diff options
Diffstat (limited to 'fs/xfs/xfs_file.c')
-rw-r--r-- | fs/xfs/xfs_file.c | 1118 |
1 files changed, 1118 insertions, 0 deletions
diff --git a/fs/xfs/xfs_file.c b/fs/xfs/xfs_file.c new file mode 100644 index 00000000000..b7e75c6ba09 --- /dev/null +++ b/fs/xfs/xfs_file.c | |||
@@ -0,0 +1,1118 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2000-2005 Silicon Graphics, Inc. | ||
3 | * All Rights Reserved. | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or | ||
6 | * modify it under the terms of the GNU General Public License as | ||
7 | * published by the Free Software Foundation. | ||
8 | * | ||
9 | * This program is distributed in the hope that it would be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | * GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write the Free Software Foundation, | ||
16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | ||
17 | */ | ||
18 | #include "xfs.h" | ||
19 | #include "xfs_fs.h" | ||
20 | #include "xfs_bit.h" | ||
21 | #include "xfs_log.h" | ||
22 | #include "xfs_inum.h" | ||
23 | #include "xfs_sb.h" | ||
24 | #include "xfs_ag.h" | ||
25 | #include "xfs_trans.h" | ||
26 | #include "xfs_mount.h" | ||
27 | #include "xfs_bmap_btree.h" | ||
28 | #include "xfs_alloc.h" | ||
29 | #include "xfs_dinode.h" | ||
30 | #include "xfs_inode.h" | ||
31 | #include "xfs_inode_item.h" | ||
32 | #include "xfs_bmap.h" | ||
33 | #include "xfs_error.h" | ||
34 | #include "xfs_vnodeops.h" | ||
35 | #include "xfs_da_btree.h" | ||
36 | #include "xfs_ioctl.h" | ||
37 | #include "xfs_trace.h" | ||
38 | |||
39 | #include <linux/dcache.h> | ||
40 | #include <linux/falloc.h> | ||
41 | |||
42 | static const struct vm_operations_struct xfs_file_vm_ops; | ||
43 | |||
44 | /* | ||
45 | * Locking primitives for read and write IO paths to ensure we consistently use | ||
46 | * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. | ||
47 | */ | ||
48 | static inline void | ||
49 | xfs_rw_ilock( | ||
50 | struct xfs_inode *ip, | ||
51 | int type) | ||
52 | { | ||
53 | if (type & XFS_IOLOCK_EXCL) | ||
54 | mutex_lock(&VFS_I(ip)->i_mutex); | ||
55 | xfs_ilock(ip, type); | ||
56 | } | ||
57 | |||
58 | static inline void | ||
59 | xfs_rw_iunlock( | ||
60 | struct xfs_inode *ip, | ||
61 | int type) | ||
62 | { | ||
63 | xfs_iunlock(ip, type); | ||
64 | if (type & XFS_IOLOCK_EXCL) | ||
65 | mutex_unlock(&VFS_I(ip)->i_mutex); | ||
66 | } | ||
67 | |||
68 | static inline void | ||
69 | xfs_rw_ilock_demote( | ||
70 | struct xfs_inode *ip, | ||
71 | int type) | ||
72 | { | ||
73 | xfs_ilock_demote(ip, type); | ||
74 | if (type & XFS_IOLOCK_EXCL) | ||
75 | mutex_unlock(&VFS_I(ip)->i_mutex); | ||
76 | } | ||
77 | |||
78 | /* | ||
79 | * xfs_iozero | ||
80 | * | ||
81 | * xfs_iozero clears the specified range of buffer supplied, | ||
82 | * and marks all the affected blocks as valid and modified. If | ||
83 | * an affected block is not allocated, it will be allocated. If | ||
84 | * an affected block is not completely overwritten, and is not | ||
85 | * valid before the operation, it will be read from disk before | ||
86 | * being partially zeroed. | ||
87 | */ | ||
88 | STATIC int | ||
89 | xfs_iozero( | ||
90 | struct xfs_inode *ip, /* inode */ | ||
91 | loff_t pos, /* offset in file */ | ||
92 | size_t count) /* size of data to zero */ | ||
93 | { | ||
94 | struct page *page; | ||
95 | struct address_space *mapping; | ||
96 | int status; | ||
97 | |||
98 | mapping = VFS_I(ip)->i_mapping; | ||
99 | do { | ||
100 | unsigned offset, bytes; | ||
101 | void *fsdata; | ||
102 | |||
103 | offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ | ||
104 | bytes = PAGE_CACHE_SIZE - offset; | ||
105 | if (bytes > count) | ||
106 | bytes = count; | ||
107 | |||
108 | status = pagecache_write_begin(NULL, mapping, pos, bytes, | ||
109 | AOP_FLAG_UNINTERRUPTIBLE, | ||
110 | &page, &fsdata); | ||
111 | if (status) | ||
112 | break; | ||
113 | |||
114 | zero_user(page, offset, bytes); | ||
115 | |||
116 | status = pagecache_write_end(NULL, mapping, pos, bytes, bytes, | ||
117 | page, fsdata); | ||
118 | WARN_ON(status <= 0); /* can't return less than zero! */ | ||
119 | pos += bytes; | ||
120 | count -= bytes; | ||
121 | status = 0; | ||
122 | } while (count); | ||
123 | |||
124 | return (-status); | ||
125 | } | ||
126 | |||
127 | STATIC int | ||
128 | xfs_file_fsync( | ||
129 | struct file *file, | ||
130 | loff_t start, | ||
131 | loff_t end, | ||
132 | int datasync) | ||
133 | { | ||
134 | struct inode *inode = file->f_mapping->host; | ||
135 | struct xfs_inode *ip = XFS_I(inode); | ||
136 | struct xfs_mount *mp = ip->i_mount; | ||
137 | struct xfs_trans *tp; | ||
138 | int error = 0; | ||
139 | int log_flushed = 0; | ||
140 | |||
141 | trace_xfs_file_fsync(ip); | ||
142 | |||
143 | error = filemap_write_and_wait_range(inode->i_mapping, start, end); | ||
144 | if (error) | ||
145 | return error; | ||
146 | |||
147 | if (XFS_FORCED_SHUTDOWN(mp)) | ||
148 | return -XFS_ERROR(EIO); | ||
149 | |||
150 | xfs_iflags_clear(ip, XFS_ITRUNCATED); | ||
151 | |||
152 | xfs_ilock(ip, XFS_IOLOCK_SHARED); | ||
