aboutsummaryrefslogtreecommitdiffstats
path: root/arch/powerpc/platforms/pseries/eeh.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/powerpc/platforms/pseries/eeh.c')
-rw-r--r--arch/powerpc/platforms/pseries/eeh.c1044
1 files changed, 462 insertions, 582 deletions
diff --git a/arch/powerpc/platforms/pseries/eeh.c b/arch/powerpc/platforms/pseries/eeh.c
index c0b40af4ce4..8011088392d 100644
--- a/arch/powerpc/platforms/pseries/eeh.c
+++ b/arch/powerpc/platforms/pseries/eeh.c
@@ -1,8 +1,8 @@
1/* 1/*
2 * eeh.c
3 * Copyright IBM Corporation 2001, 2005, 2006 2 * Copyright IBM Corporation 2001, 2005, 2006
4 * Copyright Dave Engebretsen & Todd Inglett 2001 3 * Copyright Dave Engebretsen & Todd Inglett 2001
5 * Copyright Linas Vepstas 2005, 2006 4 * Copyright Linas Vepstas 2005, 2006
5 * Copyright 2001-2012 IBM Corporation.
6 * 6 *
7 * This program is free software; you can redistribute it and/or modify 7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by 8 * it under the terms of the GNU General Public License as published by
@@ -22,7 +22,7 @@
22 */ 22 */
23 23
24#include <linux/delay.h> 24#include <linux/delay.h>
25#include <linux/sched.h> /* for init_mm */ 25#include <linux/sched.h>
26#include <linux/init.h> 26#include <linux/init.h>
27#include <linux/list.h> 27#include <linux/list.h>
28#include <linux/pci.h> 28#include <linux/pci.h>
@@ -86,16 +86,8 @@
86/* Time to wait for a PCI slot to report status, in milliseconds */ 86/* Time to wait for a PCI slot to report status, in milliseconds */
87#define PCI_BUS_RESET_WAIT_MSEC (60*1000) 87#define PCI_BUS_RESET_WAIT_MSEC (60*1000)
88 88
89/* RTAS tokens */ 89/* Platform dependent EEH operations */
90static int ibm_set_eeh_option; 90struct eeh_ops *eeh_ops = NULL;
91static int ibm_set_slot_reset;
92static int ibm_read_slot_reset_state;
93static int ibm_read_slot_reset_state2;
94static int ibm_slot_error_detail;
95static int ibm_get_config_addr_info;
96static int ibm_get_config_addr_info2;
97static int ibm_configure_bridge;
98static int ibm_configure_pe;
99 91
100int eeh_subsystem_enabled; 92int eeh_subsystem_enabled;
101EXPORT_SYMBOL(eeh_subsystem_enabled); 93EXPORT_SYMBOL(eeh_subsystem_enabled);
@@ -103,14 +95,6 @@ EXPORT_SYMBOL(eeh_subsystem_enabled);
103/* Lock to avoid races due to multiple reports of an error */ 95/* Lock to avoid races due to multiple reports of an error */
104static DEFINE_RAW_SPINLOCK(confirm_error_lock); 96static DEFINE_RAW_SPINLOCK(confirm_error_lock);
105 97
106/* Buffer for reporting slot-error-detail rtas calls. Its here
107 * in BSS, and not dynamically alloced, so that it ends up in
108 * RMO where RTAS can access it.
109 */
110static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
111static DEFINE_SPINLOCK(slot_errbuf_lock);
112static int eeh_error_buf_size;
113
114/* Buffer for reporting pci register dumps. Its here in BSS, and 98/* Buffer for reporting pci register dumps. Its here in BSS, and
115 * not dynamically alloced, so that it ends up in RMO where RTAS 99 * not dynamically alloced, so that it ends up in RMO where RTAS
116 * can access it. 100 * can access it.
@@ -118,74 +102,50 @@ static int eeh_error_buf_size;
118#define EEH_PCI_REGS_LOG_LEN 4096 102#define EEH_PCI_REGS_LOG_LEN 4096
119static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN]; 103static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
120 104
121/* System monitoring statistics */ 105/*
122static unsigned long no_device; 106 * The struct is used to maintain the EEH global statistic
123static unsigned long no_dn; 107 * information. Besides, the EEH global statistics will be
124static unsigned long no_cfg_addr; 108 * exported to user space through procfs
125static unsigned long ignored_check; 109 */
126static unsigned long total_mmio_ffs; 110struct eeh_stats {
127static unsigned long false_positives; 111 u64 no_device; /* PCI device not found */
128static unsigned long slot_resets; 112 u64 no_dn; /* OF node not found */
129 113 u64 no_cfg_addr; /* Config address not found */
130#define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE) 114 u64 ignored_check; /* EEH check skipped */
131 115 u64 total_mmio_ffs; /* Total EEH checks */
132/* --------------------------------------------------------------- */ 116 u64 false_positives; /* Unnecessary EEH checks */
133/* Below lies the EEH event infrastructure */ 117 u64 slot_resets; /* PE reset */
118};
134 119
135static void rtas_slot_error_detail(struct pci_dn *pdn, int severity, 120static struct eeh_stats eeh_stats;
136 char *driver_log, size_t loglen)
137{
138 int config_addr;
139 unsigned long flags;
140 int rc;
141 121
142 /* Log the error with the rtas logger */ 122#define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
143 spin_lock_irqsave(&slot_errbuf_lock, flags);
144 memset(slot_errbuf, 0, eeh_error_buf_size);
145
146 /* Use PE configuration address, if present */
147 config_addr = pdn->eeh_config_addr;
148 if (pdn->eeh_pe_config_addr)
149 config_addr = pdn->eeh_pe_config_addr;
150
151 rc = rtas_call(ibm_slot_error_detail,
152 8, 1, NULL, config_addr,
153 BUID_HI(pdn->phb->buid),
154 BUID_LO(pdn->phb->buid),
155 virt_to_phys(driver_log), loglen,
156 virt_to_phys(slot_errbuf),
157 eeh_error_buf_size,
158 severity);
159
160 if (rc == 0)
161 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
162 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
163}
164 123
165/** 124/**
166 * gather_pci_data - copy assorted PCI config space registers to buff 125 * eeh_gather_pci_data - Copy assorted PCI config space registers to buff
167 * @pdn: device to report data for 126 * @edev: device to report data for
168 * @buf: point to buffer in which to log 127 * @buf: point to buffer in which to log
169 * @len: amount of room in buffer 128 * @len: amount of room in buffer
170 * 129 *
171 * This routine captures assorted PCI configuration space data, 130 * This routine captures assorted PCI configuration space data,
172 * and puts them into a buffer for RTAS error logging. 131 * and puts them into a buffer for RTAS error logging.
