diff options
Diffstat (limited to 'drivers')
-rw-r--r-- | drivers/xen/Kconfig | 4 | ||||
-rw-r--r-- | drivers/xen/Makefile | 3 | ||||
-rw-r--r-- | drivers/xen/swiotlb-xen.c | 515 |
3 files changed, 521 insertions, 1 deletions
diff --git a/drivers/xen/Kconfig b/drivers/xen/Kconfig index fad3df2c127..97199c2a64a 100644 --- a/drivers/xen/Kconfig +++ b/drivers/xen/Kconfig | |||
@@ -62,4 +62,8 @@ config XEN_SYS_HYPERVISOR | |||
62 | virtual environment, /sys/hypervisor will still be present, | 62 | virtual environment, /sys/hypervisor will still be present, |
63 | but will have no xen contents. | 63 | but will have no xen contents. |
64 | 64 | ||
65 | config SWIOTLB_XEN | ||
66 | def_bool y | ||
67 | depends on SWIOTLB | ||
68 | |||
65 | endmenu | 69 | endmenu |
diff --git a/drivers/xen/Makefile b/drivers/xen/Makefile index 7c284342f30..85f84cff810 100644 --- a/drivers/xen/Makefile +++ b/drivers/xen/Makefile | |||
@@ -9,4 +9,5 @@ obj-$(CONFIG_XEN_XENCOMM) += xencomm.o | |||
9 | obj-$(CONFIG_XEN_BALLOON) += balloon.o | 9 | obj-$(CONFIG_XEN_BALLOON) += balloon.o |
10 | obj-$(CONFIG_XEN_DEV_EVTCHN) += evtchn.o | 10 | obj-$(CONFIG_XEN_DEV_EVTCHN) += evtchn.o |
11 | obj-$(CONFIG_XENFS) += xenfs/ | 11 | obj-$(CONFIG_XENFS) += xenfs/ |
12 | obj-$(CONFIG_XEN_SYS_HYPERVISOR) += sys-hypervisor.o \ No newline at end of file | 12 | obj-$(CONFIG_XEN_SYS_HYPERVISOR) += sys-hypervisor.o |
13 | obj-$(CONFIG_SWIOTLB_XEN) += swiotlb-xen.o | ||
diff --git a/drivers/xen/swiotlb-xen.c b/drivers/xen/swiotlb-xen.c new file mode 100644 index 00000000000..54469c3eeac --- /dev/null +++ b/drivers/xen/swiotlb-xen.c | |||
@@ -0,0 +1,515 @@ | |||
1 | /* | ||
2 | * Copyright 2010 | ||
3 | * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> | ||
4 | * | ||
5 | * This code provides a IOMMU for Xen PV guests with PCI passthrough. | ||
6 | * | ||
7 | * This program is free software; you can redistribute it and/or modify | ||
8 | * it under the terms of the GNU General Public License v2.0 as published by | ||
9 | * the Free Software Foundation | ||
10 | * | ||
11 | * This program is distributed in the hope that it will be useful, | ||
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
14 | * GNU General Public License for more details. | ||
15 | * | ||
16 | * PV guests under Xen are running in an non-contiguous memory architecture. | ||
17 | * | ||
18 | * When PCI pass-through is utilized, this necessitates an IOMMU for | ||
19 | * translating bus (DMA) to virtual and vice-versa and also providing a | ||
20 | * mechanism to have contiguous pages for device drivers operations (say DMA | ||
21 | * operations). | ||
22 | * | ||
23 | * Specifically, under Xen the Linux idea of pages is an illusion. It | ||
24 | * assumes that pages start at zero and go up to the available memory. To | ||
25 | * help with that, the Linux Xen MMU provides a lookup mechanism to | ||
26 | * translate the page frame numbers (PFN) to machine frame numbers (MFN) | ||
27 | * and vice-versa. The MFN are the "real" frame numbers. Furthermore | ||
28 | * memory is not contiguous. Xen hypervisor stitches memory for guests | ||
29 | * from different pools, which means there is no guarantee that PFN==MFN | ||
30 | * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are | ||
31 | * allocated in descending order (high to low), meaning the guest might | ||
32 | * never get any MFN's under the 4GB mark. | ||
33 | * | ||
34 | */ | ||
35 | |||
36 | #include <linux/bootmem.h> | ||
37 | #include <linux/dma-mapping.h> | ||
38 | #include <xen/swiotlb-xen.h> | ||
39 | #include <xen/page.h> | ||
40 | #include <xen/xen-ops.h> | ||
41 | /* | ||
42 | * Used to do a quick range check in swiotlb_tbl_unmap_single and | ||
43 | * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this | ||
44 | * API. | ||
45 | */ | ||
46 | |||
47 | static char *xen_io_tlb_start, *xen_io_tlb_end; | ||
48 | static unsigned long xen_io_tlb_nslabs; | ||
49 | /* | ||
50 | * Quick lookup value of the bus address of the IOTLB. | ||
51 | */ | ||
52 | |||
53 | u64 start_dma_addr; | ||
54 | |||
55 | static dma_addr_t xen_phys_to_bus(phys_addr_t paddr) | ||
56 | { | ||
