aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/time/tick-broadcast.c
Commit message (Collapse)AuthorAge
* NOHZ: restart tick device from irq_enter()Thomas Gleixner2008-10-17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We did not restart the tick device from irq_enter() to avoid double reprogramming and extra events in the return immediate to idle case. But long lasting softirqs can lead to a situation where jiffies become stale: idle() tick stopped (reprogrammed to next pending timer) halt() interrupt jiffies updated from irq_enter() interrupt handler softirq function 1 runs 20ms softirq function 2 arms a 10ms timer with a stale jiffies value jiffies updated from irq_exit() timer wheel has now an already expired timer (the one added in function 2) timer fires and timer softirq runs This was discovered when debugging a timer problem which happend only when the ath5k driver is active. The debugging proved that there is a softirq function running for more than 20ms, which is a bug by itself. To solve this we restart the tick timer right from irq_enter(), but do not go through the other functions which are necessary to return from idle when need_resched() is set. Reported-by: Elias Oltmanns <eo@nebensachen.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Elias Oltmanns <eo@nebensachen.de>
* clockevents: check broadcast tick device not the clock events deviceThomas Gleixner2008-10-04
| | | | | | | | | | | Impact: jiffies increment too fast. Hugh Dickins noted that with NOHZ=n and HIGHRES=n jiffies get incremented too fast. The reason is a wrong check in the broadcast enter/exit code, which keeps the local apic timer in periodic mode when the switch happens. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* clockevents: prevent mode mismatch on cpu onlineThomas Gleixner2008-09-23
| | | | | | | | | | | | | | Impact: timer hang on CPU online observed on AMD C1E systems When a CPU is brought online then the broadcast machinery can be in the one shot state already. Check this and setup the timer device of the new CPU in one shot mode so the broadcast code can pick up the next_event value correctly. Another AMD C1E oddity, as we switch to broadcast immediately and not after the full bring up via the ACPI cpu idle code. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* clockevents: check broadcast device not tick deviceThomas Gleixner2008-09-23
| | | | | | | | | | | | | | | | | Impact: Possible hang on CPU online observed on AMD C1E machines. The broadcast setup code looks at the mode of the tick device to determine whether it needs to be shut down or setup. This is wrong when the broadcast mode is set to one shot already. This can happen when a CPU is brought online as it goes through the periodic setup first. The problem went unnoticed as sane systems do not call into that code before the switch to one shot for the clock event device happens. The AMD C1E idle routine switches over immediately and thereby shuts down the just setup device before the first interrupt happens. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* clockevents: make device shutdown robustThomas Gleixner2008-09-16
| | | | | | | | | | | | | | | | | The device shut down does not cleanup the next_event variable of the clock event device. So when the device is reactivated the possible stale next_event value can prevent the device to be reprogrammed as it claims to wait on a event already. This is the root cause of the resurfacing suspend/resume problem, where systems need key press to come back to life. Fix this by setting next_event to KTIME_MAX when the device is shut down. Use a separate function for shutdown which takes care of that and only keep the direct set mode call in the broadcast code, where we can not touch the next_event value. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* clockevents: broadcast fixup possible waitersThomas Gleixner2008-09-06
| | | | | | | | | Until the C1E patches arrived there where no users of periodic broadcast before switching to oneshot mode. Now we need to trigger a possible waiter for a periodic broadcast when switching to oneshot mode. Otherwise we can starve them for ever. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* clockevents: prevent endless loop lockupThomas Gleixner2008-09-05
