/* lm85.c - Part of lm_sensors, Linux kernel modules for hardware monitoring Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl> Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com> Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de> Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com> Chip details at <http://www.national.com/ds/LM/LM85.pdf> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-vid.h> #include <linux/hwmon-sysfs.h> #include <linux/err.h> #include <linux/mutex.h> /* Addresses to scan */ static unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END }; /* Insmod parameters */ I2C_CLIENT_INSMOD_6(lm85b, lm85c, adm1027, adt7463, emc6d100, emc6d102); /* The LM85 registers */ #define LM85_REG_IN(nr) (0x20 + (nr)) #define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2) #define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2) #define LM85_REG_TEMP(nr) (0x25 + (nr)) #define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2) #define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2) /* Fan speeds are LSB, MSB (2 bytes) */ #define LM85_REG_FAN(nr) (0x28 + (nr) *2) #define LM85_REG_FAN_MIN(nr) (0x54 + (nr) *2) #define LM85_REG_PWM(nr) (0x30 + (nr)) #define ADT7463_REG_OPPOINT(nr) (0x33 + (nr)) #define ADT7463_REG_TMIN_CTL1 0x36 #define ADT7463_REG_TMIN_CTL2 0x37 #define LM85_REG_DEVICE 0x3d #define LM85_REG_COMPANY 0x3e #define LM85_REG_VERSTEP 0x3f /* These are the recognized values for the above regs */ #define LM85_DEVICE_ADX 0x27 #define LM85_COMPANY_NATIONAL 0x01 #define LM85_COMPANY_ANALOG_DEV 0x41 #define LM85_COMPANY_SMSC 0x5c #define LM85_VERSTEP_VMASK 0xf0 #define LM85_VERSTEP_GENERIC 0x60 #define LM85_VERSTEP_LM85C 0x60 #define LM85_VERSTEP_LM85B 0x62 #define LM85_VERSTEP_ADM1027 0x60 #define LM85_VERSTEP_ADT7463 0x62 #define LM85_VERSTEP_ADT7463C 0x6A #define LM85_VERSTEP_EMC6D100_A0 0x60 #define LM85_VERSTEP_EMC6D100_A1 0x61 #define LM85_VERSTEP_EMC6D102 0x65 #define LM85_REG_CONFIG 0x40 #define LM85_REG_ALARM1 0x41 #define LM85_REG_ALARM2 0x42 #define LM85_REG_VID 0x43 /* Automated FAN control */ #define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr)) #define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr)) #define LM85_REG_AFAN_SPIKE1 0x62 #define LM85_REG_AFAN_SPIKE2 0x63 #define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr)) #define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr)) #define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr)) #define LM85_REG_AFAN_HYST1 0x6d #define LM85_REG_AFAN_HYST2 0x6e #define LM85_REG_TACH_MODE 0x74 #define LM85_REG_SPINUP_CTL 0x75 #define ADM1027_REG_TEMP_OFFSET(nr) (0x70 + (nr)) #define ADM1027_REG_CONFIG2 0x73 #define ADM1027_REG_INTMASK1 0x74 #define ADM1027_REG_INTMASK2 0x75 #define ADM1027_REG_EXTEND_ADC1 0x76 #define ADM1027_REG_EXTEND_ADC2 0x77 #define ADM1027_REG_CONFIG3 0x78 #define ADM1027_REG_FAN_PPR 0x7b #define ADT7463_REG_THERM 0x79 #define ADT7463_REG_THERM_LIMIT 0x7A #define EMC6D100_REG_ALARM3 0x7d /* IN5, IN6 and IN7 */ #define EMC6D100_REG_IN(nr) (0x70 + ((nr)-5)) #define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr)-5) * 2) #define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr)-5) * 2) #define EMC6D102_REG_EXTEND_ADC1 0x85 #define EMC6D102_REG_EXTEND_ADC2 0x86 #define EMC6D102_REG_EXTEND_ADC3 0x87 #define EMC6D102_REG_EXTEND_ADC4 0x88 /* Conversions. Rounding and limit checking is only done on the TO_REG variants. Note that you should be a bit careful with which arguments these macros are called: arguments may be evaluated more than once. */ /* IN are scaled acording to built-in resistors */ static int lm85_scaling[] = { /* .001 Volts */ 2500, 2250, 3300, 5000, 12000, 3300, 1500, 1800 /*EMC6D100*/ }; #define SCALE(val,from,to) (((val)*(to) + ((from)/2))/(from)) #define INS_TO_REG(n,val) \ SENSORS_LIMIT(SCALE(val,lm85_scaling[n],192),0,255) #define INSEXT_FROM_REG(n,val,ext) \ SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n]) #define INS_FROM_REG(n,val) SCALE((val), 192, lm85_scaling[n]) /* FAN speed is measured using 90kHz clock */ static inline u16 FAN_TO_REG(unsigned long val) { if (!val) return 0xffff; return SENSORS_LIMIT(5400000 / val, 1, 0xfffe); } #define FAN_FROM_REG(val) ((val)==0?-1:(val)==0xffff?0:5400000/(val)) /* Temperature is reported in .001 degC increments */ #define TEMP_TO_REG(val) \ SENSORS_LIMIT(SCALE(val,1000,1),-127,127) #define TEMPEXT_FROM_REG(val,ext) \ SCALE(((val) << 4) + (ext), 16, 1000) #define TEMP_FROM_REG(val) ((val) * 1000) #define PWM_TO_REG(val) (SENSORS_LIMIT(val,0,255)) #define PWM_FROM_REG(val) (val) /* ZONEs have the following parameters: * Limit (low) temp, 1. degC * Hysteresis (below limit), 1. degC (0-15) * Range of speed control, .1 degC (2-80) * Critical (high) temp, 1. degC * * FAN PWMs have the following parameters: * Reference Zone, 1, 2, 3, etc. * Spinup time, .05 sec * PWM value at limit/low temp, 1 count * PWM Frequency, 1. Hz * PWM is Min or OFF below limit, flag * Invert PWM output, flag * * Some chips filter the temp, others the fan. * Filter constant (or disabled) .1 seconds */ /* These are the zone temperature range encodings in .001 degree C */ static int lm85_range_map[] = { 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000, 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000 }; static int RANGE_TO_REG( int range ) { int i; if ( range < lm85_range_map[0] ) { return 0 ; } else if ( range > lm85_range_map[15] ) { return 15 ; } else { /* find closest match */ for ( i = 14 ; i >= 0 ; --i ) { if ( range > lm85_range_map[i] ) { /* range