153 | xfs_ioend_wait(ip); | ||
154 | xfs_iunlock(ip, XFS_IOLOCK_SHARED); | ||
155 | |||
156 | if (mp->m_flags & XFS_MOUNT_BARRIER) { | ||
157 | /* | ||
158 | * If we have an RT and/or log subvolume we need to make sure | ||
159 | * to flush the write cache the device used for file data | ||
160 | * first. This is to ensure newly written file data make | ||
161 | * it to disk before logging the new inode size in case of | ||
162 | * an extending write. | ||
163 | */ | ||
164 | if (XFS_IS_REALTIME_INODE(ip)) | ||
165 | xfs_blkdev_issue_flush(mp->m_rtdev_targp); | ||
166 | else if (mp->m_logdev_targp != mp->m_ddev_targp) | ||
167 | xfs_blkdev_issue_flush(mp->m_ddev_targp); | ||
168 | } | ||
169 | |||
170 | /* | ||
171 | * We always need to make sure that the required inode state is safe on | ||
172 | * disk. The inode might be clean but we still might need to force the | ||
173 | * log because of committed transactions that haven't hit the disk yet. | ||
174 | * Likewise, there could be unflushed non-transactional changes to the | ||
175 | * inode core that have to go to disk and this requires us to issue | ||
176 | * a synchronous transaction to capture these changes correctly. | ||
177 | * | ||
178 | * This code relies on the assumption that if the i_update_core field | ||
179 | * of the inode is clear and the inode is unpinned then it is clean | ||
180 | * and no action is required. | ||
181 | */ | ||
182 | xfs_ilock(ip, XFS_ILOCK_SHARED); | ||
183 | |||
184 | /* | ||
185 | * First check if the VFS inode is marked dirty. All the dirtying | ||
186 | * of non-transactional updates no goes through mark_inode_dirty*, | ||
187 | * which allows us to distinguish beteeen pure timestamp updates | ||
188 | * and i_size updates which need to be caught for fdatasync. | ||
189 | * After that also theck for the dirty state in the XFS inode, which | ||
190 | * might gets cleared when the inode gets written out via the AIL | ||
191 | * or xfs_iflush_cluster. | ||
192 | */ | ||
193 | if (((inode->i_state & I_DIRTY_DATASYNC) || | ||
194 | ((inode->i_state & I_DIRTY_SYNC) && !datasync)) && | ||
195 | ip->i_update_core) { | ||
196 | /* | ||
197 | * Kick off a transaction to log the inode core to get the | ||
198 | * updates. The sync transaction will also force the log. | ||
199 | */ | ||
200 | xfs_iunlock(ip, XFS_ILOCK_SHARED); | ||
201 | tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS); | ||
202 | error = xfs_trans_reserve(tp, 0, | ||
203 | XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0); | ||
204 | if (error) { | ||
205 | xfs_trans_cancel(tp, 0); | ||
206 | return -error; | ||
207 | } | ||
208 | xfs_ilock(ip, XFS_ILOCK_EXCL); | ||
209 | |||
210 | /* | ||
211 | * Note - it's possible that we might have pushed ourselves out | ||
212 | * of the way during trans_reserve which would flush the inode. | ||
213 | * But there's no guarantee that the inode buffer has actually | ||
214 | * gone out yet (it's delwri). Plus the buffer could be pinned | ||
215 | * anyway if it's part of an inode in another recent | ||
216 | * transaction. So we play it safe and fire off the | ||
217 | * transaction anyway. | ||
218 | */ | ||
219 | xfs_trans_ijoin(tp, ip); | ||
220 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | ||
221 | xfs_trans_set_sync(tp); | ||
222 | error = _xfs_trans_commit(tp, 0, &log_flushed); | ||
223 | |||
224 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | ||
225 | } else { | ||
226 | /* | ||
227 | * Timestamps/size haven't changed since last inode flush or | ||
228 | * inode transaction commit. That means either nothing got | ||
229 | * written or a transaction committed which caught the updates. | ||
230 | * If the latter happened and the transaction hasn't hit the | ||
231 | * disk yet, the inode will be still be pinned. If it is, | ||
232 | * force the log. | ||
233 | */ | ||
234 | if (xfs_ipincount(ip)) { | ||
235 | error = _xfs_log_force_lsn(mp, | ||
236 | ip->i_itemp->ili_last_lsn, | ||
237 | XFS_LOG_SYNC, &log_flushed); | ||
238 | } | ||
239 | xfs_iunlock(ip, XFS_ILOCK_SHARED); | ||
240 | } | ||
241 | |||
242 | /* | ||
243 | * If we only have a single device, and the log force about was | ||
244 | * a no-op we might have to flush the data device cache here. | ||
245 | * This can only happen for fdatasync/O_DSYNC if we were overwriting | ||
246 | * an already allocated file and thus do not have any metadata to | ||
247 | * commit. | ||
248 | */ | ||
249 | if ((mp->m_flags & XFS_MOUNT_BARRIER) && | ||
250 | mp->m_logdev_targp == mp->m_ddev_targp && | ||
251 | !XFS_IS_REALTIME_INODE(ip) && | ||
252 | !log_flushed) | ||
253 | xfs_blkdev_issue_flush(mp->m_ddev_targp); | ||
254 | |||
255 | return -error; | ||
256 | } | ||
257 | |||
258 | STATIC ssize_t | ||
259 | xfs_file_aio_read( | ||
260 | struct kiocb *iocb, | ||
261 | const struct iovec *iovp, | ||
262 | unsigned long nr_segs, | ||
263 | loff_t pos) | ||
264 | { | ||
265 | struct file *file = iocb->ki_filp; | ||
266 | struct inode *inode = file->f_mapping->host; | ||
267 | struct xfs_inode *ip = XFS_I(inode); | ||
