aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/vxge
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/vxge')
-rw-r--r--drivers/net/vxge/vxge-config.c5264
-rw-r--r--drivers/net/vxge/vxge-config.h2259
2 files changed, 7523 insertions, 0 deletions
diff --git a/drivers/net/vxge/vxge-config.c b/drivers/net/vxge/vxge-config.c
new file mode 100644
index 00000000000..6b41c884a33
--- /dev/null
+++ b/drivers/net/vxge/vxge-config.c
@@ -0,0 +1,5264 @@
1/******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
9 *
10 * vxge-config.c: Driver for Neterion Inc's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2009 Neterion Inc.
13 ******************************************************************************/
14#include <linux/vmalloc.h>
15#include <linux/etherdevice.h>
16#include <linux/pci.h>
17#include <linux/pci_hotplug.h>
18
19#include "vxge-traffic.h"
20#include "vxge-config.h"
21
22/*
23 * __vxge_hw_channel_allocate - Allocate memory for channel
24 * This function allocates required memory for the channel and various arrays
25 * in the channel
26 */
27struct __vxge_hw_channel*
28__vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
29 enum __vxge_hw_channel_type type,
30 u32 length, u32 per_dtr_space, void *userdata)
31{
32 struct __vxge_hw_channel *channel;
33 struct __vxge_hw_device *hldev;
34 int size = 0;
35 u32 vp_id;
36
37 hldev = vph->vpath->hldev;
38 vp_id = vph->vpath->vp_id;
39
40 switch (type) {
41 case VXGE_HW_CHANNEL_TYPE_FIFO:
42 size = sizeof(struct __vxge_hw_fifo);
43 break;
44 case VXGE_HW_CHANNEL_TYPE_RING:
45 size = sizeof(struct __vxge_hw_ring);
46 break;
47 default:
48 break;
49 }
50
51 channel = kzalloc(size, GFP_KERNEL);
52 if (channel == NULL)
53 goto exit0;
54 INIT_LIST_HEAD(&channel->item);
55
56 channel->common_reg = hldev->common_reg;
57 channel->first_vp_id = hldev->first_vp_id;
58 channel->type = type;
59 channel->devh = hldev;
60 channel->vph = vph;
61 channel->userdata = userdata;
62 channel->per_dtr_space = per_dtr_space;
63 channel->length = length;
64 channel->vp_id = vp_id;
65
66 channel->work_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
67 if (channel->work_arr == NULL)
68 goto exit1;
69
70 channel->free_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
71 if (channel->free_arr == NULL)
72 goto exit1;
73 channel->free_ptr = length;
74
75 channel->reserve_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
76 if (channel->reserve_arr == NULL)
77 goto exit1;
78 channel->reserve_ptr = length;
79 channel->reserve_top = 0;
80
81 channel->orig_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
82 if (channel->orig_arr == NULL)
83 goto exit1;
84
85 return channel;
86exit1:
87 __vxge_hw_channel_free(channel);
88
89exit0:
90 return NULL;
91}
92
93/*
94 * __vxge_hw_channel_free - Free memory allocated for channel
95 * This function deallocates memory from the channel and various arrays
96 * in the channel
97 */
98void __vxge_hw_channel_free(struct __vxge_hw_channel *channel)
99{
100 kfree(channel->work_arr);
101 kfree(channel->free_arr);
102 kfree(channel->reserve_arr);
103 kfree(channel->orig_arr);
104 kfree(channel);
105}
106
107/*
108 * __vxge_hw_channel_initialize - Initialize a channel
109 * This function initializes a channel by properly setting the
110 * various references
111 */
112enum vxge_hw_status
113__vxge_hw_channel_initialize(struct __vxge_hw_channel *channel)
114{
115 u32 i;
116 struct __vxge_hw_virtualpath *vpath;
117
118 vpath = channel->vph->vpath;
119
120 if ((channel->reserve_arr != NULL) && (channel->orig_arr != NULL)) {
121 for (i = 0; i < channel->length; i++)
122 channel->orig_arr[i] = channel->reserve_arr[i];
123 }
124
125 switch (channel->type) {
126 case VXGE_HW_CHANNEL_TYPE_FIFO:
127 vpath->fifoh = (struct __vxge_hw_fifo *)channel;
128 channel->stats = &((struct __vxge_hw_fifo *)
129 channel)->stats->common_stats;
130 break;
131 case VXGE_HW_CHANNEL_TYPE_RING:
132 vpath->ringh = (struct __vxge_hw_ring *)channel;
133 channel->stats = &((struct __vxge_hw_ring *)
134 channel)->stats->common_stats;
135 break;
136 default:
137 break;
138 }
139
140 return VXGE_HW_OK;
141}
142
143/*
144 * __vxge_hw_channel_reset - Resets a channel
145 * This function resets a channel by properly setting the various references
146 */
147enum vxge_hw_status
148__vxge_hw_channel_reset(struct __vxge_hw_channel *channel)
149{
150 u32 i;
151
152 for (i = 0; i < channel->length; i++) {
153 if (channel->reserve_arr != NULL)
154 channel->reserve_arr[i] = channel->orig_arr[i];
155 if (channel->free_arr != NULL)
156 channel->free_arr[i] = NULL;
157 if (channel->work_arr != NULL)
158 channel->work_arr[i] = NULL;
159 }
160 channel->free_ptr = channel->length;
161 channel->reserve_ptr = channel->length;
162 channel->reserve_top = 0;
163 channel->post_index = 0;
164 channel->compl_index = 0;
165
166 return VXGE_HW_OK;
167}
168
169/*
170 * __vxge_hw_device_pci_e_init
171 * Initialize certain PCI/PCI-X configuration registers
172 * with recommended values. Save config space for future hw resets.
