diff options
Diffstat (limited to 'mm')
-rw-r--r-- | mm/backing-dev.c | 15 | ||||
-rw-r--r-- | mm/memcontrol.c | 2 | ||||
-rw-r--r-- | mm/mlock.c | 41 | ||||
-rw-r--r-- | mm/msync.c | 2 | ||||
-rw-r--r-- | mm/page-writeback.c | 44 | ||||
-rw-r--r-- | mm/page_alloc.c | 2 | ||||
-rw-r--r-- | mm/percpu-km.c | 104 | ||||
-rw-r--r-- | mm/percpu-vm.c | 451 | ||||
-rw-r--r-- | mm/percpu.c | 585 | ||||
-rw-r--r-- | mm/shmem.c | 29 | ||||
-rw-r--r-- | mm/slab.c | 174 | ||||
-rw-r--r-- | mm/slub.c | 38 | ||||
-rw-r--r-- | mm/swapfile.c | 14 |
13 files changed, 885 insertions, 616 deletions
diff --git a/mm/backing-dev.c b/mm/backing-dev.c index 707d0dc6da0..660a87a2251 100644 --- a/mm/backing-dev.c +++ b/mm/backing-dev.c | |||
@@ -48,7 +48,6 @@ static struct timer_list sync_supers_timer; | |||
48 | 48 | ||
49 | static int bdi_sync_supers(void *); | 49 | static int bdi_sync_supers(void *); |
50 | static void sync_supers_timer_fn(unsigned long); | 50 | static void sync_supers_timer_fn(unsigned long); |
51 | static void arm_supers_timer(void); | ||
52 | 51 | ||
53 | static void bdi_add_default_flusher_task(struct backing_dev_info *bdi); | 52 | static void bdi_add_default_flusher_task(struct backing_dev_info *bdi); |
54 | 53 | ||
@@ -252,7 +251,7 @@ static int __init default_bdi_init(void) | |||
252 | 251 | ||
253 | init_timer(&sync_supers_timer); | 252 | init_timer(&sync_supers_timer); |
254 | setup_timer(&sync_supers_timer, sync_supers_timer_fn, 0); | 253 | setup_timer(&sync_supers_timer, sync_supers_timer_fn, 0); |
255 | arm_supers_timer(); | 254 | bdi_arm_supers_timer(); |
256 | 255 | ||
257 | err = bdi_init(&default_backing_dev_info); | 256 | err = bdi_init(&default_backing_dev_info); |
258 | if (!err) | 257 | if (!err) |
@@ -374,10 +373,13 @@ static int bdi_sync_supers(void *unused) | |||
374 | return 0; | 373 | return 0; |
375 | } | 374 | } |
376 | 375 | ||
377 | static void arm_supers_timer(void) | 376 | void bdi_arm_supers_timer(void) |
378 | { | 377 | { |
379 | unsigned long next; | 378 | unsigned long next; |
380 | 379 | ||
380 | if (!dirty_writeback_interval) | ||
381 | return; | ||
382 | |||
381 | next = msecs_to_jiffies(dirty_writeback_interval * 10) + jiffies; | 383 | next = msecs_to_jiffies(dirty_writeback_interval * 10) + jiffies; |
382 | mod_timer(&sync_supers_timer, round_jiffies_up(next)); | 384 | mod_timer(&sync_supers_timer, round_jiffies_up(next)); |
383 | } | 385 | } |
@@ -385,7 +387,7 @@ static void arm_supers_timer(void) | |||
385 | static void sync_supers_timer_fn(unsigned long unused) | 387 | static void sync_supers_timer_fn(unsigned long unused) |
386 | { | 388 | { |
387 | wake_up_process(sync_supers_tsk); | 389 | wake_up_process(sync_supers_tsk); |
388 | arm_supers_timer(); | 390 | bdi_arm_supers_timer(); |
389 | } | 391 | } |
390 | 392 | ||
391 | static int bdi_forker_task(void *ptr) | 393 | static int bdi_forker_task(void *ptr) |
@@ -428,7 +430,10 @@ static int bdi_forker_task(void *ptr) | |||
428 | 430 | ||
429 | spin_unlock_bh(&bdi_lock); | 431 | spin_unlock_bh(&bdi_lock); |
430 | wait = msecs_to_jiffies(dirty_writeback_interval * 10); | 432 | wait = msecs_to_jiffies(dirty_writeback_interval * 10); |
431 | schedule_timeout(wait); | 433 | if (wait) |
434 | schedule_timeout(wait); | ||
435 | else | ||
436 | schedule(); | ||
432 | try_to_freeze(); | 437 | try_to_freeze(); |
433 | continue; | 438 | continue; |
434 | } | 439 | } |
diff --git a/mm/memcontrol.c b/mm/memcontrol.c index 8a79a6f0f02..c8569bc298f 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c | |||
@@ -1438,7 +1438,7 @@ static void drain_local_stock(struct work_struct *dummy) | |||
1438 | 1438 | ||
1439 | /* | 1439 | /* |
1440 | * Cache charges(val) which is from res_counter, to local per_cpu area. | 1440 | * Cache charges(val) which is from res_counter, to local per_cpu area. |
1441 | * This will be consumed by consumt_stock() function, later. | 1441 | * This will be consumed by consume_stock() function, later. |
1442 | */ | 1442 | */ |
1443 | static void refill_stock(struct mem_cgroup *mem, int val) | 1443 | static void refill_stock(struct mem_cgroup *mem, int val) |
1444 | { | 1444 | { |
diff --git a/mm/mlock.c b/mm/mlock.c index 8f4e2dfceec..3f82720e051 100644 --- a/mm/mlock.c +++ b/mm/mlock.c | |||
@@ -607,44 +607,3 @@ void user_shm_unlock(size_t size, struct user_struct *user) | |||
607 | spin_unlock(&shmlock_user_lock); | 607 | spin_unlock(&shmlock_user_lock); |
608 | free_uid(user); | 608 | free_uid(user); |
609 | } | 609 | } |
610 | |||
611 | int account_locked_memory(struct mm_struct *mm, struct rlimit *rlim, | ||
612 | size_t size) | ||
613 | { | ||
614 | unsigned long lim, vm, pgsz; | ||
615 | int error = -ENOMEM; | ||
616 | |||
617 | pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT; | ||
618 | |||
619 | down_write(&mm->mmap_sem); | ||
620 | |||
621 | lim = ACCESS_ONCE(rlim[RLIMIT_AS].rlim_cur) >> PAGE_SHIFT; | ||
622 | vm = mm->total_vm + pgsz; | ||
623 | if (lim < vm) | ||
624 | goto out; | ||
625 | |||
626 | lim = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur) >> PAGE_SHIFT; | ||
627 | vm = mm->locked_vm + pgsz; | ||
628 | if (lim < vm) | ||
629 | goto out; | ||
630 | |||
631 | mm->total_vm += pgsz; | ||
632 | mm->locked_vm += pgsz; | ||
633 | |||
634 | error = 0; | ||
635 | out: | ||
636 | up_write(&mm->mmap_sem); | ||
637 | return error; | ||
638 | } | ||
639 | |||
640 | void refund_locked_memory(struct mm_struct *mm, size_t size) | ||
641 | { | ||
642 | unsigned long pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT; | ||
643 | |||
644 | down_write(&mm->mmap_sem); | ||
645 | |||
646 | mm->total_vm -= pgsz; | ||
647 | mm->locked_vm -= pgsz; | ||
648 | |||
649 | up_write(&mm->mmap_sem); | ||
650 | } | ||
diff --git a/mm/msync.c b/mm/msync.c index 4083209b7f0..632df4527c0 100644 --- a/mm/msync.c +++ b/mm/msync.c | |||
@@ -82,7 +82,7 @@ SYSCALL_DEFINE3(msync, unsigned long, start, size_t, len, int, flags) | |||
82 | (vma->vm_flags & VM_SHARED)) { | 82 | (vma->vm_flags & VM_SHARED)) { |
83 | get_file(file); | 83 | get_file(file); |
84 | up_read(&mm->mmap_sem); | 84 | up_read(&mm->mmap_sem); |
85 | error = vfs_fsync(file, file->f_path.dentry, 0); | 85 | error = vfs_fsync(file, 0); |
86 | fput(file); | 86 | fput(file); |
87 | if (error || start >= end) | 87 | if (error || start >= end) |
88 | goto out; | 88 | goto out; |
diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 0b19943ecf8..b289310e2c8 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c | |||
@@ -597,7 +597,7 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
597 | (!laptop_mode && ((global_page_state(NR_FILE_DIRTY) | 597 | (!laptop_mode && ((global_page_state(NR_FILE_DIRTY) |
598 | + global_page_state(NR_UNSTABLE_NFS)) | 598 | + global_page_state(NR_UNSTABLE_NFS)) |
599 | > background_thresh))) | 599 | > background_thresh))) |
600 | bdi_start_writeback(bdi, NULL, 0); | 600 | bdi_start_writeback(bdi, NULL, 0, 0); |
601 | } | 601 | } |
602 | 602 | ||
603 | void set_page_dirty_balance(struct page *page, int page_mkwrite) | 603 | void set_page_dirty_balance(struct page *page, int page_mkwrite) |
@@ -683,10 +683,6 @@ void throttle_vm_writeout(gfp_t gfp_mask) | |||
683 | } | 683 | } |
684 | } | 684 | } |
685 | 685 | ||
686 | static void laptop_timer_fn(unsigned long unused); | ||
687 | |||
688 | static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0); | ||
689 | |||
690 | /* | 686 | /* |
691 | * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs | 687 | * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs |
692 | */ | 688 | */ |
@@ -694,24 +690,24 @@ int dirty_writeback_centisecs_handler(ctl_table *table, int write, | |||
694 | void __user *buffer, size_t *length, loff_t *ppos) | 690 | void __user *buffer, size_t *length, loff_t *ppos) |
695 | { | 691 | { |
696 | proc_dointvec(table, write, buffer, length, ppos); | 692 | proc_dointvec(table, write, buffer, length, ppos); |
693 | bdi_arm_supers_timer(); | ||
697 | return 0; | 694 | return 0; |
698 | } | 695 | } |
699 | 696 | ||
700 | static void do_laptop_sync(struct work_struct *work) | 697 | #ifdef CONFIG_BLOCK |
698 | void laptop_mode_timer_fn(unsigned long data) | ||
701 | { | 699 | { |
702 | wakeup_flusher_threads(0); | 700 | struct request_queue *q = (struct request_queue *)data; |
703 | kfree(work); | 701 | int nr_pages = global_page_state(NR_FILE_DIRTY) + |
704 | } | 702 | global_page_state(NR_UNSTABLE_NFS); |
705 | 703 | ||
706 | static void laptop_timer_fn(unsigned long unused) | 704 | /* |
707 | { | 705 | * We want to write everything out, not just down to the dirty |
708 | struct work_struct *work; | 706 | * threshold |
707 | */ | ||
709 | 708 | ||
710 | work = kmalloc(sizeof(*work), GFP_ATOMIC); | 709 | if (bdi_has_dirty_io(&q->backing_dev_info)) |
711 | if (work) { | 710 | bdi_start_writeback(&q->backing_dev_info, NULL, nr_pages, 0); |
712 | INIT_WORK(work, do_laptop_sync); | ||
713 | schedule_work(work); | ||
714 | } | ||
715 | } | 711 | } |
716 | 712 | ||
717 | /* | 713 | /* |
@@ -719,9 +715,9 @@ static void laptop_timer_fn(unsigned long unused) | |||
719 | * of all dirty data a few seconds from now. If the flush is already scheduled | 715 | * of all dirty data a few seconds from now. If the flush is already scheduled |
720 | * then push it back - the user is still using the disk. | 716 | * then push it back - the user is still using the disk. |
721 | */ | 717 | */ |
722 | void laptop_io_completion(void) | 718 | void laptop_io_completion(struct backing_dev_info *info) |
723 | { | 719 | { |
724 | mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode); | 720 | mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); |
725 | } | 721 | } |
726 | 722 | ||
727 | /* | 723 | /* |
@@ -731,8 +727,16 @@ void laptop_io_completion(void) | |||
731 | */ | 727 | */ |
732 | void laptop_sync_completion(void) | 728 | void laptop_sync_completion(void) |
733 | { | 729 | { |
734 | del_timer(&laptop_mode_wb_timer); | 730 | struct backing_dev_info *bdi; |
731 | |||
732 | rcu_read_lock(); | ||
733 | |||
734 | list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) | ||
735 | del_timer(&bdi->laptop_mode_wb_timer); | ||
736 | |||
737 | rcu_read_unlock(); | ||
735 | } | 738 | } |
739 | #endif | ||
736 | 740 | ||
737 | /* | 741 | /* |
738 | * If ratelimit_pages is too high then we can get into dirty-data overload | 742 | * If ratelimit_pages is too high then we can get into dirty-data overload |
diff --git a/mm/page_alloc.c b/mm/page_alloc.c index d03c946d556..a6326c71b66 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c | |||
@@ -2579,7 +2579,7 @@ static int default_zonelist_order(void) | |||
2579 | struct zone *z; | 2579 | struct zone *z; |
2580 | int average_size; | 2580 | int average_size; |
2581 | /* | 2581 | /* |
2582 | * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem. | 2582 | * ZONE_DMA and ZONE_DMA32 can be very small area in the system. |
2583 | * If they are really small and used heavily, the system can fall | 2583 | * If they are really small and used heavily, the system can fall |
2584 | * into OOM very easily. | 2584 | * into OOM very easily. |