| | | | | | | | | | | | | | | | | The C1E/HPET bug reports on AMDX2/RS690 systems where tracked down to a too small value of the HPET minumum delta for programming an event. The clockevents code needs to enforce an interrupt event on the clock event device in some cases. The enforcement code was stupid and naive, as it just added the minimum delta to the current time and tried to reprogram the device. When the minimum delta is too small, then this loops forever. Add a sanity check. Allow reprogramming to fail 3 times, then print a warning and double the minimum delta value to make sure, that this does not happen again. Use the same function for both tick-oneshot and tick-broadcast code. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* clockevents: prevent multiple init/shutdownThomas Gleixner2008-09-05
| | | | | | | | | | | | While chasing the C1E/HPET bugreports I went through the clock events code inch by inch and found that the broadcast device can be initialized and shutdown multiple times. Multiple shutdowns are not critical, but useless waste of time. Multiple initializations are simply broken. Another CPU might have the device in use already after the first initialization and the second init could just render it unusable again. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* clockevents: prevent endless loop in periodic broadcast handlerThomas Gleixner2008-09-05
| | | | | | | | | | | | The reprogramming of the periodic broadcast handler was broken, when the first programming returned -ETIME. The clockevents code stores the new expiry value in the clock events device next_event field only when the programming time has not been elapsed yet. The loop in question calculates the new expiry value from the next_event value and therefor never increases. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* Merge branch 'linus' into cpus4096Ingo Molnar2008-07-15
|\ | | | | | | | | | | | | | | | | | | Conflicts: arch/x86/xen/smp.c kernel/sched_rt.c net/iucv/iucv.c Signed-off-by: Ingo Molnar <mingo@elte.hu>
| * Merge branch 'generic-ipi' into generic-ipi-for-linusIngo Molnar2008-07-15
| |\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Conflicts: arch/powerpc/Kconfig arch/s390/kernel/time.c arch/x86/kernel/apic_32.c arch/x86/kernel/cpu/perfctr-watchdog.c arch/x86/kernel/i8259_64.c arch/x86/kernel/ldt.c arch/x86/kernel/nmi_64.c arch/x86/kernel/smpboot.c arch/x86/xen/smp.c include/asm-x86/hw_irq_32.h include/asm-x86/hw_irq_64.h include/asm-x86/mach-default/irq_vectors.h include/asm-x86/mach-voyager/irq_vectors.h include/asm-x86/smp.h kernel/Makefile Signed-off-by: Ingo Molnar <mingo@elte.hu>
| | * smp_call_function: get rid of the unused nonatomic/retry argumentJens Axboe2008-06-26
| | | | | | | | | | | | | | | | | | | | | | | | It's never used and the comments refer to nonatomic and retry interchangably. So get rid of it. Acked-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
| * | x86, clockevents: add C1E aware idle functionThomas Gleixner2008-07-08
| |/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C1E on AMD machines is like C3 but without control from the OS. Up to now we disabled the local apic timer for those machines as it stops when the CPU goes into C1E. This excludes those machines from high resolution timers / dynamic ticks, which hurts especially X2 based laptops. The current boot time C1E detection has another, more serious flaw as well: some BIOSes do not enable C1E until the ACPI processor module is loaded. This causes systems to stop working after that point. To work nicely with C1E enabled machines we use a separate idle function, which checks on idle entry whether C1E was enabled in the Interrupt Pending Message MSR. This allows us to do timer broadcasting for C1E and covers the late enablement of C1E as well. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* / clocksource/events: use performance variant for_each_cpu_mask_nrMike Travis2008-05-23
|/ | | | | | | | | | | Change references from for_each_cpu_mask to for_each_cpu_mask_nr where appropriate Reviewed-by: Paul Jackson <pj@sgi.com> Reviewed-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Mike Travis <travis@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* clockevents: fix typo in tick-broadcast.cGlauber Costa2008-04-21