268 | struct xfs_mount *mp = ip->i_mount; | ||
269 | size_t size = 0; | ||
270 | ssize_t ret = 0; | ||
271 | int ioflags = 0; | ||
272 | xfs_fsize_t n; | ||
273 | unsigned long seg; | ||
274 | |||
275 | XFS_STATS_INC(xs_read_calls); | ||
276 | |||
277 | BUG_ON(iocb->ki_pos != pos); | ||
278 | |||
279 | if (unlikely(file->f_flags & O_DIRECT)) | ||
280 | ioflags |= IO_ISDIRECT; | ||
281 | if (file->f_mode & FMODE_NOCMTIME) | ||
282 | ioflags |= IO_INVIS; | ||
283 | |||
284 | /* START copy & waste from filemap.c */ | ||
285 | for (seg = 0; seg < nr_segs; seg++) { | ||
286 | const struct iovec *iv = &iovp[seg]; | ||
287 | |||
288 | /* | ||
289 | * If any segment has a negative length, or the cumulative | ||
290 | * length ever wraps negative then return -EINVAL. | ||
291 | */ | ||
292 | size += iv->iov_len; | ||
293 | if (unlikely((ssize_t)(size|iv->iov_len) < 0)) | ||
294 | return XFS_ERROR(-EINVAL); | ||
295 | } | ||
296 | /* END copy & waste from filemap.c */ | ||
297 | |||
298 | if (unlikely(ioflags & IO_ISDIRECT)) { | ||
299 | xfs_buftarg_t *target = | ||
300 | XFS_IS_REALTIME_INODE(ip) ? | ||
301 | mp->m_rtdev_targp : mp->m_ddev_targp; | ||
302 | if ((iocb->ki_pos & target->bt_smask) || | ||
303 | (size & target->bt_smask)) { | ||
304 | if (iocb->ki_pos == ip->i_size) | ||
305 | return 0; | ||
306 | return -XFS_ERROR(EINVAL); | ||
307 | } | ||
308 | } | ||
309 | |||
310 | n = XFS_MAXIOFFSET(mp) - iocb->ki_pos; | ||
311 | if (n <= 0 || size == 0) | ||
312 | return 0; | ||
313 | |||
314 | if (n < size) | ||
315 | size = n; | ||
316 | |||
317 | if (XFS_FORCED_SHUTDOWN(mp)) | ||
318 | return -EIO; | ||
319 | |||
320 | /* | ||
321 | * Locking is a bit tricky here. If we take an exclusive lock | ||
322 | * for direct IO, we effectively serialise all new concurrent | ||
323 | * read IO to this file and block it behind IO that is currently in | ||
324 | * progress because IO in progress holds the IO lock shared. We only | ||
325 | * need to hold the lock exclusive to blow away the page cache, so | ||
326 | * only take lock exclusively if the page cache needs invalidation. | ||
327 | * This allows the normal direct IO case of no page cache pages to | ||
328 | * proceeed concurrently without serialisation. | ||
329 | */ | ||
330 | xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); | ||
331 | if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) { | ||
332 | xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); | ||
333 | xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); | ||
334 | |||
335 | if (inode->i_mapping->nrpages) { | ||
336 | ret = -xfs_flushinval_pages(ip, | ||
337 | (iocb->ki_pos & PAGE_CACHE_MASK), | ||
338 | -1, FI_REMAPF_LOCKED); | ||
339 | if (ret) { | ||
340 | xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); | ||
341 | return ret; | ||
342 | } | ||
343 | } | ||
344 | xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); | ||
345 | } | ||
346 | |||
347 | trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags); | ||
348 | |||
349 | ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos); | ||
350 | if (ret > 0) | ||
351 | XFS_STATS_ADD(xs_read_bytes, ret); | ||
352 | |||
353 | xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); | ||
354 | return ret; | ||
355 | } | ||
356 | |||
357 | STATIC ssize_t | ||
358 | xfs_file_splice_read( | ||
359 | struct file *infilp, | ||
360 | loff_t *ppos, | ||
361 | struct pipe_inode_info *pipe, | ||
362 | size_t count, | ||
363 | unsigned int flags) | ||
364 | { | ||
365 | struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); | ||
366 | int ioflags = 0; | ||
367 | ssize_t ret; | ||
368 | |||
369 | XFS_STATS_INC(xs_read_calls); | ||
370 | |||
371 | if (infilp->f_mode & FMODE_NOCMTIME) | ||
372 | ioflags |= IO_INVIS; | ||
373 | |||
374 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) | ||
375 | return -EIO; | ||
376 | |||
377 | xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); | ||
378 | |||
379 | trace_xfs_file_splice_read(ip, count, *ppos, ioflags); | ||
380 | |||
381 | ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); | ||
382 | if (ret > 0) | ||
383 | XFS_STATS_ADD(xs_read_bytes, ret); | ||
384 | |||
385 | xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); | ||
386 | return ret; | ||
387 | } | ||
388 | |||
389 | STATIC void | ||
390 | xfs_aio_write_isize_update( | ||
391 | struct inode *inode, | ||
392 | loff_t *ppos, | ||
393 | ssize_t bytes_written) | ||
394 | { | ||
395 | struct xfs_inode *ip = XFS_I(inode); | ||
396 | xfs_fsize_t isize = i_size_read(inode); | ||
397 | |||
398 | if (bytes_written > 0) | ||
399 | XFS_STATS_ADD(xs_write_bytes, bytes_written); | ||
400 | |||
401 | if (unlikely(bytes_written < 0 && bytes_written != -EFAULT && | ||
402 | *ppos > isize)) | ||
403 | *ppos = isize; | ||
404 | |||
405 | if (*ppos > ip->i_size) { | ||
406 | xfs_rw_ilock(ip, XFS_ILOCK_EXCL); | ||
407 | if (*ppos > ip->i_size) | ||
408 | ip->i_size = *ppos; | ||
409 | xfs_rw_iunlock(ip, XFS_ILOCK_EXCL); | ||
410 | } | ||
411 | } | ||
412 | |||
413 | /* | ||
