/* SCTP kernel reference Implementation * (C) Copyright IBM Corp. 2001, 2004 * Copyright (c) 1999-2000 Cisco, Inc. * Copyright (c) 1999-2001 Motorola, Inc. * Copyright (c) 2001 Intel Corp. * Copyright (c) 2001 Nokia, Inc. * Copyright (c) 2001 La Monte H.P. Yarroll * * This file is part of the SCTP kernel reference Implementation * * Initialization/cleanup for SCTP protocol support. * * The SCTP reference implementation is free software; * you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * The SCTP reference implementation is distributed in the hope that it * will be useful, but WITHOUT ANY WARRANTY; without even the implied * ************************ * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU CC; see the file COPYING. If not, write to * the Free Software Foundation, 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. * * Please send any bug reports or fixes you make to the * email address(es): * lksctp developers <lksctp-developers@lists.sourceforge.net> * * Or submit a bug report through the following website: * http://www.sf.net/projects/lksctp * * Written or modified by: * La Monte H.P. Yarroll <piggy@acm.org> * Karl Knutson <karl@athena.chicago.il.us> * Jon Grimm <jgrimm@us.ibm.com> * Sridhar Samudrala <sri@us.ibm.com> * Daisy Chang <daisyc@us.ibm.com> * Ardelle Fan <ardelle.fan@intel.com> * * Any bugs reported given to us we will try to fix... any fixes shared will * be incorporated into the next SCTP release. */ #include <linux/module.h> #include <linux/init.h> #include <linux/netdevice.h> #include <linux/inetdevice.h> #include <linux/seq_file.h> #include <linux/bootmem.h> #include <net/net_namespace.h> #include <net/protocol.h> #include <net/ip.h> #include <net/ipv6.h> #include <net/route.h> #include <net/sctp/sctp.h> #include <net/addrconf.h> #include <net/inet_common.h> #include <net/inet_ecn.h> /* Global data structures. */ struct sctp_globals sctp_globals __read_mostly; struct proc_dir_entry *proc_net_sctp; DEFINE_SNMP_STAT(struct sctp_mib, sctp_statistics) __read_mostly; struct idr sctp_assocs_id; DEFINE_SPINLOCK(sctp_assocs_id_lock); /* This is the global socket data structure used for responding to * the Out-of-the-blue (OOTB) packets. A control sock will be created * for this socket at the initialization time. */ static struct socket *sctp_ctl_socket; static struct sctp_pf *sctp_pf_inet6_specific; static struct sctp_pf *sctp_pf_inet_specific; static struct sctp_af *sctp_af_v4_specific; static struct sctp_af *sctp_af_v6_specific; struct kmem_cache *sctp_chunk_cachep __read_mostly; struct kmem_cache *sctp_bucket_cachep __read_mostly; int sysctl_sctp_mem[3]; int sysctl_sctp_rmem[3]; int sysctl_sctp_wmem[3]; /* Return the address of the control sock. */ struct sock *sctp_get_ctl_sock(void) { return sctp_ctl_socket->sk; } /* Set up the proc fs entry for the SCTP protocol. */ static __init int sctp_proc_init(void) { if (!proc_net_sctp) { struct proc_dir_entry *ent; ent = proc_mkdir("sctp", init_net.proc_net); if (ent) { ent->owner = THIS_MODULE; proc_net_sctp = ent; } else goto out_nomem; } if (sctp_snmp_proc_init()) goto out_nomem; if (sctp_eps_proc_init()) goto out_nomem; if (sctp_assocs_proc_init()) goto out_nomem; return 0; out_nomem: return -ENOMEM; } /* Clean up the proc fs entry for the SCTP protocol. * Note: Do not make this __exit as it is used in the init error * path. */ static void sctp_proc_exit(void) { sctp_snmp_proc_exit(); sctp_eps_proc_exit(); sctp_assocs_proc_exit(); if (proc_net_sctp) { proc_net_sctp = NULL; remove_proc_entry("sctp", init_net.proc_net); } } /* Private helper to extract ipv4 address and stash them in * the protocol structure. */ static void sctp_v4_copy_addrlist(struct list_head *addrlist, struct net_device *dev) { struct in_device *in_dev; struct in_ifaddr *ifa; struct sctp_sockaddr_entry *addr; rcu_read_lock(); if ((in_dev = __in_dev_get_rcu(dev)) == NULL) { rcu_read_unlock(); return; } for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next) { /* Add the address to the local list. */ addr = t_new(struct sctp_sockaddr_entry, GFP_ATOMIC); if (addr) { addr->a.v4.sin_family = AF_INET; addr->a.v4.sin_port = 0; addr->a.v4.sin_addr.s_addr = ifa->ifa_local; addr->valid = 1; INIT_LIST_HEAD(&addr->list); INIT_RCU_HEAD(&addr->rcu); list_add_tail(&addr->list, addrlist); } } rcu_read_unlock(); } /* Extract