173 */ 132 */
174static size_t gather_pci_data(struct pci_dn *pdn, char * buf, size_t len) 133static size_t eeh_gather_pci_data(struct eeh_dev *edev, char * buf, size_t len)
175{ 134{
176 struct pci_dev *dev = pdn->pcidev; 135 struct device_node *dn = eeh_dev_to_of_node(edev);
136 struct pci_dev *dev = eeh_dev_to_pci_dev(edev);
177 u32 cfg; 137 u32 cfg;
178 int cap, i; 138 int cap, i;
179 int n = 0; 139 int n = 0;
180 140
181 n += scnprintf(buf+n, len-n, "%s\n", pdn->node->full_name); 141 n += scnprintf(buf+n, len-n, "%s\n", dn->full_name);
182 printk(KERN_WARNING "EEH: of node=%s\n", pdn->node->full_name); 142 printk(KERN_WARNING "EEH: of node=%s\n", dn->full_name);
183 143
184 rtas_read_config(pdn, PCI_VENDOR_ID, 4, &cfg); 144 eeh_ops->read_config(dn, PCI_VENDOR_ID, 4, &cfg);
185 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg); 145 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
186 printk(KERN_WARNING "EEH: PCI device/vendor: %08x\n", cfg); 146 printk(KERN_WARNING "EEH: PCI device/vendor: %08x\n", cfg);
187 147
188 rtas_read_config(pdn, PCI_COMMAND, 4, &cfg); 148 eeh_ops->read_config(dn, PCI_COMMAND, 4, &cfg);
189 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg); 149 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
190 printk(KERN_WARNING "EEH: PCI cmd/status register: %08x\n", cfg); 150 printk(KERN_WARNING "EEH: PCI cmd/status register: %08x\n", cfg);
191 151
@@ -196,11 +156,11 @@ static size_t gather_pci_data(struct pci_dn *pdn, char * buf, size_t len)
196 156
197 /* Gather bridge-specific registers */ 157 /* Gather bridge-specific registers */
198 if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) { 158 if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) {
199 rtas_read_config(pdn, PCI_SEC_STATUS, 2, &cfg); 159 eeh_ops->read_config(dn, PCI_SEC_STATUS, 2, &cfg);
200 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg); 160 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
201 printk(KERN_WARNING "EEH: Bridge secondary status: %04x\n", cfg); 161 printk(KERN_WARNING "EEH: Bridge secondary status: %04x\n", cfg);
202 162
203 rtas_read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg); 163 eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &cfg);
204 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg); 164 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
205 printk(KERN_WARNING "EEH: Bridge control: %04x\n", cfg); 165 printk(KERN_WARNING "EEH: Bridge control: %04x\n", cfg);
206 } 166 }
@@ -208,11 +168,11 @@ static size_t gather_pci_data(struct pci_dn *pdn, char * buf, size_t len)
208 /* Dump out the PCI-X command and status regs */ 168 /* Dump out the PCI-X command and status regs */
209 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 169 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
210 if (cap) { 170 if (cap) {
211 rtas_read_config(pdn, cap, 4, &cfg); 171 eeh_ops->read_config(dn, cap, 4, &cfg);
212 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg); 172 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
213 printk(KERN_WARNING "EEH: PCI-X cmd: %08x\n", cfg); 173 printk(KERN_WARNING "EEH: PCI-X cmd: %08x\n", cfg);
214 174
215 rtas_read_config(pdn, cap+4, 4, &cfg); 175 eeh_ops->read_config(dn, cap+4, 4, &cfg);
216 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg); 176 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
217 printk(KERN_WARNING "EEH: PCI-X status: %08x\n", cfg); 177 printk(KERN_WARNING "EEH: PCI-X status: %08x\n", cfg);
218 } 178 }
@@ -225,7 +185,7 @@ static size_t gather_pci_data(struct pci_dn *pdn, char * buf, size_t len)
225 "EEH: PCI-E capabilities and status follow:\n"); 185 "EEH: PCI-E capabilities and status follow:\n");
226 186
227 for (i=0; i<=8; i++) { 187 for (i=0; i<=8; i++) {
228 rtas_read_config(pdn, cap+4*i, 4, &cfg); 188 eeh_ops->read_config(dn, cap+4*i, 4, &cfg);
229 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg); 189 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
230 printk(KERN_WARNING "EEH: PCI-E %02x: %08x\n", i, cfg); 190 printk(KERN_WARNING "EEH: PCI-E %02x: %08x\n", i, cfg);
231 } 191 }
@@ -237,7 +197,7 @@ static size_t gather_pci_data(struct pci_dn *pdn, char * buf, size_t len)
237 "EEH: PCI-E AER capability register set follows:\n"); 197 "EEH: PCI-E AER capability register set follows:\n");
238 198
239 for (i=0; i<14; i++) { 199 for (i=0; i<14; i++) {
240 rtas_read_config(pdn, cap+4*i, 4, &cfg); 200 eeh_ops->read_config(dn, cap+4*i, 4, &cfg);
241 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg); 201 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
242 printk(KERN_WARNING "EEH: PCI-E AER %02x: %08x\n", i, cfg); 202 printk(KERN_WARNING "EEH: PCI-E AER %02x: %08x\n", i, cfg);
243 } 203 }
@@ -246,111 +206,46 @@ static size_t gather_pci_data(struct pci_dn *pdn, char * buf, size_t len)
246 206
247 /* Gather status on devices under the bridge */ 207 /* Gather status on devices under the bridge */
248 if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) { 208 if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) {
249 struct device_node *dn; 209 struct device_node *child;
250 210
251 for_each_child_of_node(pdn->node, dn) { 211 for_each_child_of_node(dn, child) {
252 pdn = PCI_DN(dn); 212 if (of_node_to_eeh_dev(child))
253 if (pdn) 213 n += eeh_gather_pci_data(of_node_to_eeh_dev(child), buf+n, len-n);
254 n += gather_pci_data(pdn, buf+n, len-n);
255 } 214 }
256 } 215 }
257 216
258 return n; 217 return n;
259} 218}
260 219
261void eeh_slot_error_detail(struct pci_dn *pdn, int severity)
262{
263 size_t loglen = 0;
264 pci_regs_buf[0] = 0;
265
266 rtas_pci_enable(pdn, EEH_THAW_MMIO);
267 rtas_configure_bridge(pdn);
268 eeh_restore_bars(pdn);
269 loglen = gather_pci_data(pdn, pci_regs_buf, EEH_PCI_REGS_LOG_LEN);
270
271 rtas_slot_error_detail(pdn, severity, pci_regs_buf, loglen);
272}
273
274/** 220/**
275 * read_slot_reset_state - Read the reset state of a device node's slot 221 * eeh_slot_error_detail - Generate combined log including driver log and error log
276 * @dn: device node to read 222 * @edev: device to report error log for
277 * @rets: array to return results in 223 * @severity: temporary or permanent error log
278 */
279static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
280{
281 int token, outputs;
282 int config_addr;
283
284 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
285 token = ibm_read_slot_reset_state2;
286 outputs = 4;
287 } else {
288 token = ibm_read_slot_reset_state;
289 rets[2] = 0; /* fake PE Unavailable info */
290 outputs = 3;
291 }
292
293 /* Use PE configuration address, if present */
294 config_addr = pdn->eeh_config_addr;
295 if (pdn->eeh_pe_config_addr)
296 config_addr = pdn->eeh_pe_config_addr;
297
298 return rtas_call(token, 3, outputs, rets, config_addr,
299 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
300}
301
302/**
303 * eeh_wait_for_slot_status - returns error status of slot
304 * @pdn pci device node
305 * @max_wait_msecs maximum number to millisecs to wait
306 *
307 * Return negative value if a permanent error, else return
308 * Partition Endpoint (PE) status value.
309 * 224 *
310 * If @max_wait_msecs is positive, then this routine will 225 * This routine should be called to generate the combined log, which
311 * sleep until a valid status can be obtained, or until 226 * is comprised of driver log and error log. The driver log is figured
312 * the max allowed wait time is exceeded, in which case 227 * out from the config space of the corresponding PCI device, while
313 * a -2 is returned. 228 * the error log is fetched through platform dependent function call.
314 */ 229 */
315int 230void eeh_slot_error_detail(struct eeh_dev *edev, int severity)
316eeh_wait_for_slot_status(struct pci_dn *pdn, int max_wait_msecs)
317{ 231{
318 int rc; 232 size_t loglen = 0;
319 int rets[3]; 233 pci_regs_buf[0] = 0;
320 int mwait;
321
322 while (1) {
323 rc = read_slot_reset_state(pdn, rets);
324 if (rc) return rc;
325 if (rets[1] == 0) return -1; /* EEH is not supported */
326
327 if (rets[0] != 5) return rets[0]; /* return actual status */
328
329 if (rets[2] == 0) return -1; /* permanently unavailable */
330 234
331 if (max_wait_msecs <= 0) break; 235 eeh_pci_enable(edev, EEH_OPT_THAW_MMIO);
236 eeh_ops->configure_bridge(eeh_dev_to_of_node(edev));
237 eeh_restore_bars(edev);
238 loglen = eeh_gather_pci_data(edev, pci_regs_buf, EEH_PCI_REGS_LOG_LEN);
332 239
333 mwait = rets[2]; 240 eeh_ops->get_log(eeh_dev_to_of_node(edev), severity, pci_regs_buf, loglen);
334 if (mwait <= 0) {
335 printk (KERN_WARNING
336 "EEH: Firmware returned bad wait value=%d\n", mwait);
337 mwait = 1000;
338 } else if (mwait > 300*1000) {
339 printk (KERN_WARNING
340 "EEH: Firmware is taking too long, time=%d\n", mwait);
341 mwait = 300*1000;
342 }
343 max_wait_msecs -= mwait;
344 msleep (mwait);
345 }
346
347 printk(KERN_WARNING "EEH: Timed out waiting for slot status\n");
348 return -2;
349} 241}
350 242
351/** 243/**
352 * eeh_token_to_phys - convert EEH address token to phys address 244 * eeh_token_to_phys - Convert EEH address token to phys address
353 * @token i/o token, should be address in the form 0xA.... 245 * @token: I/O token, should be address in the form 0xA....
246 *
247 * This routine should be called to convert virtual I/O address
248 * to physical one.
354 */ 249 */
355static inline unsigned long eeh_token_to_phys(unsigned long token) 250static inline unsigned long eeh_token_to_phys(unsigned long token)
356{ 251{
@@ -365,36 +260,43 @@ static inline unsigned long eeh_token_to_phys(unsigned long token)
365 return pa | (token & (PAGE_SIZE-1)); 260 return pa | (token & (PAGE_SIZE-1));
366} 261}
367 262
368/** 263/**
369 * Return the "partitionable endpoint" (pe) under which this device lies 264 * eeh_find_device_pe - Retrieve the PE for the given device
265 * @dn: device node
266 *
267 * Return the PE under which this device lies
370 */ 268 */
371struct device_node * find_device_pe(struct device_node *dn) 269struct device_node *eeh_find_device_pe(struct device_node *dn)
372{ 270{
373 while ((dn->parent) && PCI_DN(dn->parent) && 271 while (dn->parent && of_node_to_eeh_dev(dn->parent) &&
374 (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) { 272 (of_node_to_eeh_dev(dn->parent)->mode & EEH_MODE_SUPPORTED)) {
375 dn = dn->parent; 273 dn = dn->parent;
376 } 274 }
377 return dn; 275 return dn;
378} 276}
379 277
380/** Mark all devices that are children of this device as failed. 278/**
381 * Mark the device driver too, so that it can see the failure 279 * __eeh_mark_slot - Mark all child devices as failed
382 * immediately; this is critical, since some drivers poll 280 * @parent: parent device
383 * status registers in interrupts ... If a driver is polling, 281 * @mode_flag: failure flag
384 * and the slot is frozen, then the driver can deadlock in 282 *
385 * an interrupt context, which is bad. 283 * Mark all devices that are children of this device as failed.
284 * Mark the device driver too, so that it can see the failure
285 * immediately; this is critical, since some drivers poll
286 * status registers in interrupts ... If a driver is polling,
287 * and the slot is frozen, then the driver can deadlock in
288 * an interrupt context, which is bad.