57 | return phys_to_machine(XPADDR(paddr)).maddr;; | ||
58 | } | ||
59 | |||
60 | static phys_addr_t xen_bus_to_phys(dma_addr_t baddr) | ||
61 | { | ||
62 | return machine_to_phys(XMADDR(baddr)).paddr; | ||
63 | } | ||
64 | |||
65 | static dma_addr_t xen_virt_to_bus(void *address) | ||
66 | { | ||
67 | return xen_phys_to_bus(virt_to_phys(address)); | ||
68 | } | ||
69 | |||
70 | static int check_pages_physically_contiguous(unsigned long pfn, | ||
71 | unsigned int offset, | ||
72 | size_t length) | ||
73 | { | ||
74 | unsigned long next_mfn; | ||
75 | int i; | ||
76 | int nr_pages; | ||
77 | |||
78 | next_mfn = pfn_to_mfn(pfn); | ||
79 | nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT; | ||
80 | |||
81 | for (i = 1; i < nr_pages; i++) { | ||
82 | if (pfn_to_mfn(++pfn) != ++next_mfn) | ||
83 | return 0; | ||
84 | } | ||
85 | return 1; | ||
86 | } | ||
87 | |||
88 | static int range_straddles_page_boundary(phys_addr_t p, size_t size) | ||
89 | { | ||
90 | unsigned long pfn = PFN_DOWN(p); | ||
91 | unsigned int offset = p & ~PAGE_MASK; | ||
92 | |||
93 | if (offset + size <= PAGE_SIZE) | ||
94 | return 0; | ||
95 | if (check_pages_physically_contiguous(pfn, offset, size)) | ||
96 | return 0; | ||
97 | return 1; | ||
98 | } | ||
99 | |||
100 | static int is_xen_swiotlb_buffer(dma_addr_t dma_addr) | ||
101 | { | ||
102 | unsigned long mfn = PFN_DOWN(dma_addr); | ||
103 | unsigned long pfn = mfn_to_local_pfn(mfn); | ||
104 | phys_addr_t paddr; | ||
105 | |||
106 | /* If the address is outside our domain, it CAN | ||
107 | * have the same virtual address as another address | ||
108 | * in our domain. Therefore _only_ check address within our domain. | ||
109 | */ | ||
110 | if (pfn_valid(pfn)) { | ||
111 | paddr = PFN_PHYS(pfn); | ||
112 | return paddr >= virt_to_phys(xen_io_tlb_start) && | ||
113 | paddr < virt_to_phys(xen_io_tlb_end); | ||
114 | } | ||
115 | return 0; | ||
116 | } | ||
117 | |||
118 | static int max_dma_bits = 32; | ||
119 | |||
120 | static int | ||
121 | xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs) | ||
122 | { | ||
123 | int i, rc; | ||
124 | int dma_bits; | ||
125 | |||
126 | dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT; | ||
127 | |||
128 | i = 0; | ||
129 | do { | ||
130 | int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE); | ||
131 | |||
132 | do { | ||
133 | rc = xen_create_contiguous_region( | ||
134 | (unsigned long)buf + (i << IO_TLB_SHIFT), | ||
135 | get_order(slabs << IO_TLB_SHIFT), | ||
136 | dma_bits); | ||
137 | } while (rc && dma_bits++ < max_dma_bits); | ||
138 | if (rc) | ||
139 | return rc; | ||
140 | |||
141 | i += slabs; | ||
142 | } while (i < nslabs); | ||
143 | return 0; | ||
144 | } | ||
145 | |||
146 | void __init xen_swiotlb_init(int verbose) | ||
147 | { | ||
148 | unsigned long bytes; | ||
149 | int rc; | ||
150 | |||
151 | xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT); | ||
152 | xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE); | ||
153 | |||
154 | bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT; | ||
155 | |||
156 | /* | ||
157 | * Get IO TLB memory from any location. | ||
158 | */ | ||
159 | xen_io_tlb_start = alloc_bootmem(bytes); | ||
160 | if (!xen_io_tlb_start) | ||
161 | panic("Cannot allocate SWIOTLB buffer"); | ||
162 | |||
163 | xen_io_tlb_end = xen_io_tlb_start + bytes; | ||
164 | /* | ||
165 | * And replace that memory with pages under 4GB. | ||
166 | */ | ||
167 | rc = xen_swiotlb_fixup(xen_io_tlb_start, | ||
168 | bytes, | ||
169 | xen_io_tlb_nslabs); | ||
170 | if (rc) | ||
171 | goto error; | ||
172 | |||
173 | start_dma_addr = xen_virt_to_bus(xen_io_tlb_start); | ||
174 | swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, verbose); | ||
175 | |||
176 | return; | ||
177 | error: | ||
178 | panic("DMA(%d): Failed to exchange pages allocated for DMA with Xen! "\ | ||
179 | "We either don't have the permission or you do not have enough"\ | ||
180 | "free memory under 4GB!\n", rc); | ||
181 | } | ||
182 | |||
183 | void * | ||
184 | xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, | ||
185 | dma_addr_t *dma_handle, gfp_t flags) | ||
