The pause control size is how many bytes are allowed * to transfer before pausing the channel, after which a new assertion * of DREQ# resumes channel operation. */ static void fsl_chan_toggle_ext_pause(struct fsl_dma_chan *fsl_chan, int size) { if (size > 1024) return; if (size) { DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | ((__ilog2(size) << 24) & 0x0f000000), 32); fsl_chan->feature |= FSL_DMA_CHAN_PAUSE_EXT; } else fsl_chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT; } /** * fsl_chan_toggle_ext_start - Toggle channel external start status * @fsl_chan : Freescale DMA channel * @enable : 0 is disabled, 1 is enabled. * * If enable the external start, the channel can be started by an * external DMA start pin. So the dma_start() does not start the * transfer immediately. The DMA channel will wait for the * control pin asserted. */ static void fsl_chan_toggle_ext_start(struct fsl_dma_chan *fsl_chan, int enable) { if (enable) fsl_chan->feature |= FSL_DMA_CHAN_START_EXT; else fsl_chan->feature &= ~FSL_DMA_CHAN_START_EXT; } static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx) { struct fsl_desc_sw *desc = tx_to_fsl_desc(tx); struct fsl_dma_chan *fsl_chan = to_fsl_chan(tx->chan); unsigned long flags; dma_cookie_t cookie; /* cookie increment and adding to ld_queue must be atomic */ spin_lock_irqsave(&fsl_chan->desc_lock, flags); cookie = fsl_chan->common.cookie; cookie++; if (cookie < 0) cookie = 1; desc->async_tx.cookie = cookie; fsl_chan->common.cookie = desc->async_tx.cookie; append_ld_queue(fsl_chan, desc); list_splice_init(&desc->async_tx.tx_list, fsl_chan->ld_queue.prev); spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); return cookie; } /** * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool. * @fsl_chan : Freescale DMA channel * * Return - The descriptor allocated. NULL for failed. */ static struct fsl_desc_sw *fsl_dma_alloc_descriptor( struct fsl_dma_chan *fsl_chan) { dma_addr_t pdesc; struct fsl_desc_sw *desc_sw; desc_sw = dma_pool_alloc(fsl_chan->desc_pool, GFP_ATOMIC, &pdesc); if (desc_sw) { memset(desc_sw, 0, sizeof(struct fsl_desc_sw)); dma_async_tx_descriptor_init(&desc_sw->async_tx, &fsl_chan->common); desc_sw->async_tx.tx_submit = fsl_dma_tx_submit; INIT_LIST_HEAD(&desc_sw->async_tx.tx_list); desc_sw->async_tx.phys = pdesc; } return desc_sw; } /** * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel. * @fsl_chan : Freescale DMA channel * * This function will create a dma pool for descriptor allocation. * * Return - The number of descriptors allocated. */ static int fsl_dma_alloc_chan_resources(struct dma_chan *chan) { struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan); /* Has this channel already been allocated? */ if (fsl_chan->desc_pool) return 1; /* We need the descriptor to be aligned to 32bytes * for meeting FSL DMA specification requirement. */ fsl_chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool", fsl_chan->dev, sizeof(struct fsl_desc_sw), 32, 0); if (!fsl_chan->desc_pool) { dev_err(fsl_chan->dev, "No memory for channel %d " "descriptor dma pool.\n", fsl_chan->id); return 0; } return 1; } /** * fsl_dma_free_chan_resources - Free all resources of the channel. * @fsl_chan : Freescale DMA channel */ static void fsl_dma_free_chan_resources(struct dma_chan *chan) { struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan); struct fsl_desc_sw *desc, *_desc; unsigned long flags; dev_dbg(fsl_chan->dev, "Free all channel resources.\n"); spin_lock_irqsave(&fsl_chan->desc_lock, flags); list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) { #ifdef FSL_DMA_LD_DEBUG dev_dbg(fsl_chan->dev, "LD %p will be released.