173 */
174void
175__vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev)
176{
177 u16 cmd = 0;
178
179 /* Set the PErr Repconse bit and SERR in PCI command register. */
180 pci_read_config_word(hldev->pdev, PCI_COMMAND, &cmd);
181 cmd |= 0x140;
182 pci_write_config_word(hldev->pdev, PCI_COMMAND, cmd);
183
184 pci_save_state(hldev->pdev);
185
186 return;
187}
188
189/*
190 * __vxge_hw_device_register_poll
191 * Will poll certain register for specified amount of time.
192 * Will poll until masked bit is not cleared.
193 */
194enum vxge_hw_status
195__vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis)
196{
197 u64 val64;
198 u32 i = 0;
199 enum vxge_hw_status ret = VXGE_HW_FAIL;
200
201 udelay(10);
202
203 do {
204 val64 = readq(reg);
205 if (!(val64 & mask))
206 return VXGE_HW_OK;
207 udelay(100);
208 } while (++i <= 9);
209
210 i = 0;
211 do {
212 val64 = readq(reg);
213 if (!(val64 & mask))
214 return VXGE_HW_OK;
215 mdelay(1);
216 } while (++i <= max_millis);
217
218 return ret;
219}
220
221 /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
222 * in progress
223 * This routine checks the vpath reset in progress register is turned zero
224 */
225enum vxge_hw_status
226__vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog)
227{
228 enum vxge_hw_status status;
229 status = __vxge_hw_device_register_poll(vpath_rst_in_prog,
230 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
231 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
232 return status;
233}
234
235/*
236 * __vxge_hw_device_toc_get
237 * This routine sets the swapper and reads the toc pointer and returns the
238 * memory mapped address of the toc
239 */
240struct vxge_hw_toc_reg __iomem *
241__vxge_hw_device_toc_get(void __iomem *bar0)
242{
243 u64 val64;
244 struct vxge_hw_toc_reg __iomem *toc = NULL;
245 enum vxge_hw_status status;
246
247 struct vxge_hw_legacy_reg __iomem *legacy_reg =
248 (struct vxge_hw_legacy_reg __iomem *)bar0;
249
250 status = __vxge_hw_legacy_swapper_set(legacy_reg);
251 if (status != VXGE_HW_OK)
252 goto exit;
253
254 val64 = readq(&legacy_reg->toc_first_pointer);
255 toc = (struct vxge_hw_toc_reg __iomem *)(bar0+val64);
256exit:
257 return toc;
258}
259
260/*
261 * __vxge_hw_device_reg_addr_get
262 * This routine sets the swapper and reads the toc pointer and initializes the
263 * register location pointers in the device object. It waits until the ric is
264 * completed initializing registers.