186 | { | ||
187 | void *ret; | ||
188 | int order = get_order(size); | ||
189 | u64 dma_mask = DMA_BIT_MASK(32); | ||
190 | unsigned long vstart; | ||
191 | |||
192 | /* | ||
193 | * Ignore region specifiers - the kernel's ideas of | ||
194 | * pseudo-phys memory layout has nothing to do with the | ||
195 | * machine physical layout. We can't allocate highmem | ||
196 | * because we can't return a pointer to it. | ||
197 | */ | ||
198 | flags &= ~(__GFP_DMA | __GFP_HIGHMEM); | ||
199 | |||
200 | if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret)) | ||
201 | return ret; | ||
202 | |||
203 | vstart = __get_free_pages(flags, order); | ||
204 | ret = (void *)vstart; | ||
205 | |||
206 | if (hwdev && hwdev->coherent_dma_mask) | ||
207 | dma_mask = dma_alloc_coherent_mask(hwdev, flags); | ||
208 | |||
209 | if (ret) { | ||
210 | if (xen_create_contiguous_region(vstart, order, | ||
211 | fls64(dma_mask)) != 0) { | ||
212 | free_pages(vstart, order); | ||
213 | return NULL; | ||
214 | } | ||
215 | memset(ret, 0, size); | ||
216 | *dma_handle = virt_to_machine(ret).maddr; | ||
217 | } | ||
218 | return ret; | ||
219 | } | ||
220 | EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent); | ||
221 | |||
222 | void | ||
223 | xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, | ||
224 | dma_addr_t dev_addr) | ||
225 | { | ||
226 | int order = get_order(size); | ||
227 | |||
228 | if (dma_release_from_coherent(hwdev, order, vaddr)) | ||
229 | return; | ||
230 | |||
231 | xen_destroy_contiguous_region((unsigned long)vaddr, order); | ||
232 | free_pages((unsigned long)vaddr, order); | ||
233 | } | ||
234 | EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent); | ||
235 | |||
236 | |||
237 | /* | ||
238 | * Map a single buffer of the indicated size for DMA in streaming mode. The | ||
239 | * physical address to use is returned. | ||
240 | * | ||
241 | * Once the device is given the dma address, the device owns this memory until | ||
242 | * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed. | ||
243 | */ | ||
244 | dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, | ||
245 | unsigned long offset, size_t size, | ||
246 | enum dma_data_direction dir, | ||
247 | struct dma_attrs *attrs) | ||
248 | { | ||
249 | phys_addr_t phys = page_to_phys(page) + offset; | ||
250 | dma_addr_t dev_addr = xen_phys_to_bus(phys); | ||
251 | void *map; | ||
252 | |||
253 | BUG_ON(dir == DMA_NONE); | ||
254 | /* | ||
255 | * If the address happens to be in the device's DMA window, | ||
256 | * we can safely return the device addr and not worry about bounce | ||
257 | * buffering it. | ||
258 | */ | ||
259 | if (dma_capable(dev, dev_addr, size) && | ||
260 | !range_straddles_page_boundary(phys, size) && !swiotlb_force) | ||
261 | return dev_addr; | ||
262 | |||
263 | /* | ||
264 | * Oh well, have to allocate and map a bounce buffer. | ||
265 | */ | ||
266 | map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir); | ||
267 | if (!map) | ||
268 | return DMA_ERROR_CODE; | ||
269 | |||
270 | dev_addr = xen_virt_to_bus(map); | ||
271 | |||
272 | /* | ||
273 | * Ensure that the address returned is DMA'ble | ||
274 | */ | ||
275 | if (!dma_capable(dev, dev_addr, size)) | ||
276 | panic("map_single: bounce buffer is not DMA'ble"); | ||
277 | |||
278 | return dev_addr; | ||
279 | } | ||
280 | EXPORT_SYMBOL_GPL(xen_swiotlb_map_page); | ||
281 | |||
282 | /* | ||
283 | * Unmap a single streaming mode DMA translation. The dma_addr and size must | ||
284 | * match what was provided for in a previous xen_swiotlb_map_page call. All | ||
285 | * other usages are undefined. | ||
286 | * | ||
287 | * After this call, reads by the cpu to the buffer are guaranteed to see | ||
288 | * whatever the device wrote there. | ||
289 | */ | ||
290 | static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr, | ||
291 | size_t size, enum dma_data_direction dir) | ||
292 | { | ||
293 | phys_addr_t paddr = xen_bus_to_phys(dev_addr); | ||
294 | |||
295 | BUG_ON(dir == DMA_NONE); | ||
296 | |||
297 | /* NOTE: We use dev_addr here, not paddr! */ | ||
298 | if (is_xen_swiotlb_buffer(dev_addr)) { | ||