386 */ 289 */
387
388static void __eeh_mark_slot(struct device_node *parent, int mode_flag) 290static void __eeh_mark_slot(struct device_node *parent, int mode_flag)
389{ 291{
390 struct device_node *dn; 292 struct device_node *dn;
391 293
392 for_each_child_of_node(parent, dn) { 294 for_each_child_of_node(parent, dn) {
393 if (PCI_DN(dn)) { 295 if (of_node_to_eeh_dev(dn)) {
394 /* Mark the pci device driver too */ 296 /* Mark the pci device driver too */
395 struct pci_dev *dev = PCI_DN(dn)->pcidev; 297 struct pci_dev *dev = of_node_to_eeh_dev(dn)->pdev;
396 298
397 PCI_DN(dn)->eeh_mode |= mode_flag; 299 of_node_to_eeh_dev(dn)->mode |= mode_flag;
398 300
399 if (dev && dev->driver) 301 if (dev && dev->driver)
400 dev->error_state = pci_channel_io_frozen; 302 dev->error_state = pci_channel_io_frozen;
@@ -404,92 +306,81 @@ static void __eeh_mark_slot(struct device_node *parent, int mode_flag)
404 } 306 }
405} 307}
406 308
407void eeh_mark_slot (struct device_node *dn, int mode_flag) 309/**
310 * eeh_mark_slot - Mark the indicated device and its children as failed
311 * @dn: parent device
312 * @mode_flag: failure flag
313 *
314 * Mark the indicated device and its child devices as failed.
315 * The device drivers are marked as failed as well.
316 */
317void eeh_mark_slot(struct device_node *dn, int mode_flag)
408{ 318{
409 struct pci_dev *dev; 319 struct pci_dev *dev;
410 dn = find_device_pe (dn); 320 dn = eeh_find_device_pe(dn);
411 321
412 /* Back up one, since config addrs might be shared */ 322 /* Back up one, since config addrs might be shared */
413 if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent)) 323 if (!pcibios_find_pci_bus(dn) && of_node_to_eeh_dev(dn->parent))
414 dn = dn->parent; 324 dn = dn->parent;
415 325
416 PCI_DN(dn)->eeh_mode |= mode_flag; 326 of_node_to_eeh_dev(dn)->mode |= mode_flag;
417 327
418 /* Mark the pci device too */ 328 /* Mark the pci device too */
419 dev = PCI_DN(dn)->pcidev; 329 dev = of_node_to_eeh_dev(dn)->pdev;
420 if (dev) 330 if (dev)
421 dev->error_state = pci_channel_io_frozen; 331 dev->error_state = pci_channel_io_frozen;
422 332
423 __eeh_mark_slot(dn, mode_flag); 333 __eeh_mark_slot(dn, mode_flag);
424} 334}
425 335
336/**
337 * __eeh_clear_slot - Clear failure flag for the child devices
338 * @parent: parent device
339 * @mode_flag: flag to be cleared
340 *
341 * Clear failure flag for the child devices.
342 */
426static void __eeh_clear_slot(struct device_node *parent, int mode_flag) 343static void __eeh_clear_slot(struct device_node *parent, int mode_flag)
427{ 344{
428 struct device_node *dn; 345 struct device_node *dn;
429 346
430 for_each_child_of_node(parent, dn) { 347 for_each_child_of_node(parent, dn) {
431 if (PCI_DN(dn)) { 348 if (of_node_to_eeh_dev(dn)) {
432 PCI_DN(dn)->eeh_mode &= ~mode_flag; 349 of_node_to_eeh_dev(dn)->mode &= ~mode_flag;
433 PCI_DN(dn)->eeh_check_count = 0; 350 of_node_to_eeh_dev(dn)->check_count = 0;
434 __eeh_clear_slot(dn, mode_flag); 351 __eeh_clear_slot(dn, mode_flag);
435 } 352 }
436 } 353 }
437} 354}
438 355
439void eeh_clear_slot (struct device_node *dn, int mode_flag) 356/**
357 * eeh_clear_slot - Clear failure flag for the indicated device and its children
358 * @dn: parent device
359 * @mode_flag: flag to be cleared
360 *
361 * Clear failure flag for the indicated device and its children.
362 */
363void eeh_clear_slot(struct device_node *dn, int mode_flag)
440{ 364{
441 unsigned long flags; 365 unsigned long flags;
442 raw_spin_lock_irqsave(&confirm_error_lock, flags); 366 raw_spin_lock_irqsave(&confirm_error_lock, flags);
443 367
444 dn = find_device_pe (dn); 368 dn = eeh_find_device_pe(dn);
445 369
446 /* Back up one, since config addrs might be shared */ 370 /* Back up one, since config addrs might be shared */
447 if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent)) 371 if (!pcibios_find_pci_bus(dn) && of_node_to_eeh_dev(dn->parent))
448 dn = dn->parent; 372 dn = dn->parent;
449 373
450 PCI_DN(dn)->eeh_mode &= ~mode_flag; 374 of_node_to_eeh_dev(dn)->mode &= ~mode_flag;
451 PCI_DN(dn)->eeh_check_count = 0; 375 of_node_to_eeh_dev(dn)->check_count = 0;
452 __eeh_clear_slot(dn, mode_flag); 376 __eeh_clear_slot(dn, mode_flag);
453 raw_spin_unlock_irqrestore(&confirm_error_lock, flags); 377 raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
454} 378}
455 379
456void __eeh_set_pe_freset(struct device_node *parent, unsigned int *freset)
457{
458 struct device_node *dn;
459
460 for_each_child_of_node(parent, dn) {
461 if (PCI_DN(dn)) {
462
463 struct pci_dev *dev = PCI_DN(dn)->pcidev;
464
465 if (dev && dev->driver)
466 *freset |= dev->needs_freset;
467
468 __eeh_set_pe_freset(dn, freset);
469 }
470 }
471}
472
473void eeh_set_pe_freset(struct device_node *dn, unsigned int *freset)
474{
475 struct pci_dev *dev;
476 dn = find_device_pe(dn);
477
478 /* Back up one, since config addrs might be shared */
479 if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
480 dn = dn->parent;
481
482 dev = PCI_DN(dn)->pcidev;
483 if (dev)
484 *freset |= dev->needs_freset;
485
486 __eeh_set_pe_freset(dn, freset);
487}
488
489/** 380/**
490 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze 381 * eeh_dn_check_failure - Check if all 1's data is due to EEH slot freeze
491 * @dn device node 382 * @dn: device node
492 * @dev pci device, if known 383 * @dev: pci device, if known
493 * 384 *
494 * Check for an EEH failure for the given device node. Call this 385 * Check for an EEH failure for the given device node. Call this
495 * routine if the result of a read was all 0xff's and you want to 386 * routine if the result of a read was all 0xff's and you want to
@@ -504,35 +395,34 @@ void eeh_set_pe_freset(struct device_node *dn, unsigned int *freset)
504int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev) 395int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
505{ 396{
506 int ret; 397 int ret;
507 int rets[3];
508 unsigned long flags; 398 unsigned long flags;
509 struct pci_dn *pdn; 399 struct eeh_dev *edev;
510 int rc = 0; 400 int rc = 0;
511 const char *location; 401 const char *location;
512 402
513 total_mmio_ffs++; 403 eeh_stats.total_mmio_ffs++;
514 404
515 if (!eeh_subsystem_enabled) 405 if (!eeh_subsystem_enabled)
516 return 0; 406 return 0;
517 407
518 if (!dn) { 408 if (!dn) {
519 no_dn++; 409 eeh_stats.no_dn++;
520 return 0; 410 return 0;
521 } 411 }
522 dn = find_device_pe(dn); 412 dn = eeh_find_device_pe(dn);
523 pdn = PCI_DN(dn); 413 edev = of_node_to_eeh_dev(dn);
524 414
525 /* Access to IO BARs might get this far and still not want checking. */ 415 /* Access to IO BARs might get this far and still not want checking. */
526 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) || 416 if (!(edev->mode & EEH_MODE_SUPPORTED) ||
527 pdn->eeh_mode & EEH_MODE_NOCHECK) { 417 edev->mode & EEH_MODE_NOCHECK) {
528 ignored_check++; 418 eeh_stats.ignored_check++;
529 pr_debug("EEH: Ignored check (%x) for %s %s\n", 419 pr_debug("EEH: Ignored check (%x) for %s %s\n",
530 pdn->eeh_mode, eeh_pci_name(dev), dn->full_name); 420 edev->mode, eeh_pci_name(dev), dn->full_name);
531 return 0; 421 return 0;
532 } 422 }
533 423
534 if (!pdn->eeh_config_addr && !pdn->eeh_pe_config_addr) { 424 if (!edev->config_addr && !edev->pe_config_addr) {
535 no_cfg_addr++; 425 eeh_stats.no_cfg_addr++;
536 return 0; 426 return 0;
537 } 427 }
538 428
@@ -544,15 +434,15 @@ int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
544 */ 434 */
545 raw_spin_lock_irqsave(&confirm_error_lock, flags); 435 raw_spin_lock_irqsave(&confirm_error_lock, flags);
546 rc = 1; 436 rc = 1;
547 if (pdn->eeh_mode & EEH_MODE_ISOLATED) { 437 if (edev->mode & EEH_MODE_ISOLATED) {
548 pdn->eeh_check_count ++; 438 edev->check_count++;
549 if (pdn->eeh_check_count % EEH_MAX_FAILS == 0) { 439 if (edev->check_count % EEH_MAX_FAILS == 0) {
550 location = of_get_property(dn, "ibm,loc-code", NULL); 440 location = of_get_property(dn, "ibm,loc-code", NULL);
551 printk (KERN_ERR "EEH: %d reads ignored for recovering device at " 441 printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
552 "location=%s driver=%s pci addr=%s\n", 442 "location=%s driver=%s pci addr=%s\n",
553 pdn->eeh_check_count, location, 443 edev->check_count, location,
554 eeh_driver_name(dev), eeh_pci_name(dev)); 444 eeh_driver_name(dev), eeh_pci_name(dev));
555 printk (KERN_ERR "EEH: Might be infinite loop in %s driver\n", 445 printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
556 eeh_driver_name(dev)); 446 eeh_driver_name(dev));
557 dump_stack(); 447 dump_stack();
558 } 448 }
@@ -566,58 +456,39 @@ int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
566 * function zero of a multi-function device. 456 * function zero of a multi-function device.