414 | * If this was a direct or synchronous I/O that failed (such as ENOSPC) then | ||
415 | * part of the I/O may have been written to disk before the error occurred. In | ||
416 | * this case the on-disk file size may have been adjusted beyond the in-memory | ||
417 | * file size and now needs to be truncated back. | ||
418 | */ | ||
419 | STATIC void | ||
420 | xfs_aio_write_newsize_update( | ||
421 | struct xfs_inode *ip) | ||
422 | { | ||
423 | if (ip->i_new_size) { | ||
424 | xfs_rw_ilock(ip, XFS_ILOCK_EXCL); | ||
425 | ip->i_new_size = 0; | ||
426 | if (ip->i_d.di_size > ip->i_size) | ||
427 | ip->i_d.di_size = ip->i_size; | ||
428 | xfs_rw_iunlock(ip, XFS_ILOCK_EXCL); | ||
429 | } | ||
430 | } | ||
431 | |||
432 | /* | ||
433 | * xfs_file_splice_write() does not use xfs_rw_ilock() because | ||
434 | * generic_file_splice_write() takes the i_mutex itself. This, in theory, | ||
435 | * couuld cause lock inversions between the aio_write path and the splice path | ||
436 | * if someone is doing concurrent splice(2) based writes and write(2) based | ||
437 | * writes to the same inode. The only real way to fix this is to re-implement | ||
438 | * the generic code here with correct locking orders. | ||
439 | */ | ||
440 | STATIC ssize_t | ||
441 | xfs_file_splice_write( | ||
442 | struct pipe_inode_info *pipe, | ||
443 | struct file *outfilp, | ||
444 | loff_t *ppos, | ||
445 | size_t count, | ||
446 | unsigned int flags) | ||
447 | { | ||
448 | struct inode *inode = outfilp->f_mapping->host; | ||
449 | struct xfs_inode *ip = XFS_I(inode); | ||
450 | xfs_fsize_t new_size; | ||
451 | int ioflags = 0; | ||
452 | ssize_t ret; | ||
453 | |||
454 | XFS_STATS_INC(xs_write_calls); | ||
455 | |||
456 | if (outfilp->f_mode & FMODE_NOCMTIME) | ||
457 | ioflags |= IO_INVIS; | ||
458 | |||
459 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) | ||
460 | return -EIO; | ||
461 | |||
462 | xfs_ilock(ip, XFS_IOLOCK_EXCL); | ||
463 | |||
464 | new_size = *ppos + count; | ||
465 | |||
466 | xfs_ilock(ip, XFS_ILOCK_EXCL); | ||
467 | if (new_size > ip->i_size) | ||
468 | ip->i_new_size = new_size; | ||
469 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | ||
470 | |||
471 | trace_xfs_file_splice_write(ip, count, *ppos, ioflags); | ||
472 | |||
473 | ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags); | ||
474 | |||
475 | xfs_aio_write_isize_update(inode, ppos, ret); | ||
476 | xfs_aio_write_newsize_update(ip); | ||
477 | xfs_iunlock(ip, XFS_IOLOCK_EXCL); | ||
478 | return ret; | ||
479 | } | ||
480 | |||
481 | /* | ||
482 | * This routine is called to handle zeroing any space in the last | ||
483 | * block of the file that is beyond the EOF. We do this since the | ||
484 | * size is being increased without writing anything to that block | ||
485 | * and we don't want anyone to read the garbage on the disk. | ||
486 | */ | ||
487 | STATIC int /* error (positive) */ | ||
488 | xfs_zero_last_block( | ||
489 | xfs_inode_t *ip, | ||
490 | xfs_fsize_t offset, | ||
491 | xfs_fsize_t isize) | ||
492 | { | ||
493 | xfs_fileoff_t last_fsb; | ||
494 | xfs_mount_t *mp = ip->i_mount; | ||
495 | int nimaps; | ||
496 | int zero_offset; | ||
497 | int zero_len; | ||
498 | int error = 0; | ||
499 | xfs_bmbt_irec_t imap; | ||
500 | |||
501 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); | ||
502 | |||
503 | zero_offset = XFS_B_FSB_OFFSET(mp, isize); | ||
504 | if (zero_offset == 0) { | ||
505 | /* | ||
506 | * There are no extra bytes in the last block on disk to | ||
507 | * zero, so return. | ||
508 | */ | ||
509 | return 0; | ||
510 | } | ||
511 | |||
512 | last_fsb = XFS_B_TO_FSBT(mp, isize); | ||
513 | nimaps = 1; | ||
514 | error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap, | ||
515 | &nimaps, NULL); | ||
516 | if (error) { | ||
517 | return error; | ||
518 | } | ||
519 | ASSERT(nimaps > 0); | ||
520 | /* | ||
521 | * If the block underlying isize is just a hole, then there | ||
522 | * is nothing to zero. | ||
523 | */ | ||
524 | if (imap.br_startblock == HOLESTARTBLOCK) { | ||
525 | return 0; | ||
526 | } | ||
527 | /* | ||
528 | * Zero the part of the last block beyond the EOF, and write it | ||
529 | * out sync. We need to drop the ilock while we do this so we | ||
530 | * don't deadlock when the buffer cache calls back to us. | ||
531 | */ | ||
532 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | ||
533 | |||
534 | zero_len = mp->m_sb.sb_blocksize - zero_offset; | ||
535 | if (isize + zero_len > offset) | ||
536 | zero_len = offset - isize; | ||
537 | error = xfs_iozero(ip, isize, zero_len); | ||
538 | |||
539 | xfs_ilock(ip, XFS_ILOCK_EXCL); | ||
540 | ASSERT(error >= 0); | ||
541 | return error; | ||
542 | } | ||
543 | |||
544 | /* | ||
545 | * Zero any on disk space between the current EOF and the new, | ||
546 | * larger EOF. This handles the normal case of zeroing the remainder | ||
547 | * of the last block in the file and the unusual case of zeroing blocks | ||
548 | * out beyond the size of the file. This second case only happens | ||
549 | * with fixed size extents and when the system crashes before the inode | ||