our IP addresses from the system and stash them in the * protocol structure. */ static void sctp_get_local_addr_list(void) { struct net_device *dev; struct list_head *pos; struct sctp_af *af; read_lock(&dev_base_lock); for_each_netdev(&init_net, dev) { __list_for_each(pos, &sctp_address_families) { af = list_entry(pos, struct sctp_af, list); af->copy_addrlist(&sctp_local_addr_list, dev); } } read_unlock(&dev_base_lock); } /* Free the existing local addresses. */ static void sctp_free_local_addr_list(void) { struct sctp_sockaddr_entry *addr; struct list_head *pos, *temp; list_for_each_safe(pos, temp, &sctp_local_addr_list) { addr = list_entry(pos, struct sctp_sockaddr_entry, list); list_del(pos); kfree(addr); } } void sctp_local_addr_free(struct rcu_head *head) { struct sctp_sockaddr_entry *e = container_of(head, struct sctp_sockaddr_entry, rcu); kfree(e); } /* Copy the local addresses which are valid for 'scope' into 'bp'. */ int sctp_copy_local_addr_list(struct sctp_bind_addr *bp, sctp_scope_t scope, gfp_t gfp, int copy_flags) { struct sctp_sockaddr_entry *addr; int error = 0; rcu_read_lock(); list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { if (!addr->valid) continue; if (sctp_in_scope(&addr->a, scope)) { /* Now that the address is in scope, check to see if * the address type is really supported by the local * sock as well as the remote peer. */ if ((((AF_INET == addr->a.sa.sa_family) && (copy_flags & SCTP_ADDR4_PEERSUPP))) || (((AF_INET6 == addr->a.sa.sa_family) && (copy_flags & SCTP_ADDR6_ALLOWED) && (copy_flags & SCTP_ADDR6_PEERSUPP)))) { error = sctp_add_bind_addr(bp, &addr->a, 1, GFP_ATOMIC); if (error) goto end_copy; } } } end_copy: rcu_read_unlock(); return error; } /* Initialize a sctp_addr from in incoming skb. */ static void sctp_v4_from_skb(union sctp_addr *addr, struct sk_buff *skb, int is_saddr) { void *from; __be16 *port; struct sctphdr *sh; port = &addr->v4.sin_port; addr->v4.sin_family = AF_INET; sh = sctp_hdr(skb); if (is_saddr) { *port = sh->source; from = &ip_hdr(skb)->saddr; } else { *port = sh->dest; from = &ip_hdr(skb)->daddr; } memcpy(&addr->v4.sin_addr.s_addr, from, sizeof(struct in_addr)); } /* Initialize an sctp_addr from a socket. */ static void sctp_v4_from_sk(union sctp_addr *addr, struct sock *sk) { addr->v4.sin_family = AF_INET; addr->v4.sin_port = 0; addr->v4.sin_addr.s_addr = inet_sk(sk)->rcv_saddr; } /* Initialize sk->sk_rcv_saddr from sctp_addr. */ static void sctp_v4_to_sk_saddr(union sctp_addr *addr, struct sock *sk) { inet_sk(sk)->rcv_saddr = addr->v4.sin_addr.s_addr; } /* Initialize sk->sk_daddr from sctp_addr. */ static void sctp_v4_to_sk_daddr(union sctp_addr *addr, struct sock *sk) { inet_sk(sk)->daddr = addr->v4.sin_addr.s_addr; } /* Initialize a sctp_addr from an address parameter. */ static void sctp_v4_from_addr_param(union sctp_addr *addr, union sctp_addr_param *param, __be16 port, int iif) { addr->v4.sin_family = AF_INET; addr->v4.sin_port = port; addr->v4.sin_addr.s_addr = param->v4.addr.s_addr; } /* Initialize an address parameter from a sctp_addr and return the length * of the address parameter. */ static int sctp_v4_to_addr_param(const union sctp_addr *addr, union sctp_addr_param *param) { int length = sizeof(sctp_ipv4addr_param_t); param->v4.param_hdr.type = SCTP_PARAM_IPV4_ADDRESS; param->v4.param_hdr.length = htons(length); param->v4.addr.s_addr = addr->v4.sin_addr.s_addr; return length; } /* Initialize a sctp_addr from a dst_entry. */ static void sctp_v4_dst_saddr(union sctp_addr *saddr, struct dst_entry *dst, __be16 port) { struct rtable *rt = (struct rtable *)dst; saddr->v4.sin_family = AF_INET; saddr->v4.sin_port = port; saddr->v4.sin_addr.s_addr = rt->rt_src; } /* Compare two addresses exactly. */ static int sctp_v4_cmp_addr(const union sctp_addr *addr1, const union sctp_addr *addr2) { if (addr1->sa.sa_family != addr2->sa.sa_family) return 0; if (addr1->v4.sin_port != addr2->v4.sin_port) return 0; if (addr1->v4.sin_addr.s_addr != addr2->v4.sin_addr.s_addr) return 0; return 1; } /* Initialize addr struct to INADDR_ANY. */ static void sctp_v4_inaddr_any(union sctp_addr *addr, __be16 port) { addr->v4.sin_family = AF_INET; addr->v4.sin_addr.s_addr = INADDR_ANY; addr->v4.sin_port = port; } /* Is this a wildcard address? */ static int sctp_v4_is_any(const union sctp_addr *addr) { return INADDR_ANY == addr->v4.sin_addr.s_addr; } /* This function checks if the address is a valid address to be used for * SCTP binding. * * Output: * Return 0 - If the address is a non-unicast or an illegal address. * Return 1 - If the address is a unicast. */ static int sctp_v4_addr_valid(union sctp_addr *addr, struct sctp_sock *sp, const struct sk_buff *skb) { /* Is this a non-unicast address or a unusable SCTP address? */ if (IS_IPV4_UNUSABLE_ADDRESS(&addr->v4.sin_addr.s_addr)) return 0; /* Is this a broadcast address? */ if (skb && ((struct rtable *)skb->dst)->rt_flags & RTCF_BROADCAST) return 0; return 1; } /* Should this be available for binding? */ static int sctp_v4_available(union sctp_addr *addr, struct sctp_sock *sp) { int ret = inet_addr_type(addr->v4.sin_addr.s_addr); if (addr->v4.sin_addr.s_addr != INADDR_ANY && ret != RTN_LOCAL && !sp->inet.freebind && !sysctl_ip_nonlocal_bind) return 0; return 1; } /* Checking the loopback, private and other address scopes as defined in * RFC 1918. The IPv4 scoping is based on the draft for SCTP IPv4 * scoping <draft-stewart-tsvwg-sctp-ipv4-00.txt>. * * Level 0 - unusable SCTP addresses * Level 1 - loopback address * Level 2 - link-local addresses * Level 3 - private addresses. * Level 4 - global addresses * For INIT and INIT-ACK address list, let L be the level of * of requested destination address, sender and receiver * SHOULD include all of its addresses with level greater * than or equal to L. */ static sctp_scope_t sctp_v4_scope(union sctp_addr *addr) { sctp_scope_t retval; /* Should IPv4 scoping be a sysctl configurable option * so users can turn it off (default on) for certain * unconventional networking environments? */ /* Check for unusable SCTP addresses. */ if (IS_IPV4_UNUSABLE_ADDRESS(&addr->v4.sin_addr.s_addr)) { retval = SCTP_SCOPE_UNUSABLE; } else if (LOOPBACK(addr->v4.sin_addr.s_addr)) { retval = SCTP_SCOPE_LOOPBACK; } else if (IS_IPV4_LINK_ADDRESS(&addr->v4.sin_addr.s_addr)) { retval = SCTP_SCOPE_LINK; } else if (IS_IPV4_PRIVATE_ADDRESS(&addr->v4.sin_addr.s_addr)) { retval = SCTP_SCOPE_PRIVATE; } else { retval = SCTP_SCOPE_GLOBAL; } return retval; } /* Returns a valid dst cache entry for the given source and destination ip * addresses. If an association is passed, trys to get a dst entry with a * source address that matches an address in the bind address list. */ static struct dst_entry *sctp_v4_get_dst(struct sctp_association *asoc, union sctp_addr *daddr, union sctp_addr *saddr) { struct rtable *rt; struct flowi fl; struct sctp_bind_addr *bp; struct sctp_sockaddr_entry *laddr; struct dst_entry *dst = NULL; union sctp_addr dst_saddr; memset(&fl, 0x0, sizeof(struct flowi)); fl.fl4_dst = daddr->v4.sin_addr.s_addr; fl.proto = IPPROTO_SCTP; if (asoc) { fl.fl4_tos = RT_CONN_FLAGS(asoc->base.sk); fl.oif = asoc->base.sk->sk_bound_dev_if; } if (saddr) fl.fl4_src = saddr->v4.sin_addr.s_addr; SCTP_DEBUG_PRINTK("%s: DST:%u.%u.%u.%u, SRC:%u.%u.%u.%u - ", __FUNCTION__, NIPQUAD(fl.fl4_dst), NIPQUAD(fl.fl4_src)); if (!ip_route_output_key(&rt, &fl)) { dst = &rt->u.dst; } /* If there is no association or if a source address is passed, no * more validation is required. */ if (!asoc || saddr) goto out; bp = &asoc->base.bind_addr; if (dst) { /* Walk through the bind address list and look for a bind * address that matches the source address of the returned dst. */ rcu_read_lock(); list_for_each_entry_rcu(laddr, &bp->address_list, list) { if (!laddr->valid || !laddr->use_as_src) continue; sctp_v4_dst_saddr(&dst_saddr, dst, htons(bp->port)); if (sctp_v4_cmp_addr(&dst_saddr, &laddr->a)) goto out_unlock; } rcu_read_unlock(); /* None of the bound addresses match the source address of the * dst. So release it. */ dst_release(dst); dst = NULL; } /* Walk through the bind address list and try to get a dst that * matches a bind address as the source address. */ rcu_read_lock(); list_for_each_entry_rcu(laddr, &bp->address_list, list) { if (!laddr->valid) continue; if ((laddr->use_as_src) && (AF_INET == laddr->a.sa.sa_family)) { fl.fl4_src = laddr->a.v4.sin_addr.s_addr; if (!ip_route_output_key(&rt, &fl)) { dst = &rt->u.dst; goto out_unlock; } } } out_unlock: rcu_read_unlock(); out: if (dst) SCTP_DEBUG_PRINTK("rt_dst:%u.