bracketed */ if ((lm85_range_map[i+1] - range) < (range - lm85_range_map[i])) { i++; break; } break; } } } return( i & 0x0f ); } #define RANGE_FROM_REG(val) (lm85_range_map[(val)&0x0f]) /* These are the Acoustic Enhancement, or Temperature smoothing encodings * NOTE: The enable/disable bit is INCLUDED in these encodings as the * MSB (bit 3, value 8). If the enable bit is 0, the encoded value * is ignored, or set to 0. */ /* These are the PWM frequency encodings */ static int lm85_freq_map[] = { /* .1 Hz */ 100, 150, 230, 300, 380, 470, 620, 940 }; static int FREQ_TO_REG( int freq ) { int i; if( freq >= lm85_freq_map[7] ) { return 7 ; } for( i = 0 ; i < 7 ; ++i ) if( freq <= lm85_freq_map[i] ) break ; return( i & 0x07 ); } #define FREQ_FROM_REG(val) (lm85_freq_map[(val)&0x07]) /* Since we can't use strings, I'm abusing these numbers * to stand in for the following meanings: * 1 -- PWM responds to Zone 1 * 2 -- PWM responds to Zone 2 * 3 -- PWM responds to Zone 3 * 23 -- PWM responds to the higher temp of Zone 2 or 3 * 123 -- PWM responds to highest of Zone 1, 2, or 3 * 0 -- PWM is always at 0% (ie, off) * -1 -- PWM is always at 100% * -2 -- PWM responds to manual control */ static int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 }; #define ZONE_FROM_REG(val) (lm85_zone_map[((val)>>5)&0x07]) static int ZONE_TO_REG( int zone ) { int i; for( i = 0 ; i <= 7 ; ++i ) if( zone == lm85_zone_map[i] ) break ; if( i > 7 ) /* Not found. */ i = 3; /* Always 100% */ return( (i & 0x07)<<5 ); } #define HYST_TO_REG(val) (SENSORS_LIMIT(((val)+500)/1000,0,15)) #define HYST_FROM_REG(val) ((val)*1000) #define OFFSET_TO_REG(val) (SENSORS_LIMIT((val)/25,-127,127)) #define OFFSET_FROM_REG(val) ((val)*25) #define PPR_MASK(fan) (0x03<<(fan *2)) #define PPR_TO_REG(val,fan) (SENSORS_LIMIT((val)-1,0,3)<<(fan *2)) #define PPR_FROM_REG(val,fan) ((((val)>>(fan * 2))&0x03)+1) /* Chip sampling rates * * Some sensors are not updated more frequently than once per second * so it doesn't make sense to read them more often than that. * We cache the results and return the saved data if the driver * is called again before a second has elapsed. * * Also, there is significant configuration data for this chip * given the automatic PWM fan control that is possible. There * are about 47 bytes of config data to only 22 bytes of actual * readings. So, we keep the config data up to date in the cache * when it is written and only sample it once every 1 *minute* */ #define LM85_DATA_INTERVAL (HZ + HZ / 2) #define LM85_CONFIG_INTERVAL (1 * 60 * HZ) /* LM85 can automatically adjust fan speeds based on temperature * This structure encapsulates an entire Zone config. There are * three zones (one for each temperature input) on the lm85 */ struct lm85_zone { s8 limit; /* Low temp limit */ u8 hyst; /* Low limit hysteresis. (0-15) */ u8 range; /* Temp range, encoded */ s8 critical; /* "All fans ON" temp limit */ u8 off_desired; /* Actual "off" temperature specified. Preserved * to prevent "drift" as other autofan control * values change. */ u8 max_desired; /* Actual "max" temperature specified. Preserved * to prevent "drift" as other autofan control * values change. */ }; struct lm85_autofan { u8 config; /* Register value */ u8 freq; /* PWM frequency, encoded */ u8 min_pwm; /* Minimum PWM value, encoded */ u8 min_off; /* Min PWM or OFF below "limit", flag */ }; /* For each registered chip, we need to keep some data in memory. The structure is dynamically allocated. */ struct lm85_data { struct i2c_client client; struct device *hwmon_dev; enum chips type; struct mutex update_lock; int valid; /* !=0 if following fields are valid */ unsigned long last_reading; /* In jiffies */ unsigned long last_config; /* In jiffies */ u8 in[8]; /* Register value */ u8 in_max[8]; /* Register value */ u8 in_min[8]; /* Register value */ s8 temp[3]; /* Register value */ s8 temp_min[3]; /* Register value */ s8 temp_max[3]; /* Register value */ s8 temp_offset[3]; /* Register value */ u16 fan[4]; /* Register value */ u16 fan_min[4]; /* Register value */ u8 pwm[3]; /* Register value */ u8 spinup_ctl; /* Register encoding, combined */ u8 tach_mode; /* Register encoding, combined */ u8 temp_ext[3]; /* Decoded values */ u8 in_ext[8]; /* Decoded values */ u8 fan_ppr; /* Register value */ u8 smooth[3]; /* Register encoding */ u8 vid; /* Register value */ u8 vrm; /* VRM version */ u8 syncpwm3; /* Saved PWM3 for TACH 2,3,4 config */ u8 oppoint[3]; /* Register value */ u16 tmin_ctl; /* Register value */ unsigned long therm_total; /* Cummulative therm count */ u8 therm_limit; /* Register value */ u32 alarms; /* Register encoding, combined */ struct lm85_autofan autofan[3]; struct lm85_zone zone[3]; }; static int lm85_attach_adapter(struct i2c_adapter *adapter); static int lm85_detect(struct i2c_adapter *adapter, int address, int kind); static int lm85_detach_client(struct i2c_client *client); static int lm85_read_value(struct i2c_client *client, u8 reg); static int lm85_write_value(struct i2c_client *client, u8 reg, int value); static struct lm85_data *lm85_update_device(struct device *dev); static void lm85_init_client(struct i2c_client *client); static struct i2c_driver lm85_driver = { .driver = { .name = "lm85", }, .attach_adapter = lm85_attach_adapter, .detach_client = lm85_detach_client, }; /* 4 Fans */ static ssize_t show_fan(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf,"%d\n", FAN_FROM_REG(data->fan[nr]) ); } static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf,"%d\n", FAN_FROM_REG(data->fan_min[nr]) ); } static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct lm85_data *data = i2c_get_clientdata(client); unsigned long val = simple_strtoul(buf, NULL, 10); mutex_lock(&data->update_lock); data->fan_min[nr] = FAN_TO_REG(val); lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } #define show_fan_offset(offset) \ static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \ show_fan, NULL, offset - 1); \ static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ show_fan_min, set_fan_min, offset - 1) show_fan_offset(1); show_fan_offset(2); show_fan_offset(3); show_fan_offset(4); /* vid, vrm, alarms */ static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr, char *buf) { struct lm85_data *data = lm85_update_device(dev); int vid; if (data->type == adt7463 && (data->vid & 0x80)) { /* 6-pin VID (VRM 10) */ vid = vid_from_reg(data->vid & 0x3f, data->vrm); } else { /* 5-pin VID (VRM 9) */ vid = vid_from_reg(data->vid & 0x1f, data->vrm); } return sprintf(buf, "%d\n", vid); } static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL); static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr, char *buf) { struct lm85_data *data = dev_get_drvdata(dev); return sprintf(buf, "%ld\n", (long) data->vrm); } static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct lm85_data *data = dev_get_drvdata(dev); data->vrm = simple_strtoul(buf, NULL, 10); return count; } static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg); static ssize_t show_alarms_reg(struct device *dev, struct device_attribute *attr, char *buf) { struct lm85_data *data = lm85_update_device(dev); return sprintf(buf, "%u\n", data->alarms); } static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL); static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf, "%u\n", (data->alarms >> nr) & 1); } static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0); static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1); static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2); static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3); static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8); static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18); static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16); static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17); static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4); static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14); static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5); static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6); static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15); static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10); static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11); static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12); static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13); /* pwm */ static ssize_t show_pwm(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf,"%d\n", PWM_FROM_REG(data->pwm[nr]) ); } static ssize_t set_pwm(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct lm85_data *data = i2c_get_clientdata(client); long val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->pwm[nr] = PWM_TO_REG(val); lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_pwm_enable(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); int pwm_zone, enable; pwm_zone = ZONE_FROM_REG(data->autofan[nr].config); switch (pwm_zone) { case -1: /* PWM is always at 100% */ enable = 0; break; case 0: /* PWM is always at 0% */ case -2: /* PWM responds to manual control */ enable = 1; break; default: /* PWM in automatic mode */ enable = 2; } return sprintf(buf, "%d\n", enable); } static ssize_t set_pwm_enable(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct lm85_data *data = i2c_get_clientdata(client); long val = simple_strtol(buf, NULL, 10); u8 config; switch (val) { case 0: config = 3; break; case 1: config = 7; break; case 2: /* Here we have to choose arbitrarily one of the 5 possible configurations; I go for the safest */ config = 6; break; default: return -EINVAL; } mutex_lock(&data->update_lock); data->autofan[nr].config = lm85_read_value(client, LM85_REG_AFAN_CONFIG(nr)); data->autofan[nr].config = (data->autofan[nr].config & ~0xe0) | (config << 5); lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr), data->autofan[nr].config); mutex_unlock(&data->update_lock); return count; } #define show_pwm_reg(offset) \ static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \ show_pwm, set_pwm, offset - 1); \ static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \ show_pwm_enable, set_pwm_enable, offset - 1) show_pwm_reg(1); show_pwm_reg(2); show_pwm_reg(3); /* Voltages */ static ssize_t show_in(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf( buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr], data->in_ext[nr])); } static ssize_t show_in_min(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf,"%d\n", INS_FROM_REG(nr, data->in_min[nr]) ); } static ssize_t set_in_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct lm85_data *data = i2c_get_clientdata(client); long val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->in_min[nr] = INS_TO_REG(nr, val); lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_in_max(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf,"%d\n", INS_FROM_REG(nr, data->in_max[nr]) ); } static ssize_t set_in_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct lm85_data *data = i2c_get_clientdata(client); long