2585 | * This function detect ZONE_DMA/DMA32 size and confgigures zone order. | 2585 | * This function detect ZONE_DMA/DMA32 size and confgigures zone order. |
diff --git a/mm/percpu-km.c b/mm/percpu-km.c new file mode 100644 index 00000000000..df680855540 --- /dev/null +++ b/mm/percpu-km.c | |||
@@ -0,0 +1,104 @@ | |||
1 | /* | ||
2 | * mm/percpu-km.c - kernel memory based chunk allocation | ||
3 | * | ||
4 | * Copyright (C) 2010 SUSE Linux Products GmbH | ||
5 | * Copyright (C) 2010 Tejun Heo <tj@kernel.org> | ||
6 | * | ||
7 | * This file is released under the GPLv2. | ||
8 | * | ||
9 | * Chunks are allocated as a contiguous kernel memory using gfp | ||
10 | * allocation. This is to be used on nommu architectures. | ||
11 | * | ||
12 | * To use percpu-km, | ||
13 | * | ||
14 | * - define CONFIG_NEED_PER_CPU_KM from the arch Kconfig. | ||
15 | * | ||
16 | * - CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK must not be defined. It's | ||
17 | * not compatible with PER_CPU_KM. EMBED_FIRST_CHUNK should work | ||
18 | * fine. | ||
19 | * | ||
20 | * - NUMA is not supported. When setting up the first chunk, | ||
21 | * @cpu_distance_fn should be NULL or report all CPUs to be nearer | ||
22 | * than or at LOCAL_DISTANCE. | ||
23 | * | ||
24 | * - It's best if the chunk size is power of two multiple of | ||
25 | * PAGE_SIZE. Because each chunk is allocated as a contiguous | ||
26 | * kernel memory block using alloc_pages(), memory will be wasted if | ||
27 | * chunk size is not aligned. percpu-km code will whine about it. | ||
28 | */ | ||
29 | |||
30 | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK | ||
31 | #error "contiguous percpu allocation is incompatible with paged first chunk" | ||
32 | #endif | ||
33 | |||
34 | #include <linux/log2.h> | ||
35 | |||
36 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
37 | { | ||
38 | /* noop */ | ||
39 | return 0; | ||
40 | } | ||
41 | |||
42 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
43 | { | ||
44 | /* nada */ | ||
45 | } | ||
46 | |||
47 | static struct pcpu_chunk *pcpu_create_chunk(void) | ||
48 | { | ||
49 | const int nr_pages = pcpu_group_sizes[0] >> PAGE_SHIFT; | ||
50 | struct pcpu_chunk *chunk; | ||
51 | struct page *pages; | ||
52 | int i; | ||
53 | |||
54 | chunk = pcpu_alloc_chunk(); | ||
55 | if (!chunk) | ||
56 | return NULL; | ||
57 | |||
58 | pages = alloc_pages(GFP_KERNEL, order_base_2(nr_pages)); | ||
59 | if (!pages) { | ||
60 | pcpu_free_chunk(chunk); | ||
61 | return NULL; | ||
62 | } | ||
63 | |||
64 | for (i = 0; i < nr_pages; i++) | ||
65 | pcpu_set_page_chunk(nth_page(pages, i), chunk); | ||
66 | |||
67 | chunk->data = pages; | ||
68 | chunk->base_addr = page_address(pages) - pcpu_group_offsets[0]; | ||
69 | return chunk; | ||
70 | } | ||
71 | |||
72 | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk) | ||
73 | { | ||
74 | const int nr_pages = pcpu_group_sizes[0] >> PAGE_SHIFT; | ||
75 | |||
76 | if (chunk && chunk->data) | ||
77 | __free_pages(chunk->data, order_base_2(nr_pages)); | ||
78 | pcpu_free_chunk(chunk); | ||
79 | } | ||
80 | |||
81 | static struct page *pcpu_addr_to_page(void *addr) | ||
82 | { | ||
83 | return virt_to_page(addr); | ||
84 | } | ||
85 | |||
86 | static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai) | ||
87 | { | ||
88 | size_t nr_pages, alloc_pages; | ||
89 | |||
90 | /* all units must be in a single group */ | ||
91 | if (ai->nr_groups != 1) { | ||
92 | printk(KERN_CRIT "percpu: can't handle more than one groups\n"); | ||
93 | return -EINVAL; | ||
94 | } | ||
95 | |||
96 | nr_pages = (ai->groups[0].nr_units * ai->unit_size) >> PAGE_SHIFT; | ||
97 | alloc_pages = roundup_pow_of_two(nr_pages); | ||
98 | |||
99 | if (alloc_pages > nr_pages) | ||
100 | printk(KERN_WARNING "percpu: wasting %zu pages per chunk\n", | ||
101 | alloc_pages - nr_pages); | ||
102 | |||
103 | return 0; | ||
104 | } | ||
diff --git a/mm/percpu-vm.c b/mm/percpu-vm.c new file mode 100644 index 00000000000..7d9c1d0ebd3 --- /dev/null +++ b/mm/percpu-vm.c | |||
@@ -0,0 +1,451 @@ | |||
1 | /* | ||
2 | * mm/percpu-vm.c - vmalloc area based chunk allocation | ||
3 | * | ||
4 | * Copyright (C) 2010 SUSE Linux Products GmbH | ||
5 | * Copyright (C) 2010 Tejun Heo <tj@kernel.org> | ||
6 | * | ||
7 | * This file is released under the GPLv2. | ||
8 | * | ||
9 | * Chunks are mapped into vmalloc areas and populated page by page. | ||
10 | * This is the default chunk allocator. | ||
11 | */ | ||
12 | |||
13 | static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk, | ||
14 | unsigned int cpu, int page_idx) | ||
15 | { | ||
16 | /* must not be used on pre-mapped chunk */ | ||
17 | WARN_ON(chunk->immutable); | ||
18 | |||
19 | return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx)); | ||
20 | } | ||
21 | |||
22 | /** | ||
23 | * pcpu_get_pages_and_bitmap - get temp pages array and bitmap | ||
24 | * @chunk: chunk of interest | ||
25 | * @bitmapp: output parameter for bitmap | ||
26 | * @may_alloc: may allocate the array | ||
27 | * | ||
28 | * Returns pointer to array of pointers to struct page and bitmap, | ||
29 | * both of which can be indexed with pcpu_page_idx(). The returned | ||
30 | * array is cleared to zero and *@bitmapp is copied from | ||
31 | * @chunk->populated. Note that there is only one array and bitmap | ||
32 | * and access exclusion is the caller's responsibility. | ||
33 | * | ||
34 | * CONTEXT: | ||
35 | * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc. | ||
36 | * Otherwise, don't care. | ||
37 | * | ||
38 | * RETURNS: | ||
39 | * Pointer to temp pages array on success, NULL on failure. | ||
40 | */ | ||
41 | static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk, | ||
42 | unsigned long **bitmapp, | ||
43 | bool may_alloc) | ||
44 | { | ||
45 | static struct page **pages; | ||
46 | static unsigned long *bitmap; | ||
47 | size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]); | ||
48 | size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) * | ||
49 | sizeof(unsigned long); | ||
50 | |||
51 | if (!pages || !bitmap) { | ||
52 | if (may_alloc && !pages) | ||
53 | pages = pcpu_mem_alloc(pages_size); | ||
54 | if (may_alloc && !bitmap) | ||
55 | bitmap = pcpu_mem_alloc(bitmap_size); | ||
56 | if (!pages || !bitmap) | ||
57 | return NULL; | ||
58 | } | ||
59 | |||
60 | memset(pages, 0, pages_size); | ||
61 | bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages); | ||
62 | |||
63 | *bitmapp = bitmap; | ||
64 | return pages; | ||
65 | } | ||
66 | |||
67 | /** | ||
68 | * pcpu_free_pages - free pages which were allocated for @chunk | ||
69 | * @chunk: chunk pages were allocated for | ||
70 | * @pages: array of pages to be freed, indexed by pcpu_page_idx() | ||
71 | * @populated: populated bitmap | ||
72 | * @page_start: page index of the first page to be freed | ||
73 | * @page_end: page index of the last page to be freed + 1 | ||
74 | * | ||
75 | * Free pages [@page_start and @page_end) in @pages for all units. | ||
76 | * The pages were allocated for @chunk. | ||
77 | */ | ||
78 | static void pcpu_free_pages(struct pcpu_chunk *chunk, | ||
79 | struct page **pages, unsigned long *populated, | ||
80 | int page_start, int page_end) | ||
81 | { | ||
82 | unsigned int cpu; | ||
83 | int i; | ||
84 | |||
85 | for_each_possible_cpu(cpu) { | ||
86 | for (i = page_start; i < page_end; i++) { | ||
87 | struct page *page = pages[pcpu_page_idx(cpu, i)]; | ||
88 | |||
89 | if (page) | ||
90 | __free_page(page); | ||
91 | } | ||
92 | } | ||
93 | } | ||
94 | |||
95 | /** | ||
96 | * pcpu_alloc_pages - allocates pages for @chunk | ||
97 | * @chunk: target chunk | ||
98 | * @pages: array to put the allocated pages into, indexed by pcpu_page_idx() | ||
99 | * @populated: populated bitmap | ||
100 | * @page_start: page index of the first page to be allocated | ||
101 | * @page_end: page index of the last page to be allocated + 1 | ||
102 | * | ||
103 | * Allocate pages [@page_start,@page_end) into @pages for all units. | ||
104 | * The allocation is for @chunk. Percpu core doesn't care about the | ||
105 | * content of @pages and will pass it verbatim to pcpu_map_pages(). | ||
106 | */ | ||
107 | static int pcpu_alloc_pages(struct pcpu_chunk *chunk, | ||
108 | struct page **pages, unsigned long *populated, | ||
109 | int page_start, int page_end) | ||
110 | { | ||
111 | const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; | ||
112 | unsigned int cpu; | ||
113 | int i; | ||
114 | |||
115 | for_each_possible_cpu(cpu) { | ||
116 | for (i = page_start; i < page_end; i++) { | ||
117 | struct page **pagep = &pages[pcpu_page_idx(cpu, i)]; | ||
118 | |||
119 | *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0); | ||
120 | if (!*pagep) { | ||
121 | pcpu_free_pages(chunk, pages, populated, | ||
122 | page_start, page_end); | ||
123 | return -ENOMEM; | ||
124 | } | ||
125 | } | ||
126 | } | ||
127 | return 0; | ||
128 | } | ||
129 | |||
130 | /** | ||
131 | * pcpu_pre_unmap_flush - flush cache prior to unmapping | ||
132 | * @chunk: chunk the regions to be flushed belongs to | ||
133 | * @page_start: page index of the first page to be flushed | ||
134 | * @page_end: page index of the last page to be flushed + 1 | ||
135 | * | ||
136 | * Pages in [@page_start,@page_end) of @chunk are about to be | ||
137 | * unmapped. Flush cache. As each flushing trial can be very | ||
138 | * expensive, issue flush on the whole region at once rather than | ||
139 | * doing it for each cpu. This could be an overkill but is more | ||
140 | * scalable. | ||
141 | */ | ||
142 | static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk, | ||
143 | int page_start, int page_end) | ||
144 | { | ||
145 | flush_cache_vunmap( | ||
146 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
147 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
148 | } | ||
149 | |||
150 | static void __pcpu_unmap_pages(unsigned long addr, int nr_pages) | ||
151 | { | ||
152 | unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT); | ||
153 | } | ||
154 | |||
155 | /** | ||
156 | * pcpu_unmap_pages - unmap pages out of a pcpu_chunk | ||
157 | * @chunk: chunk of interest | ||
158 | * @pages: pages array which can be used to pass information to free | ||
159 | * @populated: populated bitmap | ||
160 | * @page_start: page index of the first page to unmap | ||
161 | * @page_end: page index of the last page to unmap + 1 | ||
162 | * | ||
163 | * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. | ||
164 | * Corresponding elements in @pages were cleared by the caller and can | ||
165 | * be used to carry information to pcpu_free_pages() which will be | ||
166 | * called after all unmaps are finished. The caller should call | ||
167 | * proper pre/post flush functions. | ||
168 | */ | ||
169 | static void pcpu_unmap_pages(struct pcpu_chunk *chunk, | ||
170 | struct page **pages, unsigned long *populated, | ||
171 | int page_start, int page_end) | ||
172 | { | ||
173 | unsigned int cpu; | ||
174 | int i; | ||
175 | |||
176 | for_each_possible_cpu(cpu) { | ||
177 | for (i = page_start; i < page_end; i++) { | ||
178 | struct page *page; | ||