567 * In any case they must share a common PHB. 457 * In any case they must share a common PHB.
568 */ 458 */
569 ret = read_slot_reset_state(pdn, rets); 459 ret = eeh_ops->get_state(dn, NULL);
570
571 /* If the call to firmware failed, punt */
572 if (ret != 0) {
573 printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
574 ret, dn->full_name);
575 false_positives++;
576 pdn->eeh_false_positives ++;
577 rc = 0;
578 goto dn_unlock;
579 }
580 460
581 /* Note that config-io to empty slots may fail; 461 /* Note that config-io to empty slots may fail;
582 * they are empty when they don't have children. */ 462 * they are empty when they don't have children.
583 if ((rets[0] == 5) && (rets[2] == 0) && (dn->child == NULL)) { 463 * We will punt with the following conditions: Failure to get
584 false_positives++; 464 * PE's state, EEH not support and Permanently unavailable
585 pdn->eeh_false_positives ++; 465 * state, PE is in good state.
586 rc = 0; 466 */
587 goto dn_unlock; 467 if ((ret < 0) ||
588 } 468 (ret == EEH_STATE_NOT_SUPPORT) ||
589 469 (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
590 /* If EEH is not supported on this device, punt. */ 470 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
591 if (rets[1] != 1) { 471 eeh_stats.false_positives++;
592 printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n", 472 edev->false_positives ++;
593 ret, dn->full_name);
594 false_positives++;
595 pdn->eeh_false_positives ++;
596 rc = 0;
597 goto dn_unlock;
598 }
599
600 /* If not the kind of error we know about, punt. */
601 if (rets[0] != 1 && rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
602 false_positives++;
603 pdn->eeh_false_positives ++;
604 rc = 0; 473 rc = 0;
605 goto dn_unlock; 474 goto dn_unlock;
606 } 475 }
607 476
608 slot_resets++; 477 eeh_stats.slot_resets++;
609 478
610 /* Avoid repeated reports of this failure, including problems 479 /* Avoid repeated reports of this failure, including problems
611 * with other functions on this device, and functions under 480 * with other functions on this device, and functions under
612 * bridges. */ 481 * bridges.
613 eeh_mark_slot (dn, EEH_MODE_ISOLATED); 482 */
483 eeh_mark_slot(dn, EEH_MODE_ISOLATED);
614 raw_spin_unlock_irqrestore(&confirm_error_lock, flags); 484 raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
615 485
616 eeh_send_failure_event (dn, dev); 486 eeh_send_failure_event(edev);
617 487
618 /* Most EEH events are due to device driver bugs. Having 488 /* Most EEH events are due to device driver bugs. Having
619 * a stack trace will help the device-driver authors figure 489 * a stack trace will help the device-driver authors figure
620 * out what happened. So print that out. */ 490 * out what happened. So print that out.
491 */
621 dump_stack(); 492 dump_stack();
622 return 1; 493 return 1;
623 494
@@ -629,9 +500,9 @@ dn_unlock:
629EXPORT_SYMBOL_GPL(eeh_dn_check_failure); 500EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
630 501
631/** 502/**
632 * eeh_check_failure - check if all 1's data is due to EEH slot freeze 503 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
633 * @token i/o token, should be address in the form 0xA.... 504 * @token: I/O token, should be address in the form 0xA....
634 * @val value, should be all 1's (XXX why do we need this arg??) 505 * @val: value, should be all 1's (XXX why do we need this arg??)
635 * 506 *
636 * Check for an EEH failure at the given token address. Call this 507 * Check for an EEH failure at the given token address. Call this
637 * routine if the result of a read was all 0xff's and you want to 508 * routine if the result of a read was all 0xff's and you want to
@@ -648,14 +519,14 @@ unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned lon
648 519
649 /* Finding the phys addr + pci device; this is pretty quick. */ 520 /* Finding the phys addr + pci device; this is pretty quick. */
650 addr = eeh_token_to_phys((unsigned long __force) token); 521 addr = eeh_token_to_phys((unsigned long __force) token);
651 dev = pci_get_device_by_addr(addr); 522 dev = pci_addr_cache_get_device(addr);
652 if (!dev) { 523 if (!dev) {
653 no_device++; 524 eeh_stats.no_device++;
654 return val; 525 return val;
655 } 526 }
656 527
657 dn = pci_device_to_OF_node(dev); 528 dn = pci_device_to_OF_node(dev);
658 eeh_dn_check_failure (dn, dev); 529 eeh_dn_check_failure(dn, dev);
659 530
660 pci_dev_put(dev); 531 pci_dev_put(dev);
661 return val; 532 return val;
@@ -663,115 +534,54 @@ unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned lon
663 534
664EXPORT_SYMBOL(eeh_check_failure); 535EXPORT_SYMBOL(eeh_check_failure);
665 536
666/* ------------------------------------------------------------- */
667/* The code below deals with error recovery */
668 537
669/** 538/**
670 * rtas_pci_enable - enable MMIO or DMA transfers for this slot 539 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
671 * @pdn pci device node 540 * @edev: pci device node
541 *
542 * This routine should be called to reenable frozen MMIO or DMA
543 * so that it would work correctly again. It's useful while doing
544 * recovery or log collection on the indicated device.
672 */ 545 */
673 546int eeh_pci_enable(struct eeh_dev *edev, int function)
674int
675rtas_pci_enable(struct pci_dn *pdn, int function)
676{ 547{
677 int config_addr;
678 int rc; 548 int rc;
549 struct device_node *dn = eeh_dev_to_of_node(edev);
679 550
680 /* Use PE configuration address, if present */ 551 rc = eeh_ops->set_option(dn, function);
681 config_addr = pdn->eeh_config_addr;
682 if (pdn->eeh_pe_config_addr)
683 config_addr = pdn->eeh_pe_config_addr;
684
685 rc = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
686 config_addr,
687 BUID_HI(pdn->phb->buid),
688 BUID_LO(pdn->phb->buid),
689 function);
690
691 if (rc) 552 if (rc)
692 printk(KERN_WARNING "EEH: Unexpected state change %d, err=%d dn=%s\n", 553 printk(KERN_WARNING "EEH: Unexpected state change %d, err=%d dn=%s\n",
693 function, rc, pdn->node->full_name); 554 function, rc, dn->full_name);
694 555
695 rc = eeh_wait_for_slot_status (pdn, PCI_BUS_RESET_WAIT_MSEC); 556 rc = eeh_ops->wait_state(dn, PCI_BUS_RESET_WAIT_MSEC);
696 if ((rc == 4) && (function == EEH_THAW_MMIO)) 557 if (rc > 0 && (rc & EEH_STATE_MMIO_ENABLED) &&
558 (function == EEH_OPT_THAW_MMIO))
697 return 0; 559 return 0;
698 560
699 return rc; 561 return rc;
700} 562}
701 563
702/** 564/**
703 * rtas_pci_slot_reset - raises/lowers the pci #RST line
704 * @pdn pci device node
705 * @state: 1/0 to raise/lower the #RST
706 *
707 * Clear the EEH-frozen condition on a slot. This routine
708 * asserts the PCI #RST line if the 'state' argument is '1',
709 * and drops the #RST line if 'state is '0'. This routine is
710 * safe to call in an interrupt context.