| | | | | | | | braodcast -> broadcast Signed-off-by: Glauber Costa <gcosta@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* [S390] genirq/clockevents: move irq affinity prototypes/inlines to interrupt.hRussell King2008-04-17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > Generic code is not supposed to include irq.h. Replace this include > by linux/hardirq.h instead and add/replace an include of linux/irq.h > in asm header files where necessary. > This change should only matter for architectures that make use of > GENERIC_CLOCKEVENTS. > Architectures in question are mips, x86, arm, sh, powerpc, uml and sparc64. > > I did some cross compile tests for mips, x86_64, arm, powerpc and sparc64. > This patch fixes also build breakages caused by the include replacement in > tick-common.h. I generally dislike adding optional linux/* includes in asm/* includes - I'm nervous about this causing include loops. However, there's a separate point to be discussed here. That is, what interfaces are expected of every architecture in the kernel. If generic code wants to be able to set the affinity of interrupts, then that needs to become part of the interfaces listed in linux/interrupt.h rather than linux/irq.h. So what I suggest is this approach instead (against Linus' tree of a couple of days ago) - we move irq_set_affinity() and irq_can_set_affinity() to linux/interrupt.h, change the linux/irq.h includes to linux/interrupt.h and include asm/irq_regs.h where needed (asm/irq_regs.h is supposed to be rarely used include since not much touches the stacked parent context registers.) Build tested on ARM PXA family kernels and ARM's Realview platform kernels which both use genirq. [ tglx@linutronix.de: add GENERIC_HARDIRQ dependencies ] Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
* timer: clean up tick-broadcast.cThomas Gleixner2008-01-30
| | | | | | | clean up tick-broadcast.c Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* clockevents: fix reprogramming decision in oneshot broadcastThomas Gleixner2007-12-18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Resolve the following regression of a choppy, almost unusable laptop: http://lkml.org/lkml/2007/12/7/299 http://bugzilla.kernel.org/show_bug.cgi?id=9525 A previous version of the code did the reprogramming of the broadcast device in the return from idle code. This was removed, but the logic in tick_handle_oneshot_broadcast() was kept the same. When a broadcast interrupt happens we signal the expiry to all CPUs which have an expired event. If none of the CPUs has an expired event, which can happen in dyntick mode, then we reprogram the broadcast device. We do not reprogram otherwise, but this is only correct if all CPUs, which are in the idle broadcast state have been woken up. The code ignores, that there might be pending not yet expired events on other CPUs, which are in the idle broadcast state. So the delivery of those events can be delayed for quite a time. Change the tick_handle_oneshot_broadcast() function to check for CPUs, which are in broadcast state and are not woken up by the current event, and enforce the rearming of the broadcast device for those CPUs. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* time: fix inconsistent function names in commentsLi Zefan2007-11-05
| | | | | | | | Signed-off-by: Li Zefan <lizf@cn.fujitsu.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* x86: C1E late detection fix. Really switch off lapic timerThomas Gleixner2007-10-17
| | | | | | | | | | | Doh, I completely missed that devices marked DUMMY are not running the set_mode function. So we force broadcasting, but we keep the local APIC timer running. Let the clock event layer mark the device _after_ switching it off. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* time: simplify smp_call_function_single() call sequenceAvi Kivity2007-10-17
| | | | | | | | | | | smp_call_function_single() now knows how to call the function on the current cpu. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Avi Kivity <avi@qumranet.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* clockevents: introduce force broadcast notifierThomas Gleixner2007-10-14
| | | | | | | | | | | | | | | | The 64bit SMP bootup is slightly different to the 32bit one. It enables the boot CPU local APIC timer before all CPUs are brought up. Some AMD C1E systems have the C1E feature flag only set in the secondary CPU. Due to the early enable of the boot CPU local APIC timer the APIC timer is registered as a fully functional device. When we detect the wreckage during the bringup of the secondary CPU, we need to force the boot CPU into broadcast mode. Add a new notifier reason and implement the force broadcast in the clock events layer. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* clock events: allow replacement of broadcast timerVenki Pallipadi2007-10-12
| | | | | | | | | | | | | | Change the broadcast timer, if a timer with higher rating becomes available. Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: john stultz <johnstul@us.ibm.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* clockevents: fix periodic broadcast for oneshot devicesThomas Gleixner2007-10-12