179 | |||
180 | page = pcpu_chunk_page(chunk, cpu, i); | ||
181 | WARN_ON(!page); | ||
182 | pages[pcpu_page_idx(cpu, i)] = page; | ||
183 | } | ||
184 | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start), | ||
185 | page_end - page_start); | ||
186 | } | ||
187 | |||
188 | for (i = page_start; i < page_end; i++) | ||
189 | __clear_bit(i, populated); | ||
190 | } | ||
191 | |||
192 | /** | ||
193 | * pcpu_post_unmap_tlb_flush - flush TLB after unmapping | ||
194 | * @chunk: pcpu_chunk the regions to be flushed belong to | ||
195 | * @page_start: page index of the first page to be flushed | ||
196 | * @page_end: page index of the last page to be flushed + 1 | ||
197 | * | ||
198 | * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush | ||
199 | * TLB for the regions. This can be skipped if the area is to be | ||
200 | * returned to vmalloc as vmalloc will handle TLB flushing lazily. | ||
201 | * | ||
202 | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | ||
203 | * for the whole region. | ||
204 | */ | ||
205 | static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, | ||
206 | int page_start, int page_end) | ||
207 | { | ||
208 | flush_tlb_kernel_range( | ||
209 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
210 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
211 | } | ||
212 | |||
213 | static int __pcpu_map_pages(unsigned long addr, struct page **pages, | ||
214 | int nr_pages) | ||
215 | { | ||
216 | return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT, | ||
217 | PAGE_KERNEL, pages); | ||
218 | } | ||
219 | |||
220 | /** | ||
221 | * pcpu_map_pages - map pages into a pcpu_chunk | ||
222 | * @chunk: chunk of interest | ||
223 | * @pages: pages array containing pages to be mapped | ||
224 | * @populated: populated bitmap | ||
225 | * @page_start: page index of the first page to map | ||
226 | * @page_end: page index of the last page to map + 1 | ||
227 | * | ||
228 | * For each cpu, map pages [@page_start,@page_end) into @chunk. The | ||
229 | * caller is responsible for calling pcpu_post_map_flush() after all | ||
230 | * mappings are complete. | ||
231 | * | ||
232 | * This function is responsible for setting corresponding bits in | ||
233 | * @chunk->populated bitmap and whatever is necessary for reverse | ||
234 | * lookup (addr -> chunk). | ||
235 | */ | ||
236 | static int pcpu_map_pages(struct pcpu_chunk *chunk, | ||
237 | struct page **pages, unsigned long *populated, | ||
238 | int page_start, int page_end) | ||
239 | { | ||
240 | unsigned int cpu, tcpu; | ||
241 | int i, err; | ||
242 | |||
243 | for_each_possible_cpu(cpu) { | ||
244 | err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start), | ||
245 | &pages[pcpu_page_idx(cpu, page_start)], | ||
246 | page_end - page_start); | ||
247 | if (err < 0) | ||
248 | goto err; | ||
249 | } | ||
250 | |||
251 | /* mapping successful, link chunk and mark populated */ | ||
252 | for (i = page_start; i < page_end; i++) { | ||
253 | for_each_possible_cpu(cpu) | ||
254 | pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)], | ||
255 | chunk); | ||
256 | __set_bit(i, populated); | ||
257 | } | ||
258 | |||
259 | return 0; | ||
260 | |||
261 | err: | ||
262 | for_each_possible_cpu(tcpu) { | ||
263 | if (tcpu == cpu) | ||
264 | break; | ||
265 | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start), | ||
266 | page_end - page_start); | ||
267 | } | ||
268 | return err; | ||
269 | } | ||
270 | |||
271 | /** | ||
272 | * pcpu_post_map_flush - flush cache after mapping | ||
273 | * @chunk: pcpu_chunk the regions to be flushed belong to | ||
274 | * @page_start: page index of the first page to be flushed | ||
275 | * @page_end: page index of the last page to be flushed + 1 | ||
276 | * | ||
277 | * Pages [@page_start,@page_end) of @chunk have been mapped. Flush | ||
278 | * cache. | ||
279 | * | ||
280 | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | ||
281 | * for the whole region. | ||
282 | */ | ||
283 | static void pcpu_post_map_flush(struct pcpu_chunk *chunk, | ||
284 | int page_start, int page_end) | ||
285 | { | ||
286 | flush_cache_vmap( | ||
287 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
288 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
289 | } | ||
290 | |||
291 | /** | ||
292 | * pcpu_populate_chunk - populate and map an area of a pcpu_chunk | ||
293 | * @chunk: chunk of interest | ||
294 | * @off: offset to the area to populate | ||
295 | * @size: size of the area to populate in bytes | ||
296 | * | ||
297 | * For each cpu, populate and map pages [@page_start,@page_end) into | ||
298 | * @chunk. The area is cleared on return. | ||
299 | * | ||
300 | * CONTEXT: | ||
301 | * pcpu_alloc_mutex, does GFP_KERNEL allocation. | ||
302 | */ | ||
303 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
304 | { | ||
305 | int page_start = PFN_DOWN(off); | ||
306 | int page_end = PFN_UP(off + size); | ||
307 | int free_end = page_start, unmap_end = page_start; | ||
308 | struct page **pages; | ||
309 | unsigned long *populated; | ||
310 | unsigned int cpu; | ||
311 | int rs, re, rc; | ||
312 | |||
313 | /* quick path, check whether all pages are already there */ | ||
314 | rs = page_start; | ||
315 | pcpu_next_pop(chunk, &rs, &re, page_end); | ||
316 | if (rs == page_start && re == page_end) | ||
317 | goto clear; | ||
318 | |||
319 | /* need to allocate and map pages, this chunk can't be immutable */ | ||
320 | WARN_ON(chunk->immutable); | ||
321 | |||
322 | pages = pcpu_get_pages_and_bitmap(chunk, &populated, true); | ||
323 | if (!pages) | ||
324 | return -ENOMEM; | ||
325 | |||
326 | /* alloc and map */ | ||
327 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { | ||
328 | rc = pcpu_alloc_pages(chunk, pages, populated, rs, re); | ||
329 | if (rc) | ||
330 | goto err_free; | ||
331 | free_end = re; | ||
332 | } | ||
333 | |||
334 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { | ||
335 | rc = pcpu_map_pages(chunk, pages, populated, rs, re); | ||
336 | if (rc) | ||
337 | goto err_unmap; | ||
338 | unmap_end = re; | ||
339 | } | ||
340 | pcpu_post_map_flush(chunk, page_start, page_end); | ||
341 | |||
342 | /* commit new bitmap */ | ||
343 | bitmap_copy(chunk->populated, populated, pcpu_unit_pages); | ||
344 | clear: | ||
345 | for_each_possible_cpu(cpu) | ||
346 | memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); | ||
347 | return 0; | ||
348 | |||
349 | err_unmap: | ||
350 | pcpu_pre_unmap_flush(chunk, page_start, unmap_end); | ||
351 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end) | ||
352 | pcpu_unmap_pages(chunk, pages, populated, rs, re); | ||
353 | pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end); | ||
354 | err_free: | ||
355 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end) | ||
356 | pcpu_free_pages(chunk, pages, populated, rs, re); | ||
357 | return rc; | ||
358 | } | ||
359 | |||
360 | /** | ||
361 | * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk | ||
362 | * @chunk: chunk to depopulate | ||
363 | * @off: offset to the area to depopulate | ||
364 | * @size: size of the area to depopulate in bytes | ||
365 | * @flush: whether to flush cache and tlb or not | ||
366 | * | ||
367 | * For each cpu, depopulate and unmap pages [@page_start,@page_end) | ||
368 | * from @chunk. If @flush is true, vcache is flushed before unmapping | ||
369 | * and tlb after. | ||
370 | * | ||
371 | * CONTEXT: | ||
372 | * pcpu_alloc_mutex. | ||
373 | */ | ||
374 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
375 | { | ||
376 | int page_start = PFN_DOWN(off); | ||
377 | int page_end = PFN_UP(off + size); | ||
378 | struct page **pages; | ||
379 | unsigned long *populated; | ||
380 | int rs, re; | ||
381 | |||
382 | /* quick path, check whether it's empty already */ | ||
383 | rs = page_start; | ||
384 | pcpu_next_unpop(chunk, &rs, &re, page_end); | ||
385 | if (rs == page_start && re == page_end) | ||
386 | return; | ||
387 | |||
388 | /* immutable chunks can't be depopulated */ | ||
389 | WARN_ON(chunk->immutable); | ||
390 | |||
391 | /* | ||
392 | * If control reaches here, there must have been at least one | ||
393 | * successful population attempt so the temp pages array must | ||
394 | * be available now. | ||
395 | */ | ||
396 | pages = pcpu_get_pages_and_bitmap(chunk, &populated, false); | ||
397 | BUG_ON(!pages); | ||
398 | |||
399 | /* unmap and free */ | ||
400 | pcpu_pre_unmap_flush(chunk, page_start, page_end); | ||
401 | |||
402 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) | ||
403 | pcpu_unmap_pages(chunk, pages, populated, rs, re); | ||
404 | |||
405 | /* no need to flush tlb, vmalloc will handle it lazily */ | ||
406 | |||
407 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) | ||
408 | pcpu_free_pages(chunk, pages, populated, rs, re); | ||
409 | |||
410 | /* commit new bitmap */ | ||
411 | bitmap_copy(chunk->populated, populated, pcpu_unit_pages); | ||
412 | } | ||
413 | |||
414 | static struct pcpu_chunk *pcpu_create_chunk(void) | ||
415 | { | ||
416 | struct pcpu_chunk *chunk; | ||
417 | struct vm_struct **vms; | ||
418 | |||
419 | chunk = pcpu_alloc_chunk(); | ||
420 | if (!chunk) | ||
421 | return NULL; | ||
422 | |||
423 | vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes, | ||
424 | pcpu_nr_groups, pcpu_atom_size, GFP_KERNEL); | ||
425 | if (!vms) { | ||
426 | pcpu_free_chunk(chunk); | ||
427 | return NULL; | ||
428 | } | ||
429 | |||
430 | chunk->data = vms; | ||
431 | chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0]; | ||
432 | return chunk; | ||
433 | } | ||
434 | |||
435 | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk) | ||
436 | { | ||
437 | if (chunk && chunk->data) | ||
438 | pcpu_free_vm_areas(chunk->data, pcpu_nr_groups); | ||
439 | pcpu_free_chunk(chunk); | ||
440 | } | ||
441 | |||
442 | static struct page *pcpu_addr_to_page(void *addr) | ||
443 | { | ||
444 | return vmalloc_to_page(addr); | ||
445 | } | ||
446 | |||
447 | static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai) | ||
448 | { | ||
449 | /* no extra restriction */ | ||
450 | return 0; | ||
451 | } | ||
diff --git a/mm/percpu.c b/mm/percpu.c index 6e09741ddc6..39f7dfd5958 100644 --- a/mm/percpu.c +++ b/mm/percpu.c | |||
@@ -1,5 +1,5 @@ | |||
1 | /* | 1 | /* |
2 | * linux/mm/percpu.c - percpu memory allocator | 2 | * mm/percpu.c - percpu memory allocator |
3 | * | 3 | * |
4 | * Copyright (C) 2009 SUSE Linux Products GmbH | 4 | * Copyright (C) 2009 SUSE Linux Products GmbH |
5 | * Copyright (C) 2009 Tejun Heo <tj@kernel.org> | 5 | * Copyright (C) 2009 Tejun Heo <tj@kernel.org> |
@@ -7,14 +7,13 @@ | |||
7 | * This file is released under the GPLv2. | 7 | * This file is released under the GPLv2. |
8 | * | 8 | * |
9 | * This is percpu allocator which can handle both static and dynamic | 9 | * This is percpu allocator which can handle both static and dynamic |
10 | * areas. Percpu areas are allocated in chunks in vmalloc area. Each | 10 | * areas. Percpu areas are allocated in chunks. Each chunk is |
11 | * chunk is consisted of boot-time determined number of units and the | 11 | * consisted of boot-time determined number of units and the first |