711 *
712 */
713
714static void
715rtas_pci_slot_reset(struct pci_dn *pdn, int state)
716{
717 int config_addr;
718 int rc;
719
720 BUG_ON (pdn==NULL);
721
722 if (!pdn->phb) {
723 printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
724 pdn->node->full_name);
725 return;
726 }
727
728 /* Use PE configuration address, if present */
729 config_addr = pdn->eeh_config_addr;
730 if (pdn->eeh_pe_config_addr)
731 config_addr = pdn->eeh_pe_config_addr;
732
733 rc = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
734 config_addr,
735 BUID_HI(pdn->phb->buid),
736 BUID_LO(pdn->phb->buid),
737 state);
738
739 /* Fundamental-reset not supported on this PE, try hot-reset */
740 if (rc == -8 && state == 3) {
741 rc = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
742 config_addr,
743 BUID_HI(pdn->phb->buid),
744 BUID_LO(pdn->phb->buid), 1);
745 if (rc)
746 printk(KERN_WARNING
747 "EEH: Unable to reset the failed slot,"
748 " #RST=%d dn=%s\n",
749 rc, pdn->node->full_name);
750 }
751}
752
753/**
754 * pcibios_set_pcie_slot_reset - Set PCI-E reset state 565 * pcibios_set_pcie_slot_reset - Set PCI-E reset state
755 * @dev: pci device struct 566 * @dev: pci device struct
756 * @state: reset state to enter 567 * @state: reset state to enter
757 * 568 *
758 * Return value: 569 * Return value:
759 * 0 if success 570 * 0 if success
760 **/ 571 */
761int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 572int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
762{ 573{
763 struct device_node *dn = pci_device_to_OF_node(dev); 574 struct device_node *dn = pci_device_to_OF_node(dev);
764 struct pci_dn *pdn = PCI_DN(dn);
765 575
766 switch (state) { 576 switch (state) {
767 case pcie_deassert_reset: 577 case pcie_deassert_reset:
768 rtas_pci_slot_reset(pdn, 0); 578 eeh_ops->reset(dn, EEH_RESET_DEACTIVATE);
769 break; 579 break;
770 case pcie_hot_reset: 580 case pcie_hot_reset:
771 rtas_pci_slot_reset(pdn, 1); 581 eeh_ops->reset(dn, EEH_RESET_HOT);
772 break; 582 break;
773 case pcie_warm_reset: 583 case pcie_warm_reset:
774 rtas_pci_slot_reset(pdn, 3); 584 eeh_ops->reset(dn, EEH_RESET_FUNDAMENTAL);
775 break; 585 break;
776 default: 586 default:
777 return -EINVAL; 587 return -EINVAL;
@@ -781,13 +591,66 @@ int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state stat
781} 591}
782 592
783/** 593/**
784 * rtas_set_slot_reset -- assert the pci #RST line for 1/4 second 594 * __eeh_set_pe_freset - Check the required reset for child devices
785 * @pdn: pci device node to be reset. 595 * @parent: parent device
596 * @freset: return value
597 *
598 * Each device might have its preferred reset type: fundamental or
599 * hot reset. The routine is used to collect the information from
600 * the child devices so that they could be reset accordingly.
601 */
602void __eeh_set_pe_freset(struct device_node *parent, unsigned int *freset)
603{
604 struct device_node *dn;
605
606 for_each_child_of_node(parent, dn) {
607 if (of_node_to_eeh_dev(dn)) {
608 struct pci_dev *dev = of_node_to_eeh_dev(dn)->pdev;
609
610 if (dev && dev->driver)
611 *freset |= dev->needs_freset;
612
613 __eeh_set_pe_freset(dn, freset);
614 }
615 }
616}
617
618/**
619 * eeh_set_pe_freset - Check the required reset for the indicated device and its children
620 * @dn: parent device
621 * @freset: return value
622 *
623 * Each device might have its preferred reset type: fundamental or
624 * hot reset. The routine is used to collected the information for
625 * the indicated device and its children so that the bunch of the
626 * devices could be reset properly.
786 */ 627 */
628void eeh_set_pe_freset(struct device_node *dn, unsigned int *freset)
629{
630 struct pci_dev *dev;
631 dn = eeh_find_device_pe(dn);
632
633 /* Back up one, since config addrs might be shared */
634 if (!pcibios_find_pci_bus(dn) && of_node_to_eeh_dev(dn->parent))
635 dn = dn->parent;
636
637 dev = of_node_to_eeh_dev(dn)->pdev;
638 if (dev)
639 *freset |= dev->needs_freset;
787 640
788static void __rtas_set_slot_reset(struct pci_dn *pdn) 641 __eeh_set_pe_freset(dn, freset);
642}
643
644/**
645 * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
646 * @edev: pci device node to be reset.
647 *
648 * Assert the PCI #RST line for 1/4 second.
649 */
650static void eeh_reset_pe_once(struct eeh_dev *edev)
789{ 651{
790 unsigned int freset = 0; 652 unsigned int freset = 0;
653 struct device_node *dn = eeh_dev_to_of_node(edev);
791 654
792 /* Determine type of EEH reset required for 655 /* Determine type of EEH reset required for
793 * Partitionable Endpoint, a hot-reset (1) 656 * Partitionable Endpoint, a hot-reset (1)
@@ -795,58 +658,68 @@ static void __rtas_set_slot_reset(struct pci_dn *pdn)
795 * A fundamental reset required by any device under 658 * A fundamental reset required by any device under
796 * Partitionable Endpoint trumps hot-reset. 659 * Partitionable Endpoint trumps hot-reset.
797 */ 660 */
798 eeh_set_pe_freset(pdn->node, &freset); 661 eeh_set_pe_freset(dn, &freset);
799 662
800 if (freset) 663 if (freset)
801 rtas_pci_slot_reset(pdn, 3); 664 eeh_ops->reset(dn, EEH_RESET_FUNDAMENTAL);
802 else 665 else
803 rtas_pci_slot_reset(pdn, 1); 666 eeh_ops->reset(dn, EEH_RESET_HOT);
804 667
805 /* The PCI bus requires that the reset be held high for at least 668 /* The PCI bus requires that the reset be held high for at least
806 * a 100 milliseconds. We wait a bit longer 'just in case'. */ 669 * a 100 milliseconds. We wait a bit longer 'just in case'.
807 670 */
808#define PCI_BUS_RST_HOLD_TIME_MSEC 250 671#define PCI_BUS_RST_HOLD_TIME_MSEC 250
809 msleep (PCI_BUS_RST_HOLD_TIME_MSEC); 672 msleep(PCI_BUS_RST_HOLD_TIME_MSEC);
810 673
811 /* We might get hit with another EEH freeze as soon as the 674 /* We might get hit with another EEH freeze as soon as the
812 * pci slot reset line is dropped. Make sure we don't miss 675 * pci slot reset line is dropped. Make sure we don't miss
813 * these, and clear the flag now. */ 676 * these, and clear the flag now.
814 eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED); 677 */
678 eeh_clear_slot(dn, EEH_MODE_ISOLATED);
815 679
816 rtas_pci_slot_reset (pdn, 0); 680 eeh_ops->reset(dn, EEH_RESET_DEACTIVATE);
817 681
818 /* After a PCI slot has been reset, the PCI Express spec requires 682 /* After a PCI slot has been reset, the PCI Express spec requires
819 * a 1.5 second idle time for the bus to stabilize, before starting 683 * a 1.5 second idle time for the bus to stabilize, before starting
820 * up traffic. */ 684 * up traffic.
685 */
821#define PCI_BUS_SETTLE_TIME_MSEC 1800 686#define PCI_BUS_SETTLE_TIME_MSEC 1800
822 msleep (PCI_BUS_SETTLE_TIME_MSEC); 687 msleep(PCI_BUS_SETTLE_TIME_MSEC);
823} 688}
824 689
825int rtas_set_slot_reset(struct pci_dn *pdn) 690/**
691 * eeh_reset_pe - Reset the indicated PE
692 * @edev: PCI device associated EEH device
693 *
694 * This routine should be called to reset indicated device, including
695 * PE. A PE might include multiple PCI devices and sometimes PCI bridges
696 * might be involved as well.
697 */
698int eeh_reset_pe(struct eeh_dev *edev)
826{ 699{
827 int i, rc; 700 int i, rc;
701 struct device_node *dn = eeh_dev_to_of_node(edev);
828 702
829 /* Take three shots at resetting the bus */ 703 /* Take three shots at resetting the bus */
830 for (i=0; i<3; i++) { 704 for (i=0; i<3; i++) {
831 __rtas_set_slot_reset(pdn); 705 eeh_reset_pe_once(edev);
832 706
833 rc = eeh_wait_for_slot_status(pdn, PCI_BUS_RESET_WAIT_MSEC); 707 rc = eeh_ops->wait_state(dn, PCI_BUS_RESET_WAIT_MSEC);
834 if (rc == 0) 708 if (rc == (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE))
835 return 0; 709 return 0;
836 710
837 if (rc < 0) { 711 if (rc < 0) {
838 printk(KERN_ERR "EEH: unrecoverable slot failure %s\n", 712 printk(KERN_ERR "EEH: unrecoverable slot failure %s\n",
839 pdn->node->full_name); 713 dn->full_name);
840 return -1; 714 return -1;
841 } 715 }
842 printk(KERN_ERR "EEH: bus reset %d failed on slot %s, rc=%d\n", 716 printk(KERN_ERR "EEH: bus reset %d failed on slot %s, rc=%d\n",
843 i+1, pdn->node->full_name, rc); 717 i+1, dn->full_name, rc);
844 } 718 }
845 719
846 return -1; 720 return -1;
847} 721}
848 722
849/* ------------------------------------------------------- */
850/** Save and restore of PCI BARs 723/** Save and restore of PCI BARs
851 * 724 *
852 * Although firmware will set up BARs during boot, it doesn't 725 * Although firmware will set up BARs during boot, it doesn't
@@ -856,181 +729,122 @@ int rtas_set_slot_reset(struct pci_dn *pdn)
856 */ 729 */
857 730
858/** 731/**
859 * __restore_bars - Restore the Base Address Registers 732 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
860 * @pdn: pci device node 733 * @edev: PCI device associated EEH device
861 * 734 *
862 * Loads the PCI configuration space base address registers, 735 * Loads the PCI configuration space base address registers,
863 * the expansion ROM base address, the latency timer, and etc. 736 * the expansion ROM base address, the latency timer, and etc.
864 * from the saved values in the device node. 737 * from the saved values in the device node.
