/* hfcsusb.c * mISDN driver for Colognechip HFC-S USB chip * * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de) * Copyright 2008 by Martin Bachem (info@bachem-it.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * * module params * debug=<n>, default=0, with n=0xHHHHGGGG * H - l1 driver flags described in hfcsusb.h * G - common mISDN debug flags described at mISDNhw.h * * poll=<n>, default 128 * n : burst size of PH_DATA_IND at transparent rx data * */ #include <linux/module.h> #include <linux/delay.h> #include <linux/usb.h> #include <linux/mISDNhw.h> #include <linux/slab.h> #include "hfcsusb.h" static const char *hfcsusb_rev = "Revision: 0.3.3 (socket), 2008-11-05"; static unsigned int debug; static int poll = DEFAULT_TRANSP_BURST_SZ; static LIST_HEAD(HFClist); static DEFINE_RWLOCK(HFClock); MODULE_AUTHOR("Martin Bachem"); MODULE_LICENSE("GPL"); module_param(debug, uint, S_IRUGO | S_IWUSR); module_param(poll, int, 0); static int hfcsusb_cnt; /* some function prototypes */ static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command); static void release_hw(struct hfcsusb *hw); static void reset_hfcsusb(struct hfcsusb *hw); static void setPortMode(struct hfcsusb *hw); static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel); static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel); static int hfcsusb_setup_bch(struct bchannel *bch, int protocol); static void deactivate_bchannel(struct bchannel *bch); static void hfcsusb_ph_info(struct hfcsusb *hw); /* start next background transfer for control channel */ static void ctrl_start_transfer(struct hfcsusb *hw) { if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); if (hw->ctrl_cnt) { hw->ctrl_urb->pipe = hw->ctrl_out_pipe; hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write; hw->ctrl_urb->transfer_buffer = NULL; hw->ctrl_urb->transfer_buffer_length = 0; hw->ctrl_write.wIndex = cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg); hw->ctrl_write.wValue = cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val); usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC); } } /* * queue a control transfer request to write HFC-S USB * chip register using CTRL resuest queue */ static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val) { struct ctrl_buf *buf; if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n", hw->name, __func__, reg, val); spin_lock(&hw->ctrl_lock); if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) { spin_unlock(&hw->ctrl_lock); return 1; } buf = &hw->ctrl_buff[hw->ctrl_in_idx]; buf->hfcs_reg = reg; buf->reg_val = val; if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE) hw->ctrl_in_idx = 0; if (++hw->ctrl_cnt == 1) ctrl_start_transfer(hw); spin_unlock(&hw->ctrl_lock); return 0; } /* control completion routine handling background control cmds */ static void ctrl_complete(struct urb *urb) { struct hfcsusb *hw = (struct hfcsusb *) urb->context; struct ctrl_buf *buf; if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); urb->dev = hw->dev; if (hw->ctrl_cnt) { buf = &hw->ctrl_buff[hw->ctrl_out_idx]; hw->ctrl_cnt--; /* decrement actual count */ if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE) hw->ctrl_out_idx = 0; /* pointer wrap */ ctrl_start_transfer(hw); /* start next transfer */ } } /* handle LED bits */ static void set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on) { if (set_on) { if (led_bits < 0) hw->led_state &= ~abs(led_bits); else hw->led_state |= led_bits; } else { if (led_bits < 0) hw->led_state |= abs(led_bits); else hw->led_state &= ~led_bits; } } /* handle LED requests */ static void handle_led(struct hfcsusb *hw, int event) { struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *) hfcsusb_idtab[hw->vend_idx].driver_info; __u8 tmpled; if (driver_info->led_scheme == LED_OFF) return; tmpled = hw->led_state; switch (event) { case LED_POWER_ON: set_led_bit(hw, driver_info->led_bits[0], 1); set_led_bit(hw, driver_info->led_bits[1], 0); set_led_bit(hw, driver_info->led_bits[2], 0); set_led_bit(hw, driver_info->led_bits[3], 0); break; case LED_POWER_OFF: set_led_bit(hw, driver_info->led_bits[0], 0); set_led_bit(hw, driver_info->led_bits[1], 0); set_led_bit(hw, driver_info->led_bits[2], 0); set_led_bit(hw, driver_info->led_bits[3], 0); break; case LED_S0_ON: set_led_bit(hw, driver_info->led_bits[1], 1); break; case LED_S0_OFF: set_led_bit(hw, driver_info->led_bits[1], 0); break; case LED_B1_ON: set_led_bit(hw, driver_info->led_bits[2], 1); break; case LED_B1_OFF: set_led_bit(hw, driver_info->led_bits[2], 0); break; case LED_B2_ON: set_led_bit(hw, driver_info->led_bits[3], 1); break; case LED_B2_OFF: set_led_bit(hw, driver_info->led_bits[3], 0); break; } if (hw->led_state != tmpled) { if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n", hw->name, __func__, HFCUSB_P_DATA, hw->led_state); write_reg(hw, HFCUSB_P_DATA, hw->led_state); } } /* * Layer2 -> Layer 1 Bchannel data */ static int hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb) { struct bchannel *bch = container_of(ch, struct bchannel, ch); struct hfcsusb *hw = bch->hw; int ret = -EINVAL; struct mISDNhead *hh = mISDN_HEAD_P(skb); u_long flags; if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); switch (hh->prim) { case PH_DATA_REQ: spin_lock_irqsave(&hw->lock, flags); ret = bchannel_senddata(bch, skb); spin_unlock_irqrestore(&hw->lock, flags); if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n", hw->name, __func__, ret); if (ret > 0) { /* * other l1 drivers don't send early confirms on * transp data, but hfcsusb does because tx_next * skb is needed in tx_iso_complete() */ queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL); ret = 0; } return ret; case PH_ACTIVATE_REQ: if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) { hfcsusb_start_endpoint(hw, bch->nr); ret = hfcsusb_setup_bch(bch, ch->protocol); } else ret = 0; if (!ret) _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL, GFP_KERNEL); break; case PH_DEACTIVATE_REQ: deactivate_bchannel(bch); _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL, GFP_KERNEL); ret = 0; break; } if (!ret) dev_kfree_skb(skb); return ret; } /* * send full D/B channel status information * as MPH_INFORMATION_IND */ static void hfcsusb_ph_info(struct hfcsusb *hw) { struct ph_info *phi; struct dchannel *dch = &hw->dch; int i; phi = kzalloc(sizeof(struct ph_info) + dch->dev.nrbchan * sizeof(struct