299 | swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir); | ||
300 | return; | ||
301 | } | ||
302 | |||
303 | if (dir != DMA_FROM_DEVICE) | ||
304 | return; | ||
305 | |||
306 | /* | ||
307 | * phys_to_virt doesn't work with hihgmem page but we could | ||
308 | * call dma_mark_clean() with hihgmem page here. However, we | ||
309 | * are fine since dma_mark_clean() is null on POWERPC. We can | ||
310 | * make dma_mark_clean() take a physical address if necessary. | ||
311 | */ | ||
312 | dma_mark_clean(phys_to_virt(paddr), size); | ||
313 | } | ||
314 | |||
315 | void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, | ||
316 | size_t size, enum dma_data_direction dir, | ||
317 | struct dma_attrs *attrs) | ||
318 | { | ||
319 | xen_unmap_single(hwdev, dev_addr, size, dir); | ||
320 | } | ||
321 | EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page); | ||
322 | |||
323 | /* | ||
324 | * Make physical memory consistent for a single streaming mode DMA translation | ||
325 | * after a transfer. | ||
326 | * | ||
327 | * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer | ||
328 | * using the cpu, yet do not wish to teardown the dma mapping, you must | ||
329 | * call this function before doing so. At the next point you give the dma | ||
330 | * address back to the card, you must first perform a | ||
331 | * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer | ||
332 | */ | ||
333 | static void | ||
334 | xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, | ||
335 | size_t size, enum dma_data_direction dir, | ||
336 | enum dma_sync_target target) | ||
337 | { | ||
338 | phys_addr_t paddr = xen_bus_to_phys(dev_addr); | ||
339 | |||
340 | BUG_ON(dir == DMA_NONE); | ||
341 | |||
342 | /* NOTE: We use dev_addr here, not paddr! */ | ||
343 | if (is_xen_swiotlb_buffer(dev_addr)) { | ||
344 | swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir, | ||
345 | target); | ||
346 | return; | ||
347 | } | ||
348 | |||
349 | if (dir != DMA_FROM_DEVICE) | ||
350 | return; | ||
351 | |||
352 | dma_mark_clean(phys_to_virt(paddr), size); | ||
353 | } | ||
354 | |||
355 | void | ||
356 | xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, | ||
357 | size_t size, enum dma_data_direction dir) | ||
358 | { | ||
359 | xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); | ||
360 | } | ||
361 | EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu); | ||
362 | |||
363 | void | ||
364 | xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, | ||
365 | size_t size, enum dma_data_direction dir) | ||
366 | { | ||
367 | xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); | ||
368 | } | ||
369 | EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device); | ||
370 | |||
371 | /* | ||
372 | * Map a set of buffers described by scatterlist in streaming mode for DMA. | ||
373 | * This is the scatter-gather version of the above xen_swiotlb_map_page | ||
374 | * interface. Here the scatter gather list elements are each tagged with the | ||
375 | * appropriate dma address and length. They are obtained via | ||
376 | * sg_dma_{address,length}(SG). | ||
377 | * | ||
378 | * NOTE: An implementation may be able to use a smaller number of | ||
379 | * DMA address/length pairs than there are SG table elements. | ||
380 | * (for example via virtual mapping capabilities) | ||
381 | * The routine returns the number of addr/length pairs actually | ||
382 | * used, at most nents. | ||
383 | * | ||
384 | * Device ownership issues as mentioned above for xen_swiotlb_map_page are the | ||
385 | * same here. | ||
386 | */ | ||
387 | int | ||
388 | xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, | ||
389 | int nelems, enum dma_data_direction dir, | ||
390 | struct dma_attrs *attrs) | ||
391 | { | ||
392 | struct scatterlist *sg; | ||
393 | int i; | ||
394 | |||
395 | BUG_ON(dir == DMA_NONE); | ||
396 | |||
397 | for_each_sg(sgl, sg, nelems, i) { | ||
398 | phys_addr_t paddr = sg_phys(sg); | ||
399 | dma_addr_t dev_addr = xen_phys_to_bus(paddr); | ||
400 | |||
401 | if (swiotlb_force || | ||
402 | !dma_capable(hwdev, dev_addr, sg->length) || | ||