12 | * first chunk is used for static percpu variables in the kernel image | 12 | * chunk is used for static percpu variables in the kernel image |
13 | * (special boot time alloc/init handling necessary as these areas | 13 | * (special boot time alloc/init handling necessary as these areas |
14 | * need to be brought up before allocation services are running). | 14 | * need to be brought up before allocation services are running). |
15 | * Unit grows as necessary and all units grow or shrink in unison. | 15 | * Unit grows as necessary and all units grow or shrink in unison. |
16 | * When a chunk is filled up, another chunk is allocated. ie. in | 16 | * When a chunk is filled up, another chunk is allocated. |
17 | * vmalloc area | ||
18 | * | 17 | * |
19 | * c0 c1 c2 | 18 | * c0 c1 c2 |
20 | * ------------------- ------------------- ------------ | 19 | * ------------------- ------------------- ------------ |
@@ -99,7 +98,7 @@ struct pcpu_chunk { | |||
99 | int map_used; /* # of map entries used */ | 98 | int map_used; /* # of map entries used */ |
100 | int map_alloc; /* # of map entries allocated */ | 99 | int map_alloc; /* # of map entries allocated */ |
101 | int *map; /* allocation map */ | 100 | int *map; /* allocation map */ |
102 | struct vm_struct **vms; /* mapped vmalloc regions */ | 101 | void *data; /* chunk data */ |
103 | bool immutable; /* no [de]population allowed */ | 102 | bool immutable; /* no [de]population allowed */ |
104 | unsigned long populated[]; /* populated bitmap */ | 103 | unsigned long populated[]; /* populated bitmap */ |
105 | }; | 104 | }; |
@@ -177,6 +176,21 @@ static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ | |||
177 | static void pcpu_reclaim(struct work_struct *work); | 176 | static void pcpu_reclaim(struct work_struct *work); |
178 | static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); | 177 | static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); |
179 | 178 | ||
179 | static bool pcpu_addr_in_first_chunk(void *addr) | ||
180 | { | ||
181 | void *first_start = pcpu_first_chunk->base_addr; | ||
182 | |||
183 | return addr >= first_start && addr < first_start + pcpu_unit_size; | ||
184 | } | ||
185 | |||
186 | static bool pcpu_addr_in_reserved_chunk(void *addr) | ||
187 | { | ||
188 | void *first_start = pcpu_first_chunk->base_addr; | ||
189 | |||
190 | return addr >= first_start && | ||
191 | addr < first_start + pcpu_reserved_chunk_limit; | ||
192 | } | ||
193 | |||
180 | static int __pcpu_size_to_slot(int size) | 194 | static int __pcpu_size_to_slot(int size) |
181 | { | 195 | { |
182 | int highbit = fls(size); /* size is in bytes */ | 196 | int highbit = fls(size); /* size is in bytes */ |
@@ -198,27 +212,6 @@ static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) | |||
198 | return pcpu_size_to_slot(chunk->free_size); | 212 | return pcpu_size_to_slot(chunk->free_size); |
199 | } | 213 | } |
200 | 214 | ||
201 | static int pcpu_page_idx(unsigned int cpu, int page_idx) | ||
202 | { | ||
203 | return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; | ||
204 | } | ||
205 | |||
206 | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, | ||
207 | unsigned int cpu, int page_idx) | ||
208 | { | ||
209 | return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + | ||
210 | (page_idx << PAGE_SHIFT); | ||
211 | } | ||
212 | |||
213 | static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk, | ||
214 | unsigned int cpu, int page_idx) | ||
215 | { | ||
216 | /* must not be used on pre-mapped chunk */ | ||
217 | WARN_ON(chunk->immutable); | ||
218 | |||
219 | return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx)); | ||
220 | } | ||
221 | |||
222 | /* set the pointer to a chunk in a page struct */ | 215 | /* set the pointer to a chunk in a page struct */ |
223 | static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) | 216 | static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) |
224 | { | 217 | { |
@@ -231,13 +224,27 @@ static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) | |||
231 | return (struct pcpu_chunk *)page->index; | 224 | return (struct pcpu_chunk *)page->index; |
232 | } | 225 | } |
233 | 226 | ||
234 | static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end) | 227 | static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) |
228 | { | ||
229 | return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; | ||
230 | } | ||
231 | |||
232 | static unsigned long __maybe_unused pcpu_chunk_addr(struct pcpu_chunk *chunk, | ||
233 | unsigned int cpu, int page_idx) | ||
234 | { | ||
235 | return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + | ||
236 | (page_idx << PAGE_SHIFT); | ||
237 | } | ||
238 | |||
239 | static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, | ||
240 | int *rs, int *re, int end) | ||
235 | { | 241 | { |
236 | *rs = find_next_zero_bit(chunk->populated, end, *rs); | 242 | *rs = find_next_zero_bit(chunk->populated, end, *rs); |
237 | *re = find_next_bit(chunk->populated, end, *rs + 1); | 243 | *re = find_next_bit(chunk->populated, end, *rs + 1); |
238 | } | 244 | } |
239 | 245 | ||
240 | static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end) | 246 | static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, |
247 | int *rs, int *re, int end) | ||
241 | { | 248 | { |
242 | *rs = find_next_bit(chunk->populated, end, *rs); | 249 | *rs = find_next_bit(chunk->populated, end, *rs); |
243 | *re = find_next_zero_bit(chunk->populated, end, *rs + 1); | 250 | *re = find_next_zero_bit(chunk->populated, end, *rs + 1); |
@@ -326,36 +333,6 @@ static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) | |||
326 | } | 333 | } |
327 | 334 | ||
328 | /** | 335 | /** |
329 | * pcpu_chunk_addr_search - determine chunk containing specified address | ||
330 | * @addr: address for which the chunk needs to be determined. | ||
331 | * | ||
332 | * RETURNS: | ||
333 | * The address of the found chunk. | ||
334 | */ | ||
335 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) | ||
336 | { | ||
337 | void *first_start = pcpu_first_chunk->base_addr; | ||
338 | |||
339 | /* is it in the first chunk? */ | ||
340 | if (addr >= first_start && addr < first_start + pcpu_unit_size) { | ||
341 | /* is it in the reserved area? */ | ||
342 | if (addr < first_start + pcpu_reserved_chunk_limit) | ||
343 | return pcpu_reserved_chunk; | ||
344 | return pcpu_first_chunk; | ||
345 | } | ||
346 | |||
347 | /* | ||
348 | * The address is relative to unit0 which might be unused and | ||
349 | * thus unmapped. Offset the address to the unit space of the | ||
350 | * current processor before looking it up in the vmalloc | ||
351 | * space. Note that any possible cpu id can be used here, so | ||
352 | * there's no need to worry about preemption or cpu hotplug. | ||
353 | */ | ||
354 | addr += pcpu_unit_offsets[raw_smp_processor_id()]; | ||
355 | return pcpu_get_page_chunk(vmalloc_to_page(addr)); | ||
356 | } | ||
357 | |||
358 | /** | ||
359 | * pcpu_need_to_extend - determine whether chunk area map needs to be extended | 336 | * pcpu_need_to_extend - determine whether chunk area map needs to be extended |
360 | * @chunk: chunk of interest | 337 | * @chunk: chunk of interest |
361 | * | 338 | * |
@@ -623,434 +600,92 @@ static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) | |||
623 | pcpu_chunk_relocate(chunk, oslot); | 600 | pcpu_chunk_relocate(chunk, oslot); |
624 | } | 601 | } |
625 | 602 | ||
626 | /** | 603 | static struct pcpu_chunk *pcpu_alloc_chunk(void) |
627 | * pcpu_get_pages_and_bitmap - get temp pages array and bitmap | ||
628 | * @chunk: chunk of interest | ||
629 | * @bitmapp: output parameter for bitmap | ||
630 | * @may_alloc: may allocate the array | ||
631 | * | ||
632 | * Returns pointer to array of pointers to struct page and bitmap, | ||
633 | * both of which can be indexed with pcpu_page_idx(). The returned | ||
634 | * array is cleared to zero and *@bitmapp is copied from | ||
635 | * @chunk->populated. Note that there is only one array and bitmap | ||
636 | * and access exclusion is the caller's responsibility. | ||
637 | * | ||
638 | * CONTEXT: | ||
639 | * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc. | ||
640 | * Otherwise, don't care. | ||
641 | * | ||
642 | * RETURNS: | ||
643 | * Pointer to temp pages array on success, NULL on failure. | ||
644 | */ | ||
645 | static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk, | ||
646 | unsigned long **bitmapp, | ||
647 | bool may_alloc) | ||
648 | { | ||
649 | static struct page **pages; | ||
650 | static unsigned long *bitmap; | ||
651 | size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]); | ||
652 | size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) * | ||
653 | sizeof(unsigned long); | ||
654 | |||
655 | if (!pages || !bitmap) { | ||
656 | if (may_alloc && !pages) | ||
657 | pages = pcpu_mem_alloc(pages_size); | ||
658 | if (may_alloc && !bitmap) | ||
659 | bitmap = pcpu_mem_alloc(bitmap_size); | ||
660 | if (!pages || !bitmap) | ||
661 | return NULL; | ||
662 | } | ||
663 | |||
664 | memset(pages, 0, pages_size); | ||
665 | bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages); | ||
666 | |||
667 | *bitmapp = bitmap; | ||
668 | return pages; | ||
669 | } | ||
670 | |||
671 | /** | ||
672 | * pcpu_free_pages - free pages which were allocated for @chunk | ||
673 | * @chunk: chunk pages were allocated for | ||
674 | * @pages: array of pages to be freed, indexed by pcpu_page_idx() | ||
675 | * @populated: populated bitmap | ||
676 | * @page_start: page index of the first page to be freed | ||
677 | * @page_end: page index of the last page to be freed + 1 | ||
678 | * | ||
679 | * Free pages [@page_start and @page_end) in @pages for all units. | ||
680 | * The pages were allocated for @chunk. | ||
681 | */ | ||
682 | static void pcpu_free_pages(struct pcpu_chunk *chunk, | ||
683 | struct page **pages, unsigned long *populated, | ||
684 | int page_start, int page_end) | ||
685 | { | 604 | { |
686 | unsigned int cpu; | 605 | struct pcpu_chunk *chunk; |
687 | int i; | ||
688 | 606 | ||
689 | for_each_possible_cpu(cpu) { | 607 | chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL); |
690 | for (i = page_start; i < page_end; i++) { | 608 | if (!chunk) |
691 | struct page *page = pages[pcpu_page_idx(cpu, i)]; | 609 | return NULL; |
692 | 610 | ||
693 | if (page) | 611 | chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); |
694 | __free_page(page); | 612 | if (!chunk->map) { |
695 | } | 613 | kfree(chunk); |
614 | return NULL; | ||
696 | } | 615 | } |
697 | } | ||
698 | 616 | ||
699 | /** | 617 | chunk->map_alloc = PCPU_DFL_MAP_ALLOC; |
700 | * pcpu_alloc_pages - allocates pages for @chunk | 618 | chunk->map[chunk->map_used++] = pcpu_unit_size; |
701 | * @chunk: target chunk | ||
702 | * @pages: array to put the allocated pages into, indexed by pcpu_page_idx() | ||
703 | * @populated: populated bitmap | ||
704 | * @page_start: page index of the first page to be allocated | ||
705 | * @page_end: page index of the last page to be allocated + 1 | ||