val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->in_max[nr] = INS_TO_REG(nr, val); lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]); mutex_unlock(&data->update_lock); return count; } #define show_in_reg(offset) \ static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \ show_in, NULL, offset); \ static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \ show_in_min, set_in_min, offset); \ static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \ show_in_max, set_in_max, offset) show_in_reg(0); show_in_reg(1); show_in_reg(2); show_in_reg(3); show_in_reg(4); show_in_reg(5); show_in_reg(6); show_in_reg(7); /* Temps */ static ssize_t show_temp(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf,"%d\n", TEMPEXT_FROM_REG(data->temp[nr], data->temp_ext[nr])); } static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_min[nr]) ); } static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct lm85_data *data = i2c_get_clientdata(client); long val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->temp_min[nr] = TEMP_TO_REG(val); lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_max[nr]) ); } static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct lm85_data *data = i2c_get_clientdata(client); long val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->temp_max[nr] = TEMP_TO_REG(val); lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]); mutex_unlock(&data->update_lock); return count; } #define show_temp_reg(offset) \ static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \ show_temp, NULL, offset - 1); \ static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \ show_temp_min, set_temp_min, offset - 1); \ static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \ show_temp_max, set_temp_max, offset - 1); show_temp_reg(1); show_temp_reg(2); show_temp_reg(3); /* Automatic PWM control */ static ssize_t show_pwm_auto_channels(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf,"%d\n", ZONE_FROM_REG(data->autofan[nr].config)); } static ssize_t set_pwm_auto_channels(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct lm85_data *data = i2c_get_clientdata(client); long val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->autofan[nr].config = (data->autofan[nr].config & (~0xe0)) | ZONE_TO_REG(val) ; lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr), data->autofan[nr].config); mutex_unlock(&data->update_lock); return count; } static ssize_t show_pwm_auto_pwm_min(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf,"%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm)); } static ssize_t set_pwm_auto_pwm_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct lm85_data *data = i2c_get_clientdata(client); long val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->autofan[nr].min_pwm = PWM_TO_REG(val); lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr), data->autofan[nr].min_pwm); mutex_unlock(&data->update_lock); return count; } static ssize_t show_pwm_auto_pwm_minctl(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf,"%d\n", data->autofan[nr].min_off); } static ssize_t set_pwm_auto_pwm_minctl(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct lm85_data *data = i2c_get_clientdata(client); long val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->autofan[nr].min_off = val; lm85_write_value(client, LM85_REG_AFAN_SPIKE1, data->smooth[0] | data->syncpwm3 | (data->autofan[0].min_off ? 0x20 : 0) | (data->autofan[1].min_off ? 0x40 : 0) | (data->autofan[2].min_off ? 0x80 : 0) ); mutex_unlock(&data->update_lock); return count; } static ssize_t show_pwm_auto_pwm_freq(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf,"%d\n", FREQ_FROM_REG(data->autofan[nr].freq)); } static ssize_t set_pwm_auto_pwm_freq(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct lm85_data *data = i2c_get_clientdata(client); long val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->autofan[nr].freq = FREQ_TO_REG(val); lm85_write_value(client, LM85_REG_AFAN_RANGE(nr), (data->zone[nr].range << 4) | data->autofan[nr].freq ); mutex_unlock(&data->update_lock); return count; } #define pwm_auto(offset) \ static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \ S_IRUGO | S_IWUSR, show_pwm_auto_channels, \ set_pwm_auto_channels, offset - 1); \ static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \ S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \ set_pwm_auto_pwm_min, offset - 1); \ static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \ S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \ set_pwm_auto_pwm_minctl, offset - 1); \ static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_freq, \ S_IRUGO | S_IWUSR, show_pwm_auto_pwm_freq, \ set_pwm_auto_pwm_freq, offset - 1); pwm_auto(1); pwm_auto(2); pwm_auto(3); /* Temperature settings for automatic PWM control */ static ssize_t show_temp_auto_temp_off(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf,"%d\n", TEMP_FROM_REG(data->zone[nr].limit) - HYST_FROM_REG(data->zone[nr].hyst)); } static ssize_t set_temp_auto_temp_off(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct lm85_data *data = i2c_get_clientdata(client); int min; long val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); min = TEMP_FROM_REG(data->zone[nr].limit); data->zone[nr].off_desired = TEMP_TO_REG(val); data->zone[nr].hyst = HYST_TO_REG(min - val); if ( nr == 0 || nr == 1 ) { lm85_write_value(client, LM85_REG_AFAN_HYST1, (data->zone[0].hyst << 4) | data->zone[1].hyst ); } else { lm85_write_value(client, LM85_REG_AFAN_HYST2, (data->zone[2].hyst << 4) ); } mutex_unlock(&data->update_lock); return