ph_info_ch), GFP_ATOMIC); phi->dch.ch.protocol = hw->protocol; phi->dch.ch.Flags = dch->Flags; phi->dch.state = dch->state; phi->dch.num_bch = dch->dev.nrbchan; for (i = 0; i < dch->dev.nrbchan; i++) { phi->bch[i].protocol = hw->bch[i].ch.protocol; phi->bch[i].Flags = hw->bch[i].Flags; } _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY, sizeof(struct ph_info_dch) + dch->dev.nrbchan * sizeof(struct ph_info_ch), phi, GFP_ATOMIC); } /* * Layer2 -> Layer 1 Dchannel data */ static int hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb) { struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D); struct dchannel *dch = container_of(dev, struct dchannel, dev); struct mISDNhead *hh = mISDN_HEAD_P(skb); struct hfcsusb *hw = dch->hw; int ret = -EINVAL; u_long flags; switch (hh->prim) { case PH_DATA_REQ: if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n", hw->name, __func__); spin_lock_irqsave(&hw->lock, flags); ret = dchannel_senddata(dch, skb); spin_unlock_irqrestore(&hw->lock, flags); if (ret > 0) { ret = 0; queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL); } break; case PH_ACTIVATE_REQ: if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n", hw->name, __func__, (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE"); if (hw->protocol == ISDN_P_NT_S0) { ret = 0; if (test_bit(FLG_ACTIVE, &dch->Flags)) { _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); } else { hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_NT); test_and_set_bit(FLG_L2_ACTIVATED, &dch->Flags); } } else { hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE); ret = l1_event(dch->l1, hh->prim); } break; case PH_DEACTIVATE_REQ: if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n", hw->name, __func__); test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags); if (hw->protocol == ISDN_P_NT_S0) { hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT); spin_lock_irqsave(&hw->lock, flags); skb_queue_purge(&dch->squeue); if (dch->tx_skb) { dev_kfree_skb(dch->tx_skb); dch->tx_skb = NULL; } dch->tx_idx = 0; if (dch->rx_skb) { dev_kfree_skb(dch->rx_skb); dch->rx_skb = NULL; } test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); spin_unlock_irqrestore(&hw->lock, flags); #ifdef FIXME if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags)) dchannel_sched_event(&hc->dch, D_CLEARBUSY); #endif ret = 0; } else ret = l1_event(dch->l1, hh->prim); break; case MPH_INFORMATION_REQ: hfcsusb_ph_info(hw); ret = 0; break; } return ret; } /* * Layer 1 callback function */ static int hfc_l1callback(struct dchannel *dch, u_int cmd) { struct hfcsusb *hw = dch->hw; if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s cmd 0x%x\n", hw->name, __func__, cmd); switch (cmd) { case INFO3_P8: case INFO3_P10: case HW_RESET_REQ: case HW_POWERUP_REQ: break; case HW_DEACT_REQ: skb_queue_purge(&dch->squeue); if (dch->tx_skb) { dev_kfree_skb(dch->tx_skb); dch->tx_skb = NULL; } dch->tx_idx = 0; if (dch->rx_skb) { dev_kfree_skb(dch->rx_skb); dch->rx_skb = NULL; } test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); break; case PH_ACTIVATE_IND: test_and_set_bit(FLG_ACTIVE, &dch->Flags); _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); break; case PH_DEACTIVATE_IND: test_and_clear_bit(FLG_ACTIVE, &dch->Flags); _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); break; default: if (dch->debug & DEBUG_HW) printk(KERN_DEBUG "%s: %s: unknown cmd %x\n", hw->name, __func__, cmd); return -1; } hfcsusb_ph_info(hw); return 0; } static int open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch, struct channel_req *rq) { int err = 0; if (debug & DEBUG_HW_OPEN) printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n", hw->name, __func__, hw->dch.dev.id, rq->adr.channel, __builtin_return_address(0)); if (rq->protocol == ISDN_P_NONE) return -EINVAL; test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags); test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags); hfcsusb_start_endpoint(hw, HFC_CHAN_D); /* E-Channel logging */ if (rq->adr.channel == 1) { if (hw->fifos[HFCUSB_PCM_RX].pipe) { hfcsusb_start_endpoint(hw, HFC_CHAN_E); set_bit(FLG_ACTIVE, &hw->ech.Flags); _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); } else return -EINVAL; } if (!hw->initdone) { hw->protocol = rq->protocol; if (rq->protocol == ISDN_P_TE_S0) { err = create_l1(&hw->dch, hfc_l1callback); if (err) return err; } setPortMode(hw); ch->protocol = rq->protocol; hw->initdone = 1; } else { if (rq->protocol != ch->protocol) return -EPROTONOSUPPORT; } if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) || ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7))) _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL, GFP_KERNEL); rq->ch = ch; if (!try_module_get(THIS_MODULE)) printk(KERN_WARNING "%s: %s: cannot get module\n", hw->name, __func__); return 0; } static int open_bchannel(struct hfcsusb *hw, struct channel_req *rq) { struct bchannel *bch; if (rq->adr.channel > 2) return -EINVAL; if (rq->protocol == ISDN_P_NONE) return -EINVAL; if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s B%i\n", hw->name, __func__, rq->adr.channel); bch = &hw->bch[rq->adr.channel - 1]; if (test_and_set_bit(FLG_OPEN, &bch->Flags)) return -EBUSY; /* b-channel can be only open once */ test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags); bch->ch.protocol = rq->protocol; rq->ch = &bch->ch; /* start USB endpoint for bchannel */ if (rq->adr.channel == 1) hfcsusb_start_endpoint(hw, HFC_CHAN_B1); else hfcsusb_start_endpoint(hw, HFC_CHAN_B2); if (!try_module_get(THIS_MODULE)) printk(KERN_WARNING "%s: %s:cannot get module\n", hw->name, __func__); return 0; } static int channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq) { int ret = 0; if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n", hw->name, __func__, (cq->op), (cq->channel)); switch (cq->op) { case MISDN_CTRL_GETOP: cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT | MISDN_CTRL_DISCONNECT; break; default: printk(KERN_WARNING "%s: %s: unknown Op %x\n", hw->name, __func__, cq->op); ret = -EINVAL; break; } return ret; } /* * device control function */ static int hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg) { struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D); struct dchannel *dch = container_of(dev, struct dchannel, dev); struct hfcsusb *hw = dch->hw; struct channel_req *rq; int err = 0; if (dch->debug & DEBUG_HW) printk(KERN_DEBUG "%s: %s: cmd:%x %p\n", hw->name, __func__, cmd, arg); switch (cmd) { case OPEN_CHANNEL: rq = arg; if ((rq->protocol == ISDN_P_TE_S0) || (rq->protocol == ISDN_P_NT_S0)) err = open_dchannel(hw, ch, rq); else err = open_bchannel(hw, rq); if (!err) hw->open++; break; case CLOSE_CHANNEL: hw->open--; if (debug & DEBUG_HW_OPEN) printk(KERN_DEBUG "%s: %s: dev(%d) close from %p (open %d)\n", hw->name, __func__, hw->dch.dev.id, __builtin_return_address(0), hw->open); if (!hw->open) { hfcsusb_stop_endpoint(hw, HFC_CHAN_D); if (hw->fifos[HFCUSB_PCM_RX].pipe) hfcsusb_stop_endpoint(hw, HFC_CHAN_E); handle_led(hw, LED_POWER_ON); } module_put(THIS_MODULE); break; case CONTROL_CHANNEL: err = channel_ctrl(hw, arg); break; default: if (dch->debug & DEBUG_HW) printk(KERN_DEBUG "%s: %s: unknown command %x\n", hw->name, __func__, cmd); return -EINVAL; } return err; } /* * S0 TE state change event handler */ static void ph_state_te(struct dchannel *dch) { struct hfcsusb *hw = dch->hw; if (debug & DEBUG_HW) { if (dch->state <= HFC_MAX_TE_LAYER1_STATE) printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__, HFC_TE_LAYER1_STATES[dch->state]); else printk(KERN_DEBUG "%s: %s: TE F%d\n", hw->name, __func__, dch->state); } switch (dch->state) { case 0: l1_event(dch->l1, HW_RESET_IND); break; case 3: l1_event(dch->l1, HW_DEACT_IND); break; case 5: case 8: l1_event(dch->l1, ANYSIGNAL); break; case 6: l1_event(dch->l1, INFO2); break; case 7: l1_event(dch->l1, INFO4_P8); break; } if (dch->state == 7) handle_led(hw, LED_S0_ON); else handle_led(hw, LED_S0_OFF); } /* * S0 NT state change event handler */ static void ph_state_nt(struct dchannel *dch) { struct hfcsusb *hw = dch->hw; if (debug & DEBUG_HW) { if (dch->state <= HFC_MAX_NT_LAYER1_STATE) printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__, HFC_NT_LAYER1_STATES[dch->state]); else printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n", hw->name, __func__, dch->state); } switch (dch->state) { case (1): test_and_clear_bit(FLG_ACTIVE, &dch->Flags); test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags); hw->nt_timer = 0; hw->timers &= ~NT_ACTIVATION_TIMER; handle_led(hw, LED_S0_OFF); break; case (2): if (hw->nt_timer < 0) { hw->nt_timer = 0; hw->timers &= ~NT_ACTIVATION_TIMER; hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT); } else { hw->timers |= NT_ACTIVATION_TIMER; hw->nt_timer = NT_T1_COUNT; /* allow G2 -> G3 transition */ write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3); } break; case (3): hw->nt_timer = 0; hw->timers &= ~NT_ACTIVATION_TIMER; test_and_set_bit(FLG_ACTIVE, &dch->Flags); _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); handle_led(hw, LED_S0_ON); break; case (4): hw->nt_timer = 0; hw->timers &= ~NT_ACTIVATION_TIMER; break; default: break; } hfcsusb_ph_info(hw); } static void ph_state(struct dchannel *dch) { struct hfcsusb *hw = dch->hw; if (hw->protocol == ISDN_P_NT_S0) ph_state_nt(dch); else if (hw->protocol == ISDN_P_TE_S0) ph_state_te(dch); } /* * disable/enable BChannel for desired protocoll */ static int hfcsusb_setup_bch(struct bchannel *bch, int protocol) { struct hfcsusb *hw = bch->hw; __u8 conhdlc, sctrl, sctrl_r; if (debug & DEBUG_HW) printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n", hw->name, __func__, bch->state, protocol, bch->nr); /* setup val for CON_HDLC */ conhdlc = 0; if (protocol > ISDN_P_NONE) conhdlc = 8; /* enable FIFO */ switch (protocol) { case (-1): /* used for init */ bch->state = -1; /* fall through */ case (ISDN_P_NONE): if (bch->state == ISDN_P_NONE) return 0; /* already in idle state */ bch->state = ISDN_P_NONE; clear_bit(FLG_HDLC, &bch->Flags); clear_bit(FLG_TRANSPARENT, &bch->Flags); break; case (ISDN_P_B_RAW): conhdlc |= 2; bch->state = protocol; set_bit(FLG_TRANSPARENT, &bch->Flags); break; case (ISDN_P_B_HDLC): bch->state = protocol; set_bit(FLG_HDLC, &bch->Flags); break; default: if (debug & DEBUG_HW) printk(KERN_DEBUG "%s: %s: prot not known %x\n", hw->name, __func__, protocol); return -ENOPROTOOPT; } if (protocol >= ISDN_P_NONE) { write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2); write_reg(hw, HFCUSB_CON_HDLC, conhdlc); write_reg(hw, HFCUSB_INC_RES_F, 2); write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3); write_reg(hw, HFCUSB_CON_HDLC, conhdlc); write_reg(hw, HFCUSB_INC_RES_F, 2); sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04); sctrl_r = 0x0; if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) { sctrl |= 1; sctrl_r |= 1; } if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) { sctrl |= 2; sctrl_r |= 2; } write_reg(hw, HFCUSB_SCTRL, sctrl); write_reg(hw, HFCUSB_SCTRL_R, sctrl_r); if (protocol > ISDN_P_NONE) handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON); else handle_led(hw, (bch->nr == 1) ? LED_B1_OFF : LED_B2_OFF); } hfcsusb_ph_info(hw); return 0; } static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command) { if (debug & DEBUG_HW) printk(KERN_DEBUG "%s: %s: %x\n", hw->name, __func__, command); switch (command) { case HFC_L1_ACTIVATE_TE: /* force sending sending INFO1 */ write_reg(hw, HFCUSB_STATES, 0x14); /* start l1 activation */ write_reg(hw, HFCUSB_STATES, 0x04); break; case HFC_L1_FORCE_DEACTIVATE_TE: write_reg(hw, HFCUSB_STATES, 0x10); write_reg(hw, HFCUSB_STATES, 0x03); break; case HFC_L1_ACTIVATE_NT: if (hw->dch.state == 3) _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); else write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE | HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3); break; case HFC_L1_DEACTIVATE_NT: write_reg(hw, HFCUSB_STATES, HFCUSB_DO_ACTION); break; } } /* * Layer 1 B-channel hardware access */ static int channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq) { int ret = 0; switch (cq->op) { case MISDN_CTRL_GETOP: cq->op = MISDN_CTRL_FILL_EMPTY; break; case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */ test_and_set_bit(FLG_FILLEMPTY, &bch->Flags); if (debug & DEBUG_HW_OPEN) printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d " "off=%d)\n", __func__, bch->nr, !!cq->p1); break; default: printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op); ret = -EINVAL; break; } return ret; } /* collect data from incoming interrupt or isochron USB data */ static void hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len, int finish) { struct hfcsusb *hw = fifo->hw; struct sk_buff *rx_skb = NULL; int maxlen = 0; int fifon = fifo->fifonum; int i; int hdlc = 0; if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) " "dch(%p) bch(%p) ech(%p)\n", hw->name, __func__, fifon, len, fifo->dch, fifo->bch, fifo->ech); if (!len) return; if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) { printk(KERN_DEBUG "%s: %s: undefined channel\n", hw->name, __func__); return; } spin_lock(&hw->lock); if (fifo->dch) { rx_skb = fifo->dch->rx_skb; maxlen = fifo->dch->maxlen; hdlc = 1; } if (fifo->bch) { rx_skb = fifo->bch->rx_skb; maxlen = fifo->bch->maxlen; hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags); } if (fifo->ech) { rx_skb = fifo->ech->rx_skb; maxlen = fifo->ech->maxlen; hdlc = 1; } if (!rx_skb) { rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC); if (rx_skb) { if (fifo->dch) fifo->dch->rx_skb = rx_skb; if (fifo->bch) fifo->bch->rx_skb = rx_skb; if (fifo->ech) fifo->ech->rx_skb = rx_skb; skb_trim(rx_skb, 0); } else { printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n", hw->name, __func__); spin_unlock(&hw->lock); return; } } if (fifo->dch || fifo->ech) { /* D/E-Channel SKB range check */ if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) { printk(KERN_DEBUG "%s: %s: sbk mem exceeded " "for fifo(%d) HFCUSB_D_RX\n", hw->name, __func__, fifon); skb_trim(rx_skb, 0); spin_unlock(&hw->lock); return; } } else if (fifo->bch) { /* B-Channel SKB range check */ if ((rx_skb->len + len) >= (MAX_BCH_SIZE + 3)) { printk(KERN_DEBUG "%s: %s: sbk mem exceeded " "for fifo(%d) HFCUSB_B_RX\n", hw->name, __func__, fifon); skb_trim(rx_skb, 0); spin_unlock(&hw->lock); return; } } memcpy(skb_put(rx_skb, len), data, len); if (hdlc) { /* we have a complete hdlc packet */ if (finish) { if ((rx_skb->len > 3) && (!(rx_skb->data[rx_skb->len - 1]))) { if (debug & DBG_HFC_FIFO_VERBOSE) { printk(KERN_DEBUG "%s: %s: fifon(%i)" " new RX len(%i): ", hw->name, __func__, fifon, rx_skb->len); i = 0; while (i < rx_skb->len) printk("%02x ", rx_skb->data[i++]); printk("\n"); } /* remove CRC & status */ skb_trim(rx_skb, rx_skb->len - 3); if (fifo->dch) recv_Dchannel(fifo->dch); if (fifo->bch) recv_Bchannel(fifo->bch, MISDN_ID_ANY); if (fifo->ech) recv_Echannel(fifo->ech, &hw->dch); } else { if (debug & DBG_HFC_FIFO_VERBOSE) { printk(KERN_DEBUG "%s: CRC or minlen ERROR fifon(%i) " "RX len(%i): ", hw->name, fifon, rx_skb->len); i = 0; while (i < rx_skb->len) printk("%02x ", rx_skb->data[i++]); printk("\n"); } skb_trim(rx_skb, 0); } } } else { /* deliver transparent data to layer2 */ if (rx_skb->len >= poll) recv_Bchannel(fifo->bch, MISDN_ID_ANY); } spin_unlock(&hw->lock); } static void fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe, void *buf, int num_packets, int packet_size, int interval, usb_complete_t complete, void *context) { int k; usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets, complete, context); urb->number_of_packets = num_packets; urb->transfer_flags = URB_ISO_ASAP; urb->actual_length = 0; urb->interval = interval; for (k = 0; k < num_packets; k++) { urb->iso_frame_desc[k].offset = packet_size * k; urb->iso_frame_desc[k].length = packet_size; urb->iso_frame_desc[k].actual_length = 0; } } /* receive completion routine for all ISO tx fifos */ static void rx_iso_complete(struct urb *urb) { struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context; struct usb_fifo *fifo = context_iso_urb->owner_fifo; struct hfcsusb *hw = fifo->hw; int k, len, errcode, offset, num_isoc_packets, fifon, maxlen, status, iso_status, i; __u8 *buf; static __u8 eof[8]; __u8 s0_state; fifon = fifo->fifonum; status = urb->status; spin_lock(&hw->lock); if (fifo->stop_gracefull) { fifo->stop_gracefull = 0; fifo->active = 0; spin_unlock(&hw->lock); return; } spin_unlock(&hw->lock); /* * ISO transfer only partially completed, * look at individual frame status for details */ if (status == -EXDEV) { if (debug & DEBUG_HW) printk(KERN_DEBUG "%s: %s: with -EXDEV " "urb->status %d, fifonum %d\n", hw->name, __func__, status, fifon); /* clear status, so go on with ISO transfers */ status = 0; } s0_state = 0; if (fifo->active && !status) { num_isoc_packets = iso_packets[fifon]; maxlen = fifo->usb_packet_maxlen; for (k = 0; k < num_isoc_packets; ++k) { len = urb->iso_frame_desc[k].actual_length; offset = urb->iso_frame_desc[k].offset; buf = context_iso_urb->buffer + offset; iso_status = urb->iso_frame_desc[k].status; if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) { printk(KERN_DEBUG "%s: %s: " "ISO packet %i, status: %i\n", hw->name, __func__, k, iso_status); } /* USB data log for every D ISO in */ if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) { printk(KERN_DEBUG "%s: %s: %d (%d/%d) len(%d) ", hw->name, __func__, urb->start_frame, k, num_isoc_packets-1, len); for (i = 0; i < len; i++) printk("%x ", buf[i]); printk("\n"); } if (!iso_status) { if (fifo->last_urblen != maxlen) { /* * save fifo fill-level threshold bits * to use them later in TX ISO URB * completions */ hw->threshold_mask = buf[1]; if (fifon == HFCUSB_D_RX) s0_state = (buf[0] >> 4); eof[fifon] = buf[0] & 1; if (len > 2) hfcsusb_rx_frame(fifo, buf + 2, len - 2, (len < maxlen) ? eof[fifon] : 0); } else hfcsusb_rx_frame(fifo, buf, len, (len < maxlen) ? eof[fifon] : 0); fifo->last_urblen = len; } } /* signal S0 layer1 state change */ if ((s0_state) && (hw->initdone) && (s0_state != hw->dch.state)) { hw->dch.state = s0_state; schedule_event(&hw->dch, FLG_PHCHANGE); } fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe, context_iso_urb->buffer, num_isoc_packets, fifo->usb_packet_maxlen, fifo->intervall, (usb_complete_t)rx_iso_complete, urb->context); errcode = usb_submit_urb(urb, GFP_ATOMIC); if (errcode < 0) { if (debug & DEBUG_HW) printk(KERN_DEBUG "%s: %s: error submitting " "ISO URB: %d\n", hw->name, __func__, errcode); } } else { if (status && (debug & DBG_HFC_URB_INFO)) printk(KERN_DEBUG "%s: %s: rx_iso_complete : " "urb->status %d, fifonum %d\n", hw->name, __func__, status, fifon); } } /* receive completion routine for all interrupt rx fifos */ static void rx_int_complete(struct urb *urb) { int len, status, i; __u8 *buf, maxlen, fifon; struct usb_fifo *fifo = (struct usb_fifo *) urb->context; struct hfcsusb *hw = fifo->hw; static __u8 eof[8]; spin_lock(&hw->lock); if (fifo->stop_gracefull) { fifo->stop_gracefull = 0; fifo->active = 0; spin_unlock(&hw->lock); return; } spin_unlock(&hw->lock); fifon = fifo->fifonum; if ((!fifo->active) || (urb->status)) { if (debug & DBG_HFC_URB_ERROR) printk(KERN_DEBUG "%s: %s: RX-Fifo %i is going down (%i)\n", hw->name, __func__, fifon, urb->status); fifo->urb->interval = 0; /* cancel automatic rescheduling */ return; } len = urb->actual_length; buf = fifo->buffer; maxlen = fifo->usb_packet_maxlen; /* USB data log for every D INT in */ if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) { printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ", hw->name, __func__, len); for (i = 0; i < len; i++) printk("%02x ", buf[i]); printk("\n"); } if (fifo->last_urblen != fifo->usb_packet_maxlen) { /* the threshold mask is in the 2nd status byte */ hw->threshold_mask = buf[1]; /* signal S0 layer1 state change */ if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) { hw->dch.state = (buf[0] >> 4); schedule_event(&hw->dch, FLG_PHCHANGE); } eof[fifon] = buf[0] & 1; /* if we have more than the 2 status bytes -> collect data */ if (len > 2) hfcsusb_rx_frame(fifo, buf + 2, urb->actual_length - 2, (len < maxlen) ? eof[fifon] : 0); } else { hfcsusb_rx_frame(fifo, buf, urb->actual_length, (len < maxlen) ? eof[fifon] : 0); } fifo->last_urblen = urb->actual_length; status = usb_submit_urb(urb, GFP_ATOMIC); if (status) { if (debug & DEBUG_HW) printk(KERN_DEBUG "%s: %s: error resubmitting USB\n", hw->name, __func__); } } /* transmit completion routine for all ISO tx fifos */ static void tx_iso_complete(struct urb *urb) { struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context; struct usb_fifo *fifo = context_iso_urb->owner_fifo; struct hfcsusb *hw = fifo->hw; struct sk_buff *tx_skb; int k, tx_offset, num_isoc_packets, sink, remain, current_len, errcode, hdlc, i; int *tx_idx; int frame_complete, fifon, status; __u8 threshbit; spin_lock(&hw->lock); if (fifo->stop_gracefull) { fifo->stop_gracefull = 0; fifo->active = 0; spin_unlock(&hw->lock); return; } if (fifo->dch) { tx_skb = fifo->dch->tx_skb; tx_idx = &fifo->dch->tx_idx; hdlc = 1; } else if (fifo->bch) { tx_skb = fifo->bch->tx_skb; tx_idx = &fifo->bch->tx_idx; hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags); } else { printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n", hw->name, __func__); spin_unlock(&hw->lock); return; } fifon = fifo->fifonum; status = urb->status; tx_offset = 0; /* * ISO transfer only partially completed, * look at individual frame status for details */ if (status == -EXDEV) { if (debug & DBG_HFC_URB_ERROR) printk(KERN_DEBUG "%s: %s: " "-EXDEV (%i) fifon (%d)\n", hw->name, __func__, status, fifon); /* clear status, so go on with ISO transfers */ status = 0; } if (fifo->active && !status) { /* is FifoFull-threshold set for our channel? */ threshbit = (hw->threshold_mask & (1 << fifon)); num_isoc_packets = iso_packets[fifon]; /* predict dataflow to avoid fifo overflow */ if (fifon >= HFCUSB_D_TX) sink = (threshbit) ? SINK_DMIN : SINK_DMAX; else sink = (threshbit) ? SINK_MIN : SINK_MAX; fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe, context_iso_urb->buffer, num_isoc_packets, fifo->usb_packet_maxlen, fifo->intervall, (usb_complete_t)tx_iso_complete, urb->context); memset(context_iso_urb->buffer, 0, sizeof(context_iso_urb->buffer)); frame_complete = 0; for (k = 0; k < num_isoc_packets; ++k) { /* analyze tx success of previous ISO packets */ if (debug & DBG_HFC_URB_ERROR) { errcode = urb->iso_frame_desc[k].status; if (errcode) { printk(KERN_DEBUG "%s: %s: " "ISO packet %i, status: %i\n", hw->name, __func__, k, errcode); } } /* Generate next ISO Packets */ if (tx_skb) remain = tx_skb->len - *tx_idx; else remain = 0; if (remain > 0) { fifo->bit_line -= sink; current_len = (0 - fifo->bit_line) / 8; if (current_len > 14) current_len = 14; if (current_len < 0) current_len = 0; if (remain < current_len) current_len = remain; /* how much bit do we put on the line? */ fifo->bit_line += current_len * 8; context_iso_urb->buffer[tx_offset] = 0; if (current_len == remain) { if (hdlc) { /* signal frame completion */ context_iso_urb-> buffer[tx_offset] = 1; /* add 2 byte flags and 16bit * CRC at end of ISDN frame */ fifo->bit_line += 32; } frame_complete = 1; } /* copy tx data to iso-urb buffer */ memcpy(context_iso_urb->buffer + tx_offset + 1, (tx_skb->data + *tx_idx), current_len); *tx_idx += current_len; urb->iso_frame_desc[k].offset = tx_offset; urb->iso_frame_desc[k].length = current_len + 1; /* USB data log for every D ISO out */ if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) { printk(KERN_DEBUG "%s: %s (%d/%d) offs(%d) len(%d) ", hw->name, __func__, k, num_isoc_packets-1, urb->iso_frame_desc[k].offset, urb->iso_frame_desc[k].length); for (i = urb->iso_frame_desc[k].offset; i < (urb->iso_frame_desc[k].offset + urb->iso_frame_desc[k].length); i++) printk("%x ", context_iso_urb->buffer[i]); printk(" skb->len(%i) tx-idx(%d)\n", tx_skb->len, *tx_idx); } tx_offset += (current_len + 1); } else { urb->iso_frame_desc[k].offset = tx_offset++; urb->iso_frame_desc[k].length = 1; /* we lower data margin every msec */ fifo->bit_line -= sink; if (fifo->bit_line < BITLINE_INF) fifo->bit_line = BITLINE_INF; } if (frame_complete) { frame_complete = 0; if (debug & DBG_HFC_FIFO_VERBOSE) { printk(KERN_DEBUG "%s: %s: " "fifon(%i) new TX len(%i): ", hw->name, __func__, fifon, tx_skb->len); i = 0; while (i < tx_skb->len) printk("%02x ", tx_skb->data[i++]); printk("\n"); } dev_kfree_skb(tx_skb); tx_skb = NULL; if (fifo->dch && get_next_dframe(fifo->dch)) tx_skb = fifo->dch->tx_skb; else if (fifo->bch && get_next_bframe(fifo->bch)) { if (test_bit(FLG_TRANSPARENT, &fifo->bch->Flags)) confirm_Bsend(fifo->bch); tx_skb = fifo->bch->tx_skb; } } } errcode = usb_submit_urb(urb, GFP_ATOMIC); if (errcode < 0) { if (debug & DEBUG_HW) printk(KERN_DEBUG "%s: %s: error submitting ISO URB: %d \n", hw->name, __func__, errcode); } /* * abuse DChannel tx iso completion to trigger NT mode state * changes tx_iso_complete is assumed to be called every * fifo->intervall (ms) */ if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0) && (hw->timers & NT_ACTIVATION_TIMER)) { if ((--hw->nt_timer) < 0) schedule_event(&hw->dch, FLG_PHCHANGE); } } else { if (status && (debug & DBG_HFC_URB_ERROR)) printk(KERN_DEBUG "%s: %s: urb->status %s (%i)" "fifonum=%d\n", hw->name, __func__, symbolic(urb_errlist, status), status, fifon); } spin_unlock(&hw->lock); } /* * allocs urbs and start isoc transfer with two pending urbs to avoid * gaps in the transfer chain */ static int start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb, usb_complete_t complete, int packet_size) { struct hfcsusb *hw = fifo->hw; int i, k, errcode; if (debug) printk(KERN_DEBUG "%s: %s: fifo %i\n", hw->name, __func__, fifo->fifonum); /* allocate Memory for Iso out Urbs */ for (i = 0; i < 2; i++) { if (!