865 */ 738 */
866static inline void __restore_bars (struct pci_dn *pdn) 739static inline void eeh_restore_one_device_bars(struct eeh_dev *edev)
867{ 740{
868 int i; 741 int i;
869 u32 cmd; 742 u32 cmd;
743 struct device_node *dn = eeh_dev_to_of_node(edev);
744
745 if (!edev->phb)
746 return;
870 747
871 if (NULL==pdn->phb) return;
872 for (i=4; i<10; i++) { 748 for (i=4; i<10; i++) {
873 rtas_write_config(pdn, i*4, 4, pdn->config_space[i]); 749 eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]);
874 } 750 }
875 751
876 /* 12 == Expansion ROM Address */ 752 /* 12 == Expansion ROM Address */
877 rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]); 753 eeh_ops->write_config(dn, 12*4, 4, edev->config_space[12]);
878 754
879#define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF)) 755#define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
880#define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)]) 756#define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
881 757
882 rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1, 758 eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1,
883 SAVED_BYTE(PCI_CACHE_LINE_SIZE)); 759 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
884 760
885 rtas_write_config (pdn, PCI_LATENCY_TIMER, 1, 761 eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1,
886 SAVED_BYTE(PCI_LATENCY_TIMER)); 762 SAVED_BYTE(PCI_LATENCY_TIMER));
887 763
888 /* max latency, min grant, interrupt pin and line */ 764 /* max latency, min grant, interrupt pin and line */
889 rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]); 765 eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]);
890 766
891 /* Restore PERR & SERR bits, some devices require it, 767 /* Restore PERR & SERR bits, some devices require it,
892 don't touch the other command bits */ 768 * don't touch the other command bits
893 rtas_read_config(pdn, PCI_COMMAND, 4, &cmd); 769 */
894 if (pdn->config_space[1] & PCI_COMMAND_PARITY) 770 eeh_ops->read_config(dn, PCI_COMMAND, 4, &cmd);
771 if (edev->config_space[1] & PCI_COMMAND_PARITY)
895 cmd |= PCI_COMMAND_PARITY; 772 cmd |= PCI_COMMAND_PARITY;
896 else 773 else
897 cmd &= ~PCI_COMMAND_PARITY; 774 cmd &= ~PCI_COMMAND_PARITY;
898 if (pdn->config_space[1] & PCI_COMMAND_SERR) 775 if (edev->config_space[1] & PCI_COMMAND_SERR)
899 cmd |= PCI_COMMAND_SERR; 776 cmd |= PCI_COMMAND_SERR;
900 else 777 else
901 cmd &= ~PCI_COMMAND_SERR; 778 cmd &= ~PCI_COMMAND_SERR;
902 rtas_write_config(pdn, PCI_COMMAND, 4, cmd); 779 eeh_ops->write_config(dn, PCI_COMMAND, 4, cmd);
903} 780}
904 781
905/** 782/**
906 * eeh_restore_bars - restore the PCI config space info 783 * eeh_restore_bars - Restore the PCI config space info
784 * @edev: EEH device
907 * 785 *
908 * This routine performs a recursive walk to the children 786 * This routine performs a recursive walk to the children
909 * of this device as well. 787 * of this device as well.
910 */ 788 */
911void eeh_restore_bars(struct pci_dn *pdn) 789void eeh_restore_bars(struct eeh_dev *edev)
912{ 790{
913 struct device_node *dn; 791 struct device_node *dn;
914 if (!pdn) 792 if (!edev)
915 return; 793 return;
916 794
917 if ((pdn->eeh_mode & EEH_MODE_SUPPORTED) && !IS_BRIDGE(pdn->class_code)) 795 if ((edev->mode & EEH_MODE_SUPPORTED) && !IS_BRIDGE(edev->class_code))
918 __restore_bars (pdn); 796 eeh_restore_one_device_bars(edev);
919 797
920 for_each_child_of_node(pdn->node, dn) 798 for_each_child_of_node(eeh_dev_to_of_node(edev), dn)
921 eeh_restore_bars (PCI_DN(dn)); 799 eeh_restore_bars(of_node_to_eeh_dev(dn));
922} 800}
923 801
924/** 802/**
925 * eeh_save_bars - save device bars 803 * eeh_save_bars - Save device bars
804 * @edev: PCI device associated EEH device
926 * 805 *
927 * Save the values of the device bars. Unlike the restore 806 * Save the values of the device bars. Unlike the restore
928 * routine, this routine is *not* recursive. This is because 807 * routine, this routine is *not* recursive. This is because
929 * PCI devices are added individually; but, for the restore, 808 * PCI devices are added individually; but, for the restore,
930 * an entire slot is reset at a time. 809 * an entire slot is reset at a time.
931 */ 810 */
932static void eeh_save_bars(struct pci_dn *pdn) 811static void eeh_save_bars(struct eeh_dev *edev)
933{ 812{
934 int i; 813 int i;
814 struct device_node *dn;
935 815
936 if (!pdn ) 816 if (!edev)
937 return; 817 return;
818 dn = eeh_dev_to_of_node(edev);
938 819
939 for (i = 0; i < 16; i++) 820 for (i = 0; i < 16; i++)
940 rtas_read_config(pdn, i * 4, 4, &pdn->config_space[i]); 821 eeh_ops->read_config(dn, i * 4, 4, &edev->config_space[i]);
941}
942
943void
944rtas_configure_bridge(struct pci_dn *pdn)
945{
946 int config_addr;
947 int rc;
948 int token;
949
950 /* Use PE configuration address, if present */
951 config_addr = pdn->eeh_config_addr;
952 if (pdn->eeh_pe_config_addr)
953 config_addr = pdn->eeh_pe_config_addr;
954
955 /* Use new configure-pe function, if supported */
956 if (ibm_configure_pe != RTAS_UNKNOWN_SERVICE)
957 token = ibm_configure_pe;
958 else
959 token = ibm_configure_bridge;
960
961 rc = rtas_call(token, 3, 1, NULL,
962 config_addr,
963 BUID_HI(pdn->phb->buid),
964 BUID_LO(pdn->phb->buid));
965 if (rc) {
966 printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
967 rc, pdn->node->full_name);
968 }
969} 822}
970 823
971/* ------------------------------------------------------------- */ 824/**
972/* The code below deals with enabling EEH for devices during the 825 * eeh_early_enable - Early enable EEH on the indicated device
973 * early boot sequence. EEH must be enabled before any PCI probing 826 * @dn: device node
974 * can be done. 827 * @data: BUID
828 *
829 * Enable EEH functionality on the specified PCI device. The function
830 * is expected to be called before real PCI probing is done. However,
831 * the PHBs have been initialized at this point.
975 */ 832 */
976 833static void *eeh_early_enable(struct device_node *dn, void *data)
977#define EEH_ENABLE 1
978
979struct eeh_early_enable_info {
980 unsigned int buid_hi;
981 unsigned int buid_lo;
982};
983
984static int get_pe_addr (int config_addr,
985 struct eeh_early_enable_info *info)
986{ 834{
987 unsigned int rets[3];
988 int ret;
989
990 /* Use latest config-addr token on power6 */
991 if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
992 /* Make sure we have a PE in hand */
993 ret = rtas_call (ibm_get_config_addr_info2, 4, 2, rets,
994 config_addr, info->buid_hi, info->buid_lo, 1);
995 if (ret || (rets[0]==0))
996 return 0;
997
998 ret = rtas_call (ibm_get_config_addr_info2, 4, 2, rets,
999 config_addr, info->buid_hi, info->buid_lo, 0);
1000 if (ret)
1001 return 0;
1002 return rets[0];
1003 }
1004
1005 /* Use older config-addr token on power5 */
1006 if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
1007 ret = rtas_call (ibm_get_config_addr_info, 4, 2, rets,
1008 config_addr, info->buid_hi, info->buid_lo, 0);
1009 if (ret)
1010 return 0;
1011 return rets[0];
1012 }
1013 return 0;
1014}
1015
1016/* Enable eeh for the given device node. */
1017static void *early_enable_eeh(struct device_node *dn, void *data)
1018{
1019 unsigned int rets[3];
1020 struct eeh_early_enable_info *info = data;
1021 int ret; 835 int ret;
1022 const u32 *class_code = of_get_property(dn, "class-code", NULL); 836 const u32 *class_code = of_get_property(dn, "class-code", NULL);
1023 const u32 *vendor_id = of_get_property(dn, "vendor-id", NULL); 837 const u32 *vendor_id = of_get_property(dn, "vendor-id", NULL);
1024 const u32 *device_id = of_get_property(dn, "device-id", NULL); 838 const u32 *device_id = of_get_property(dn, "device-id", NULL);
1025 const u32 *regs; 839 const u32 *regs;
1026 int enable; 840 int enable;
1027 struct pci_dn *pdn = PCI_DN(dn); 841 struct eeh_dev *edev = of_node_to_eeh_dev(dn);
1028 842
1029 pdn->class_code = 0; 843 edev->class_code = 0;
1030 pdn->eeh_mode = 0; 844 edev->mode = 0;
1031 pdn->eeh_check_count = 0; 845 edev->check_count = 0;
1032 pdn->eeh_freeze_count = 0; 846 edev->freeze_count = 0;
1033 pdn->eeh_false_positives = 0; 847 edev->false_positives = 0;
1034 848
1035 if (!of_device_is_available(dn)) 849 if (!of_device_is_available(dn))
1036 return NULL; 850 return NULL;
@@ -1041,54 +855,56 @@ static void *early_enable_eeh(struct device_node *dn, void *data)
1041 855
1042 /* There is nothing to check on PCI to ISA bridges */ 856 /* There is nothing to check on PCI to ISA bridges */
1043 if (dn->type && !strcmp(dn->type, "isa")) { 857 if (dn->type && !strcmp(dn->type, "isa")) {
1044 pdn->eeh_mode |= EEH_MODE_NOCHECK; 858 edev->mode |= EEH_MODE_NOCHECK;
1045 return NULL; 859 return NULL;
1046 } 860 }
1047 pdn->class_code = *class_code; 861 edev->class_code = *class_code;
1048 862
1049 /* Ok... see if this device supports EEH. Some do, some don't, 863 /* Ok... see if this device supports EEH. Some do, some don't,
1050 * and the only way to find out is to check each and every one. */ 864 * and the only way to find out is to check each and every one.