403 | range_straddles_page_boundary(paddr, sg->length)) { | ||
404 | void *map = swiotlb_tbl_map_single(hwdev, | ||
405 | start_dma_addr, | ||
406 | sg_phys(sg), | ||
407 | sg->length, dir); | ||
408 | if (!map) { | ||
409 | /* Don't panic here, we expect map_sg users | ||
410 | to do proper error handling. */ | ||
411 | xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, | ||
412 | attrs); | ||
413 | sgl[0].dma_length = 0; | ||
414 | return DMA_ERROR_CODE; | ||
415 | } | ||
416 | sg->dma_address = xen_virt_to_bus(map); | ||
417 | } else | ||
418 | sg->dma_address = dev_addr; | ||
419 | sg->dma_length = sg->length; | ||
420 | } | ||
421 | return nelems; | ||
422 | } | ||
423 | EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs); | ||
424 | |||
425 | int | ||
426 | xen_swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, | ||
427 | enum dma_data_direction dir) | ||
428 | { | ||
429 | return xen_swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL); | ||
430 | } | ||
431 | EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg); | ||
432 | |||
433 | /* | ||
434 | * Unmap a set of streaming mode DMA translations. Again, cpu read rules | ||
435 | * concerning calls here are the same as for swiotlb_unmap_page() above. | ||
436 | */ | ||
437 | void | ||
438 | xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, | ||
439 | int nelems, enum dma_data_direction dir, | ||
440 | struct dma_attrs *attrs) | ||
441 | { | ||
442 | struct scatterlist *sg; | ||
443 | int i; | ||
444 | |||
445 | BUG_ON(dir == DMA_NONE); | ||
446 | |||
447 | for_each_sg(sgl, sg, nelems, i) | ||
448 | xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir); | ||
449 | |||
450 | } | ||
451 | EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs); | ||
452 | |||
453 | void | ||
454 | xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, | ||
455 | enum dma_data_direction dir) | ||
456 | { | ||
457 | return xen_swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL); | ||
458 | } | ||
459 | EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg); | ||
460 | |||
461 | /* | ||
462 | * Make physical memory consistent for a set of streaming mode DMA translations | ||
463 | * after a transfer. | ||
464 | * | ||
465 | * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules | ||
466 | * and usage. | ||
467 | */ | ||
468 | static void | ||
469 | xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, | ||
470 | int nelems, enum dma_data_direction dir, | ||
471 | enum dma_sync_target target) | ||
472 | { | ||
473 | struct scatterlist *sg; | ||
474 | int i; | ||
475 | |||
476 | for_each_sg(sgl, sg, nelems, i) | ||
477 | xen_swiotlb_sync_single(hwdev, sg->dma_address, | ||
478 | sg->dma_length, dir, target); | ||
479 | } | ||
480 | |||
481 | void | ||
482 | xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, | ||
483 | int nelems, enum dma_data_direction dir) | ||
484 | { | ||
485 | xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); | ||
486 | } | ||
487 | EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu); | ||
488 | |||
489 | void | ||
490 | xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, | ||
491 | int nelems, enum dma_data_direction dir) | ||
492 | { | ||
493 | xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); | ||
494 | } | ||
495 | EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device); | ||
496 | |||
497 | int | ||
498 | xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) | ||
499 | { | ||
500 | return !dma_addr; | ||
501 | } | ||
502 | EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error); | ||
503 | |||
504 | /* | ||
505 | * Return whether the given device DMA address mask can be supported | ||
506 | * properly. For example, if your device can only drive the low 24-bits | ||
507 | * during bus mastering, then you would pass 0x00ffffff as the mask to | ||
508 | * this function. | ||
509 | */ | ||
510 | int | ||
511 | xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) | ||
512 | { | ||
513 | return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask; | ||
514 | } | ||
515 | EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported); | ||