#ifndef __PMAC_PFUNC_H__ #define __PMAC_PFUNC_H__ #include <linux/types.h> #include <linux/list.h> /* Flags in command lists */ #define PMF_FLAGS_ON_INIT 0x80000000u #define PMF_FLGAS_ON_TERM 0x40000000u #define PMF_FLAGS_ON_SLEEP 0x20000000u #define PMF_FLAGS_ON_WAKE 0x10000000u #define PMF_FLAGS_ON_DEMAND 0x08000000u #define PMF_FLAGS_INT_GEN 0x04000000u #define PMF_FLAGS_HIGH_SPEED 0x02000000u #define PMF_FLAGS_LOW_SPEED 0x01000000u #define PMF_FLAGS_SIDE_EFFECTS 0x00800000u /* * Arguments to a platform function call. * * NOTE: By convention, pointer arguments point to an u32 */ struct pmf_args { union { u32 v; u32 *p; } u[4]; unsigned int count; }; /* * A driver capable of interpreting commands provides a handlers * structure filled with whatever handlers are implemented by this * driver. Non implemented handlers are left NULL. * * PMF_STD_ARGS are the same arguments that are passed to the parser * and that gets passed back to the various handlers. * * Interpreting a given function always start with a begin() call which * returns an instance data to be passed around subsequent calls, and * ends with an end() call. This allows the low level driver to implement * locking policy or per-function instance data. * * For interrupt capable functions, irq_enable() is called when a client * registers, and irq_disable() is called when the last client unregisters * Note that irq_enable & irq_disable are called within a semaphore held * by the core, thus you should not try to register yourself to some other * pmf interrupt during those calls. */ #define PMF_STD_ARGS struct pmf_function *func, void *instdata, \ struct pmf_args *args struct pmf_function; struct pmf_handlers { void * (*begin)(struct pmf_function *func, struct pmf_args *args); void (*end)(struct pmf_function *func, void *instdata); int (*irq_enable)(struct pmf_function *func); int (*irq_disable)(struct pmf_function *func); int (*write_gpio)(PMF_STD_ARGS, u8 value, u8 mask); int (*read_gpio)(PMF_STD_ARGS, u8 mask, int rshift, u8 xor); int (*write_reg32)(PMF_STD_ARGS, u32 offset, u32 value, u32 mask); int (*read_reg32)(PMF_STD_ARGS, u32 offset); int (*write_reg16)(PMF_STD_ARGS, u32 offset, u16 value, u16 mask); int (*read_reg16)(PMF_STD_ARGS, u32 offset); int (*write_reg8)(PMF_STD_ARGS, u32 offset, u8 value, u8 mask); int (*read_reg8)(PMF_STD_ARGS, u32 offset); int (*delay)(PMF_STD_ARGS, u32 duration); int (*wait_reg32)(PMF_STD_ARGS, u32 offset, u32 value, u32 mask); int (*wait_reg16)(PMF_STD_ARGS, u32 offset, u16 value, u16 mask); int (*wait_reg8)(PMF_STD_ARGS, u32 offset, u8 value, u8 mask); int (*read_i2c)(PMF_STD_ARGS, u32 len); int (*write_i2c)(PMF_STD_ARGS, u32 len, const u8 *data); int (*rmw_i2c)(PMF_STD_ARGS, u32 masklen, u32 valuelen, u32 totallen, const u8 *maskdata, const u8 *valuedata); int (*read_cfg)(PMF_STD_ARGS, u32 offset, u32 len); int (*write_cfg)(PMF_STD_ARGS, u32 offset, u32 len, const u8 *data); int (*rmw_cfg)(PMF_STD_ARGS, u32 offset, u32 masklen, u32 valuelen, u32 totallen, const u8 *maskdata, const u8 *valuedata); int (*read_i2c_sub)(PMF_STD_ARGS, u8 subaddr, u32 len); int (*write_i2c_sub)(PMF_STD_ARGS, u8 subaddr, u32 len, const u8 *data); int (*set_i2c_mode)(PMF_STD_ARGS, int mode); int (*rmw_i2c_sub)(PMF_STD_ARGS, u8 subaddr, u32 masklen, u32 valuelen, u32 totallen, const u8 *maskdata, const u8 *valuedata); int (*read_reg32_msrx)(PMF_STD_ARGS, u32 offset, u32 mask, u32 shift, u32 xor); int (*read_reg16_msrx)(PMF_STD_ARGS, u32 offset, u32 mask, u32 shift, u32 xor); int (*read_reg8_msrx)(PMF_STD_ARGS, u32 offset, u32 mask, u32 shift, u32 xor); int (*write_reg32_slm)(PMF_STD_ARGS, u32 offset, u32 shift, u32 mask); int (*write_reg16_slm)(PMF_STD_ARGS, u32 offset, u32 shift, u32 mask); int (*write_reg8_slm)(PMF_STD_ARGS, u32 offset, u32 shift, u32 mask); int (*mask_and_compare)(PMF_STD_ARGS, u32 len, const u8 *maskdata, const u8 *valuedata); struct module *owner; }; /* * Drivers who expose platform functions register at init time, this * causes the platform functions for that device node to be parsed in * advance and associated with the device. The data structures are * partially public so a driver can walk the list of platform functions * and eventually inspect the flags */ struct pmf_device; struct pmf_function { /* All functions for a given driver are linked */ struct list_head link; /* Function node & driver data */ struct device_node *node; void *driver_data; /* For internal use by core */ struct pmf_device *dev; /* The name is the "xxx" in "platform-do-xxx", this is how * platform functions are identified by this code. Some functions * only operate for a given target, in which case the phandle is * here (or 0 if the filter doesn't apply) */ const char *name; u32 phandle; /* The flags for that function. You can have several functions * with the same name and different flag */ u32 flags; /* The actual tokenized function blob */ const void *data; unsigned int length; /* Interrupt clients */ struct list_head irq_clients; /* Refcounting */ struct kref ref; }; /* * For platform functions that are interrupts, one can register * irq_client structures. You canNOT use the same structure twice * as it contains a link member. Also, the callback is called with * a spinlock held, you must not call back into any of the pmf_* functions * from within that callback */ struct pmf_irq_client { void (*handler)(void *data); void *data; struct module *owner; struct list_head link; struct pmf_function *func; }; /* * Register/Unregister a function-capable driver and its handlers */ extern int pmf_register_driver(struct device_node *np, struct pmf_handlers *handlers, void *driverdata); extern void pmf_unregister_driver(struct device_node *np); /* * Register/Unregister interrupt clients */ extern int pmf_register_irq_client(struct device_node *np, const char *name, struct pmf_irq_client *client); extern void pmf_unregister_irq_client(struct pmf_irq_client *client); /* * Called by the handlers when an irq happens */ extern void pmf_do_irq(struct pmf_function *func); /* * Low level call to platform functions. * * The phandle can filter on the target object for functions that have * multiple targets, the flags allow you to restrict the call to a given * combination of flags. * * The args array contains as many arguments as is required by the function, * this is dependent on the function you are calling, unfortunately Apple * mechanism provides no way to encode that so you have to get it right at * the call site. Some functions require no args, in which case, you can * pass NULL. * * You can also pass NULL to the name. This will match any function that has * the appropriate combination of flags & phandle or you can pass 0 to the * phandle to match any */ extern int pmf_do_functions(struct device_node *np, const char *name, u32 phandle, u32 flags, struct pmf_args *args); /* * High level call to a platform function. * * This one looks for the platform-xxx first so you should call it to the * actual target if any. It will fallback to platform-do-xxx if it can't * find one. It will also exclusively target functions that have * the "OnDemand" flag. */ extern int pmf_call_function(struct device_node *target, const char *name, struct pmf_args *args); /* * For low latency interrupt usage, you can lookup for on-demand functions * using the functions below */ extern struct pmf_function *pmf_find_function(struct device_node *target, const char *name); extern struct pmf_function * pmf_get_function(struct pmf_function *func); extern void pmf_put_function(struct pmf_function *func); extern int pmf_call_one(struct pmf_function *func, struct pmf_args *args); /* Suspend/resume code called by via-pmu directly for now */ extern void pmac_pfunc_base_suspend(void); extern void pmac_pfunc_base_resume(void); #endif /* __PMAC_PFUNC_H__ */