865 */
1051 regs = of_get_property(dn, "reg", NULL); 866 regs = of_get_property(dn, "reg", NULL);
1052 if (regs) { 867 if (regs) {
1053 /* First register entry is addr (00BBSS00) */ 868 /* First register entry is addr (00BBSS00) */
1054 /* Try to enable eeh */ 869 /* Try to enable eeh */
1055 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL, 870 ret = eeh_ops->set_option(dn, EEH_OPT_ENABLE);
1056 regs[0], info->buid_hi, info->buid_lo,
1057 EEH_ENABLE);
1058 871
1059 enable = 0; 872 enable = 0;
1060 if (ret == 0) { 873 if (ret == 0) {
1061 pdn->eeh_config_addr = regs[0]; 874 edev->config_addr = regs[0];
1062 875
1063 /* If the newer, better, ibm,get-config-addr-info is supported, 876 /* If the newer, better, ibm,get-config-addr-info is supported,
1064 * then use that instead. */ 877 * then use that instead.
1065 pdn->eeh_pe_config_addr = get_pe_addr(pdn->eeh_config_addr, info); 878 */
879 edev->pe_config_addr = eeh_ops->get_pe_addr(dn);
1066 880
1067 /* Some older systems (Power4) allow the 881 /* Some older systems (Power4) allow the
1068 * ibm,set-eeh-option call to succeed even on nodes 882 * ibm,set-eeh-option call to succeed even on nodes
1069 * where EEH is not supported. Verify support 883 * where EEH is not supported. Verify support
1070 * explicitly. */ 884 * explicitly.
1071 ret = read_slot_reset_state(pdn, rets); 885 */
1072 if ((ret == 0) && (rets[1] == 1)) 886 ret = eeh_ops->get_state(dn, NULL);
887 if (ret > 0 && ret != EEH_STATE_NOT_SUPPORT)
1073 enable = 1; 888 enable = 1;
1074 } 889 }
1075 890
1076 if (enable) { 891 if (enable) {
1077 eeh_subsystem_enabled = 1; 892 eeh_subsystem_enabled = 1;
1078 pdn->eeh_mode |= EEH_MODE_SUPPORTED; 893 edev->mode |= EEH_MODE_SUPPORTED;
1079 894
1080 pr_debug("EEH: %s: eeh enabled, config=%x pe_config=%x\n", 895 pr_debug("EEH: %s: eeh enabled, config=%x pe_config=%x\n",
1081 dn->full_name, pdn->eeh_config_addr, 896 dn->full_name, edev->config_addr,
1082 pdn->eeh_pe_config_addr); 897 edev->pe_config_addr);
1083 } else { 898 } else {
1084 899
1085 /* This device doesn't support EEH, but it may have an 900 /* This device doesn't support EEH, but it may have an
1086 * EEH parent, in which case we mark it as supported. */ 901 * EEH parent, in which case we mark it as supported.
1087 if (dn->parent && PCI_DN(dn->parent) 902 */
1088 && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) { 903 if (dn->parent && of_node_to_eeh_dev(dn->parent) &&
904 (of_node_to_eeh_dev(dn->parent)->mode & EEH_MODE_SUPPORTED)) {
1089 /* Parent supports EEH. */ 905 /* Parent supports EEH. */
1090 pdn->eeh_mode |= EEH_MODE_SUPPORTED; 906 edev->mode |= EEH_MODE_SUPPORTED;
1091 pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr; 907 edev->config_addr = of_node_to_eeh_dev(dn->parent)->config_addr;
1092 return NULL; 908 return NULL;
1093 } 909 }
1094 } 910 }
@@ -1097,11 +913,63 @@ static void *early_enable_eeh(struct device_node *dn, void *data)
1097 dn->full_name); 913 dn->full_name);
1098 } 914 }
1099 915
1100 eeh_save_bars(pdn); 916 eeh_save_bars(edev);
1101 return NULL; 917 return NULL;
1102} 918}
1103 919
1104/* 920/**
921 * eeh_ops_register - Register platform dependent EEH operations
922 * @ops: platform dependent EEH operations
923 *
924 * Register the platform dependent EEH operation callback
925 * functions. The platform should call this function before
926 * any other EEH operations.
927 */
928int __init eeh_ops_register(struct eeh_ops *ops)
929{
930 if (!ops->name) {
931 pr_warning("%s: Invalid EEH ops name for %p\n",
932 __func__, ops);
933 return -EINVAL;
934 }
935
936 if (eeh_ops && eeh_ops != ops) {
937 pr_warning("%s: EEH ops of platform %s already existing (%s)\n",
938 __func__, eeh_ops->name, ops->name);
939 return -EEXIST;
940 }
941
942 eeh_ops = ops;
943
944 return 0;
945}
946
947/**
948 * eeh_ops_unregister - Unreigster platform dependent EEH operations
949 * @name: name of EEH platform operations
950 *
951 * Unregister the platform dependent EEH operation callback
952 * functions.
953 */
954int __exit eeh_ops_unregister(const char *name)
955{
956 if (!name || !strlen(name)) {
957 pr_warning("%s: Invalid EEH ops name\n",
958 __func__);
959 return -EINVAL;
960 }
961
962 if (eeh_ops && !strcmp(eeh_ops->name, name)) {
963 eeh_ops = NULL;
964 return 0;
965 }
966
967 return -EEXIST;
968}
969
970/**
971 * eeh_init - EEH initialization
972 *
1105 * Initialize EEH by trying to enable it for all of the adapters in the system. 973 * Initialize EEH by trying to enable it for all of the adapters in the system.
1106 * As a side effect we can determine here if eeh is supported at all. 974 * As a side effect we can determine here if eeh is supported at all.
1107 * Note that we leave EEH on so failed config cycles won't cause a machine 975 * Note that we leave EEH on so failed config cycles won't cause a machine
@@ -1117,50 +985,35 @@ static void *early_enable_eeh(struct device_node *dn, void *data)
1117void __init eeh_init(void) 985void __init eeh_init(void)
1118{ 986{
1119 struct device_node *phb, *np; 987 struct device_node *phb, *np;
1120 struct eeh_early_enable_info info; 988 int ret;
989
990 /* call platform initialization function */
991 if (!eeh_ops) {
992 pr_warning("%s: Platform EEH operation not found\n",
993 __func__);
994 return;
995 } else if ((ret = eeh_ops->init())) {
996 pr_warning("%s: Failed to call platform init function (%d)\n",
997 __func__, ret);
998 return;
999 }
1121 1000
1122 raw_spin_lock_init(&confirm_error_lock); 1001 raw_spin_lock_init(&confirm_error_lock);
1123 spin_lock_init(&slot_errbuf_lock);
1124 1002
1125 np = of_find_node_by_path("/rtas"); 1003 np = of_find_node_by_path("/rtas");
1126 if (np == NULL) 1004 if (np == NULL)
1127 return; 1005 return;
1128 1006
1129 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
1130 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
1131 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
1132 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
1133 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
1134 ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
1135 ibm_get_config_addr_info2 = rtas_token("ibm,get-config-addr-info2");
1136 ibm_configure_bridge = rtas_token ("ibm,configure-bridge");
1137 ibm_configure_pe = rtas_token("ibm,configure-pe");
1138
1139 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
1140 return;
1141
1142 eeh_error_buf_size = rtas_token("rtas-error-log-max");
1143 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
1144 eeh_error_buf_size = 1024;
1145 }
1146 if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
1147 printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
1148 "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
1149 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
1150 }
1151
1152 /* Enable EEH for all adapters. Note that eeh requires buid's */ 1007 /* Enable EEH for all adapters. Note that eeh requires buid's */
1153 for (phb = of_find_node_by_name(NULL, "pci"); phb; 1008 for (phb = of_find_node_by_name(NULL, "pci"); phb;
1154 phb = of_find_node_by_name(phb, "pci")) { 1009 phb = of_find_node_by_name(phb, "pci")) {
1155 unsigned long buid; 1010 unsigned long buid;
1156 1011
1157 buid = get_phb_buid(phb); 1012 buid = get_phb_buid(phb);
1158 if (buid == 0 || PCI_DN(phb) == NULL) 1013 if (buid == 0 || !of_node_to_eeh_dev(phb))
1159 continue; 1014 continue;
1160 1015
1161 info.buid_lo = BUID_LO(buid); 1016 traverse_pci_devices(phb, eeh_early_enable, NULL);
1162 info.buid_hi = BUID_HI(buid);
1163 traverse_pci_devices(phb, early_enable_eeh, &info);
1164 } 1017 }
1165 1018
1166 if (eeh_subsystem_enabled) 1019 if (eeh_subsystem_enabled)
@@ -1170,7 +1023,7 @@ void __init eeh_init(void)
1170} 1023}
1171 1024
1172/** 1025/**
1173 * eeh_add_device_early - enable EEH for the indicated device_node 1026 * eeh_add_device_early - Enable EEH for the indicated device_node
1174 * @dn: device node for which to set up EEH 1027 * @dn: device node for which to set up EEH
1175 * 1028 *
1176 * This routine must be used to perform EEH initialization for PCI 1029 * This routine must be used to perform EEH initialization for PCI
@@ -1184,21 +1037,26 @@ void __init eeh_init(void)
1184static void eeh_add_device_early(struct device_node *dn) 1037static void eeh_add_device_early(struct device_node *dn)
1185{ 1038{
1186 struct pci_controller *phb; 1039 struct pci_controller *phb;
1187 struct eeh_early_enable_info info;
1188 1040
1189 if (!dn || !PCI_DN(dn)) 1041 if (!dn || !of_node_to_eeh_dev(dn))
1190 return; 1042 return;
1191 phb = PCI_DN(dn)->phb; 1043 phb = of_node_to_eeh_dev(dn)->phb;
1192 1044
1193 /* USB Bus children of PCI devices will not have BUID's */ 1045 /* USB Bus children of PCI devices will not have BUID's */
1194 if (NULL == phb || 0 == phb->buid) 1046 if (NULL == phb || 0 == phb->buid)
1195 return; 1047 return;
1196 1048
1197 info.buid_hi = BUID_HI(phb->buid); 1049 eeh_early_enable(dn, NULL);
1198 info.buid_lo = BUID_LO(phb->buid);
1199 early_enable_eeh(dn, &info);
1200} 1050}
1201 1051
1052/**
1053 * eeh_add_device_tree_early - Enable EEH for the indicated device
1054 * @dn: device node
1055 *
1056 * This routine must be used to perform EEH initialization for the
1057 * indicated PCI device that was added after system boot (e.g.