\n", desc); #endif list_del(&desc->node); /* free link descriptor */ dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys); } spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); dma_pool_destroy(fsl_chan->desc_pool); fsl_chan->desc_pool = NULL; } static struct dma_async_tx_descriptor * fsl_dma_prep_interrupt(struct dma_chan *chan, unsigned long flags) { struct fsl_dma_chan *fsl_chan; struct fsl_desc_sw *new; if (!chan) return NULL; fsl_chan = to_fsl_chan(chan); new = fsl_dma_alloc_descriptor(fsl_chan); if (!new) { dev_err(fsl_chan->dev, "No free memory for link descriptor\n"); return NULL; } new->async_tx.cookie = -EBUSY; new->async_tx.flags = flags; /* Insert the link descriptor to the LD ring */ list_add_tail(&new->node, &new->async_tx.tx_list); /* Set End-of-link to the last link descriptor of new list*/ set_ld_eol(fsl_chan, new); return &new->async_tx; } static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy( struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src, size_t len, unsigned long flags) { struct fsl_dma_chan *fsl_chan; struct fsl_desc_sw *first = NULL, *prev = NULL, *new; size_t copy; LIST_HEAD(link_chain); if (!chan) return NULL; if (!len) return NULL; fsl_chan = to_fsl_chan(chan); do { /* Allocate the link descriptor from DMA pool */ new = fsl_dma_alloc_descriptor(fsl_chan); if (!new) { dev_err(fsl_chan->dev, "No free memory for link descriptor\n"); return NULL; } #ifdef FSL_DMA_LD_DEBUG dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new); #endif copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT); set_desc_cnt(fsl_chan, &new->hw, copy); set_desc_src(fsl_chan, &new->hw, dma_src); set_desc_dest(fsl_chan, &new->hw, dma_dest); if (!first) first = new; else set_desc_next(fsl_chan, &prev->hw, new->async_tx.phys); new->async_tx.cookie = 0; async_tx_ack(&new->async_tx); prev = new; len -= copy; dma_src += copy; dma_dest += copy; /* Insert the link descriptor to the LD ring */ list_add_tail(&new->node, &first->async_tx.tx_list); } while (len); new->async_tx.flags = flags; /* client is in control of this ack */ new->async_tx.cookie = -EBUSY; /* Set End-of-link to the last link descriptor of new list*/ set_ld_eol(fsl_chan, new); return first ? &first->async_tx : NULL; } /** * fsl_dma_update_completed_cookie - Update the completed cookie. * @fsl_chan : Freescale DMA channel */ static void fsl_dma_update_completed_cookie(struct fsl_dma_chan *fsl_chan) { struct fsl_desc_sw *cur_desc, *desc; dma_addr_t ld_phy; ld_phy = get_cdar(fsl_chan) & FSL_DMA_NLDA_MASK; if (ld_phy) { cur_desc = NULL; list_for_each_entry(desc, &fsl_chan->ld_queue, node) if (desc->async_tx.phys == ld_phy) { cur_desc = desc; break; } if (cur_desc && cur_desc->async_tx.cookie) { if (dma_is_idle(fsl_chan)) fsl_chan->completed_cookie = cur_desc->async_tx.cookie; else fsl_chan->completed_cookie = cur_desc->async_tx.cookie - 1; } } } /** * fsl_chan_ld_cleanup - Clean up link descriptors * @fsl_chan : Freescale DMA channel * * This function clean up the ld_queue of DMA channel. * If 'in_intr' is set, the function will move the link descriptor to * the recycle list. Otherwise, free it directly. */ static void fsl_chan_ld_cleanup(struct fsl_dma_chan *fsl_chan) { struct fsl_desc_sw *desc, *_desc; unsigned long flags; spin_lock_irqsave(&fsl_chan->desc_lock, flags); dev_dbg(fsl_chan->dev, "chan completed_cookie = %d\n", fsl_chan->completed_cookie); list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) { dma_async_tx_callback callback; void *callback_param; if (dma_async_is_complete(desc->async_tx.cookie, fsl_chan->completed_cookie, fsl_chan->common.cookie) == DMA_IN_PROGRESS) break; callback = desc->async_tx.callback; callback_param = desc->async_tx.callback_param; /* Remove from ld_queue list */ list_del(&desc->node); dev_dbg(fsl_chan->dev, "link descriptor %p will be recycle.