count; } static ssize_t show_temp_auto_temp_min(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf,"%d\n", TEMP_FROM_REG(data->zone[nr].limit) ); } static ssize_t set_temp_auto_temp_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct lm85_data *data = i2c_get_clientdata(client); long val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->zone[nr].limit = TEMP_TO_REG(val); lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr), data->zone[nr].limit); /* Update temp_auto_max and temp_auto_range */ data->zone[nr].range = RANGE_TO_REG( TEMP_FROM_REG(data->zone[nr].max_desired) - TEMP_FROM_REG(data->zone[nr].limit)); lm85_write_value(client, LM85_REG_AFAN_RANGE(nr), ((data->zone[nr].range & 0x0f) << 4) | (data->autofan[nr].freq & 0x07)); /* Update temp_auto_hyst and temp_auto_off */ data->zone[nr].hyst = HYST_TO_REG(TEMP_FROM_REG( data->zone[nr].limit) - TEMP_FROM_REG( data->zone[nr].off_desired)); if ( nr == 0 || nr == 1 ) { lm85_write_value(client, LM85_REG_AFAN_HYST1, (data->zone[0].hyst << 4) | data->zone[1].hyst ); } else { lm85_write_value(client, LM85_REG_AFAN_HYST2, (data->zone[2].hyst << 4) ); } mutex_unlock(&data->update_lock); return count; } static ssize_t show_temp_auto_temp_max(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf,"%d\n", TEMP_FROM_REG(data->zone[nr].limit) + RANGE_FROM_REG(data->zone[nr].range)); } static ssize_t set_temp_auto_temp_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct lm85_data *data = i2c_get_clientdata(client); int min; long val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); min = TEMP_FROM_REG(data->zone[nr].limit); data->zone[nr].max_desired = TEMP_TO_REG(val); data->zone[nr].range = RANGE_TO_REG( val - min); lm85_write_value(client, LM85_REG_AFAN_RANGE(nr), ((data->zone[nr].range & 0x0f) << 4) | (data->autofan[nr].freq & 0x07)); mutex_unlock(&data->update_lock); return count; } static ssize_t show_temp_auto_temp_crit(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf,"%d\n", TEMP_FROM_REG(data->zone[nr].critical)); } static ssize_t set_temp_auto_temp_crit(struct device *dev, struct device_attribute *attr,const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct lm85_data *data = i2c_get_clientdata(client); long val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->zone[nr].critical = TEMP_TO_REG(val); lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr), data->zone[nr].critical); mutex_unlock(&data->update_lock); return count; } #define temp_auto(offset) \ static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \ S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \ set_temp_auto_temp_off, offset - 1); \ static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \ S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \ set_temp_auto_temp_min, offset - 1); \ static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \ S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \ set_temp_auto_temp_max, offset - 1); \ static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \ S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \ set_temp_auto_temp_crit, offset - 1); temp_auto(1); temp_auto(2); temp_auto(3); static int lm85_attach_adapter(struct i2c_adapter *adapter) { if (!(adapter->class & I2C_CLASS_HWMON)) return 0; return i2c_probe(adapter, &addr_data, lm85_detect); } static struct attribute *lm85_attributes[] = { &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan2_input.dev_attr.attr, &sensor_dev_attr_fan3_input.dev_attr.attr, &sensor_dev_attr_fan4_input.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan2_min.dev_attr.attr, &sensor_dev_attr_fan3_min.dev_attr.attr, &sensor_dev_attr_fan4_min.dev_attr.attr, &sensor_dev_attr_fan1_alarm.dev_attr.attr, &sensor_dev_attr_fan2_alarm.dev_attr.attr, &sensor_dev_attr_fan3_alarm.dev_attr.attr, &sensor_dev_attr_fan4_alarm.dev_attr.attr, &sensor_dev_attr_pwm1.dev_attr.attr, &sensor_dev_attr_pwm2.dev_attr.attr, &sensor_dev_attr_pwm3.dev_attr.attr, &sensor_dev_attr_pwm1_enable.dev_attr.attr, &sensor_dev_attr_pwm2_enable.dev_attr.attr, &sensor_dev_attr_pwm3_enable.dev_attr.attr, &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in3_input.dev_attr.attr, &sensor_dev_attr_in0_min.dev_attr.attr, &sensor_dev_attr_in1_min.dev_attr.attr, &sensor_dev_attr_in2_min.dev_attr.attr, &sensor_dev_attr_in3_min.dev_attr.attr, &sensor_dev_attr_in0_max.dev_attr.attr, &sensor_dev_attr_in1_max.dev_attr.attr, &sensor_dev_attr_in2_max.dev_attr.attr, &sensor_dev_attr_in3_max.dev_attr.attr, &sensor_dev_attr_in0_alarm.dev_attr.attr, &sensor_dev_attr_in1_alarm.dev_attr.attr, &sensor_dev_attr_in2_alarm.dev_attr.attr, &sensor_dev_attr_in3_alarm.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp1_min.dev_attr.attr, &sensor_dev_attr_temp2_min.dev_attr.attr, &sensor_dev_attr_temp3_min.