1058 * hotplug, dlpar).
1059 */
1202void eeh_add_device_tree_early(struct device_node *dn) 1060void eeh_add_device_tree_early(struct device_node *dn)
1203{ 1061{
1204 struct device_node *sib; 1062 struct device_node *sib;
@@ -1210,7 +1068,7 @@ void eeh_add_device_tree_early(struct device_node *dn)
1210EXPORT_SYMBOL_GPL(eeh_add_device_tree_early); 1068EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1211 1069
1212/** 1070/**
1213 * eeh_add_device_late - perform EEH initialization for the indicated pci device 1071 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1214 * @dev: pci device for which to set up EEH 1072 * @dev: pci device for which to set up EEH
1215 * 1073 *
1216 * This routine must be used to complete EEH initialization for PCI 1074 * This routine must be used to complete EEH initialization for PCI
@@ -1219,7 +1077,7 @@ EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1219static void eeh_add_device_late(struct pci_dev *dev) 1077static void eeh_add_device_late(struct pci_dev *dev)
1220{ 1078{
1221 struct device_node *dn; 1079 struct device_node *dn;
1222 struct pci_dn *pdn; 1080 struct eeh_dev *edev;
1223 1081
1224 if (!dev || !eeh_subsystem_enabled) 1082 if (!dev || !eeh_subsystem_enabled)
1225 return; 1083 return;
@@ -1227,20 +1085,29 @@ static void eeh_add_device_late(struct pci_dev *dev)
1227 pr_debug("EEH: Adding device %s\n", pci_name(dev)); 1085 pr_debug("EEH: Adding device %s\n", pci_name(dev));
1228 1086
1229 dn = pci_device_to_OF_node(dev); 1087 dn = pci_device_to_OF_node(dev);
1230 pdn = PCI_DN(dn); 1088 edev = pci_dev_to_eeh_dev(dev);
1231 if (pdn->pcidev == dev) { 1089 if (edev->pdev == dev) {
1232 pr_debug("EEH: Already referenced !\n"); 1090 pr_debug("EEH: Already referenced !\n");
1233 return; 1091 return;
1234 } 1092 }
1235 WARN_ON(pdn->pcidev); 1093 WARN_ON(edev->pdev);
1236 1094
1237 pci_dev_get (dev); 1095 pci_dev_get(dev);
1238 pdn->pcidev = dev; 1096 edev->pdev = dev;
1097 dev->dev.archdata.edev = edev;
1239 1098
1240 pci_addr_cache_insert_device(dev); 1099 pci_addr_cache_insert_device(dev);
1241 eeh_sysfs_add_device(dev); 1100 eeh_sysfs_add_device(dev);
1242} 1101}
1243 1102
1103/**
1104 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1105 * @bus: PCI bus
1106 *
1107 * This routine must be used to perform EEH initialization for PCI
1108 * devices which are attached to the indicated PCI bus. The PCI bus
1109 * is added after system boot through hotplug or dlpar.
1110 */
1244void eeh_add_device_tree_late(struct pci_bus *bus) 1111void eeh_add_device_tree_late(struct pci_bus *bus)
1245{ 1112{
1246 struct pci_dev *dev; 1113 struct pci_dev *dev;
@@ -1257,7 +1124,7 @@ void eeh_add_device_tree_late(struct pci_bus *bus)
1257EXPORT_SYMBOL_GPL(eeh_add_device_tree_late); 1124EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1258 1125
1259/** 1126/**
1260 * eeh_remove_device - undo EEH setup for the indicated pci device 1127 * eeh_remove_device - Undo EEH setup for the indicated pci device
1261 * @dev: pci device to be removed 1128 * @dev: pci device to be removed
1262 * 1129 *
1263 * This routine should be called when a device is removed from 1130 * This routine should be called when a device is removed from
@@ -1268,25 +1135,35 @@ EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1268 */ 1135 */
1269static void eeh_remove_device(struct pci_dev *dev) 1136static void eeh_remove_device(struct pci_dev *dev)
1270{ 1137{
1271 struct device_node *dn; 1138 struct eeh_dev *edev;
1139
1272 if (!dev || !eeh_subsystem_enabled) 1140 if (!dev || !eeh_subsystem_enabled)
1273 return; 1141 return;
1142 edev = pci_dev_to_eeh_dev(dev);
1274 1143
1275 /* Unregister the device with the EEH/PCI address search system */ 1144 /* Unregister the device with the EEH/PCI address search system */
1276 pr_debug("EEH: Removing device %s\n", pci_name(dev)); 1145 pr_debug("EEH: Removing device %s\n", pci_name(dev));
1277 1146
1278 dn = pci_device_to_OF_node(dev); 1147 if (!edev || !edev->pdev) {
1279 if (PCI_DN(dn)->pcidev == NULL) {
1280 pr_debug("EEH: Not referenced !\n"); 1148 pr_debug("EEH: Not referenced !\n");
1281 return; 1149 return;
1282 } 1150 }
1283 PCI_DN(dn)->pcidev = NULL; 1151 edev->pdev = NULL;
1284 pci_dev_put (dev); 1152 dev->dev.archdata.edev = NULL;
1153 pci_dev_put(dev);
1285 1154
1286 pci_addr_cache_remove_device(dev); 1155 pci_addr_cache_remove_device(dev);
1287 eeh_sysfs_remove_device(dev); 1156 eeh_sysfs_remove_device(dev);
1288} 1157}
1289 1158
1159/**
1160 * eeh_remove_bus_device - Undo EEH setup for the indicated PCI device
1161 * @dev: PCI device
1162 *
1163 * This routine must be called when a device is removed from the
1164 * running system through hotplug or dlpar. The corresponding
1165 * PCI address cache will be removed.
1166 */
1290void eeh_remove_bus_device(struct pci_dev *dev) 1167void eeh_remove_bus_device(struct pci_dev *dev)
1291{ 1168{
1292 struct pci_bus *bus = dev->subordinate; 1169 struct pci_bus *bus = dev->subordinate;
@@ -1305,21 +1182,24 @@ static int proc_eeh_show(struct seq_file *m, void *v)
1305{ 1182{
1306 if (0 == eeh_subsystem_enabled) { 1183 if (0 == eeh_subsystem_enabled) {
1307 seq_printf(m, "EEH Subsystem is globally disabled\n"); 1184 seq_printf(m, "EEH Subsystem is globally disabled\n");
1308 seq_printf(m, "eeh_total_mmio_ffs=%ld\n", total_mmio_ffs); 1185 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1309 } else { 1186 } else {
1310 seq_printf(m, "EEH Subsystem is enabled\n"); 1187 seq_printf(m, "EEH Subsystem is enabled\n");
1311 seq_printf(m, 1188 seq_printf(m,
1312 "no device=%ld\n" 1189 "no device=%llu\n"
1313 "no device node=%ld\n" 1190 "no device node=%llu\n"
1314 "no config address=%ld\n" 1191 "no config address=%llu\n"
1315 "check not wanted=%ld\n" 1192 "check not wanted=%llu\n"
1316 "eeh_total_mmio_ffs=%ld\n" 1193 "eeh_total_mmio_ffs=%llu\n"
1317 "eeh_false_positives=%ld\n" 1194 "eeh_false_positives=%llu\n"
1318 "eeh_slot_resets=%ld\n", 1195 "eeh_slot_resets=%llu\n",
1319 no_device, no_dn, no_cfg_addr, 1196 eeh_stats.no_device,
1320 ignored_check, total_mmio_ffs, 1197 eeh_stats.no_dn,
1321 false_positives, 1198 eeh_stats.no_cfg_addr,
1322 slot_resets); 1199 eeh_stats.ignored_check,
1200 eeh_stats.total_mmio_ffs,
1201 eeh_stats.false_positives,
1202 eeh_stats.slot_resets);
1323 } 1203 }
1324 1204
1325 return 0; 1205 return 0;