%u.%u.%u, rt_src:%u.%u.%u.%u\n", NIPQUAD(rt->rt_dst), NIPQUAD(rt->rt_src)); else SCTP_DEBUG_PRINTK("NO ROUTE\n"); return dst; } /* For v4, the source address is cached in the route entry(dst). So no need * to cache it separately and hence this is an empty routine. */ static void sctp_v4_get_saddr(struct sctp_association *asoc, struct dst_entry *dst, union sctp_addr *daddr, union sctp_addr *saddr) { struct rtable *rt = (struct rtable *)dst; if (!asoc) return; if (rt) { saddr->v4.sin_family = AF_INET; saddr->v4.sin_port = htons(asoc->base.bind_addr.port); saddr->v4.sin_addr.s_addr = rt->rt_src; } } /* What interface did this skb arrive on? */ static int sctp_v4_skb_iif(const struct sk_buff *skb) { return ((struct rtable *)skb->dst)->rt_iif; } /* Was this packet marked by Explicit Congestion Notification? */ static int sctp_v4_is_ce(const struct sk_buff *skb) { return INET_ECN_is_ce(ip_hdr(skb)->tos); } /* Create and initialize a new sk for the socket returned by accept(). */ static struct sock *sctp_v4_create_accept_sk(struct sock *sk, struct sctp_association *asoc) { struct inet_sock *inet = inet_sk(sk); struct inet_sock *newinet; struct sock *newsk = sk_alloc(sk->sk_net, PF_INET, GFP_KERNEL, sk->sk_prot, 1); if (!newsk) goto out; sock_init_data(NULL, newsk); newsk->sk_type = SOCK_STREAM; newsk->sk_no_check = sk->sk_no_check; newsk->sk_reuse = sk->sk_reuse; newsk->sk_shutdown = sk->sk_shutdown; newsk->sk_destruct = inet_sock_destruct; newsk->sk_family = PF_INET; newsk->sk_protocol = IPPROTO_SCTP; newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; sock_reset_flag(newsk, SOCK_ZAPPED); newinet = inet_sk(newsk); /* Initialize sk's sport, dport, rcv_saddr and daddr for * getsockname() and getpeername() */ newinet->sport = inet->sport; newinet->saddr = inet->saddr; newinet->rcv_saddr = inet->rcv_saddr; newinet->dport = htons(asoc->peer.port); newinet->daddr = asoc->peer.primary_addr.v4.sin_addr.s_addr; newinet->pmtudisc = inet->pmtudisc; newinet->id = asoc->next_tsn ^ jiffies; newinet->uc_ttl = -1; newinet->mc_loop = 1; newinet->mc_ttl = 1; newinet->mc_index = 0; newinet->mc_list = NULL; sk_refcnt_debug_inc(newsk); if (newsk->sk_prot->init(newsk)) { sk_common_release(newsk); newsk = NULL; } out: return newsk; } /* Map address, empty for v4 family */ static void sctp_v4_addr_v4map(struct sctp_sock *sp, union sctp_addr *addr) { /* Empty */ } /* Dump the v4 addr to the seq file. */ static void sctp_v4_seq_dump_addr(struct seq_file *seq, union sctp_addr *addr) { seq_printf(seq, "%d.%d.%d.%d ", NIPQUAD(addr->v4.sin_addr)); } /* Event handler for inet address addition/deletion events. * The sctp_local_addr_list needs to be protocted by a spin lock since * multiple notifiers (say IPv4 and IPv6) may be running at the same * time and thus corrupt the list. * The reader side is protected with RCU. */ static int sctp_inetaddr_event(struct notifier_block *this, unsigned long ev, void *ptr) { struct in_ifaddr *ifa = (struct in_ifaddr *)ptr; struct sctp_sockaddr_entry *addr = NULL; struct sctp_sockaddr_entry *temp; switch (ev) { case NETDEV_UP: addr = kmalloc(sizeof(struct sctp_sockaddr_entry), GFP_ATOMIC); if (addr) { addr->a.v4.sin_family = AF_INET; addr->a.v4.sin_port = 0; addr->a.v4.sin_addr.s_addr = ifa->ifa_local; addr->valid = 1; spin_lock_bh(&sctp_local_addr_lock); list_add_tail_rcu(&addr->list, &sctp_local_addr_list); spin_unlock_bh(&sctp_local_addr_lock); } break; case NETDEV_DOWN: spin_lock_bh(&sctp_local_addr_lock); list_for_each_entry_safe(addr, temp, &sctp_local_addr_list, list) { if (addr->a.v4.sin_addr.s_addr == ifa->ifa_local) { addr->valid = 0; list_del_rcu(&addr->list); break; } } spin_unlock_bh(&sctp_local_addr_lock); if (addr && !addr->valid) call_rcu(&addr->rcu, sctp_local_addr_free); break; } return NOTIFY_DONE; } /* * Initialize the control inode/socket with a control endpoint data * structure. This endpoint is reserved exclusively for the OOTB processing. */ static int sctp_ctl_sock_init(void) { int err; sa_family_t family; if (sctp_get_pf_specific(PF_INET6)) family = PF_INET6; else family = PF_INET; err = sock_create_kern(family, SOCK_SEQPACKET, IPPROTO_SCTP, &sctp_ctl_socket); if (err < 0) { printk(KERN_ERR "SCTP: Failed to create the SCTP control socket.