706 | * | ||
707 | * Allocate pages [@page_start,@page_end) into @pages for all units. | ||
708 | * The allocation is for @chunk. Percpu core doesn't care about the | ||
709 | * content of @pages and will pass it verbatim to pcpu_map_pages(). | ||
710 | */ | ||
711 | static int pcpu_alloc_pages(struct pcpu_chunk *chunk, | ||
712 | struct page **pages, unsigned long *populated, | ||
713 | int page_start, int page_end) | ||
714 | { | ||
715 | const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; | ||
716 | unsigned int cpu; | ||
717 | int i; | ||
718 | 619 | ||
719 | for_each_possible_cpu(cpu) { | 620 | INIT_LIST_HEAD(&chunk->list); |
720 | for (i = page_start; i < page_end; i++) { | 621 | chunk->free_size = pcpu_unit_size; |
721 | struct page **pagep = &pages[pcpu_page_idx(cpu, i)]; | 622 | chunk->contig_hint = pcpu_unit_size; |
722 | |||
723 | *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0); | ||
724 | if (!*pagep) { | ||
725 | pcpu_free_pages(chunk, pages, populated, | ||
726 | page_start, page_end); | ||
727 | return -ENOMEM; | ||
728 | } | ||
729 | } | ||
730 | } | ||
731 | return 0; | ||
732 | } | ||
733 | 623 | ||
734 | /** | 624 | return chunk; |
735 | * pcpu_pre_unmap_flush - flush cache prior to unmapping | ||
736 | * @chunk: chunk the regions to be flushed belongs to | ||
737 | * @page_start: page index of the first page to be flushed | ||
738 | * @page_end: page index of the last page to be flushed + 1 | ||
739 | * | ||
740 | * Pages in [@page_start,@page_end) of @chunk are about to be | ||
741 | * unmapped. Flush cache. As each flushing trial can be very | ||
742 | * expensive, issue flush on the whole region at once rather than | ||
743 | * doing it for each cpu. This could be an overkill but is more | ||
744 | * scalable. | ||
745 | */ | ||
746 | static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk, | ||
747 | int page_start, int page_end) | ||
748 | { | ||
749 | flush_cache_vunmap( | ||
750 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
751 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
752 | } | 625 | } |
753 | 626 | ||
754 | static void __pcpu_unmap_pages(unsigned long addr, int nr_pages) | 627 | static void pcpu_free_chunk(struct pcpu_chunk *chunk) |
755 | { | 628 | { |
756 | unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT); | 629 | if (!chunk) |
630 | return; | ||
631 | pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); | ||
632 | kfree(chunk); | ||
757 | } | 633 | } |
758 | 634 | ||
759 | /** | 635 | /* |
760 | * pcpu_unmap_pages - unmap pages out of a pcpu_chunk | 636 | * Chunk management implementation. |
761 | * @chunk: chunk of interest | 637 | * |
762 | * @pages: pages array which can be used to pass information to free | 638 | * To allow different implementations, chunk alloc/free and |
763 | * @populated: populated bitmap | 639 | * [de]population are implemented in a separate file which is pulled |
764 | * @page_start: page index of the first page to unmap | 640 | * into this file and compiled together. The following functions |
765 | * @page_end: page index of the last page to unmap + 1 | 641 | * should be implemented. |
766 | * | 642 | * |
767 | * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. | 643 | * pcpu_populate_chunk - populate the specified range of a chunk |
768 | * Corresponding elements in @pages were cleared by the caller and can | 644 | * pcpu_depopulate_chunk - depopulate the specified range of a chunk |
769 | * be used to carry information to pcpu_free_pages() which will be | 645 | * pcpu_create_chunk - create a new chunk |
770 | * called after all unmaps are finished. The caller should call | 646 | * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop |
771 | * proper pre/post flush functions. | 647 | * pcpu_addr_to_page - translate address to physical address |
648 | * pcpu_verify_alloc_info - check alloc_info is acceptable during init | ||
772 | */ | 649 | */ |
773 | static void pcpu_unmap_pages(struct pcpu_chunk *chunk, | 650 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); |
774 | struct page **pages, unsigned long *populated, | 651 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); |
775 | int page_start, int page_end) | 652 | static struct pcpu_chunk *pcpu_create_chunk(void); |
776 | { | 653 | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); |
777 | unsigned int cpu; | 654 | static struct page *pcpu_addr_to_page(void *addr); |
778 | int i; | 655 | static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); |
779 | 656 | ||
780 | for_each_possible_cpu(cpu) { | 657 | #ifdef CONFIG_NEED_PER_CPU_KM |
781 | for (i = page_start; i < page_end; i++) { | 658 | #include "percpu-km.c" |
782 | struct page *page; | 659 | #else |
783 | 660 | #include "percpu-vm.c" | |
784 | page = pcpu_chunk_page(chunk, cpu, i); | 661 | #endif |
785 | WARN_ON(!page); | ||
786 | pages[pcpu_page_idx(cpu, i)] = page; | ||
787 | } | ||
788 | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start), | ||
789 | page_end - page_start); | ||
790 | } | ||
791 | |||
792 | for (i = page_start; i < page_end; i++) | ||
793 | __clear_bit(i, populated); | ||
794 | } | ||
795 | 662 | ||
796 | /** | 663 | /** |
797 | * pcpu_post_unmap_tlb_flush - flush TLB after unmapping | 664 | * pcpu_chunk_addr_search - determine chunk containing specified address |
798 | * @chunk: pcpu_chunk the regions to be flushed belong to | 665 | * @addr: address for which the chunk needs to be determined. |
799 | * @page_start: page index of the first page to be flushed | ||
800 | * @page_end: page index of the last page to be flushed + 1 | ||
801 | * | ||
802 | * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush | ||
803 | * TLB for the regions. This can be skipped if the area is to be | ||
804 | * returned to vmalloc as vmalloc will handle TLB flushing lazily. | ||
805 | * | 666 | * |
806 | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | 667 | * RETURNS: |
807 | * for the whole region. | 668 | * The address of the found chunk. |
808 | */ | ||
809 | static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, | ||
810 | int page_start, int page_end) | ||
811 | { | ||
812 | flush_tlb_kernel_range( | ||
813 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
814 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
815 | } | ||
816 | |||
817 | static int __pcpu_map_pages(unsigned long addr, struct page **pages, | ||
818 | int nr_pages) | ||
819 | { | ||
820 | return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT, | ||
821 | PAGE_KERNEL, pages); | ||
822 | } | ||
823 | |||
824 | /** | ||
825 | * pcpu_map_pages - map pages into a pcpu_chunk | ||
826 | * @chunk: chunk of interest | ||
827 | * @pages: pages array containing pages to be mapped | ||
828 | * @populated: populated bitmap | ||
829 | * @page_start: page index of the first page to map | ||
830 | * @page_end: page index of the last page to map + 1 | ||
831 | * | ||
832 | * For each cpu, map pages [@page_start,@page_end) into @chunk. The | ||
833 | * caller is responsible for calling pcpu_post_map_flush() after all | ||
834 | * mappings are complete. | ||
835 | * | ||
836 | * This function is responsible for setting corresponding bits in | ||
837 | * @chunk->populated bitmap and whatever is necessary for reverse | ||
838 | * lookup (addr -> chunk). | ||
839 | */ | 669 | */ |
840 | static int pcpu_map_pages(struct pcpu_chunk *chunk, | 670 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) |
841 | struct page **pages, unsigned long *populated, | ||
842 | int page_start, int page_end) | ||
843 | { | 671 | { |
844 | unsigned int cpu, tcpu; | 672 | /* is it in the first chunk? */ |
845 | int i, err; | 673 | if (pcpu_addr_in_first_chunk(addr)) { |
846 | 674 | /* is it in the reserved area? */ | |
847 | for_each_possible_cpu(cpu) { | 675 | if (pcpu_addr_in_reserved_chunk(addr)) |
848 | err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start), | 676 | return pcpu_reserved_chunk; |
849 | &pages[pcpu_page_idx(cpu, page_start)], | 677 | return pcpu_first_chunk; |
850 | page_end - page_start); | ||
851 | if (err < 0) | ||
852 | goto err; | ||
853 | } | ||
854 | |||
855 | /* mapping successful, link chunk and mark populated */ | ||
856 | for (i = page_start; i < page_end; i++) { | ||
857 | for_each_possible_cpu(cpu) | ||
858 | pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)], | ||
859 | chunk); | ||
860 | __set_bit(i, populated); | ||
861 | } | ||
862 | |||
863 | return 0; | ||
864 | |||
865 | err: | ||
866 | for_each_possible_cpu(tcpu) { | ||
867 | if (tcpu == cpu) | ||
868 | break; | ||
869 | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start), | ||
870 | page_end - page_start); | ||
871 | } | 678 | } |
872 | return err; | ||
873 | } | ||
874 | |||
875 | /** | ||
876 | * pcpu_post_map_flush - flush cache after mapping | ||
877 | * @chunk: pcpu_chunk the regions to be flushed belong to | ||
878 | * @page_start: page index of the first page to be flushed | ||
879 | * @page_end: page index of the last page to be flushed + 1 | ||
880 | * | ||
881 | * Pages [@page_start,@page_end) of @chunk have been mapped. Flush | ||
882 | * cache. | ||
883 | * | ||
884 | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | ||
885 | * for the whole region. | ||
886 | */ | ||
887 | static void pcpu_post_map_flush(struct pcpu_chunk *chunk, | ||
888 | int page_start, int page_end) | ||
889 | { | ||
890 | flush_cache_vmap( | ||
891 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
892 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
893 | } | ||
894 | |||
895 | /** | ||
896 | * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk | ||
897 | * @chunk: chunk to depopulate | ||
898 | * @off: offset to the area to depopulate | ||
899 | * @size: size of the area to depopulate in bytes | ||
900 | * @flush: whether to flush cache and tlb or not | ||
901 | * | ||
902 | * For each cpu, depopulate and unmap pages [@page_start,@page_end) | ||
903 | * from @chunk. If @flush is true, vcache is flushed before unmapping | ||
904 | * and tlb after. | ||
905 | * | ||
906 | * CONTEXT: | ||
907 | * pcpu_alloc_mutex. | ||
908 | */ | ||
909 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
910 | { | ||
911 | int page_start = PFN_DOWN(off); | ||
912 | int page_end = PFN_UP(off + size); | ||
913 | struct page **pages; | ||
914 | unsigned long *populated; | ||
915 | int rs, re; | ||
916 | |||
917 | /* quick path, check whether it's empty already */ | ||
918 | rs = page_start; | ||
919 | pcpu_next_unpop(chunk, &rs, &re, page_end); | ||
920 | if (rs == page_start && re == page_end) | ||
921 | return; | ||
922 | |||
923 | /* immutable chunks can't be depopulated */ | ||
924 | WARN_ON(chunk->immutable); | ||
925 | 679 | ||
926 | /* | 680 | /* |
927 | * If control reaches here, there must have been at least one | 681 | * The address is relative to unit0 which might be unused and |
928 | * successful population attempt so the temp pages array must | 682 | * thus unmapped. Offset the address to the unit space of the |
929 | * be available now. | 683 | * current processor before looking it up in the vmalloc |