\n", desc); dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys); /* Run the link descriptor callback function */ if (callback) { spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); dev_dbg(fsl_chan->dev, "link descriptor %p callback\n", desc); callback(callback_param); spin_lock_irqsave(&fsl_chan->desc_lock, flags); } } spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); } /** * fsl_chan_xfer_ld_queue - Transfer link descriptors in channel ld_queue. * @fsl_chan : Freescale DMA channel */ static void fsl_chan_xfer_ld_queue(struct fsl_dma_chan *fsl_chan) { struct list_head *ld_node; dma_addr_t next_dest_addr; unsigned long flags; if (!dma_is_idle(fsl_chan)) return; dma_halt(fsl_chan); /* If there are some link descriptors * not transfered in queue. We need to start it. */ spin_lock_irqsave(&fsl_chan->desc_lock, flags); /* Find the first un-transfer desciptor */ for (ld_node = fsl_chan->ld_queue.next; (ld_node != &fsl_chan->ld_queue) && (dma_async_is_complete( to_fsl_desc(ld_node)->async_tx.cookie, fsl_chan->completed_cookie, fsl_chan->common.cookie) == DMA_SUCCESS); ld_node = ld_node->next); spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); if (ld_node != &fsl_chan->ld_queue) { /* Get the ld start address from ld_queue */ next_dest_addr = to_fsl_desc(ld_node)->async_tx.phys; dev_dbg(fsl_chan->dev, "xfer LDs staring from %p\n", (void *)next_dest_addr); set_cdar(fsl_chan, next_dest_addr); dma_start(fsl_chan); } else { set_cdar(fsl_chan, 0); set_ndar(fsl_chan, 0); } } /** * fsl_dma_memcpy_issue_pending - Issue the DMA start command * @fsl_chan : Freescale DMA channel */ static void fsl_dma_memcpy_issue_pending(struct dma_chan *chan) { struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan); #ifdef FSL_DMA_LD_DEBUG struct fsl_desc_sw *ld; unsigned long flags; spin_lock_irqsave(&fsl_chan->desc_lock, flags); if (list_empty(&fsl_chan->ld_queue)) { spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); return; } dev_dbg(fsl_chan->dev, "--memcpy issue--\n"); list_for_each_entry(ld, &fsl_chan->ld_queue, node) { int i; dev_dbg(fsl_chan->dev, "Ch %d, LD %08x\n", fsl_chan->id, ld->async_tx.phys); for (i = 0; i < 8; i++) dev_dbg(fsl_chan->dev, "LD offset %d: %08x\n", i, *(((u32 *)&ld->hw) + i)); } dev_dbg(fsl_chan->dev, "----------------\n"); spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); #endif fsl_chan_xfer_ld_queue(fsl_chan); } /** * fsl_dma_is_complete - Determine the DMA status * @fsl_chan : Freescale DMA channel */ static enum dma_status fsl_dma_is_complete(struct dma_chan *chan, dma_cookie_t cookie, dma_cookie_t *done, dma_cookie_t *used) { struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan); dma_cookie_t last_used; dma_cookie_t last_complete; fsl_chan_ld_cleanup(fsl_chan); last_used = chan->cookie; last_complete = fsl_chan->completed_cookie; if (done) *done = last_complete; if (used) *used = last_used; return dma_async_is_complete(cookie, last_complete, last_used); } static irqreturn_t fsl_dma_chan_do_interrupt(int irq, void *data) { struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data; u32 stat; int update_cookie = 0; int xfer_ld_q = 0; stat = get_sr(fsl_chan); dev_dbg(fsl_chan->dev, "event: channel %d, stat = 0x%x\n", fsl_chan->id, stat); set_sr(fsl_chan, stat); /* Clear the event register */ stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH); if (!stat) return IRQ_NONE; if (stat & FSL_DMA_SR_TE) dev_err(fsl_chan->dev, "Transfer Error!\n"); /* Programming Error * The DMA_INTERRUPT async_tx is a NULL transfer, which will * triger a PE interrupt. */ if (stat & FSL_DMA_SR_PE) { dev_dbg(fsl_chan->dev, "event: Programming Error INT\n"); if (get_bcr(fsl_chan) == 0) { /* BCR register is 0, this is a DMA_INTERRUPT async_tx. * Now, update the completed cookie, and continue the * next uncompleted transfer. */ update_cookie = 1; xfer_ld_q = 1; } stat &= ~FSL_DMA_SR_PE; } /* If the link descriptor segment transfer finishes, * we will recycle the used descriptor. */ if (stat & FSL_DMA_SR_EOSI) { dev_dbg(fsl_chan->dev, "event: End-of-segments INT\n"); dev_dbg(fsl_chan->dev, "event: clndar %p, nlndar %p\n", (void *)get_cdar(fsl_chan), (void *)get_ndar(fsl_chan)); stat &= ~FSL_DMA_SR_EOSI; update_cookie = 1; } /* For MPC8349, EOCDI event need to update cookie * and start the next transfer if it exist. */ if (stat & FSL_DMA_SR_EOCDI) { dev_dbg(fsl_chan->dev, "event: End-of-Chain link INT\n"); stat &= ~FSL_DMA_SR_EOCDI; update_cookie = 1; xfer_ld_q = 1; } /* If it current transfer is the end-of-transfer, * we should clear the Channel Start bit for * prepare next transfer. */ if (stat & FSL_DMA_SR_EOLNI) { dev_dbg(fsl_chan->dev, "event: End-of-link INT\n"); stat &= ~FSL_DMA_SR_EOLNI; xfer_ld_q = 1; } if (update_cookie) fsl_dma_update_completed_cookie(fsl_chan); if (xfer_ld_q) fsl_chan_xfer_ld_queue(fsl_chan); if (stat) dev_dbg(fsl_chan->dev, "event: unhandled sr 0x%02x\n", stat); dev_dbg(fsl_chan->dev, "event: Exit\n"); tasklet_schedule(&fsl_chan->tasklet); return IRQ_HANDLED; } static irqreturn_t fsl_dma_do_interrupt(int irq, void *data) { struct fsl_dma_device *fdev = (struct fsl_dma_device *)data; u32 gsr; int ch_nr; gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->reg_base) : in_le32(fdev->reg_base); ch_nr = (32 - ffs(gsr)) / 8; return fdev->chan[ch_nr] ? fsl_dma_chan_do_interrupt(irq, fdev->chan[ch_nr]) : IRQ_NONE; } static void dma_do_tasklet(unsigned long data) { struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data; fsl_chan_ld_cleanup(fsl_chan); } static int __devinit fsl_dma_chan_probe(struct fsl_dma_device *fdev, struct device_node *node, u32 feature, const char *compatible) { struct fsl_dma_chan *new_fsl_chan; int err; /* alloc channel */ new_fsl_chan = kzalloc(sizeof(struct fsl_dma_chan), GFP_KERNEL); if (!new_fsl_chan) { dev_err(fdev->dev, "No free memory for allocating " "dma channels!\n"); return -ENOMEM; } /* get dma channel register base */ err = of_address_to_resource(node, 0, &new_fsl_chan->reg); if (err) { dev_err(fdev->dev, "Can't get %s property 'reg'\n", node->full_name); goto err_no_reg; } new_fsl_chan->feature = feature; if (!fdev->feature) fdev->feature = new_fsl_chan->feature; /* If the DMA device's feature is different than its channels', * report the bug. */ WARN_ON(fdev->feature != new_fsl_chan->feature); new_fsl_chan->dev = &new_fsl_chan->common.dev; new_fsl_chan->reg_base = ioremap(new_fsl_chan->reg.start, new_fsl_chan->reg.end - new_fsl_chan->reg.start + 1); new_fsl_chan->id = ((new_fsl_chan->reg.start - 0x100) & 0xfff) >> 7; if (new_fsl_chan->id > FSL_DMA_MAX_CHANS_PER_DEVICE) { dev_err(fdev->dev, "There is no %d channel!\n", new_fsl_chan->id); err = -EINVAL; goto err_no_chan; } fdev->chan[new_fsl_chan->id] = new_fsl_chan; tasklet_init(&new_fsl_chan->tasklet, dma_do_tasklet, (unsigned long)new_fsl_chan); /* Init the channel */ dma_init(new_fsl_chan); /* Clear cdar registers */ set_cdar(new_fsl_chan, 0); switch (new_fsl_chan->feature & FSL_DMA_IP_MASK) { case FSL_DMA_IP_85XX: new_fsl_chan->toggle_ext_start = fsl_chan_toggle_ext_start; new_fsl_chan->toggle_ext_pause = fsl_chan_toggle_ext_pause; case FSL_DMA_IP_83XX: new_fsl_chan->set_src_loop_size = fsl_chan_set_src_loop_size; new_fsl_chan->set_dest_loop_size = fsl_chan_set_dest_loop_size; } spin_lock_init(&new_fsl_chan->desc_lock); INIT_LIST_HEAD(&new_fsl_chan->ld_queue); new_fsl_chan->common.device = &fdev->common; /* Add the channel to DMA device channel list */ list_add_tail(&new_fsl_chan->common.device_node, &fdev->common.channels); fdev->common.chancnt++; new_fsl_chan->irq = irq_of_parse_and_map(node, 0); if (new_fsl_chan->irq != NO_IRQ) { err = request_irq(new_fsl_chan->irq, &fsl_dma_chan_do_interrupt, IRQF_SHARED, "fsldma-channel", new_fsl_chan); if (err) { dev_err(fdev->dev, "DMA channel %s request_irq error " "with return %d\n", node->full_name, err); goto err_no_irq; } } dev_info(fdev->dev, "#%d (%s), irq %d\n", new_fsl_chan->id, compatible, new_fsl_chan->irq); return 0; err_no_irq: list_del(&new_fsl_chan->common.device_node); err_no_chan: iounmap(new_fsl_chan->reg_base); err_no_reg: kfree(new_fsl_chan); return err; } static void fsl_dma_chan_remove(struct fsl_dma_chan *fchan) { free_irq(fchan->irq, fchan); list_del(&fchan->common.device_node); iounmap(fchan->reg_base); kfree(fchan); } static int __devinit of_fsl_dma_probe(struct of_device *dev, const struct of_device_id *match) { int err; struct fsl_dma_device *fdev; struct device_node *child; fdev = kzalloc(sizeof(struct fsl_dma_device), GFP_KERNEL); if (!fdev) { dev_err(&dev->dev, "No enough memory for 'priv'\n"); return -ENOMEM; } fdev->dev = &dev->dev; INIT_LIST_HEAD(&fdev->common.channels); /* get DMA controller register base */ err = of_address_to_resource(dev->node, 0, &fdev->reg); if (err) { dev_err(&dev->dev, "Can't get %s property 'reg'\n", dev->node->full_name); goto err_no_reg; } dev_info(&dev->dev, "Probe the Freescale DMA driver for %s " "controller at %p...\n", match->compatible, (void *)fdev->reg.start); fdev->reg_base = ioremap(fdev->reg.start, fdev->reg.end - fdev->reg.start + 1); dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask); dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask); fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources; fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources; fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt; fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy; fdev->common.device_is_tx_complete = fsl_dma_is_complete; fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending; fdev->common.dev = &dev->dev; fdev->irq = irq_of_parse_and_map(dev->node, 0); if (fdev->irq != NO_IRQ) { err = request_irq(fdev->irq, &fsl_dma_do_interrupt, IRQF_SHARED, "fsldma-device", fdev); if (err) { dev_err(&dev->dev, "DMA device request_irq error " "with return %d\n", err); goto err; } } dev_set_drvdata(&(dev->dev), fdev); /* We cannot use of_platform_bus_probe() because there is no * of_platform_bus_remove. Instead, we manually instantiate every DMA * channel object. */ for_each_child_of_node(dev->node, child) { if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) fsl_dma_chan_probe(fdev, child, FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN, "fsl,eloplus-dma-channel"); if (of_device_is_compatible(child, "fsl,elo-dma-channel")) fsl_dma_chan_probe(fdev, child, FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN, "fsl,elo-dma-channel"); } dma_async_device_register(&fdev->common); return 0; err: iounmap(fdev->reg_base); err_no_reg: kfree(fdev); return err; } static int of_fsl_dma_remove(struct of_device *of_dev) { struct fsl_dma_device *fdev; unsigned int i; fdev = dev_get_drvdata(&of_dev->dev); dma_async_device_unregister(&fdev->common); for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) if (fdev->chan[i]) fsl_dma_chan_remove(fdev->chan[i]); if (fdev->irq != NO_IRQ) free_irq(fdev->irq, fdev); iounmap(fdev->reg_base); kfree(fdev); dev_set_drvdata(&of_dev->dev, NULL); return 0; } static struct of_device_id of_fsl_dma_ids[] = { { .compatible = "fsl,eloplus-dma", }, { .compatible = "fsl,elo-dma", }, {} }; static struct of_platform_driver of_fsl_dma_driver = { .name = "fsl-elo-dma", .match_table = of_fsl_dma_ids, .probe = of_fsl_dma_probe, .remove = of_fsl_dma_remove, }; static __init int of_fsl_dma_init(void) { int ret; pr_info("Freescale Elo / Elo Plus DMA driver\n"); ret = of_register_platform_driver(&of_fsl_dma_driver); if (ret) pr_err("fsldma: failed to register platform driver\n"); return ret; } static void __exit of_fsl_dma_exit(void) { of_unregister_platform_driver(&of_fsl_dma_driver); } subsys_initcall(of_fsl_dma_init); module_exit(of_fsl_dma_exit); MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver"); MODULE_LICENSE("GPL");