550 | * size was updated but after blocks were allocated. If fill is set, | ||
551 | * then any holes in the range are filled and zeroed. If not, the holes | ||
552 | * are left alone as holes. | ||
553 | */ | ||
554 | |||
555 | int /* error (positive) */ | ||
556 | xfs_zero_eof( | ||
557 | xfs_inode_t *ip, | ||
558 | xfs_off_t offset, /* starting I/O offset */ | ||
559 | xfs_fsize_t isize) /* current inode size */ | ||
560 | { | ||
561 | xfs_mount_t *mp = ip->i_mount; | ||
562 | xfs_fileoff_t start_zero_fsb; | ||
563 | xfs_fileoff_t end_zero_fsb; | ||
564 | xfs_fileoff_t zero_count_fsb; | ||
565 | xfs_fileoff_t last_fsb; | ||
566 | xfs_fileoff_t zero_off; | ||
567 | xfs_fsize_t zero_len; | ||
568 | int nimaps; | ||
569 | int error = 0; | ||
570 | xfs_bmbt_irec_t imap; | ||
571 | |||
572 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); | ||
573 | ASSERT(offset > isize); | ||
574 | |||
575 | /* | ||
576 | * First handle zeroing the block on which isize resides. | ||
577 | * We only zero a part of that block so it is handled specially. | ||
578 | */ | ||
579 | error = xfs_zero_last_block(ip, offset, isize); | ||
580 | if (error) { | ||
581 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); | ||
582 | return error; | ||
583 | } | ||
584 | |||
585 | /* | ||
586 | * Calculate the range between the new size and the old | ||
587 | * where blocks needing to be zeroed may exist. To get the | ||
588 | * block where the last byte in the file currently resides, | ||
589 | * we need to subtract one from the size and truncate back | ||
590 | * to a block boundary. We subtract 1 in case the size is | ||
591 | * exactly on a block boundary. | ||
592 | */ | ||
593 | last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; | ||
594 | start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); | ||
595 | end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); | ||
596 | ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); | ||
597 | if (last_fsb == end_zero_fsb) { | ||
598 | /* | ||
599 | * The size was only incremented on its last block. | ||
600 | * We took care of that above, so just return. | ||
601 | */ | ||
602 | return 0; | ||
603 | } | ||
604 | |||
605 | ASSERT(start_zero_fsb <= end_zero_fsb); | ||
606 | while (start_zero_fsb <= end_zero_fsb) { | ||
607 | nimaps = 1; | ||
608 | zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; | ||
609 | error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb, | ||
610 | 0, NULL, 0, &imap, &nimaps, NULL); | ||
611 | if (error) { | ||
612 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); | ||
613 | return error; | ||
614 | } | ||
615 | ASSERT(nimaps > 0); | ||
616 | |||
617 | if (imap.br_state == XFS_EXT_UNWRITTEN || | ||
618 | imap.br_startblock == HOLESTARTBLOCK) { | ||
619 | /* | ||
620 | * This loop handles initializing pages that were | ||
621 | * partially initialized by the code below this | ||
622 | * loop. It basically zeroes the part of the page | ||
623 | * that sits on a hole and sets the page as P_HOLE | ||
624 | * and calls remapf if it is a mapped file. | ||
625 | */ | ||
626 | start_zero_fsb = imap.br_startoff + imap.br_blockcount; | ||
627 | ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); | ||
628 | continue; | ||
629 | } | ||
630 | |||
631 | /* | ||
632 | * There are blocks we need to zero. | ||
633 | * Drop the inode lock while we're doing the I/O. | ||
634 | * We'll still have the iolock to protect us. | ||
635 | */ | ||
636 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | ||
637 | |||
638 | zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); | ||
639 | zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); | ||
640 | |||
641 | if ((zero_off + zero_len) > offset) | ||
642 | zero_len = offset - zero_off; | ||
643 | |||
644 | error = xfs_iozero(ip, zero_off, zero_len); | ||
645 | if (error) { | ||
646 | goto out_lock; | ||
647 | } | ||
648 | |||
649 | start_zero_fsb = imap.br_startoff + imap.br_blockcount; | ||
650 | ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); | ||
651 | |||
652 | xfs_ilock(ip, XFS_ILOCK_EXCL); | ||
653 | } | ||
654 | |||
655 | return 0; | ||
656 | |||
657 | out_lock: | ||
658 | xfs_ilock(ip, XFS_ILOCK_EXCL); | ||
659 | ASSERT(error >= 0); | ||
660 | return error; | ||
661 | } | ||
662 | |||
663 | /* | ||
664 | * Common pre-write limit and setup checks. | ||
665 | * | ||
666 | * Returns with iolock held according to @iolock. | ||
667 | */ | ||
668 | STATIC ssize_t | ||
669 | xfs_file_aio_write_checks( | ||
670 | struct file *file, | ||
671 | loff_t *pos, | ||
672 | size_t *count, | ||
673 | int *iolock) | ||
674 | { | ||
675 | struct inode *inode = file->f_mapping->host; | ||
676 | struct xfs_inode *ip = XFS_I(inode); | ||
677 | xfs_fsize_t new_size; | ||
678 | int error = 0; | ||
679 | |||
680 | xfs_rw_ilock(ip, XFS_ILOCK_EXCL); | ||
681 | error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode)); | ||
682 | if (error) { | ||
683 | xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock); | ||
684 | *iolock = 0; | ||
685 | return error; | ||
686 | } | ||