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp3_max.dev_attr.attr, &sensor_dev_attr_temp1_alarm.dev_attr.attr, &sensor_dev_attr_temp2_alarm.dev_attr.attr, &sensor_dev_attr_temp3_alarm.dev_attr.attr, &sensor_dev_attr_temp1_fault.dev_attr.attr, &sensor_dev_attr_temp3_fault.dev_attr.attr, &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr, &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr, &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr, &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr, &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr, &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr, &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr, &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr, &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr, &sensor_dev_attr_pwm1_auto_pwm_freq.dev_attr.attr, &sensor_dev_attr_pwm2_auto_pwm_freq.dev_attr.attr, &sensor_dev_attr_pwm3_auto_pwm_freq.dev_attr.attr, &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr, &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr, &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr, &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr, &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr, &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr, &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr, &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr, &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr, &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr, &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr, &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr, &dev_attr_vrm.attr, &dev_attr_cpu0_vid.attr, &dev_attr_alarms.attr, NULL }; static const struct attribute_group lm85_group = { .attrs = lm85_attributes, }; static struct attribute *lm85_attributes_in4[] = { &sensor_dev_attr_in4_input.dev_attr.attr, &sensor_dev_attr_in4_min.dev_attr.attr, &sensor_dev_attr_in4_max.dev_attr.attr, &sensor_dev_attr_in4_alarm.dev_attr.attr, NULL }; static const struct attribute_group lm85_group_in4 = { .attrs = lm85_attributes_in4, }; static struct attribute *lm85_attributes_in567[] = { &sensor_dev_attr_in5_input.dev_attr.attr, &sensor_dev_attr_in6_input.dev_attr.attr, &sensor_dev_attr_in7_input.dev_attr.attr, &sensor_dev_attr_in5_min.dev_attr.attr, &sensor_dev_attr_in6_min.dev_attr.attr, &sensor_dev_attr_in7_min.dev_attr.attr, &sensor_dev_attr_in5_max.dev_attr.attr, &sensor_dev_attr_in6_max.dev_attr.attr, &sensor_dev_attr_in7_max.dev_attr.attr, &sensor_dev_attr_in5_alarm.dev_attr.attr, &sensor_dev_attr_in6_alarm.dev_attr.attr, &sensor_dev_attr_in7_alarm.dev_attr.attr, NULL }; static const struct attribute_group lm85_group_in567 = { .attrs = lm85_attributes_in567, }; static int lm85_detect(struct i2c_adapter *adapter, int address, int kind) { int company, verstep ; struct i2c_client *new_client = NULL; struct lm85_data *data; int err = 0; const char *type_name = ""; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { /* We need to be able to do byte I/O */ goto ERROR0 ; }; /* OK. For now, we presume we have a valid client. We now create the client structure, even though we cannot fill it completely yet. But it allows us to access lm85_{read,write}_value. */ if (!(data = kzalloc(sizeof(struct lm85_data), GFP_KERNEL))) { err = -ENOMEM; goto ERROR0; } new_client = &data->client; i2c_set_clientdata(new_client, data); new_client->addr = address; new_client->adapter = adapter; new_client->driver = &lm85_driver; new_client->flags = 0; /* Now, we do the remaining detection. */ company = lm85_read_value(new_client, LM85_REG_COMPANY); verstep = lm85_read_value(new_client, LM85_REG_VERSTEP); dev_dbg(&adapter->dev, "Detecting device at %d,0x%02x with" " COMPANY: 0x%02x and VERSTEP: 0x%02x\n", i2c_adapter_id(new_client->adapter), new_client->addr, company, verstep); /* If auto-detecting, Determine the chip type. */ if (kind <= 0) { dev_dbg(&adapter->dev, "Autodetecting device at %d,0x%02x ...\n", i2c_adapter_id(adapter), address ); if( company == LM85_COMPANY_NATIONAL && verstep == LM85_VERSTEP_LM85C ) { kind = lm85c ; } else if( company == LM85_COMPANY_NATIONAL && verstep == LM85_VERSTEP_LM85B ) { kind = lm85b ; } else if( company == LM85_COMPANY_NATIONAL && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC ) { dev_err(&adapter->dev, "Unrecognized version/stepping 0x%02x" " Defaulting to LM85.\n", verstep); kind = any_chip ; } else if( company == LM85_COMPANY_ANALOG_DEV && verstep == LM85_VERSTEP_ADM1027 ) { kind = adm1027 ; } else if( company == LM85_COMPANY_ANALOG_DEV && (verstep == LM85_VERSTEP_ADT7463 || verstep == LM85_VERSTEP_ADT7463C) ) { kind = adt7463 ; } else if( company == LM85_COMPANY_ANALOG_DEV && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC ) { dev_err(&adapter->dev, "Unrecognized version/stepping 0x%02x" " Defaulting to Generic LM85.\n", verstep ); kind = any_chip ; } else if( company == LM85_COMPANY_SMSC && (verstep == LM85_VERSTEP_EMC6D100_A0 || verstep == LM85_VERSTEP_EMC6D100_A1) ) { /* Unfortunately, we can't tell a '100 from a '101 * from the registers. Since a '101 is a '100 * in a package with fewer pins and therefore no * 3.3V, 1.5V or 1.8V inputs, perhaps if those * inputs read 0, then it's a '101. */ kind = emc6d100 ; } else if( company == LM85_COMPANY_SMSC && verstep == LM85_VERSTEP_EMC6D102) { kind = emc6d102 ; } else if( company == LM85_COMPANY_SMSC && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) { dev_err(&adapter->dev, "lm85: Detected SMSC chip\n"); dev_err(&adapter->dev, "lm85: Unrecognized version/stepping 0x%02x" " Defaulting to Generic LM85.\n", verstep ); kind = any_chip ; } else if( kind == any_chip && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) { dev_err(&adapter->dev, "Generic LM85 Version 6 detected\n"); /* Leave kind as "any_chip" */ } else { dev_dbg(&adapter->dev, "Autodetection failed\n"); /* Not an LM85 ... */ if( kind == any_chip ) { /* User used force=x,y */ dev_err(&adapter->dev, "Generic LM85 Version 6 not" " found at %d,0x%02x. Try force_lm85c.