684 | * space. Note that any possible cpu id can be used here, so | ||
685 | * there's no need to worry about preemption or cpu hotplug. | ||
930 | */ | 686 | */ |
931 | pages = pcpu_get_pages_and_bitmap(chunk, &populated, false); | 687 | addr += pcpu_unit_offsets[raw_smp_processor_id()]; |
932 | BUG_ON(!pages); | 688 | return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); |
933 | |||
934 | /* unmap and free */ | ||
935 | pcpu_pre_unmap_flush(chunk, page_start, page_end); | ||
936 | |||
937 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) | ||
938 | pcpu_unmap_pages(chunk, pages, populated, rs, re); | ||
939 | |||
940 | /* no need to flush tlb, vmalloc will handle it lazily */ | ||
941 | |||
942 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) | ||
943 | pcpu_free_pages(chunk, pages, populated, rs, re); | ||
944 | |||
945 | /* commit new bitmap */ | ||
946 | bitmap_copy(chunk->populated, populated, pcpu_unit_pages); | ||
947 | } | ||
948 | |||
949 | /** | ||
950 | * pcpu_populate_chunk - populate and map an area of a pcpu_chunk | ||
951 | * @chunk: chunk of interest | ||
952 | * @off: offset to the area to populate | ||
953 | * @size: size of the area to populate in bytes | ||
954 | * | ||
955 | * For each cpu, populate and map pages [@page_start,@page_end) into | ||
956 | * @chunk. The area is cleared on return. | ||
957 | * | ||
958 | * CONTEXT: | ||
959 | * pcpu_alloc_mutex, does GFP_KERNEL allocation. | ||
960 | */ | ||
961 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
962 | { | ||
963 | int page_start = PFN_DOWN(off); | ||
964 | int page_end = PFN_UP(off + size); | ||
965 | int free_end = page_start, unmap_end = page_start; | ||
966 | struct page **pages; | ||
967 | unsigned long *populated; | ||
968 | unsigned int cpu; | ||
969 | int rs, re, rc; | ||
970 | |||
971 | /* quick path, check whether all pages are already there */ | ||
972 | rs = page_start; | ||
973 | pcpu_next_pop(chunk, &rs, &re, page_end); | ||
974 | if (rs == page_start && re == page_end) | ||
975 | goto clear; | ||
976 | |||
977 | /* need to allocate and map pages, this chunk can't be immutable */ | ||
978 | WARN_ON(chunk->immutable); | ||
979 | |||
980 | pages = pcpu_get_pages_and_bitmap(chunk, &populated, true); | ||
981 | if (!pages) | ||
982 | return -ENOMEM; | ||
983 | |||
984 | /* alloc and map */ | ||
985 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { | ||
986 | rc = pcpu_alloc_pages(chunk, pages, populated, rs, re); | ||
987 | if (rc) | ||
988 | goto err_free; | ||
989 | free_end = re; | ||
990 | } | ||
991 | |||
992 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { | ||
993 | rc = pcpu_map_pages(chunk, pages, populated, rs, re); | ||
994 | if (rc) | ||
995 | goto err_unmap; | ||
996 | unmap_end = re; | ||
997 | } | ||
998 | pcpu_post_map_flush(chunk, page_start, page_end); | ||
999 | |||
1000 | /* commit new bitmap */ | ||
1001 | bitmap_copy(chunk->populated, populated, pcpu_unit_pages); | ||
1002 | clear: | ||
1003 | for_each_possible_cpu(cpu) | ||
1004 | memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); | ||
1005 | return 0; | ||
1006 | |||
1007 | err_unmap: | ||
1008 | pcpu_pre_unmap_flush(chunk, page_start, unmap_end); | ||
1009 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end) | ||
1010 | pcpu_unmap_pages(chunk, pages, populated, rs, re); | ||
1011 | pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end); | ||
1012 | err_free: | ||
1013 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end) | ||
1014 | pcpu_free_pages(chunk, pages, populated, rs, re); | ||
1015 | return rc; | ||
1016 | } | ||
1017 | |||
1018 | static void free_pcpu_chunk(struct pcpu_chunk *chunk) | ||
1019 | { | ||
1020 | if (!chunk) | ||
1021 | return; | ||
1022 | if (chunk->vms) | ||
1023 | pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups); | ||
1024 | pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); | ||
1025 | kfree(chunk); | ||
1026 | } | ||
1027 | |||
1028 | static struct pcpu_chunk *alloc_pcpu_chunk(void) | ||
1029 | { | ||
1030 | struct pcpu_chunk *chunk; | ||
1031 | |||
1032 | chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL); | ||
1033 | if (!chunk) | ||
1034 | return NULL; | ||
1035 | |||
1036 | chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); | ||
1037 | chunk->map_alloc = PCPU_DFL_MAP_ALLOC; | ||
1038 | chunk->map[chunk->map_used++] = pcpu_unit_size; | ||
1039 | |||
1040 | chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes, | ||
1041 | pcpu_nr_groups, pcpu_atom_size, | ||
1042 | GFP_KERNEL); | ||
1043 | if (!chunk->vms) { | ||
1044 | free_pcpu_chunk(chunk); | ||
1045 | return NULL; | ||
1046 | } | ||
1047 | |||
1048 | INIT_LIST_HEAD(&chunk->list); | ||
1049 | chunk->free_size = pcpu_unit_size; | ||
1050 | chunk->contig_hint = pcpu_unit_size; | ||
1051 | chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0]; | ||
1052 | |||
1053 | return chunk; | ||
1054 | } | 689 | } |
1055 | 690 | ||
1056 | /** | 691 | /** |
@@ -1142,7 +777,7 @@ restart: | |||
1142 | /* hmmm... no space left, create a new chunk */ | 777 | /* hmmm... no space left, create a new chunk */ |
1143 | spin_unlock_irqrestore(&pcpu_lock, flags); | 778 | spin_unlock_irqrestore(&pcpu_lock, flags); |
1144 | 779 | ||
1145 | chunk = alloc_pcpu_chunk(); | 780 | chunk = pcpu_create_chunk(); |
1146 | if (!chunk) { | 781 | if (!chunk) { |
1147 | err = "failed to allocate new chunk"; | 782 | err = "failed to allocate new chunk"; |
1148 | goto fail_unlock_mutex; | 783 | goto fail_unlock_mutex; |
@@ -1254,7 +889,7 @@ static void pcpu_reclaim(struct work_struct *work) | |||
1254 | 889 | ||
1255 | list_for_each_entry_safe(chunk, next, &todo, list) { | 890 | list_for_each_entry_safe(chunk, next, &todo, list) { |
1256 | pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size); | 891 | pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size); |
1257 | free_pcpu_chunk(chunk); | 892 | pcpu_destroy_chunk(chunk); |
1258 | } | 893 | } |
1259 | 894 | ||
1260 | mutex_unlock(&pcpu_alloc_mutex); | 895 | mutex_unlock(&pcpu_alloc_mutex); |
@@ -1343,11 +978,14 @@ bool is_kernel_percpu_address(unsigned long addr) | |||
1343 | */ | 978 | */ |
1344 | phys_addr_t per_cpu_ptr_to_phys(void *addr) | 979 | phys_addr_t per_cpu_ptr_to_phys(void *addr) |
1345 | { | 980 | { |
1346 | if ((unsigned long)addr < VMALLOC_START || | 981 | if (pcpu_addr_in_first_chunk(addr)) { |
1347 | (unsigned long)addr >= VMALLOC_END) | 982 | if ((unsigned long)addr < VMALLOC_START || |
1348 | return __pa(addr); | 983 | (unsigned long)addr >= VMALLOC_END) |
1349 | else | 984 | return __pa(addr); |
1350 | return page_to_phys(vmalloc_to_page(addr)); | 985 | else |
986 | return page_to_phys(vmalloc_to_page(addr)); | ||
987 | } else | ||
988 | return page_to_phys(pcpu_addr_to_page(addr)); | ||
1351 | } | 989 | } |
1352 | 990 | ||
1353 | static inline size_t pcpu_calc_fc_sizes(size_t static_size, | 991 | static inline size_t pcpu_calc_fc_sizes(size_t static_size, |
@@ -1719,6 +1357,7 @@ int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, | |||
1719 | PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); | 1357 | PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); |
1720 | PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); | 1358 | PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); |
1721 | PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); | 1359 | PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); |
1360 | PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); | ||
1722 | 1361 | ||
1723 | /* process group information and build config tables accordingly */ | 1362 | /* process group information and build config tables accordingly */ |
1724 | group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); | 1363 | group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); |
diff --git a/mm/shmem.c b/mm/shmem.c index eef4ebea515..0cd7f66f1c6 100644 --- a/mm/shmem.c +++ b/mm/shmem.c | |||
@@ -1545,8 +1545,8 @@ static int shmem_mmap(struct file *file, struct vm_area_struct *vma) | |||
1545 | return 0; | 1545 | return 0; |
1546 | } | 1546 | } |
1547 | 1547 | ||
1548 | static struct inode *shmem_get_inode(struct super_block *sb, int mode, | 1548 | static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, |
1549 | dev_t dev, unsigned long flags) | 1549 | int mode, dev_t dev, unsigned long flags) |
1550 | { | 1550 | { |
1551 | struct inode *inode; | 1551 | struct inode *inode; |
1552 | struct shmem_inode_info *info; | 1552 | struct shmem_inode_info *info; |
@@ -1557,9 +1557,7 @@ static struct inode *shmem_get_inode(struct super_block *sb, int mode, | |||
1557 | 1557 | ||
1558 | inode = new_inode(sb); | 1558 | inode = new_inode(sb); |
1559 | if (inode) { | 1559 | if (inode) { |
1560 | inode->i_mode = mode; | 1560 | inode_init_owner(inode, dir, mode); |
1561 | inode->i_uid = current_fsuid(); | ||
1562 | inode->i_gid = current_fsgid(); | ||
1563 | inode->i_blocks = 0; | 1561 | inode->i_blocks = 0; |
1564 | inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; | 1562 | inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; |
1565 | inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; | 1563 | inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; |
@@ -1814,7 +1812,7 @@ shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) | |||
1814 | struct inode *inode; | 1812 | struct inode *inode; |
1815 | int error = -ENOSPC; | 1813 | int error = -ENOSPC; |
1816 | 1814 | ||
1817 | inode = shmem_get_inode(dir->i_sb, mode, dev, VM_NORESERVE); | 1815 | inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); |
1818 | if (inode) { | 1816 | if (inode) { |
1819 | error = security_inode_init_security(inode, dir, NULL, NULL, | 1817 | error = security_inode_init_security(inode, dir, NULL, NULL, |
1820 | NULL); | 1818 | NULL); |
@@ -1833,11 +1831,6 @@ shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) | |||
1833 | #else | 1831 | #else |
1834 | error = 0; | 1832 | error = 0; |
1835 | #endif | 1833 | #endif |
1836 | if (dir->i_mode & S_ISGID) { | ||
1837 | inode->i_gid = dir->i_gid; | ||
1838 | if (S_ISDIR(mode)) | ||
1839 | inode->i_mode |= S_ISGID; | ||
1840 | } | ||
1841 | dir->i_size += BOGO_DIRENT_SIZE; | 1834 | dir->i_size += BOGO_DIRENT_SIZE; |
1842 | dir->i_ctime = dir->i_mtime = CURRENT_TIME; | 1835 | dir->i_ctime = dir->i_mtime = CURRENT_TIME; |
1843 | d_instantiate(dentry, inode); | 1836 | d_instantiate(dentry, inode); |
@@ -1957,7 +1950,7 @@ static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *s | |||
1957 | if (len > PAGE_CACHE_SIZE) | 1950 | if (len > PAGE_CACHE_SIZE) |
1958 | return -ENAMETOOLONG; | 1951 | return -ENAMETOOLONG; |
1959 | 1952 | ||
1960 | inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); | 1953 | inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); |
1961 | if (!inode) | 1954 | if (!inode) |
1962 | return -ENOSPC; | 1955 | return -ENOSPC; |
1963 | 1956 | ||
@@ -1992,8 +1985,6 @@ static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *s | |||
1992 | unlock_page(page); | 1985 | unlock_page(page); |
1993 | page_cache_release(page); | 1986 | page_cache_release(page); |