687 | |||
688 | new_size = *pos + *count; | ||
689 | if (new_size > ip->i_size) | ||
690 | ip->i_new_size = new_size; | ||
691 | |||
692 | if (likely(!(file->f_mode & FMODE_NOCMTIME))) | ||
693 | file_update_time(file); | ||
694 | |||
695 | /* | ||
696 | * If the offset is beyond the size of the file, we need to zero any | ||
697 | * blocks that fall between the existing EOF and the start of this | ||
698 | * write. | ||
699 | */ | ||
700 | if (*pos > ip->i_size) | ||
701 | error = -xfs_zero_eof(ip, *pos, ip->i_size); | ||
702 | |||
703 | xfs_rw_iunlock(ip, XFS_ILOCK_EXCL); | ||
704 | if (error) | ||
705 | return error; | ||
706 | |||
707 | /* | ||
708 | * If we're writing the file then make sure to clear the setuid and | ||
709 | * setgid bits if the process is not being run by root. This keeps | ||
710 | * people from modifying setuid and setgid binaries. | ||
711 | */ | ||
712 | return file_remove_suid(file); | ||
713 | |||
714 | } | ||
715 | |||
716 | /* | ||
717 | * xfs_file_dio_aio_write - handle direct IO writes | ||
718 | * | ||
719 | * Lock the inode appropriately to prepare for and issue a direct IO write. | ||
720 | * By separating it from the buffered write path we remove all the tricky to | ||
721 | * follow locking changes and looping. | ||
722 | * | ||
723 | * If there are cached pages or we're extending the file, we need IOLOCK_EXCL | ||
724 | * until we're sure the bytes at the new EOF have been zeroed and/or the cached | ||
725 | * pages are flushed out. | ||
726 | * | ||
727 | * In most cases the direct IO writes will be done holding IOLOCK_SHARED | ||
728 | * allowing them to be done in parallel with reads and other direct IO writes. | ||
729 | * However, if the IO is not aligned to filesystem blocks, the direct IO layer | ||
730 | * needs to do sub-block zeroing and that requires serialisation against other | ||
731 | * direct IOs to the same block. In this case we need to serialise the | ||
732 | * submission of the unaligned IOs so that we don't get racing block zeroing in | ||
733 | * the dio layer. To avoid the problem with aio, we also need to wait for | ||
734 | * outstanding IOs to complete so that unwritten extent conversion is completed | ||
735 | * before we try to map the overlapping block. This is currently implemented by | ||
736 | * hitting it with a big hammer (i.e. xfs_ioend_wait()). | ||
737 | * | ||
738 | * Returns with locks held indicated by @iolock and errors indicated by | ||
739 | * negative return values. | ||
740 | */ | ||
741 | STATIC ssize_t | ||
742 | xfs_file_dio_aio_write( | ||
743 | struct kiocb *iocb, | ||
744 | const struct iovec *iovp, | ||
745 | unsigned long nr_segs, | ||
746 | loff_t pos, | ||
747 | size_t ocount, | ||
748 | int *iolock) | ||
749 | { | ||
750 | struct file *file = iocb->ki_filp; | ||
751 | struct address_space *mapping = file->f_mapping; | ||
752 | struct inode *inode = mapping->host; | ||
753 | struct xfs_inode *ip = XFS_I(inode); | ||
754 | struct xfs_mount *mp = ip->i_mount; | ||
755 | ssize_t ret = 0; | ||
756 | size_t count = ocount; | ||
757 | int unaligned_io = 0; | ||
758 | struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? | ||
759 | mp->m_rtdev_targp : mp->m_ddev_targp; | ||
760 | |||
761 | *iolock = 0; | ||
762 | if ((pos & target->bt_smask) || (count & target->bt_smask)) | ||
763 | return -XFS_ERROR(EINVAL); | ||
764 | |||
765 | if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask)) | ||
766 | unaligned_io = 1; | ||
767 | |||
768 | if (unaligned_io || mapping->nrpages || pos > ip->i_size) | ||
769 | *iolock = XFS_IOLOCK_EXCL; | ||
770 | else | ||
771 | *iolock = XFS_IOLOCK_SHARED; | ||
772 | xfs_rw_ilock(ip, *iolock); | ||
773 | |||
774 | ret = xfs_file_aio_write_checks(file, &pos, &count, iolock); | ||
775 | if (ret) | ||
776 | return ret; | ||
777 | |||
778 | /* | ||
779 | * Recheck if there are cached pages that need invalidate after we got | ||
780 | * the iolock to protect against other threads adding new pages while | ||
781 | * we were waiting for the iolock. | ||
782 | */ | ||
783 | if (mapping->nrpages && *iolock == XFS_IOLOCK_SHARED) { | ||
784 | xfs_rw_iunlock(ip, *iolock); | ||
785 | *iolock = XFS_IOLOCK_EXCL; | ||
786 | xfs_rw_ilock(ip, *iolock); | ||
787 | } | ||
788 | |||
789 | if (mapping->nrpages) { | ||
790 | ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1, | ||
791 | FI_REMAPF_LOCKED); | ||
792 | if (ret) | ||
793 | return ret; | ||
794 | } | ||
795 | |||
796 | /* | ||
797 | * If we are doing unaligned IO, wait for all other IO to drain, | ||
798 | * otherwise demote the lock if we had to flush cached pages | ||
799 | */ | ||
800 | if (unaligned_io) | ||
801 | xfs_ioend_wait(ip); | ||
802 | else if (*iolock == XFS_IOLOCK_EXCL) { | ||
803 | xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); | ||
804 | *iolock = XFS_IOLOCK_SHARED; | ||
805 | } | ||
806 | |||
807 | trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0); | ||
808 | ret = generic_file_direct_write(iocb, iovp, | ||
809 | &nr_segs, pos, &iocb->ki_pos, count, ocount); | ||
810 | |||