\n"); return err; } sctp_ctl_socket->sk->sk_allocation = GFP_ATOMIC; inet_sk(sctp_ctl_socket->sk)->uc_ttl = -1; return 0; } /* Register address family specific functions. */ int sctp_register_af(struct sctp_af *af) { switch (af->sa_family) { case AF_INET: if (sctp_af_v4_specific) return 0; sctp_af_v4_specific = af; break; case AF_INET6: if (sctp_af_v6_specific) return 0; sctp_af_v6_specific = af; break; default: return 0; } INIT_LIST_HEAD(&af->list); list_add_tail(&af->list, &sctp_address_families); return 1; } /* Get the table of functions for manipulating a particular address * family. */ struct sctp_af *sctp_get_af_specific(sa_family_t family) { switch (family) { case AF_INET: return sctp_af_v4_specific; case AF_INET6: return sctp_af_v6_specific; default: return NULL; } } /* Common code to initialize a AF_INET msg_name. */ static void sctp_inet_msgname(char *msgname, int *addr_len) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)msgname; *addr_len = sizeof(struct sockaddr_in); sin->sin_family = AF_INET; memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); } /* Copy the primary address of the peer primary address as the msg_name. */ static void sctp_inet_event_msgname(struct sctp_ulpevent *event, char *msgname, int *addr_len) { struct sockaddr_in *sin, *sinfrom; if (msgname) { struct sctp_association *asoc; asoc = event->asoc; sctp_inet_msgname(msgname, addr_len); sin = (struct sockaddr_in *)msgname; sinfrom = &asoc->peer.primary_addr.v4; sin->sin_port = htons(asoc->peer.port); sin->sin_addr.s_addr = sinfrom->sin_addr.s_addr; } } /* Initialize and copy out a msgname from an inbound skb. */ static void sctp_inet_skb_msgname(struct sk_buff *skb, char *msgname, int *len) { if (msgname) { struct sctphdr *sh = sctp_hdr(skb); struct sockaddr_in *sin = (struct sockaddr_in *)msgname; sctp_inet_msgname(msgname, len); sin->sin_port = sh->source; sin->sin_addr.s_addr = ip_hdr(skb)->saddr; } } /* Do we support this AF? */ static int sctp_inet_af_supported(sa_family_t family, struct sctp_sock *sp) { /* PF_INET only supports AF_INET addresses. */ return (AF_INET == family); } /* Address matching with wildcards allowed. */ static int sctp_inet_cmp_addr(const union sctp_addr *addr1, const union sctp_addr *addr2, struct sctp_sock *opt) { /* PF_INET only supports AF_INET addresses. */ if (addr1->sa.sa_family != addr2->sa.sa_family) return 0; if (INADDR_ANY == addr1->v4.sin_addr.s_addr || INADDR_ANY == addr2->v4.sin_addr.s_addr) return 1; if (addr1->v4.sin_addr.s_addr == addr2->v4.sin_addr.s_addr) return 1; return 0; } /* Verify that provided sockaddr looks bindable. Common verification has * already been taken care of. */ static int sctp_inet_bind_verify(struct sctp_sock *opt, union sctp_addr *addr) { return sctp_v4_available(addr, opt); } /* Verify that sockaddr looks sendable. Common verification has already * been taken care of. */ static int sctp_inet_send_verify(struct sctp_sock *opt, union sctp_addr *addr) { return 1; } /* Fill in Supported Address Type information for INIT and INIT-ACK * chunks. Returns number of addresses supported. */ static int sctp_inet_supported_addrs(const struct sctp_sock *opt, __be16 *types) { types[0] = SCTP_PARAM_IPV4_ADDRESS; return 1; } /* Wrapper routine that calls the ip transmit routine. */ static inline int sctp_v4_xmit(struct sk_buff *skb, struct sctp_transport *transport, int ipfragok) { SCTP_DEBUG_PRINTK("%s: skb:%p, len:%d, " "src:%u.%u.%u.%u, dst:%u.%u.%u.%u\n", __FUNCTION__, skb, skb->len, NIPQUAD(((struct rtable *)skb->dst)->rt_src), NIPQUAD(((struct rtable *)skb->dst)->rt_dst)); SCTP_INC_STATS(SCTP_MIB_OUTSCTPPACKS); return ip_queue_xmit(skb, ipfragok); } static struct sctp_af sctp_ipv4_specific; static struct sctp_pf sctp_pf_inet = { .event_msgname = sctp_inet_event_msgname, .skb_msgname = sctp_inet_skb_msgname, .af_supported = sctp_inet_af_supported, .cmp_addr = sctp_inet_cmp_addr, .bind_verify = sctp_inet_bind_verify, .send_verify = sctp_inet_send_verify, .supported_addrs = sctp_inet_supported_addrs, .create_accept_sk = sctp_v4_create_accept_sk, .addr_v4map = sctp_v4_addr_v4map, .af = &sctp_ipv4_specific, }; /* Notifier for inetaddr addition/deletion events. */ static struct notifier_block sctp_inetaddr_notifier = { .notifier_call = sctp_inetaddr_event, }; /* Socket operations. */ static const struct proto_ops inet_seqpacket_ops = { .family = PF_INET, .owner = THIS_MODULE, .release = inet_release, /* Needs to be wrapped... */ .bind = inet_bind, .connect = inet_dgram_connect, .socketpair = sock_no_socketpair, .accept = inet_accept, .getname = inet_getname, /* Semantics are different. */ .poll = sctp_poll, .ioctl = inet_ioctl, .listen = sctp_inet_listen, .shutdown = inet_shutdown, /* Looks harmless. */ .setsockopt = sock_common_setsockopt, /* IP_SOL IP_OPTION is a problem */ .getsockopt = sock_common_getsockopt, .sendmsg = inet_sendmsg, .recvmsg = sock_common_recvmsg, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, #ifdef CONFIG_COMPAT .compat_setsockopt = compat_sock_common_setsockopt, .compat_getsockopt = compat_sock_common_getsockopt, #endif }; /* Registration with AF_INET family. */ static struct inet_protosw sctp_seqpacket_protosw = { .type = SOCK_SEQPACKET, .protocol = IPPROTO_SCTP, .prot = &sctp_prot, .ops = &inet_seqpacket_ops, .capability = -1, .no_check = 0, .flags = SCTP_PROTOSW_FLAG }; static struct inet_protosw sctp_stream_protosw = { .type = SOCK_STREAM, .protocol = IPPROTO_SCTP, .prot = &sctp_prot, .ops = &inet_seqpacket_ops, .capability = -1, .no_check = 0, .flags = SCTP_PROTOSW_FLAG }; /* Register with IP layer. */ static struct net_protocol sctp_protocol = { .handler = sctp_rcv, .err_handler = sctp_v4_err, .no_policy = 1, }; /* IPv4 address related functions. */ static struct sctp_af sctp_ipv4_specific = { .sa_family = AF_INET, .sctp_xmit = sctp_v4_xmit, .setsockopt = ip_setsockopt, .getsockopt = ip_getsockopt, .get_dst = sctp_v4_get_dst, .get_saddr = sctp_v4_get_saddr, .copy_addrlist = sctp_v4_copy_addrlist, .from_skb = sctp_v4_from_skb, .from_sk = sctp_v4_from_sk, .to_sk_saddr = sctp_v4_to_sk_saddr, .to_sk_daddr = sctp_v4_to_sk_daddr, .from_addr_param = sctp_v4_from_addr_param, .to_addr_param = sctp_v4_to_addr_param, .dst_saddr = sctp_v4_dst_saddr, .cmp_addr = sctp_v4_cmp_addr, .addr_valid = sctp_v4_addr_valid, .inaddr_any = sctp_v4_inaddr_any, .is_any = sctp_v4_is_any, .available = sctp_v4_available, .scope = sctp_v4_scope, .skb_iif = sctp_v4_skb_iif, .is_ce = sctp_v4_is_ce, .seq_dump_addr = sctp_v4_seq_dump_addr, .net_header_len = sizeof(struct iphdr), .sockaddr_len = sizeof(struct sockaddr_in), #ifdef CONFIG_COMPAT .compat_setsockopt = compat_ip_setsockopt, .compat_getsockopt = compat_ip_getsockopt, #endif }; struct sctp_pf *sctp_get_pf_specific(sa_family_t family) { switch (family) { case PF_INET: return sctp_pf_inet_specific; case PF_INET6: return sctp_pf_inet6_specific; default: return NULL; } } /* Register the PF specific function table. */ int sctp_register_pf(struct sctp_pf *pf, sa_family_t family) { switch (family) { case PF_INET: if (sctp_pf_inet_specific) return 0; sctp_pf_inet_specific = pf; break; case PF_INET6: if (sctp_pf_inet6_specific) return 0; sctp_pf_inet6_specific = pf; break; default: return 0; } return 1; } static int __init init_sctp_mibs(void) { sctp_statistics[0] = alloc_percpu(struct sctp_mib); if (!sctp_statistics[0]) return -ENOMEM; sctp_statistics[1] = alloc_percpu(struct sctp_mib); if (!sctp_statistics[1]) { free_percpu(sctp_statistics[0]); return -ENOMEM; } return 0; } static void cleanup_sctp_mibs(void) { free_percpu(sctp_statistics[0]); free_percpu(sctp_statistics[1]); } /* Initialize the universe into something sensible. */ SCTP_STATIC __init int sctp_init(void) { int i; int status = -EINVAL; unsigned long goal; unsigned long limit; int max_share; int order; /* SCTP_DEBUG sanity check. */ if (!sctp_sanity_check()) goto out; /* Allocate bind_bucket and chunk caches. */ status = -ENOBUFS; sctp_bucket_cachep = kmem_cache_create("sctp_bind_bucket", sizeof(struct sctp_bind_bucket), 0, SLAB_HWCACHE_ALIGN, NULL); if (!sctp_bucket_cachep) goto out; sctp_chunk_cachep = kmem_cache_create("sctp_chunk", sizeof(struct sctp_chunk), 0, SLAB_HWCACHE_ALIGN, NULL); if (!sctp_chunk_cachep) goto err_chunk_cachep; /* Allocate and initialise sctp mibs. */ status = init_sctp_mibs(); if (status) goto err_init_mibs; /* Initialize proc fs directory. */ status = sctp_proc_init(); if (status) goto err_init_proc; /* Initialize object count debugging. */ sctp_dbg_objcnt_init(); /* Initialize the SCTP