1994 | } | 1987 | } |
1995 | if (dir->i_mode & S_ISGID) | ||
1996 | inode->i_gid = dir->i_gid; | ||
1997 | dir->i_size += BOGO_DIRENT_SIZE; | 1988 | dir->i_size += BOGO_DIRENT_SIZE; |
1998 | dir->i_ctime = dir->i_mtime = CURRENT_TIME; | 1989 | dir->i_ctime = dir->i_mtime = CURRENT_TIME; |
1999 | d_instantiate(dentry, inode); | 1990 | d_instantiate(dentry, inode); |
@@ -2071,14 +2062,14 @@ static int shmem_xattr_security_set(struct dentry *dentry, const char *name, | |||
2071 | size, flags); | 2062 | size, flags); |
2072 | } | 2063 | } |
2073 | 2064 | ||
2074 | static struct xattr_handler shmem_xattr_security_handler = { | 2065 | static const struct xattr_handler shmem_xattr_security_handler = { |
2075 | .prefix = XATTR_SECURITY_PREFIX, | 2066 | .prefix = XATTR_SECURITY_PREFIX, |
2076 | .list = shmem_xattr_security_list, | 2067 | .list = shmem_xattr_security_list, |
2077 | .get = shmem_xattr_security_get, | 2068 | .get = shmem_xattr_security_get, |
2078 | .set = shmem_xattr_security_set, | 2069 | .set = shmem_xattr_security_set, |
2079 | }; | 2070 | }; |
2080 | 2071 | ||
2081 | static struct xattr_handler *shmem_xattr_handlers[] = { | 2072 | static const struct xattr_handler *shmem_xattr_handlers[] = { |
2082 | &generic_acl_access_handler, | 2073 | &generic_acl_access_handler, |
2083 | &generic_acl_default_handler, | 2074 | &generic_acl_default_handler, |
2084 | &shmem_xattr_security_handler, | 2075 | &shmem_xattr_security_handler, |
@@ -2366,7 +2357,7 @@ int shmem_fill_super(struct super_block *sb, void *data, int silent) | |||
2366 | sb->s_flags |= MS_POSIXACL; | 2357 | sb->s_flags |= MS_POSIXACL; |
2367 | #endif | 2358 | #endif |
2368 | 2359 | ||
2369 | inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); | 2360 | inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); |
2370 | if (!inode) | 2361 | if (!inode) |
2371 | goto failed; | 2362 | goto failed; |
2372 | inode->i_uid = sbinfo->uid; | 2363 | inode->i_uid = sbinfo->uid; |
@@ -2611,7 +2602,7 @@ int shmem_lock(struct file *file, int lock, struct user_struct *user) | |||
2611 | 2602 | ||
2612 | #define shmem_vm_ops generic_file_vm_ops | 2603 | #define shmem_vm_ops generic_file_vm_ops |
2613 | #define shmem_file_operations ramfs_file_operations | 2604 | #define shmem_file_operations ramfs_file_operations |
2614 | #define shmem_get_inode(sb, mode, dev, flags) ramfs_get_inode(sb, mode, dev) | 2605 | #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) |
2615 | #define shmem_acct_size(flags, size) 0 | 2606 | #define shmem_acct_size(flags, size) 0 |
2616 | #define shmem_unacct_size(flags, size) do {} while (0) | 2607 | #define shmem_unacct_size(flags, size) do {} while (0) |
2617 | #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE | 2608 | #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE |
@@ -2655,7 +2646,7 @@ struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags | |||
2655 | path.mnt = mntget(shm_mnt); | 2646 | path.mnt = mntget(shm_mnt); |
2656 | 2647 | ||
2657 | error = -ENOSPC; | 2648 | error = -ENOSPC; |
2658 | inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0, flags); | 2649 | inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); |
2659 | if (!inode) | 2650 | if (!inode) |
2660 | goto put_dentry; | 2651 | goto put_dentry; |
2661 | 2652 | ||
@@ -115,6 +115,7 @@ | |||
115 | #include <linux/reciprocal_div.h> | 115 | #include <linux/reciprocal_div.h> |
116 | #include <linux/debugobjects.h> | 116 | #include <linux/debugobjects.h> |
117 | #include <linux/kmemcheck.h> | 117 | #include <linux/kmemcheck.h> |
118 | #include <linux/memory.h> | ||
118 | 119 | ||
119 | #include <asm/cacheflush.h> | 120 | #include <asm/cacheflush.h> |
120 | #include <asm/tlbflush.h> | 121 | #include <asm/tlbflush.h> |
@@ -1078,6 +1079,52 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |||
1078 | } | 1079 | } |
1079 | #endif | 1080 | #endif |
1080 | 1081 | ||
1082 | /* | ||
1083 | * Allocates and initializes nodelists for a node on each slab cache, used for | ||
1084 | * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3 | ||
1085 | * will be allocated off-node since memory is not yet online for the new node. | ||
1086 | * When hotplugging memory or a cpu, existing nodelists are not replaced if | ||
1087 | * already in use. | ||
1088 | * | ||
1089 | * Must hold cache_chain_mutex. | ||
1090 | */ | ||
1091 | static int init_cache_nodelists_node(int node) | ||
1092 | { | ||
1093 | struct kmem_cache *cachep; | ||
1094 | struct kmem_list3 *l3; | ||
1095 | const int memsize = sizeof(struct kmem_list3); | ||
1096 | |||
1097 | list_for_each_entry(cachep, &cache_chain, next) { | ||
1098 | /* | ||
1099 | * Set up the size64 kmemlist for cpu before we can | ||
1100 | * begin anything. Make sure some other cpu on this | ||
1101 | * node has not already allocated this | ||
1102 | */ | ||
1103 | if (!cachep->nodelists[node]) { | ||
1104 | l3 = kmalloc_node(memsize, GFP_KERNEL, node); | ||
1105 | if (!l3) | ||
1106 | return -ENOMEM; | ||
1107 | kmem_list3_init(l3); | ||
1108 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | ||
1109 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | ||
1110 | |||
1111 | /* | ||
1112 | * The l3s don't come and go as CPUs come and | ||
1113 | * go. cache_chain_mutex is sufficient | ||
1114 | * protection here. | ||
1115 | */ | ||
1116 | cachep->nodelists[node] = l3; | ||
1117 | } | ||
1118 | |||
1119 | spin_lock_irq(&cachep->nodelists[node]->list_lock); | ||
1120 | cachep->nodelists[node]->free_limit = | ||
1121 | (1 + nr_cpus_node(node)) * | ||
1122 | cachep->batchcount + cachep->num; | ||
1123 | spin_unlock_irq(&cachep->nodelists[node]->list_lock); | ||
1124 | } | ||
1125 | return 0; | ||
1126 | } | ||
1127 | |||
1081 | static void __cpuinit cpuup_canceled(long cpu) | 1128 | static void __cpuinit cpuup_canceled(long cpu) |
1082 | { | 1129 | { |
1083 | struct kmem_cache *cachep; | 1130 | struct kmem_cache *cachep; |
@@ -1148,7 +1195,7 @@ static int __cpuinit cpuup_prepare(long cpu) | |||
1148 | struct kmem_cache *cachep; | 1195 | struct kmem_cache *cachep; |
1149 | struct kmem_list3 *l3 = NULL; | 1196 | struct kmem_list3 *l3 = NULL; |
1150 | int node = cpu_to_node(cpu); | 1197 | int node = cpu_to_node(cpu); |
1151 | const int memsize = sizeof(struct kmem_list3); | 1198 | int err; |
1152 | 1199 | ||
1153 | /* | 1200 | /* |
1154 | * We need to do this right in the beginning since | 1201 | * We need to do this right in the beginning since |
@@ -1156,35 +1203,9 @@ static int __cpuinit cpuup_prepare(long cpu) | |||
1156 | * kmalloc_node allows us to add the slab to the right | 1203 | * kmalloc_node allows us to add the slab to the right |
1157 | * kmem_list3 and not this cpu's kmem_list3 | 1204 | * kmem_list3 and not this cpu's kmem_list3 |
1158 | */ | 1205 | */ |
1159 | 1206 | err = init_cache_nodelists_node(node); | |
1160 | list_for_each_entry(cachep, &cache_chain, next) { | 1207 | if (err < 0) |
1161 | /* | 1208 | goto bad; |
1162 | * Set up the size64 kmemlist for cpu before we can | ||
1163 | * begin anything. Make sure some other cpu on this | ||
1164 | * node has not already allocated this | ||
1165 | */ | ||
1166 | if (!cachep->nodelists[node]) { | ||
1167 | l3 = kmalloc_node(memsize, GFP_KERNEL, node); | ||
1168 | if (!l3) | ||
1169 | goto bad; | ||
1170 | kmem_list3_init(l3); | ||
1171 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | ||
1172 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | ||
1173 | |||
1174 | /* | ||
1175 | * The l3s don't come and go as CPUs come and | ||
1176 | * go. cache_chain_mutex is sufficient | ||
1177 | * protection here. | ||
1178 | */ | ||
1179 | cachep->nodelists[node] = l3; | ||
1180 | } | ||
1181 | |||
1182 | spin_lock_irq(&cachep->nodelists[node]->list_lock); | ||
1183 | cachep->nodelists[node]->free_limit = | ||
1184 | (1 + nr_cpus_node(node)) * | ||
1185 | cachep->batchcount + cachep->num; | ||
1186 | spin_unlock_irq(&cachep->nodelists[node]->list_lock); | ||
1187 | } | ||
1188 | 1209 | ||
1189 | /* | 1210 | /* |
1190 | * Now we can go ahead with allocating the shared arrays and | 1211 | * Now we can go ahead with allocating the shared arrays and |
@@ -1307,11 +1328,75 @@ static struct notifier_block __cpuinitdata cpucache_notifier = { | |||
1307 | &cpuup_callback, NULL, 0 | 1328 | &cpuup_callback, NULL, 0 |
1308 | }; | 1329 | }; |
1309 | 1330 | ||
1331 | #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) | ||
1332 | /* | ||
1333 | * Drains freelist for a node on each slab cache, used for memory hot-remove. | ||
1334 | * Returns -EBUSY if all objects cannot be drained so that the node is not | ||
1335 | * removed. | ||
1336 | * | ||
1337 | * Must hold cache_chain_mutex. | ||
1338 | */ | ||
1339 | static int __meminit drain_cache_nodelists_node(int node) | ||
1340 | { | ||
1341 | struct kmem_cache *cachep; | ||
1342 | int ret = 0; | ||
1343 | |||
1344 | list_for_each_entry(cachep, &cache_chain, next) { | ||
1345 | struct kmem_list3 *l3; | ||
1346 | |||
1347 | l3 = cachep->nodelists[node]; | ||
1348 | if (!l3) | ||
1349 | continue; | ||
1350 | |||
1351 | drain_freelist(cachep, l3, l3->free_objects); | ||
1352 | |||
1353 | if (!list_empty(&l3->slabs_full) || | ||
1354 | !list_empty(&l3->slabs_partial)) { | ||
1355 | ret = -EBUSY; | ||
1356 | break; | ||
1357 | } | ||
1358 | } | ||
1359 | return ret; | ||
1360 | } | ||
1361 | |||
1362 | static int __meminit slab_memory_callback(struct notifier_block *self, | ||
1363 | unsigned long action, void *arg) | ||
1364 | { | ||
1365 | struct memory_notify *mnb = arg; | ||
1366 | int ret = 0; | ||
1367 | int nid; | ||
1368 | |||
1369 | nid = mnb->status_change_nid; | ||
1370 | if (nid < 0) | ||
1371 | goto out; | ||
1372 | |||
1373 | switch (action) { | ||
1374 | case MEM_GOING_ONLINE: | ||
1375 | mutex_lock(&cache_chain_mutex); | ||
1376 | ret = init_cache_nodelists_node(nid); | ||
1377 | mutex_unlock(&cache_chain_mutex); | ||
1378 | break; | ||
1379 | case MEM_GOING_OFFLINE: | ||
1380 | mutex_lock(&cache_chain_mutex); | ||
1381 | ret = drain_cache_nodelists_node(nid); | ||
1382 | mutex_unlock(&cache_chain_mutex); | ||
1383 | break; | ||
1384 | case MEM_ONLINE: | ||
1385 | case MEM_OFFLINE: | ||
1386 | case MEM_CANCEL_ONLINE: | ||
1387 | case MEM_CANCEL_OFFLINE: | ||
1388 | break; | ||
1389 | } | ||
1390 | out: | ||
1391 | return ret ? notifier_from_errno(ret) : NOTIFY_OK; | ||
1392 | } | ||
1393 | #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ | ||
1394 | |||
1310 | /* | 1395 | /* |
1311 | * swap the static kmem_list3 with kmalloced memory | 1396 | * swap the static kmem_list3 with kmalloced memory |
1312 | */ | 1397 | */ |
1313 | static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, | 1398 | static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list, |
1314 | int nodeid) | 1399 | int nodeid) |
1315 | { | 1400 | { |
1316 | struct kmem_list3 *ptr; | 1401 | struct kmem_list3 *ptr; |
1317 | 1402 | ||
@@ -1556,6 +1641,14 @@ void __init kmem_cache_init_late(void) | |||
1556 | */ | 1641 | */ |
1557 | register_cpu_notifier(&cpucache_notifier); | 1642 | register_cpu_notifier(&cpucache_notifier); |
1558 | 1643 | ||