\n", i2c_adapter_id(adapter), address ); } err = 0 ; goto ERROR1; } } /* Fill in the chip specific driver values */ if ( kind == any_chip ) { type_name = "lm85"; } else if ( kind == lm85b ) { type_name = "lm85b"; } else if ( kind == lm85c ) { type_name = "lm85c"; } else if ( kind == adm1027 ) { type_name = "adm1027"; } else if ( kind == adt7463 ) { type_name = "adt7463"; } else if ( kind == emc6d100){ type_name = "emc6d100"; } else if ( kind == emc6d102 ) { type_name = "emc6d102"; } strlcpy(new_client->name, type_name, I2C_NAME_SIZE); /* Fill in the remaining client fields */ data->type = kind; data->valid = 0; mutex_init(&data->update_lock); /* Tell the I2C layer a new client has arrived */ if ((err = i2c_attach_client(new_client))) goto ERROR1; /* Set the VRM version */ data->vrm = vid_which_vrm(); /* Initialize the LM85 chip */ lm85_init_client(new_client); /* Register sysfs hooks */ if ((err = sysfs_create_group(&new_client->dev.kobj, &lm85_group))) goto ERROR2; /* The ADT7463 has an optional VRM 10 mode where pin 21 is used as a sixth digital VID input rather than an analog input. */ data->vid = lm85_read_value(new_client, LM85_REG_VID); if (!(kind == adt7463 && (data->vid & 0x80))) if ((err = sysfs_create_group(&new_client->dev.kobj, &lm85_group_in4))) goto ERROR3; /* The EMC6D100 has 3 additional voltage inputs */ if (kind == emc6d100) if ((err = sysfs_create_group(&new_client->dev.kobj, &lm85_group_in567))) goto ERROR3; data->hwmon_dev = hwmon_device_register(&new_client->dev); if (IS_ERR(data->hwmon_dev)) { err = PTR_ERR(data->hwmon_dev); goto ERROR3; } return 0; /* Error out and cleanup code */ ERROR3: sysfs_remove_group(&new_client->dev.kobj, &lm85_group); sysfs_remove_group(&new_client->dev.kobj, &lm85_group_in4); if (kind == emc6d100) sysfs_remove_group(&new_client->dev.kobj, &lm85_group_in567); ERROR2: i2c_detach_client(new_client); ERROR1: kfree(data); ERROR0: return err; } static int lm85_detach_client(struct i2c_client *client) { struct lm85_data *data = i2c_get_clientdata(client); hwmon_device_unregister(data->hwmon_dev); sysfs_remove_group(&client->dev.kobj, &lm85_group); sysfs_remove_group(&client->dev.kobj, &lm85_group_in4); if (data->type == emc6d100) sysfs_remove_group(&client->dev.kobj, &lm85_group_in567); i2c_detach_client(client); kfree(data); return 0; } static int lm85_read_value(struct i2c_client *client, u8 reg) { int res; /* What size location is it? */ switch( reg ) { case LM85_REG_FAN(0) : /* Read WORD data */ case LM85_REG_FAN(1) : case LM85_REG_FAN(2) : case LM85_REG_FAN(3) : case LM85_REG_FAN_MIN(0) : case LM85_REG_FAN_MIN(1) : case LM85_REG_FAN_MIN(2) : case LM85_REG_FAN_MIN(3) : case LM85_REG_ALARM1 : /* Read both bytes at once */ res = i2c_smbus_read_byte_data(client, reg) & 0xff ; res |= i2c_smbus_read_byte_data(client, reg+1) << 8 ; break ; case ADT7463_REG_TMIN_CTL1 : /* Read WORD MSB, LSB */ res = i2c_smbus_read_byte_data(client, reg) << 8 ; res |= i2c_smbus_read_byte_data(client, reg+1) & 0xff ; break ; default: /* Read BYTE data */ res = i2c_smbus_read_byte_data(client, reg); break ; } return res ; } static int lm85_write_value(struct i2c_client *client, u8 reg, int value) { int res ; switch( reg ) { case LM85_REG_FAN(0) : /* Write WORD data */ case LM85_REG_FAN(1) : case LM85_REG_FAN(2) : case LM85_REG_FAN(3) : case LM85_REG_FAN_MIN(0) : case LM85_REG_FAN_MIN(1) : case LM85_REG_FAN_MIN(2) : case LM85_REG_FAN_MIN(3) : /* NOTE: ALARM is read only, so not included here */ res = i2c_smbus_write_byte_data(client, reg, value & 0xff) ; res |= i2c_smbus_write_byte_data(client, reg+1, (value>>8) & 0xff) ; break ; case ADT7463_REG_TMIN_CTL1 : /* Write WORD MSB, LSB */ res = i2c_smbus_write_byte_data(client, reg, (value>>8) & 0xff); res |= i2c_smbus_write_byte_data(client, reg+1, value & 0xff) ; break ; default: /* Write BYTE data */ res = i2c_smbus_write_byte_data(client, reg, value); break ; } return res ; } static void lm85_init_client(struct i2c_client *client) { int value; struct lm85_data *data = i2c_get_clientdata(client); dev_dbg(&client->dev, "Initializing device\n"); /* Warn if part was not "READY" */ value = lm85_read_value(client, LM85_REG_CONFIG); dev_dbg(&client->dev, "LM85_REG_CONFIG is: 0x%02x\n", value); if( value & 0x02 ) { dev_err(&client->dev, "Client (%d,0x%02x) config is locked.\n", i2c_adapter_id(client->adapter), client->addr ); }; if( ! (value & 0x04) ) { dev_err(&client->dev, "Client (%d,0x%02x) is not ready.\n", i2c_adapter_id(client->adapter), client->addr ); }; if( value & 0x10 && ( data->type == adm1027 || data->type == adt7463 ) ) { dev_err(&client->dev, "Client (%d,0x%02x) VxI mode is set. " "Please report this to the lm85 maintainer.\n", i2c_adapter_id(client->adapter), client->addr ); }; /* WE INTENTIONALLY make no changes to the limits, * offsets, pwms, fans and zones. If they were * configured, we don't want to mess with them. * If they weren't, the default is 100% PWM, no * control and will suffice until 'sensors -s' * can be run by the user. */ /* Start monitoring */ value = lm85_read_value(client, LM85_REG_CONFIG); /* Try to clear LOCK, Set START, save everything else */ value = (value & ~ 0x02) | 0x01 ; dev_dbg(&client->dev, "Setting CONFIG to: 0x%02x\n", value); lm85_write_value(client, LM85_REG_CONFIG, value); } static struct lm85_data *lm85_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct lm85_data *data = i2c_get_clientdata(client); int i; mutex_lock(&data->update_lock); if ( !data->valid || time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL) ) { /* Things that change quickly */ dev_dbg(&client->dev, "Reading sensor values\n"); /* Have to read extended bits first to "freeze" the * more significant bits that are read later. * There are 2 additional resolution bits per channel and we * have room for 4, so we shift them to the left. */ if ( (data->type == adm1027) || (data->type == adt7463) ) { int ext1 = lm85_read_value(client, ADM1027_REG_EXTEND_ADC1); int ext2 = lm85_read_value(client, ADM1027_REG_EXTEND_ADC2); int val = (ext1 << 8) + ext2; for(i = 0; i <= 4; i++) data->in_ext[i] = ((val>>(i * 2))&0x03) << 2; for(i = 0; i <= 2; i++) data->temp_ext[i] = (val>>((i + 4) * 2))&0x0c; } data->vid = lm85_read_value(client, LM85_REG_VID); for (i = 0; i <= 3; ++i) { data->in[i] = lm85_read_value(client, LM85_REG_IN(i)); } if (!