specific PF functions. */ sctp_register_pf(&sctp_pf_inet, PF_INET); /* * 14. Suggested SCTP Protocol Parameter Values */ /* The following protocol parameters are RECOMMENDED: */ /* RTO.Initial - 3 seconds */ sctp_rto_initial = SCTP_RTO_INITIAL; /* RTO.Min - 1 second */ sctp_rto_min = SCTP_RTO_MIN; /* RTO.Max - 60 seconds */ sctp_rto_max = SCTP_RTO_MAX; /* RTO.Alpha - 1/8 */ sctp_rto_alpha = SCTP_RTO_ALPHA; /* RTO.Beta - 1/4 */ sctp_rto_beta = SCTP_RTO_BETA; /* Valid.Cookie.Life - 60 seconds */ sctp_valid_cookie_life = SCTP_DEFAULT_COOKIE_LIFE; /* Whether Cookie Preservative is enabled(1) or not(0) */ sctp_cookie_preserve_enable = 1; /* Max.Burst - 4 */ sctp_max_burst = SCTP_DEFAULT_MAX_BURST; /* Association.Max.Retrans - 10 attempts * Path.Max.Retrans - 5 attempts (per destination address) * Max.Init.Retransmits - 8 attempts */ sctp_max_retrans_association = 10; sctp_max_retrans_path = 5; sctp_max_retrans_init = 8; /* Sendbuffer growth - do per-socket accounting */ sctp_sndbuf_policy = 0; /* Rcvbuffer growth - do per-socket accounting */ sctp_rcvbuf_policy = 0; /* HB.interval - 30 seconds */ sctp_hb_interval = SCTP_DEFAULT_TIMEOUT_HEARTBEAT; /* delayed SACK timeout */ sctp_sack_timeout = SCTP_DEFAULT_TIMEOUT_SACK; /* Implementation specific variables. */ /* Initialize default stream count setup information. */ sctp_max_instreams = SCTP_DEFAULT_INSTREAMS; sctp_max_outstreams = SCTP_DEFAULT_OUTSTREAMS; /* Initialize handle used for association ids. */ idr_init(&sctp_assocs_id); /* Set the pressure threshold to be a fraction of global memory that * is up to 1/2 at 256 MB, decreasing toward zero with the amount of * memory, with a floor of 128 pages. * Note this initalizes the data in sctpv6_prot too * Unabashedly stolen from tcp_init */ limit = min(num_physpages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT); limit = (limit * (num_physpages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11); limit = max(limit, 128UL); sysctl_sctp_mem[0] = limit / 4 * 3; sysctl_sctp_mem[1] = limit; sysctl_sctp_mem[2] = sysctl_sctp_mem[0] * 2; /* Set per-socket limits to no more than 1/128 the pressure threshold*/ limit = (sysctl_sctp_mem[1]) << (PAGE_SHIFT - 7); max_share = min(4UL*1024*1024, limit); sysctl_sctp_rmem[0] = PAGE_SIZE; /* give each asoc 1 page min */ sysctl_sctp_rmem[1] = (1500 *(sizeof(struct sk_buff) + 1)); sysctl_sctp_rmem[2] = max(sysctl_sctp_rmem[1], max_share); sysctl_sctp_wmem[0] = SK_STREAM_MEM_QUANTUM; sysctl_sctp_wmem[1] = 16*1024; sysctl_sctp_wmem[2] = max(64*1024, max_share); /* Size and allocate the association hash table. * The methodology is similar to that of the tcp hash tables. */ if (num_physpages >= (128 * 1024)) goal = num_physpages >> (22 - PAGE_SHIFT); else goal = num_physpages >> (24 - PAGE_SHIFT); for (order = 0; (1UL << order) < goal; order++) ; do { sctp_assoc_hashsize = (1UL << order) * PAGE_SIZE / sizeof(struct sctp_hashbucket); if ((sctp_assoc_hashsize > (64 * 1024)) && order > 0) continue; sctp_assoc_hashtable = (struct sctp_hashbucket *) __get_free_pages(GFP_ATOMIC, order); } while (!sctp_assoc_hashtable && --order > 0); if (!sctp_assoc_hashtable) { printk(KERN_ERR "SCTP: Failed association hash alloc.\n"); status = -ENOMEM; goto err_ahash_alloc; } for (i = 0; i < sctp_assoc_hashsize; i++) { rwlock_init(&sctp_assoc_hashtable[i].lock); sctp_assoc_hashtable[i].chain = NULL; } /* Allocate and initialize the endpoint hash table. */ sctp_ep_hashsize = 64; sctp_ep_hashtable = (struct sctp_hashbucket *) kmalloc(64 * sizeof(struct sctp_hashbucket), GFP_KERNEL); if (!sctp_ep_hashtable) { printk(KERN_ERR "SCTP: Failed endpoint_hash alloc.\n"); status = -ENOMEM; goto err_ehash_alloc; } for (i = 0; i < sctp_ep_hashsize; i++) { rwlock_init(&sctp_ep_hashtable[i].lock); sctp_ep_hashtable[i].chain = NULL; } /* Allocate and initialize the SCTP port hash table. */ do { sctp_port_hashsize = (1UL << order) * PAGE_SIZE / sizeof(struct sctp_bind_hashbucket); if ((sctp_port_hashsize > (64 * 1024)) && order > 0) continue; sctp_port_hashtable = (struct sctp_bind_hashbucket *) __get_free_pages(GFP_ATOMIC, order); } while (!sctp_port_hashtable && --order > 0); if (!sctp_port_hashtable) { printk(KERN_ERR "SCTP: Failed bind hash alloc."); status = -ENOMEM; goto err_bhash_alloc; } for (i = 0; i < sctp_port_hashsize; i++) { spin_lock_init(&sctp_port_hashtable[i].lock); sctp_port_hashtable[i].chain = NULL; } spin_lock_init(&sctp_port_alloc_lock); sctp_port_rover = sysctl_local_port_range[0] - 1; printk(KERN_INFO "SCTP: Hash tables configured " "(established %d bind %d)\n", sctp_assoc_hashsize, sctp_port_hashsize); /* Disable ADDIP by default. */ sctp_addip_enable = 0; /* Enable PR-SCTP by default. */ sctp_prsctp_enable = 1; /* Disable AUTH by default. */ sctp_auth_enable = 0; sctp_sysctl_register(); INIT_LIST_HEAD(&sctp_address_families); sctp_register_af(&sctp_ipv4_specific); status = proto_register(&sctp_prot, 1); if (status) goto err_proto_register; /* Register SCTP(UDP and TCP style) with socket layer. */ inet_register_protosw(&sctp_seqpacket_protosw); inet_register_protosw(&sctp_stream_protosw); status = sctp_v6_init(); if (status) goto err_v6_init; /* Initialize the control inode/socket for handling OOTB packets. */ if ((status = sctp_ctl_sock_init())) { printk (KERN_ERR "SCTP: Failed to initialize the SCTP control sock.\n"); goto err_ctl_sock_init; } /* Initialize the local address list. */ INIT_LIST_HEAD(&sctp_local_addr_list); spin_lock_init(&sctp_local_addr_lock); sctp_get_local_addr_list(); /* Register notifier for inet address additions/deletions. */ register_inetaddr_notifier(&sctp_inetaddr_notifier); /* Register SCTP with inet layer. */ if (inet_add_protocol(&sctp_protocol, IPPROTO_SCTP) < 0) { status = -EAGAIN; goto err_add_protocol; } /* Register SCTP with inet6 layer. */ status = sctp_v6_add_protocol(); if (status) goto err_v6_add_protocol; __unsafe(THIS_MODULE); status = 0; out: return status; err_v6_add_protocol: inet_del_protocol(&sctp_protocol, IPPROTO_SCTP); unregister_inetaddr_notifier(&sctp_inetaddr_notifier); err_add_protocol: sctp_free_local_addr_list(); sock_release(sctp_ctl_socket); err_ctl_sock_init: sctp_v6_exit(); err_v6_init: inet_unregister_protosw(&sctp_stream_protosw); inet_unregister_protosw(&sctp_seqpacket_protosw); proto_unregister(&sctp_prot); err_proto_register: sctp_sysctl_unregister(); list_del(&sctp_ipv4_specific.list); free_pages((unsigned long)sctp_port_hashtable, get_order(sctp_port_hashsize * sizeof(struct sctp_bind_hashbucket))); err_bhash_alloc: kfree(sctp_ep_hashtable); err_ehash_alloc: free_pages((unsigned long)sctp_assoc_hashtable, get_order(sctp_assoc_hashsize * sizeof(struct sctp_hashbucket))); err_ahash_alloc: sctp_dbg_objcnt_exit(); sctp_proc_exit(); err_init_proc: cleanup_sctp_mibs(); err_init_mibs: kmem_cache_destroy(sctp_chunk_cachep); err_chunk_cachep: kmem_cache_destroy(sctp_bucket_cachep); goto out; } /* Exit handler for the SCTP protocol. */ SCTP_STATIC __exit void sctp_exit(void) { /* BUG. This should probably do something useful like clean * up all the remaining associations and all that memory. */ /* Unregister with inet6/inet layers. */ sctp_v6_del_protocol(); inet_del_protocol(&sctp_protocol, IPPROTO_SCTP); /* Unregister notifier for inet address additions/deletions. */ unregister_inetaddr_notifier(&sctp_inetaddr_notifier); /* Free the local address list. */ sctp_free_local_addr_list(); /* Free the control endpoint. */ sock_release(sctp_ctl_socket); /* Cleanup v6 initializations. */ sctp_v6_exit(); /* Unregister with socket layer. */ inet_unregister_protosw(&sctp_stream_protosw); inet_unregister_protosw(&sctp_seqpacket_protosw); sctp_sysctl_unregister(); list_del(&sctp_ipv4_specific.list); free_pages((unsigned long)sctp_assoc_hashtable, get_order(sctp_assoc_hashsize * sizeof(struct sctp_hashbucket))); kfree(sctp_ep_hashtable); free_pages((unsigned long)sctp_port_hashtable, get_order(sctp_port_hashsize * sizeof(struct sctp_bind_hashbucket))); sctp_dbg_objcnt_exit(); sctp_proc_exit(); cleanup_sctp_mibs(); kmem_cache_destroy(sctp_chunk_cachep); kmem_cache_destroy(sctp_bucket_cachep); proto_unregister(&sctp_prot); } module_init(sctp_init); module_exit(sctp_exit); /* * __stringify doesn't likes enums, so use IPPROTO_SCTP value (132) directly. */ MODULE_ALIAS("net-pf-" __stringify(PF_INET) "-proto-132"); MODULE_ALIAS("net-pf-" __stringify(PF_INET6) "-proto-132"); MODULE_AUTHOR("Linux Kernel SCTP developers <lksctp-developers@lists.sourceforge.net>"); MODULE_DESCRIPTION("Support for the SCTP protocol (RFC2960)"); MODULE_LICENSE("GPL");