diff options
Diffstat (limited to 'lib/rational.c')
-rw-r--r-- | lib/rational.c | 62 |
1 files changed, 62 insertions, 0 deletions
diff --git a/lib/rational.c b/lib/rational.c new file mode 100644 index 00000000000..b3c099b5478 --- /dev/null +++ b/lib/rational.c | |||
@@ -0,0 +1,62 @@ | |||
1 | /* | ||
2 | * rational fractions | ||
3 | * | ||
4 | * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <os@emlix.com> | ||
5 | * | ||
6 | * helper functions when coping with rational numbers | ||
7 | */ | ||
8 | |||
9 | #include <linux/rational.h> | ||
10 | |||
11 | /* | ||
12 | * calculate best rational approximation for a given fraction | ||
13 | * taking into account restricted register size, e.g. to find | ||
14 | * appropriate values for a pll with 5 bit denominator and | ||
15 | * 8 bit numerator register fields, trying to set up with a | ||
16 | * frequency ratio of 3.1415, one would say: | ||
17 | * | ||
18 | * rational_best_approximation(31415, 10000, | ||
19 | * (1 << 8) - 1, (1 << 5) - 1, &n, &d); | ||
20 | * | ||
21 | * you may look at given_numerator as a fixed point number, | ||
22 | * with the fractional part size described in given_denominator. | ||
23 | * | ||
24 | * for theoretical background, see: | ||
25 | * http://en.wikipedia.org/wiki/Continued_fraction | ||
26 | */ | ||
27 | |||
28 | void rational_best_approximation( | ||
29 | unsigned long given_numerator, unsigned long given_denominator, | ||
30 | unsigned long max_numerator, unsigned long max_denominator, | ||
31 | unsigned long *best_numerator, unsigned long *best_denominator) | ||
32 | { | ||
33 | unsigned long n, d, n0, d0, n1, d1; | ||
34 | n = given_numerator; | ||
35 | d = given_denominator; | ||
36 | n0 = d1 = 0; | ||
37 | n1 = d0 = 1; | ||
38 | for (;;) { | ||
39 | unsigned long t, a; | ||
40 | if ((n1 > max_numerator) || (d1 > max_denominator)) { | ||
41 | n1 = n0; | ||
42 | d1 = d0; | ||
43 | break; | ||
44 | } | ||
45 | if (d == 0) | ||
46 | break; | ||
47 | t = d; | ||
48 | a = n / d; | ||
49 | d = n % d; | ||
50 | n = t; | ||
51 | t = n0 + a * n1; | ||
52 | n0 = n1; | ||
53 | n1 = t; | ||
54 | t = d0 + a * d1; | ||
55 | d0 = d1; | ||
56 | d1 = t; | ||
57 | } | ||
58 | *best_numerator = n1; | ||
59 | *best_denominator = d1; | ||
60 | } | ||
61 | |||
62 | EXPORT_SYMBOL(rational_best_approximation); | ||