| | | | | | | | | | | | | The next_event member of the clock event device is used to keep track of the next periodic event. For one shot only devices it is wrong to clear the variable, as the next event will be based on it. Pointed out by Ralf Baechle Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
* clockevents: remove the suspend/resume workaround^WthinkoThomas Gleixner2007-09-22
| | | | | | | | | | | | | | | | | | | | | | | | | In a desparate attempt to fix the suspend/resume problem on Andrews VAIO I added a workaround which enforced the broadcast of the oneshot timer on resume. This was actually resolving the problem on the VAIO but was just a stupid workaround, which was not tackling the root cause: the assignement of lower idle C-States in the ACPI processor_idle code. The cpuidle patches, which utilize the dynamic tick feature and go faster into deeper C-states exposed the problem again. The correct solution is the previous patch, which prevents lower C-states across the suspend/resume. Remove the enforcement code, including the conditional broadcast timer arming, which helped to pamper over the real problem for quite a time. The oneshot broadcast flag for the cpu, which runs the resume code can never be set at the time when this code is executed. It only gets set, when the CPU is entering a lower idle C-State. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Andrew Morton <akpm@linux-foundation.org> Cc: Len Brown <lenb@kernel.org> Cc: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> Cc: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* clockevents: do not shutdown the oneshot broadcast deviceThomas Gleixner2007-09-16
| | | | | | | | | | When a cpu goes offline it is removed from the broadcast masks. If the mask becomes empty the code shuts down the broadcast device. This is wrong, because the broadcast device needs to be ready for the online cpu going idle (into a c-state, which stops the local apic timer). Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* clockevents: Enforce oneshot broadcast when broadcast mask is set on resumeThomas Gleixner2007-09-16
| | | | | | | | | | The jinxed VAIO refuses to resume without hitting keys on the keyboard when this is not enforced. It is unclear why the cpu ends up in a lower C State without notifying the clock events layer, but enforcing the oneshot broadcast here is safe. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* clockevents: fix device replacementThomas Gleixner2007-07-21
| | | | | | | | | | | When a device is replaced by a better rated device, then the broadcast mode needs to be evaluated again. When the new device has no requirement for broadcasting, then the broadcast bits for the CPU must be cleared. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* clockevents: fix resume logicThomas Gleixner2007-07-21
| | | | | | | | | | | | | | | | | | | | We need to make sure, that the clockevent devices are resumed, before the tick is resumed. The current resume logic does not guarantee this. Add CLOCK_EVT_MODE_RESUME and call the set mode functions of the clock event devices before resuming the tick / oneshot functionality. Fixup the existing users. Thanks to Nigel Cunningham for tracking down a long standing thinko, which affected the jinxed VAIO. [akpm@linux-foundation.org: xen build fix] Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Ignore bogus ACPI info for offline CPUsThomas Gleixner2007-05-23
| | | | | | | | | | | | | | | Booting a SMP kernel with maxcpus=1 on a SMP system leads to a hard hang, because ACPI ignores the maxcpus setting and sends timer broadcast info for the offline CPUs. This results in a stuck for ever call to smp_call_function_single() on an offline CPU. Ignore the bogus information and print a kernel error to remind ACPI folks to fix it. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* [PATCH] clockevents: Fix suspend/resume to disk hangsThomas Gleixner2007-03-16
| | | | | | | | | | | | | | | | | | | | | | I finally found a dual core box, which survives suspend/resume without crashing in the middle of nowhere. Sigh, I never figured out from the code and the bug reports what's going on. The observed hangs are caused by a stale state transition of the clock event devices, which keeps the RCU synchronization away from completion, when the non boot CPU is brought back up. The suspend/resume in oneshot mode needs the similar care as the periodic mode during suspend to RAM. My assumption that the state transitions during the different shutdown/bringups of s2disk would go through the periodic boot phase and then switch over to highres resp. nohz mode were simply wrong. Add the appropriate suspend / resume handling for the non periodic modes. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* [PATCH] Save/restore periodic tick information over suspend/resumeThomas Gleixner2007-03-06