(data->type == adt7463 && (data->vid & 0x80))) { data->in[4] = lm85_read_value(client, LM85_REG_IN(4)); } for (i = 0; i <= 3; ++i) { data->fan[i] = lm85_read_value(client, LM85_REG_FAN(i)); } for (i = 0; i <= 2; ++i) { data->temp[i] = lm85_read_value(client, LM85_REG_TEMP(i)); } for (i = 0; i <= 2; ++i) { data->pwm[i] = lm85_read_value(client, LM85_REG_PWM(i)); } data->alarms = lm85_read_value(client, LM85_REG_ALARM1); if ( data->type == adt7463 ) { if( data->therm_total < ULONG_MAX - 256 ) { data->therm_total += lm85_read_value(client, ADT7463_REG_THERM ); } } else if ( data->type == emc6d100 ) { /* Three more voltage sensors */ for (i = 5; i <= 7; ++i) { data->in[i] = lm85_read_value(client, EMC6D100_REG_IN(i)); } /* More alarm bits */ data->alarms |= lm85_read_value(client, EMC6D100_REG_ALARM3) << 16; } else if (data->type == emc6d102 ) { /* Have to read LSB bits after the MSB ones because the reading of the MSB bits has frozen the LSBs (backward from the ADM1027). */ int ext1 = lm85_read_value(client, EMC6D102_REG_EXTEND_ADC1); int ext2 = lm85_read_value(client, EMC6D102_REG_EXTEND_ADC2); int ext3 = lm85_read_value(client, EMC6D102_REG_EXTEND_ADC3); int ext4 = lm85_read_value(client, EMC6D102_REG_EXTEND_ADC4); data->in_ext[0] = ext3 & 0x0f; data->in_ext[1] = ext4 & 0x0f; data->in_ext[2] = (ext4 >> 4) & 0x0f; data->in_ext[3] = (ext3 >> 4) & 0x0f; data->in_ext[4] = (ext2 >> 4) & 0x0f; data->temp_ext[0] = ext1 & 0x0f; data->temp_ext[1] = ext2 & 0x0f; data->temp_ext[2] = (ext1 >> 4) & 0x0f; } data->last_reading = jiffies ; }; /* last_reading */ if ( !data->valid || time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL) ) { /* Things that don't change often */ dev_dbg(&client->dev, "Reading config values\n"); for (i = 0; i <= 3; ++i) { data->in_min[i] = lm85_read_value(client, LM85_REG_IN_MIN(i)); data->in_max[i] = lm85_read_value(client, LM85_REG_IN_MAX(i)); } if (!(data->type == adt7463 && (data->vid & 0x80))) { data->in_min[4] = lm85_read_value(client, LM85_REG_IN_MIN(4)); data->in_max[4] = lm85_read_value(client, LM85_REG_IN_MAX(4)); } if ( data->type == emc6d100 ) { for (i = 5; i <= 7; ++i) { data->in_min[i] = lm85_read_value(client, EMC6D100_REG_IN_MIN(i)); data->in_max[i] = lm85_read_value(client, EMC6D100_REG_IN_MAX(i)); } } for (i = 0; i <= 3; ++i) { data->fan_min[i] = lm85_read_value(client, LM85_REG_FAN_MIN(i)); } for (i = 0; i <= 2; ++i) { data->temp_min[i] = lm85_read_value(client, LM85_REG_TEMP_MIN(i)); data->temp_max[i] = lm85_read_value(client, LM85_REG_TEMP_MAX(i)); } for (i = 0; i <= 2; ++i) { int val ; data->autofan[i].config = lm85_read_value(client, LM85_REG_AFAN_CONFIG(i)); val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i)); data->autofan[i].freq = val & 0x07 ; data->zone[i].range = (val >> 4) & 0x0f ; data->autofan[i].min_pwm = lm85_read_value(client, LM85_REG_AFAN_MINPWM(i)); data->zone[i].limit = lm85_read_value(client, LM85_REG_AFAN_LIMIT(i)); data->zone[i].critical = lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i)); } i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1); data->smooth[0] = i & 0x0f ; data->syncpwm3 = i & 0x10 ; /* Save PWM3 config */ data->autofan[0].min_off = (i & 0x20) != 0 ; data->autofan[1].min_off = (i & 0x40) != 0 ; data->autofan[2].min_off = (i & 0x80) != 0 ; i = lm85_read_value(client, LM85_REG_AFAN_SPIKE2); data->smooth[1] = (i>>4) & 0x0f ; data->smooth[2] = i & 0x0f ; i = lm85_read_value(client, LM85_REG_AFAN_HYST1); data->zone[0].hyst = (i>>4) & 0x0f ; data->zone[1].hyst = i & 0x0f ; i = lm85_read_value(client, LM85_REG_AFAN_HYST2); data->zone[2].hyst = (i>>4) & 0x0f ; if ( (data->type == lm85b) || (data->type == lm85c) ) { data->tach_mode = lm85_read_value(client, LM85_REG_TACH_MODE ); data->spinup_ctl = lm85_read_value(client, LM85_REG_SPINUP_CTL ); } else if ( (data->type == adt7463) || (data->type == adm1027) ) { if ( data->type == adt7463 ) { for (i = 0; i <= 2; ++i) { data->oppoint[i] = lm85_read_value(client, ADT7463_REG_OPPOINT(i) ); } data->tmin_ctl = lm85_read_value(client, ADT7463_REG_TMIN_CTL1 ); data->therm_limit = lm85_read_value(client, ADT7463_REG_THERM_LIMIT ); } for (i = 0; i <= 2; ++i) { data->temp_offset[i] = lm85_read_value(client, ADM1027_REG_TEMP_OFFSET(i) ); } data->tach_mode = lm85_read_value(client, ADM1027_REG_CONFIG3 ); data->fan_ppr = lm85_read_value(client, ADM1027_REG_FAN_PPR ); } data->last_config = jiffies; }; /* last_config */ data->valid = 1; mutex_unlock(&data->update_lock); return data; } static int __init sm_lm85_init(void) { return i2c_add_driver(&lm85_driver); } static void __exit sm_lm85_exit(void) { i2c_del_driver(&lm85_driver); } /* Thanks to Richard Barrington for adding the LM85 to sensors-detect. * Thanks to Margit Schubert-While <margitsw@t-online.de> for help with * post 2.7.0 CVS changes. */ MODULE_LICENSE("GPL"); MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, Margit Schubert-While <margitsw@t-online.de>, Justin Thiessen <jthiessen@penguincomputing.com"); MODULE_DESCRIPTION("LM85-B, LM85-C driver"); module_init(sm_lm85_init); module_exit(sm_lm85_exit);