811 | /* No fallback to buffered IO on errors for XFS. */ | ||
812 | ASSERT(ret < 0 || ret == count); | ||
813 | return ret; | ||
814 | } | ||
815 | |||
816 | STATIC ssize_t | ||
817 | xfs_file_buffered_aio_write( | ||
818 | struct kiocb *iocb, | ||
819 | const struct iovec *iovp, | ||
820 | unsigned long nr_segs, | ||
821 | loff_t pos, | ||
822 | size_t ocount, | ||
823 | int *iolock) | ||
824 | { | ||
825 | struct file *file = iocb->ki_filp; | ||
826 | struct address_space *mapping = file->f_mapping; | ||
827 | struct inode *inode = mapping->host; | ||
828 | struct xfs_inode *ip = XFS_I(inode); | ||
829 | ssize_t ret; | ||
830 | int enospc = 0; | ||
831 | size_t count = ocount; | ||
832 | |||
833 | *iolock = XFS_IOLOCK_EXCL; | ||
834 | xfs_rw_ilock(ip, *iolock); | ||
835 | |||
836 | ret = xfs_file_aio_write_checks(file, &pos, &count, iolock); | ||
837 | if (ret) | ||
838 | return ret; | ||
839 | |||
840 | /* We can write back this queue in page reclaim */ | ||
841 | current->backing_dev_info = mapping->backing_dev_info; | ||
842 | |||
843 | write_retry: | ||
844 | trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0); | ||
845 | ret = generic_file_buffered_write(iocb, iovp, nr_segs, | ||
846 | pos, &iocb->ki_pos, count, ret); | ||
847 | /* | ||
848 | * if we just got an ENOSPC, flush the inode now we aren't holding any | ||
849 | * page locks and retry *once* | ||
850 | */ | ||
851 | if (ret == -ENOSPC && !enospc) { | ||
852 | ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE); | ||
853 | if (ret) | ||
854 | return ret; | ||
855 | enospc = 1; | ||
856 | goto write_retry; | ||
857 | } | ||
858 | current->backing_dev_info = NULL; | ||
859 | return ret; | ||
860 | } | ||
861 | |||
862 | STATIC ssize_t | ||
863 | xfs_file_aio_write( | ||
864 | struct kiocb *iocb, | ||
865 | const struct iovec *iovp, | ||
866 | unsigned long nr_segs, | ||
867 | loff_t pos) | ||
868 | { | ||
869 | struct file *file = iocb->ki_filp; | ||
870 | struct address_space *mapping = file->f_mapping; | ||
871 | struct inode *inode = mapping->host; | ||
872 | struct xfs_inode *ip = XFS_I(inode); | ||
873 | ssize_t ret; | ||
874 | int iolock; | ||
875 | size_t ocount = 0; | ||
876 | |||
877 | XFS_STATS_INC(xs_write_calls); | ||
878 | |||
879 | BUG_ON(iocb->ki_pos != pos); | ||
880 | |||
881 | ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ); | ||
882 | if (ret) | ||
883 | return ret; | ||
884 | |||
885 | if (ocount == 0) | ||
886 | return 0; | ||
887 | |||
888 | xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE); | ||
889 | |||
890 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) | ||
891 | return -EIO; | ||
892 | |||
893 | if (unlikely(file->f_flags & O_DIRECT)) | ||
894 | ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, | ||
895 | ocount, &iolock); | ||
896 | else | ||
897 | ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos, | ||
898 | ocount, &iolock); | ||
899 | |||
900 | xfs_aio_write_isize_update(inode, &iocb->ki_pos, ret); | ||
901 | |||
902 | if (ret <= 0) | ||
903 | goto out_unlock; | ||
904 | |||
905 | /* Handle various SYNC-type writes */ | ||
906 | if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) { | ||
907 | loff_t end = pos + ret - 1; | ||
908 | int error; | ||
909 | |||
910 | xfs_rw_iunlock(ip, iolock); | ||
911 | error = xfs_file_fsync(file, pos, end, | ||
912 | (file->f_flags & __O_SYNC) ? 0 : 1); | ||
913 | xfs_rw_ilock(ip, iolock); | ||
914 | if (error) | ||
915 | ret = error; | ||
916 | } | ||
917 | |||
918 | out_unlock: | ||
919 | xfs_aio_write_newsize_update(ip); | ||
920 | xfs_rw_iunlock(ip, iolock); | ||
921 | return ret; | ||
922 | } | ||
923 | |||
924 | STATIC long | ||
925 | xfs_file_fallocate( | ||
926 | struct file *file, | ||
927 | int mode, | ||
928 | loff_t offset, | ||
929 | loff_t len) | ||
930 | { | ||
931 | struct inode *inode = file->f_path.dentry->d_inode; | ||
932 | long error; | ||
933 | loff_t new_size = 0; | ||
934 | xfs_flock64_t bf; | ||
935 | xfs_inode_t *ip = XFS_I(inode); | ||
936 | int cmd = XFS_IOC_RESVSP; | ||
937 | int attr_flags = XFS_ATTR_NOLOCK; | ||
938 | |||
939 | if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) | ||
940 | return -EOPNOTSUPP; | ||
941 | |||
942 | bf.l_whence = 0; | ||
943 | bf.l_start = offset; | ||
944 | bf.l_len = len; | ||
945 | |||
946 | xfs_ilock(ip, XFS_IOLOCK_EXCL); | ||
947 | |||
948 | if (mode & FALLOC_FL_PUNCH_HOLE) | ||
949 | cmd = XFS_IOC_UNRESVSP; | ||
950 | |||
951 | /* check the new inode size is valid before allocating */ | ||
952 | if (!(mode & FALLOC_FL_KEEP_SIZE) && | ||
953 | offset + len > i_size_read(inode)) { | ||
954 | new_size = offset + len; | ||
955 | error = inode_newsize_ok(inode, new_size); | ||
956 | if (error) | ||
957 | goto out_unlock; | ||
958 | } | ||
959 | |||
960 | if (file->f_flags & O_DSYNC) | ||
961 | attr_flags |= XFS_ATTR_SYNC; | ||
962 | |||
963 | error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags); | ||
964 | if (error) | ||
965 | goto out_unlock; | ||
966 | |||
967 | /* Change file size if needed */ | ||
968 | if (new_size) { | ||
969 | struct iattr iattr; | ||