| | | | | | | | | | | | | | | | The programming of periodic tick devices needs to be saved/restored across suspend/resume - otherwise we might end up with a system coming up that relies on getting a PIT (or HPET) interrupt, while those devices default to 'no interrupts' after powerup. (To confuse things it worked to a certain degree on some systems because the lapic gets initialized as a side-effect of SMP bootup.) This suspend / resume thing was dropped unintentionally during the last-minute -mm code reshuffling. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* [PATCH] Add debugging feature /proc/timer_listIngo Molnar2007-02-16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | add /proc/timer_list, which prints all currently pending (high-res) timers, all clock-event sources and their parameters in a human-readable form. Sample output: Timer List Version: v0.1 HRTIMER_MAX_CLOCK_BASES: 2 now at 4246046273872 nsecs cpu: 0 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_stop_sched_tick, swapper/0 # expires at 4246432689566 nsecs [in 386415694 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, pcscd/2050 # expires at 4247018194689 nsecs [in 971920817 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, irqbalance/1909 # expires at 4247351358392 nsecs [in 1305084520 nsecs] #3: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, crond/2157 # expires at 4249097614968 nsecs [in 3051341096 nsecs] #4: <f5a90ec8>, it_real_fn, do_setitimer, syslogd/1888 # expires at 4251329900926 nsecs [in 5283627054 nsecs] .expires_next : 4246432689566 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 31306 .idle_tick : 4246020791890 nsecs .tick_stopped : 1 .idle_jiffies : 986504 .idle_calls : 40700 .idle_sleeps : 36014 .idle_entrytime : 4246019418883 nsecs .idle_sleeptime : 4178181972709 nsecs cpu: 1 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_restart_sched_tick, swapper/0 # expires at 4246050084568 nsecs [in 3810696 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, atd/2227 # expires at 4261010635003 nsecs [in 14964361131 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, smartd/2332 # expires at 5469485798970 nsecs [in 1223439525098 nsecs] .expires_next : 4246050084568 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 24043 .idle_tick : 4246046084568 nsecs .tick_stopped : 0 .idle_jiffies : 986510 .idle_calls : 26360 .idle_sleeps : 22551 .idle_entrytime : 4246043874339 nsecs .idle_sleeptime : 4170763761184 nsecs tick_broadcast_mask: 00000003 event_broadcast_mask: 00000001 CPU#0's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246432689566 nsecs CPU#1's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246050084568 nsecs Clock Event Device: hpet capabilities: 00000007 max_delta_ns: 2147483647 min_delta_ns: 3352 mult: 61496110 shift: 32 set_next_event: hpet_next_event set_mode: hpet_set_mode event_handler: handle_nextevt_broadcast Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* [PATCH] tick-management: dyntick / highres functionalityThomas Gleixner2007-02-16
| | | | | | | | | | | | | | | | | With Ingo Molnar <mingo@elte.hu> Add functions to provide dynamic ticks and high resolution timers. The code which keeps track of jiffies and handles the long idle periods is shared between tick based and high resolution timer based dynticks. The dyntick functionality can be disabled on the kernel commandline. Provide also the infrastructure to support high resolution timers. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu> Cc: john stultz <johnstul@us.ibm.com> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* [PATCH] tick-management: broadcast functionalityThomas Gleixner2007-02-16
With Ingo Molnar <mingo@elte.hu> Add broadcast functionality, so per cpu clock event devices can be registered as dummy devices or switched from/to broadcast on demand. The broadcast function distributes the events via the broadcast function of the clock event device. This is primarily designed to replace the switch apic timer to / from IPI in power states, where the apic stops. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu> Cc: john stultz <johnstul@us.ibm.com> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>