(fifo->iso[i].urb)) { fifo->iso[i].urb = usb_alloc_urb(num_packets_per_urb, GFP_KERNEL); if (!(fifo->iso[i].urb)) { printk(KERN_DEBUG "%s: %s: alloc urb for fifo %i failed", hw->name, __func__, fifo->fifonum); } fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo; fifo->iso[i].indx = i; /* Init the first iso */ if (ISO_BUFFER_SIZE >= (fifo->usb_packet_maxlen * num_packets_per_urb)) { fill_isoc_urb(fifo->iso[i].urb, fifo->hw->dev, fifo->pipe, fifo->iso[i].buffer, num_packets_per_urb, fifo->usb_packet_maxlen, fifo->intervall, complete, &fifo->iso[i]); memset(fifo->iso[i].buffer, 0, sizeof(fifo->iso[i].buffer)); for (k = 0; k < num_packets_per_urb; k++) { fifo->iso[i].urb-> iso_frame_desc[k].offset = k * packet_size; fifo->iso[i].urb-> iso_frame_desc[k].length = packet_size; } } else { printk(KERN_DEBUG "%s: %s: ISO Buffer size to small!\n", hw->name, __func__); } } fifo->bit_line = BITLINE_INF; errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL); fifo->active = (errcode >= 0) ? 1 : 0; fifo->stop_gracefull = 0; if (errcode < 0) { printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n", hw->name, __func__, symbolic(urb_errlist, errcode), i); } } return fifo->active; } static void stop_iso_gracefull(struct usb_fifo *fifo) { struct hfcsusb *hw = fifo->hw; int i, timeout; u_long flags; for (i = 0; i < 2; i++) { spin_lock_irqsave(&hw->lock, flags); if (debug) printk(KERN_DEBUG "%s: %s for fifo %i.%i\n", hw->name, __func__, fifo->fifonum, i); fifo->stop_gracefull = 1; spin_unlock_irqrestore(&hw->lock, flags); } for (i = 0; i < 2; i++) { timeout = 3; while (fifo->stop_gracefull && timeout--) schedule_timeout_interruptible((HZ/1000)*16); if (debug && fifo->stop_gracefull) printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n", hw->name, __func__, fifo->fifonum, i); } } static void stop_int_gracefull(struct usb_fifo *fifo) { struct hfcsusb *hw = fifo->hw; int timeout; u_long flags; spin_lock_irqsave(&hw->lock, flags); if (debug) printk(KERN_DEBUG "%s: %s for fifo %i\n", hw->name, __func__, fifo->fifonum); fifo->stop_gracefull = 1; spin_unlock_irqrestore(&hw->lock, flags); timeout = 3; while (fifo->stop_gracefull && timeout--) schedule_timeout_interruptible((HZ/1000)*3); if (debug && fifo->stop_gracefull) printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n", hw->name, __func__, fifo->fifonum); } /* start the interrupt transfer for the given fifo */ static void start_int_fifo(struct usb_fifo *fifo) { struct hfcsusb *hw = fifo->hw; int errcode; if (debug) printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n", hw->name, __func__, fifo->fifonum); if (!fifo->urb) { fifo->urb = usb_alloc_urb(0, GFP_KERNEL); if (!fifo->urb) return; } usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe, fifo->buffer, fifo->usb_packet_maxlen, (usb_complete_t)rx_int_complete, fifo, fifo->intervall); fifo->active = 1; fifo->stop_gracefull = 0; errcode = usb_submit_urb(fifo->urb, GFP_KERNEL); if (errcode) { printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n", hw->name, __func__, errcode); fifo->active = 0; } } static void setPortMode(struct hfcsusb *hw) { if (debug & DEBUG_HW) printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__, (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT"); if (hw->protocol == ISDN_P_TE_S0) { write_reg(hw, HFCUSB_SCTRL, 0x40); write_reg(hw, HFCUSB_SCTRL_E, 0x00); write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE); write_reg(hw, HFCUSB_STATES, 3 | 0x10); write_reg(hw, HFCUSB_STATES, 3); } else { write_reg(hw, HFCUSB_SCTRL, 0x44); write_reg(hw, HFCUSB_SCTRL_E, 0x09); write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT); write_reg(hw, HFCUSB_STATES, 1 | 0x10); write_reg(hw, HFCUSB_STATES, 1); } } static void reset_hfcsusb(struct hfcsusb *hw) { struct usb_fifo *fifo; int i; if (debug & DEBUG_HW) printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); /* do Chip reset */ write_reg(hw, HFCUSB_CIRM, 8); /* aux = output, reset off */ write_reg(hw, HFCUSB_CIRM, 0x10); /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */ write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) | ((hw->packet_size / 8) << 4)); /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */ write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size); /* enable PCM/GCI master mode */ write_reg(hw, HFCUSB_MST_MODE1, 0); /* set default values */ write_reg(hw, HFCUSB_MST_MODE0, 1); /* enable master mode */ /* init the fifos */ write_reg(hw, HFCUSB_F_THRES, (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4)); fifo = hw->fifos; for (i = 0; i < HFCUSB_NUM_FIFOS; i++) { write_reg(hw, HFCUSB_FIFO, i); /* select the desired fifo */ fifo[i].max_size = (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN; fifo[i].last_urblen = 0; /* set 2 bit for D- & E-channel */ write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2)); /* enable all fifos */ if (i == HFCUSB_D_TX) write_reg(hw, HFCUSB_CON_HDLC, (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09); else write_reg(hw, HFCUSB_CON_HDLC, 0x08); write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */ } write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */ handle_led(hw, LED_POWER_ON); } /* start USB data pipes dependand on device's endpoint configuration */ static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel) { /* quick check if endpoint already running */ if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active)) return; if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active)) return; if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active)) return; if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active)) return; /* start rx endpoints using USB INT IN method */ if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO) start_int_fifo(hw->fifos + channel*2 + 1); /* start rx endpoints using USB ISO IN method */ if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) { switch (channel) { case HFC_CHAN_D: start_isoc_chain(hw->fifos + HFCUSB_D_RX, ISOC_PACKETS_D, (usb_complete_t)rx_iso_complete, 16); break; case HFC_CHAN_E: start_isoc_chain(hw->fifos + HFCUSB_PCM_RX, ISOC_PACKETS_D, (usb_complete_t)rx_iso_complete, 16); break; case HFC_CHAN_B1: start_isoc_chain(hw->fifos + HFCUSB_B1_RX, ISOC_PACKETS_B, (usb_complete_t)rx_iso_complete, 16); break; case HFC_CHAN_B2: start_isoc_chain(hw->fifos + HFCUSB_B2_RX, ISOC_PACKETS_B, (usb_complete_t)rx_iso_complete, 16); break; } } /* start tx endpoints using USB ISO OUT method */ switch (channel) { case HFC_CHAN_D: start_isoc_chain(hw->fifos + HFCUSB_D_TX, ISOC_PACKETS_B, (usb_complete_t)tx_iso_complete, 1); break; case HFC_CHAN_B1: start_isoc_chain(hw->fifos + HFCUSB_B1_TX, ISOC_PACKETS_D, (usb_complete_t)tx_iso_complete, 1); break; case HFC_CHAN_B2: start_isoc_chain(hw->fifos + HFCUSB_B2_TX, ISOC_PACKETS_B, (usb_complete_t)tx_iso_complete, 1); break; } } /* stop USB data pipes dependand on device's endpoint configuration */ static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel) { /* quick check if endpoint currently running */ if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active)) return; if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active)) return; if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active)) return; if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active)) return; /* rx endpoints using USB INT IN method */ if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO) stop_int_gracefull(hw->fifos + channel*2 + 1); /* rx endpoints using USB ISO IN method */ if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) stop_iso_gracefull(hw->fifos + channel*2 + 1); /* tx endpoints using USB ISO OUT method */ if (channel != HFC_CHAN_E) stop_iso_gracefull(hw->fifos + channel*2); } /* Hardware Initialization */ static int setup_hfcsusb(struct hfcsusb *hw) { int err; u_char b; if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); /* check the chip id */ if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) { printk(KERN_DEBUG "%s: %s: cannot read chip id\n", hw->name, __func__); return 1; } if (b != HFCUSB_CHIPID) { printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n", hw->name, __func__, b); return 1; } /* first set the needed config, interface and alternate */ err = usb_set_interface(hw->dev, hw->if_used, hw->alt_used); hw->led_state = 0; /* init the background machinery for control requests */ hw->ctrl_read.bRequestType = 0xc0; hw->ctrl_read.bRequest = 1; hw->ctrl_read.wLength = cpu_to_le16(1); hw->ctrl_write.bRequestType = 0x40; hw->ctrl_write.bRequest = 0; hw->ctrl_write.wLength = 0; usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe, (u_char *)&hw->ctrl_write, NULL, 0, (usb_complete_t)ctrl_complete, hw); reset_hfcsusb(hw); return 0; } static void release_hw(struct hfcsusb *hw) { if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); /* * stop all endpoints gracefully * TODO: mISDN_core should generate CLOSE_CHANNEL * signals after calling mISDN_unregister_device() */ hfcsusb_stop_endpoint(hw, HFC_CHAN_D); hfcsusb_stop_endpoint(hw, HFC_CHAN_B1); hfcsusb_stop_endpoint(hw, HFC_CHAN_B2); if (hw->fifos[HFCUSB_PCM_RX].pipe) hfcsusb_stop_endpoint(hw, HFC_CHAN_E); if (hw->protocol == ISDN_P_TE_S0) l1_event(hw->dch.l1, CLOSE_CHANNEL); mISDN_unregister_device(&hw->dch.dev); mISDN_freebchannel(&hw->bch[1]); mISDN_freebchannel(&hw->bch[0]); mISDN_freedchannel(&hw->dch); if (hw->ctrl_urb) { usb_kill_urb(hw->ctrl_urb); usb_free_urb(hw->ctrl_urb); hw->ctrl_urb = NULL; } if (hw->intf) usb_set_intfdata(hw->intf, NULL); list_del(&hw->list); kfree(hw); hw = NULL; } static void deactivate_bchannel(struct bchannel *bch) { struct hfcsusb *hw = bch->hw; u_long flags; if (bch->debug & DEBUG_HW) printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n", hw->name, __func__, bch->nr); spin_lock_irqsave(&hw->lock, flags); mISDN_clear_bchannel(bch); spin_unlock_irqrestore(&hw->lock, flags); hfcsusb_setup_bch(bch, ISDN_P_NONE); hfcsusb_stop_endpoint(hw, bch->nr); } /* * Layer 1 B-channel hardware access */ static int hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg) { struct bchannel *bch = container_of(ch, struct bchannel, ch); int ret = -EINVAL; if (bch->debug & DEBUG_HW) printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg); switch (cmd) { case HW_TESTRX_RAW: case HW_TESTRX_HDLC: case HW_TESTRX_OFF: ret = -EINVAL; break; case CLOSE_CHANNEL: test_and_clear_bit(FLG_OPEN, &bch->Flags); if (test_bit(FLG_ACTIVE, &bch->Flags)) deactivate_bchannel(bch); ch->protocol = ISDN_P_NONE; ch->peer = NULL; module_put(THIS_MODULE); ret = 0; break; case CONTROL_CHANNEL: ret = channel_bctrl(bch, arg); break; default: printk(KERN_WARNING "%s: unknown prim(%x)\n", __func__, cmd); } return ret; } static int setup_instance(struct hfcsusb *hw, struct device *parent) { u_long flags; int err, i; if (debug & DBG_HFC_CALL_TRACE) printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); spin_lock_init(&hw->ctrl_lock); spin_lock_init(&hw->lock); mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state); hw->dch.debug = debug & 0xFFFF; hw->dch.hw = hw; hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0); hw->dch.dev.D.send = hfcusb_l2l1D; hw->dch.dev.D.ctrl = hfc_dctrl; /* enable E-Channel logging */ if (hw->fifos[HFCUSB_PCM_RX].pipe) mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL); hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) | (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK)); hw->dch.dev.nrbchan = 2; for (i = 0; i < 2; i++) { hw->bch[i].nr = i + 1; set_channelmap(i + 1, hw->dch.dev.channelmap); hw->bch[i].debug = debug; mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM); hw->bch[i].hw = hw; hw->bch[i].ch.send = hfcusb_l2l1B; hw->bch[i].ch.ctrl = hfc_bctrl; hw->bch[i].ch.nr = i + 1; list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels); } hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0]; hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0]; hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1]; hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1]; hw->fifos[HFCUSB_D_TX].dch = &hw->dch; hw->fifos[HFCUSB_D_RX].dch = &hw->dch; hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech; hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech; err = setup_hfcsusb(hw); if (err) goto out; snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME, hfcsusb_cnt + 1); printk(KERN_INFO "%s: registered as '%s'\n", DRIVER_NAME, hw->name); err = mISDN_register_device(&hw->dch.dev, parent, hw->name); if (err) goto out; hfcsusb_cnt++; write_lock_irqsave(&HFClock, flags); list_add_tail(&hw->list, &HFClist); write_unlock_irqrestore(&HFClock, flags); return 0; out: mISDN_freebchannel(&hw->bch[1]); mISDN_freebchannel(&hw->bch[0]); mISDN_freedchannel(&hw->dch); kfree(hw); return err; } static int hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct hfcsusb *hw; struct usb_device *dev = interface_to_usbdev(intf); struct usb_host_interface *iface = intf->cur_altsetting; struct usb_host_interface *iface_used = NULL; struct usb_host_endpoint *ep; struct hfcsusb_vdata *driver_info; int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx, probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found, ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size, alt_used = 0; vend_idx = 0xffff; for (i = 0; hfcsusb_idtab[i].idVendor; i++) { if ((le16_to_cpu(dev->descriptor.idVendor) == hfcsusb_idtab[i].idVendor) && (le16_to_cpu(dev->descriptor.idProduct) == hfcsusb_idtab[i].idProduct)) { vend_idx = i; continue; } } printk(KERN_DEBUG "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n", __func__, ifnum, iface->desc.bAlternateSetting, intf->minor, vend_idx); if (vend_idx == 0xffff) { printk(KERN_WARNING "%s: no valid vendor found in USB descriptor\n", __func__); return -EIO; } /* if vendor and product ID is OK, start probing alternate settings */ alt_idx = 0; small_match = -1; /* default settings */ iso_packet_size = 16; packet_size = 64; while (alt_idx < intf->num_altsetting) { iface = intf->altsetting + alt_idx; probe_alt_setting = iface->desc.bAlternateSetting; cfg_used = 0; while (validconf[cfg_used][0]) { cfg_found = 1; vcf = validconf[cfg_used]; ep = iface->endpoint; memcpy(cmptbl, vcf, 16 * sizeof(int)); /* check for all endpoints in this alternate setting */ for (i = 0; i < iface->desc.bNumEndpoints; i++) { ep_addr = ep->desc.bEndpointAddress; /* get endpoint base */ idx = ((ep_addr & 0x7f) - 1) * 2; if (ep_addr & 0x80) idx++; attr = ep->desc.bmAttributes; if (cmptbl[idx] != EP_NOP) { if (cmptbl[idx] == EP_NUL) cfg_found = 0; if (attr == USB_ENDPOINT_XFER_INT && cmptbl[idx] == EP_INT) cmptbl[idx] = EP_NUL; if (attr == USB_ENDPOINT_XFER_BULK && cmptbl[idx] == EP_BLK) cmptbl[idx] = EP_NUL; if (attr == USB_ENDPOINT_XFER_ISOC && cmptbl[idx] == EP_ISO) cmptbl[idx] = EP_NUL; if (attr == USB_ENDPOINT_XFER_INT && ep->desc.bInterval < vcf[17]) { cfg_found = 0; } } ep++; } for (i = 0; i < 16; i++) if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL) cfg_found = 0; if (cfg_found) { if (small_match < cfg_used) { small_match = cfg_used; alt_used = probe_alt_setting; iface_used = iface; } } cfg_used++; } alt_idx++; } /* (alt_idx < intf->num_altsetting) */ /* not found a valid USB Ta Endpoint config */ if (small_match == -1) return -EIO; iface = iface_used; hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL); if (!hw) return -ENOMEM; /* got no mem */ snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME); ep = iface->endpoint; vcf = validconf[small_match]; for (i = 0; i < iface->desc.bNumEndpoints; i++) { struct usb_fifo *f; ep_addr = ep->desc.bEndpointAddress; /* get endpoint base */ idx = ((ep_addr & 0x7f) - 1) * 2; if (ep_addr & 0x80) idx++; f = &hw->fifos[idx & 7]; /* init Endpoints */ if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) { ep++; continue; } switch (ep->desc.bmAttributes) { case USB_ENDPOINT_XFER_INT: f->pipe = usb_rcvintpipe(dev, ep->desc.bEndpointAddress); f->usb_transfer_mode = USB_INT; packet_size = le16_to_cpu(ep->desc.wMaxPacketSize); break; case USB_ENDPOINT_XFER_BULK: if (ep_addr & 0x80) f->pipe = usb_rcvbulkpipe(dev, ep->desc.bEndpointAddress); else f->pipe = usb_sndbulkpipe(dev, ep->desc.bEndpointAddress); f->usb_transfer_mode = USB_BULK; packet_size = le16_to_cpu(ep->desc.wMaxPacketSize); break; case USB_ENDPOINT_XFER_ISOC: if (ep_addr & 0x80) f->pipe = usb_rcvisocpipe(dev, ep->desc.bEndpointAddress); else f->pipe = usb_sndisocpipe(dev, ep->desc.bEndpointAddress); f->usb_transfer_mode = USB_ISOC; iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize); break; default: f->pipe = 0; } if (f->pipe) { f->fifonum = idx & 7; f->hw = hw; f->usb_packet_maxlen = le16_to_cpu(ep->desc.wMaxPacketSize); f->intervall = ep->desc.bInterval; } ep++; } hw->dev = dev; /* save device */ hw->if_used = ifnum; /* save used interface */ hw->alt_used = alt_used; /* and alternate config */ hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */ hw->cfg_used = vcf[16]; /* store used config */ hw->vend_idx = vend_idx; /* store found vendor */ hw->packet_size = packet_size; hw->iso_packet_size = iso_packet_size; /* create the control pipes needed for register access */ hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0); hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0); hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL); driver_info = (struct hfcsusb_vdata *)hfcsusb_idtab[vend_idx].driver_info; printk(KERN_DEBUG "%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n", hw->name, __func__, driver_info->vend_name, conf_str[small_match], ifnum, alt_used); if (setup_instance(hw, dev->dev.parent)) return -EIO; hw->intf = intf; usb_set_intfdata(hw->intf, hw); return 0; } /* function called when an active device is removed */ static void hfcsusb_disconnect(struct usb_interface *intf) { struct hfcsusb *hw = usb_get_intfdata(intf); struct hfcsusb *next; int cnt = 0; printk(KERN_INFO "%s: device disconnected\n", hw->name); handle_led(hw, LED_POWER_OFF); release_hw(hw); list_for_each_entry_safe(hw, next, &HFClist, list) cnt++; if (!cnt) hfcsusb_cnt = 0; usb_set_intfdata(intf, NULL); } static struct usb_driver hfcsusb_drv = { .name = DRIVER_NAME, .id_table = hfcsusb_idtab, .probe = hfcsusb_probe, .disconnect = hfcsusb_disconnect, }; static int __init hfcsusb_init(void) { printk(KERN_INFO DRIVER_NAME " driver Rev. %s debug(0x%x) poll(%i)\n", hfcsusb_rev, debug, poll); if (usb_register(&hfcsusb_drv)) { printk(KERN_INFO DRIVER_NAME ": Unable to register hfcsusb module at usb stack\n"); return -ENODEV; } return 0; } static void __exit hfcsusb_cleanup(void) { if (debug & DBG_HFC_CALL_TRACE) printk(KERN_INFO DRIVER_NAME ": %s\n", __func__); /* unregister Hardware */ usb_deregister(&hfcsusb_drv); /* release our driver */ } module_init(hfcsusb_init); module_exit(hfcsusb_cleanup);