970 | |||
971 | iattr.ia_valid = ATTR_SIZE; | ||
972 | iattr.ia_size = new_size; | ||
973 | error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK); | ||
974 | } | ||
975 | |||
976 | out_unlock: | ||
977 | xfs_iunlock(ip, XFS_IOLOCK_EXCL); | ||
978 | return error; | ||
979 | } | ||
980 | |||
981 | |||
982 | STATIC int | ||
983 | xfs_file_open( | ||
984 | struct inode *inode, | ||
985 | struct file *file) | ||
986 | { | ||
987 | if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) | ||
988 | return -EFBIG; | ||
989 | if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) | ||
990 | return -EIO; | ||
991 | return 0; | ||
992 | } | ||
993 | |||
994 | STATIC int | ||
995 | xfs_dir_open( | ||
996 | struct inode *inode, | ||
997 | struct file *file) | ||
998 | { | ||
999 | struct xfs_inode *ip = XFS_I(inode); | ||
1000 | int mode; | ||
1001 | int error; | ||
1002 | |||
1003 | error = xfs_file_open(inode, file); | ||
1004 | if (error) | ||
1005 | return error; | ||
1006 | |||
1007 | /* | ||
1008 | * If there are any blocks, read-ahead block 0 as we're almost | ||
1009 | * certain to have the next operation be a read there. | ||
1010 | */ | ||
1011 | mode = xfs_ilock_map_shared(ip); | ||
1012 | if (ip->i_d.di_nextents > 0) | ||
1013 | xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK); | ||
1014 | xfs_iunlock(ip, mode); | ||
1015 | return 0; | ||
1016 | } | ||
1017 | |||
1018 | STATIC int | ||
1019 | xfs_file_release( | ||
1020 | struct inode *inode, | ||
1021 | struct file *filp) | ||
1022 | { | ||
1023 | return -xfs_release(XFS_I(inode)); | ||
1024 | } | ||
1025 | |||
1026 | STATIC int | ||
1027 | xfs_file_readdir( | ||
1028 | struct file *filp, | ||
1029 | void *dirent, | ||
1030 | filldir_t filldir) | ||
1031 | { | ||
1032 | struct inode *inode = filp->f_path.dentry->d_inode; | ||
1033 | xfs_inode_t *ip = XFS_I(inode); | ||
1034 | int error; | ||
1035 | size_t bufsize; | ||
1036 | |||
1037 | /* | ||
1038 | * The Linux API doesn't pass down the total size of the buffer | ||
1039 | * we read into down to the filesystem. With the filldir concept | ||
1040 | * it's not needed for correct information, but the XFS dir2 leaf | ||
1041 | * code wants an estimate of the buffer size to calculate it's | ||
1042 | * readahead window and size the buffers used for mapping to | ||
1043 | * physical blocks. | ||
1044 | * | ||
1045 | * Try to give it an estimate that's good enough, maybe at some | ||
1046 | * point we can change the ->readdir prototype to include the | ||
1047 | * buffer size. For now we use the current glibc buffer size. | ||
1048 | */ | ||
1049 | bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); | ||
1050 | |||
1051 | error = xfs_readdir(ip, dirent, bufsize, | ||
1052 | (xfs_off_t *)&filp->f_pos, filldir); | ||
1053 | if (error) | ||
1054 | return -error; | ||
1055 | return 0; | ||
1056 | } | ||
1057 | |||
1058 | STATIC int | ||
1059 | xfs_file_mmap( | ||
1060 | struct file *filp, | ||
1061 | struct vm_area_struct *vma) | ||
1062 | { | ||
1063 | vma->vm_ops = &xfs_file_vm_ops; | ||
1064 | vma->vm_flags |= VM_CAN_NONLINEAR; | ||
1065 | |||
1066 | file_accessed(filp); | ||
1067 | return 0; | ||
1068 | } | ||
1069 | |||
1070 | /* | ||
1071 | * mmap()d file has taken write protection fault and is being made | ||
1072 | * writable. We can set the page state up correctly for a writable | ||
1073 | * page, which means we can do correct delalloc accounting (ENOSPC | ||
1074 | * checking!) and unwritten extent mapping. | ||
1075 | */ | ||
1076 | STATIC int | ||
1077 | xfs_vm_page_mkwrite( | ||
1078 | struct vm_area_struct *vma, | ||
1079 | struct vm_fault *vmf) | ||
1080 | { | ||
1081 | return block_page_mkwrite(vma, vmf, xfs_get_blocks); | ||
1082 | } | ||
1083 | |||
1084 | const struct file_operations xfs_file_operations = { | ||
1085 | .llseek = generic_file_llseek, | ||
1086 | .read = do_sync_read, | ||
1087 | .write = do_sync_write, | ||
1088 | .aio_read = xfs_file_aio_read, | ||
1089 | .aio_write = xfs_file_aio_write, | ||
1090 | .splice_read = xfs_file_splice_read, | ||
1091 | .splice_write = xfs_file_splice_write, | ||
1092 | .unlocked_ioctl = xfs_file_ioctl, | ||
1093 | #ifdef CONFIG_COMPAT | ||
1094 | .compat_ioctl = xfs_file_compat_ioctl, | ||
1095 | #endif | ||
1096 | .mmap = xfs_file_mmap, | ||
1097 | .open = xfs_file_open, | ||
1098 | .release = xfs_file_release, | ||
1099 | .fsync = xfs_file_fsync, | ||
1100 | .fallocate = xfs_file_fallocate, | ||
1101 | }; | ||
1102 | |||
1103 | const struct file_operations xfs_dir_file_operations = { | ||
1104 | .open = xfs_dir_open, | ||
1105 | .read = generic_read_dir, | ||
1106 | .readdir = xfs_file_readdir, | ||
1107 | .llseek = generic_file_llseek, | ||
1108 | .unlocked_ioctl = xfs_file_ioctl, | ||
1109 | #ifdef CONFIG_COMPAT | ||
1110 | .compat_ioctl = xfs_file_compat_ioctl, | ||
1111 | #endif | ||
1112 | .fsync = xfs_file_fsync, | ||
1113 | }; | ||
1114 | |||
1115 | static const struct vm_operations_struct xfs_file_vm_ops = { | ||
1116 | .fault = filemap_fault, | ||
1117 | .page_mkwrite = xfs_vm_page_mkwrite, | ||
1118 | }; | ||