1644 | #ifdef CONFIG_NUMA | ||
1645 | /* | ||
1646 | * Register a memory hotplug callback that initializes and frees | ||
1647 | * nodelists. | ||
1648 | */ | ||
1649 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); | ||
1650 | #endif | ||
1651 | |||
1559 | /* | 1652 | /* |
1560 | * The reap timers are started later, with a module init call: That part | 1653 | * The reap timers are started later, with a module init call: That part |
1561 | * of the kernel is not yet operational. | 1654 | * of the kernel is not yet operational. |
@@ -2196,8 +2289,8 @@ kmem_cache_create (const char *name, size_t size, size_t align, | |||
2196 | if (ralign < align) { | 2289 | if (ralign < align) { |
2197 | ralign = align; | 2290 | ralign = align; |
2198 | } | 2291 | } |
2199 | /* disable debug if necessary */ | 2292 | /* disable debug if not aligning with REDZONE_ALIGN */ |
2200 | if (ralign > __alignof__(unsigned long long)) | 2293 | if (ralign & (__alignof__(unsigned long long) - 1)) |
2201 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); | 2294 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); |
2202 | /* | 2295 | /* |
2203 | * 4) Store it. | 2296 | * 4) Store it. |
@@ -2223,8 +2316,8 @@ kmem_cache_create (const char *name, size_t size, size_t align, | |||
2223 | */ | 2316 | */ |
2224 | if (flags & SLAB_RED_ZONE) { | 2317 | if (flags & SLAB_RED_ZONE) { |
2225 | /* add space for red zone words */ | 2318 | /* add space for red zone words */ |
2226 | cachep->obj_offset += sizeof(unsigned long long); | 2319 | cachep->obj_offset += align; |
2227 | size += 2 * sizeof(unsigned long long); | 2320 | size += align + sizeof(unsigned long long); |
2228 | } | 2321 | } |
2229 | if (flags & SLAB_STORE_USER) { | 2322 | if (flags & SLAB_STORE_USER) { |
2230 | /* user store requires one word storage behind the end of | 2323 | /* user store requires one word storage behind the end of |
@@ -4192,10 +4285,11 @@ static int s_show(struct seq_file *m, void *p) | |||
4192 | unsigned long node_frees = cachep->node_frees; | 4285 | unsigned long node_frees = cachep->node_frees; |
4193 | unsigned long overflows = cachep->node_overflow; | 4286 | unsigned long overflows = cachep->node_overflow; |
4194 | 4287 | ||
4195 | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \ | 4288 | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu " |
4196 | %4lu %4lu %4lu %4lu %4lu", allocs, high, grown, | 4289 | "%4lu %4lu %4lu %4lu %4lu", |
4197 | reaped, errors, max_freeable, node_allocs, | 4290 | allocs, high, grown, |
4198 | node_frees, overflows); | 4291 | reaped, errors, max_freeable, node_allocs, |
4292 | node_frees, overflows); | ||
4199 | } | 4293 | } |
4200 | /* cpu stats */ | 4294 | /* cpu stats */ |
4201 | { | 4295 | { |
@@ -1076,7 +1076,7 @@ static inline struct page *alloc_slab_page(gfp_t flags, int node, | |||
1076 | if (node == -1) | 1076 | if (node == -1) |
1077 | return alloc_pages(flags, order); | 1077 | return alloc_pages(flags, order); |
1078 | else | 1078 | else |
1079 | return alloc_pages_node(node, flags, order); | 1079 | return alloc_pages_exact_node(node, flags, order); |
1080 | } | 1080 | } |
1081 | 1081 | ||
1082 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) | 1082 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) |
@@ -2421,9 +2421,11 @@ static void list_slab_objects(struct kmem_cache *s, struct page *page, | |||
2421 | #ifdef CONFIG_SLUB_DEBUG | 2421 | #ifdef CONFIG_SLUB_DEBUG |
2422 | void *addr = page_address(page); | 2422 | void *addr = page_address(page); |
2423 | void *p; | 2423 | void *p; |
2424 | DECLARE_BITMAP(map, page->objects); | 2424 | long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long), |
2425 | GFP_ATOMIC); | ||
2425 | 2426 | ||
2426 | bitmap_zero(map, page->objects); | 2427 | if (!map) |
2428 | return; | ||
2427 | slab_err(s, page, "%s", text); | 2429 | slab_err(s, page, "%s", text); |
2428 | slab_lock(page); | 2430 | slab_lock(page); |
2429 | for_each_free_object(p, s, page->freelist) | 2431 | for_each_free_object(p, s, page->freelist) |
@@ -2438,6 +2440,7 @@ static void list_slab_objects(struct kmem_cache *s, struct page *page, | |||
2438 | } | 2440 | } |
2439 | } | 2441 | } |
2440 | slab_unlock(page); | 2442 | slab_unlock(page); |
2443 | kfree(map); | ||
2441 | #endif | 2444 | #endif |
2442 | } | 2445 | } |
2443 | 2446 | ||
@@ -3330,8 +3333,15 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | |||
3330 | struct kmem_cache *s; | 3333 | struct kmem_cache *s; |
3331 | void *ret; | 3334 | void *ret; |
3332 | 3335 | ||
3333 | if (unlikely(size > SLUB_MAX_SIZE)) | 3336 | if (unlikely(size > SLUB_MAX_SIZE)) { |
3334 | return kmalloc_large_node(size, gfpflags, node); | 3337 | ret = kmalloc_large_node(size, gfpflags, node); |
3338 | |||
3339 | trace_kmalloc_node(caller, ret, | ||
3340 | size, PAGE_SIZE << get_order(size), | ||
3341 | gfpflags, node); | ||
3342 | |||
3343 | return ret; | ||
3344 | } | ||
3335 | 3345 | ||
3336 | s = get_slab(size, gfpflags); | 3346 | s = get_slab(size, gfpflags); |
3337 | 3347 | ||
@@ -3643,10 +3653,10 @@ static int add_location(struct loc_track *t, struct kmem_cache *s, | |||
3643 | } | 3653 | } |
3644 | 3654 | ||
3645 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | 3655 | static void process_slab(struct loc_track *t, struct kmem_cache *s, |
3646 | struct page *page, enum track_item alloc) | 3656 | struct page *page, enum track_item alloc, |
3657 | long *map) | ||
3647 | { | 3658 | { |
3648 | void *addr = page_address(page); | 3659 | void *addr = page_address(page); |
3649 | DECLARE_BITMAP(map, page->objects); | ||
3650 | void *p; | 3660 | void *p; |
3651 | 3661 | ||
3652 | bitmap_zero(map, page->objects); | 3662 | bitmap_zero(map, page->objects); |
@@ -3665,11 +3675,14 @@ static int list_locations(struct kmem_cache *s, char *buf, | |||
3665 | unsigned long i; | 3675 | unsigned long i; |
3666 | struct loc_track t = { 0, 0, NULL }; | 3676 | struct loc_track t = { 0, 0, NULL }; |
3667 | int node; | 3677 | int node; |
3678 | unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * | ||
3679 | sizeof(unsigned long), GFP_KERNEL); | ||
3668 | 3680 | ||
3669 | if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), | 3681 | if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), |
3670 | GFP_TEMPORARY)) | 3682 | GFP_TEMPORARY)) { |
3683 | kfree(map); | ||
3671 | return sprintf(buf, "Out of memory\n"); | 3684 | return sprintf(buf, "Out of memory\n"); |
3672 | 3685 | } | |
3673 | /* Push back cpu slabs */ | 3686 | /* Push back cpu slabs */ |
3674 | flush_all(s); | 3687 | flush_all(s); |
3675 | 3688 | ||
@@ -3683,9 +3696,9 @@ static int list_locations(struct kmem_cache *s, char *buf, | |||
3683 | 3696 | ||
3684 | spin_lock_irqsave(&n->list_lock, flags); | 3697 | spin_lock_irqsave(&n->list_lock, flags); |
3685 | list_for_each_entry(page, &n->partial, lru) | 3698 | list_for_each_entry(page, &n->partial, lru) |
3686 | process_slab(&t, s, page, alloc); | 3699 | process_slab(&t, s, page, alloc, map); |
3687 | list_for_each_entry(page, &n->full, lru) | 3700 | list_for_each_entry(page, &n->full, lru) |
3688 | process_slab(&t, s, page, alloc); | 3701 | process_slab(&t, s, page, alloc, map); |
3689 | spin_unlock_irqrestore(&n->list_lock, flags); | 3702 | spin_unlock_irqrestore(&n->list_lock, flags); |
3690 | } | 3703 | } |
3691 | 3704 | ||
@@ -3736,6 +3749,7 @@ static int list_locations(struct kmem_cache *s, char *buf, | |||
3736 | } | 3749 | } |
3737 | 3750 | ||
3738 | free_loc_track(&t); | 3751 | free_loc_track(&t); |
3752 | kfree(map); | ||
3739 | if (!t.count) | 3753 | if (!t.count) |
3740 | len += sprintf(buf, "No data\n"); | 3754 | len += sprintf(buf, "No data\n"); |
3741 | return len; | 3755 | return len; |
diff --git a/mm/swapfile.c b/mm/swapfile.c index 6cd0a8f90dc..03aa2d55f1a 100644 --- a/mm/swapfile.c +++ b/mm/swapfile.c | |||
@@ -139,7 +139,8 @@ static int discard_swap(struct swap_info_struct *si) | |||
139 | nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); | 139 | nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); |
140 | if (nr_blocks) { | 140 | if (nr_blocks) { |
141 | err = blkdev_issue_discard(si->bdev, start_block, | 141 | err = blkdev_issue_discard(si->bdev, start_block, |
142 | nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER); | 142 | nr_blocks, GFP_KERNEL, |
143 | BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER); | ||
143 | if (err) | 144 | if (err) |
144 | return err; | 145 | return err; |
145 | cond_resched(); | 146 | cond_resched(); |
@@ -150,7 +151,8 @@ static int discard_swap(struct swap_info_struct *si) | |||
150 | nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); | 151 | nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); |
151 | 152 | ||
152 | err = blkdev_issue_discard(si->bdev, start_block, | 153 | err = blkdev_issue_discard(si->bdev, start_block, |
153 | nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER); | 154 | nr_blocks, GFP_KERNEL, |
155 | BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER); | ||
154 | if (err) | 156 | if (err) |
155 | break; | 157 | break; |
156 | 158 | ||
@@ -189,7 +191,8 @@ static void discard_swap_cluster(struct swap_info_struct *si, | |||
189 | start_block <<= PAGE_SHIFT - 9; | 191 | start_block <<= PAGE_SHIFT - 9; |
190 | nr_blocks <<= PAGE_SHIFT - 9; | 192 | nr_blocks <<= PAGE_SHIFT - 9; |
191 | if (blkdev_issue_discard(si->bdev, start_block, | 193 | if (blkdev_issue_discard(si->bdev, start_block, |
192 | nr_blocks, GFP_NOIO, DISCARD_FL_BARRIER)) | 194 | nr_blocks, GFP_NOIO, BLKDEV_IFL_WAIT | |
195 | BLKDEV_IFL_BARRIER)) | ||
193 | break; | 196 | break; |
194 | } | 197 | } |
195 | 198 | ||
@@ -574,6 +577,7 @@ static unsigned char swap_entry_free(struct swap_info_struct *p, | |||
574 | 577 | ||
575 | /* free if no reference */ | 578 | /* free if no reference */ |
576 | if (!usage) { | 579 | if (!usage) { |
580 | struct gendisk *disk = p->bdev->bd_disk; | ||
577 | if (offset < p->lowest_bit) | 581 | if (offset < p->lowest_bit) |
578 | p->lowest_bit = offset; | 582 | p->lowest_bit = offset; |
579 | if (offset > p->highest_bit) | 583 | if (offset > p->highest_bit) |
@@ -583,6 +587,9 @@ static unsigned char swap_entry_free(struct swap_info_struct *p, | |||
583 | swap_list.next = p->type; | 587 | swap_list.next = p->type; |
584 | nr_swap_pages++; | 588 | nr_swap_pages++; |
585 | p->inuse_pages--; | 589 | p->inuse_pages--; |
590 | if ((p->flags & SWP_BLKDEV) && | ||
591 | disk->fops->swap_slot_free_notify) | ||
592 | disk->fops->swap_slot_free_notify(p->bdev, offset); | ||
586 | } | 593 | } |
587 | 594 | ||
588 | return usage; | 595 | return usage; |
@@ -1884,6 +1891,7 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) | |||
1884 | if (error < 0) | 1891 | if (error < 0) |
1885 | goto bad_swap; | 1892 | goto bad_swap; |
1886 | p->bdev = bdev; | 1893 | p->bdev = bdev; |
1894 | p->flags |= SWP_BLKDEV; | ||
1887 | } else if (S_ISREG(inode->i_mode)) { | 1895 | } else if (S_ISREG(inode->i_mode)) { |
1888 | p->bdev = inode->i_sb->s_bdev; | 1896 | p->bdev = inode->i_sb->s_bdev; |
1889 | mutex_lock(&inode->i_mutex); | 1897 | mutex_lock(&inode->i_mutex); |