265 */
266enum vxge_hw_status
267__vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev)
268{
269 u64 val64;
270 u32 i;
271 enum vxge_hw_status status = VXGE_HW_OK;
272
273 hldev->legacy_reg = (struct vxge_hw_legacy_reg __iomem *)hldev->bar0;
274
275 hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0);
276 if (hldev->toc_reg == NULL) {
277 status = VXGE_HW_FAIL;
278 goto exit;
279 }
280
281 val64 = readq(&hldev->toc_reg->toc_common_pointer);
282 hldev->common_reg =
283 (struct vxge_hw_common_reg __iomem *)(hldev->bar0 + val64);
284
285 val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer);
286 hldev->mrpcim_reg =
287 (struct vxge_hw_mrpcim_reg __iomem *)(hldev->bar0 + val64);
288
289 for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) {
290 val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]);
291 hldev->srpcim_reg[i] =
292 (struct vxge_hw_srpcim_reg __iomem *)
293 (hldev->bar0 + val64);
294 }
295
296 for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) {
297 val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]);
298 hldev->vpmgmt_reg[i] =
299 (struct vxge_hw_vpmgmt_reg __iomem *)(hldev->bar0 + val64);
300 }
301
302 for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) {
303 val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]);
304 hldev->vpath_reg[i] =
305 (struct vxge_hw_vpath_reg __iomem *)
306 (hldev->bar0 + val64);
307 }
308
309 val64 = readq(&hldev->toc_reg->toc_kdfc);
310
311 switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) {
312 case 0:
313 hldev->kdfc = (u8 __iomem *)(hldev->bar0 +
314 VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64));
315 break;
316 case 2:
317 hldev->kdfc = (u8 __iomem *)(hldev->bar1 +
318 VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64));
319 break;
320 case 4:
321 hldev->kdfc = (u8 __iomem *)(hldev->bar2 +
322 VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64));
323 break;
324 default:
325 break;
326 }
327
328 status = __vxge_hw_device_vpath_reset_in_prog_check(
329 (u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog);
330exit:
331 return status;
332}
333
334/*
335 * __vxge_hw_device_id_get
336 * This routine returns sets the device id and revision numbers into the device
337 * structure
338 */
339void __vxge_hw_device_id_get(struct __vxge_hw_device *hldev)
340{
341 u64 val64;
342
343 val64 = readq(&hldev->common_reg->titan_asic_id);
344 hldev->device_id =
345 (u16)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_DEVICE_ID(val64);
346
347 hldev->major_revision =
348 (u8)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_MAJOR_REVISION(val64);
349
350 hldev->minor_revision =
351 (u8)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_MINOR_REVISION(val64);
352
353 return;
354}
355
356/*
357 * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
358 * This routine returns the Access Rights of the driver
359 */
360static u32
361__vxge_hw_device_access_rights_get(u32 host_type, u32 func_id)
362{
363 u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH;
364
365 switch (host_type) {
366 case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION:
367 if (func_id == 0) {
368 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
369 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
370 }
371 break;
372 case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION:
373 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
374 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
375 break;
376 case VXGE_HW_NO_MR_SR_VH0_FUNCTION0:
377 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
378 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
379 break;
380 case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION:
381 case VXGE_HW_SR_VH_VIRTUAL_FUNCTION:
382 case VXGE_HW_MR_SR_VH0_INVALID_CONFIG:
383 break;
384 case VXGE_HW_SR_VH_FUNCTION0:
385 case VXGE_HW_VH_NORMAL_FUNCTION:
386 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
387 break;
388 }
389
390 return access_rights;
391}
392/*
393 * __vxge_hw_device_host_info_get
394 * This routine returns the host type assignments
395 */
396void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev)
397{
398 u64 val64;
399 u32 i;
400
401 val64 = readq(&hldev->common_reg->host_type_assignments);
402
403 hldev->host_type =
404 (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
405
406 hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments);
407
408 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
409
410 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
411 continue;
412
413 hldev->func_id =
414 __vxge_hw_vpath_func_id_get(i, hldev->vpmgmt_reg[i]);
415
416 hldev->access_rights = __vxge_hw_device_access_rights_get(
417 hldev->host_type, hldev->func_id);
418
419 hldev->first_vp_id = i;
420 break;
421 }
422
423 return;
424}
425
426/*
427 * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
428 * link width and signalling rate.
429 */
430static enum vxge_hw_status
431__vxge_hw_verify_pci_e_info(struct __vxge_hw_device *hldev)
432{
433 int exp_cap;
434 u16 lnk;
435
436 /* Get the negotiated link width and speed from PCI config space */
437 exp_cap = pci_find_capability(hldev->pdev, PCI_CAP_ID_EXP);
438 pci_read_config_word(hldev->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk);
439
440 if ((lnk & PCI_EXP_LNKSTA_CLS) != 1)
441 return VXGE_HW_ERR_INVALID_PCI_INFO;
442
443 switch ((lnk & PCI_EXP_LNKSTA_NLW) >> 4) {
444 case PCIE_LNK_WIDTH_RESRV:
445 case PCIE_LNK_X1:
446 case PCIE_LNK_X2:
447 case PCIE_LNK_X4:
448 case PCIE_LNK_X8:
449 break;
450 default:
451 return VXGE_HW_ERR_INVALID_PCI_INFO;
452 }
453
454 return VXGE_HW_OK;
455}
456
457static enum vxge_hw_status
458__vxge_hw_device_is_privilaged(struct __vxge_hw_device *hldev)
459{
460 if ((hldev->host_type == VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION ||
461 hldev->host_type == VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION ||
462 hldev->host_type == VXGE_HW_NO_MR_SR_VH0_FUNCTION0) &&
463 (hldev->func_id == 0))
464 return VXGE_HW_OK;
465 else
466 return VXGE_HW_ERR_PRIVILAGED_OPEARATION;
467}
468
469/*
470 * vxge_hw_wrr_rebalance - Rebalance the RX_WRR and KDFC_WRR calandars.
471 * Rebalance the RX_WRR and KDFC_WRR calandars.
472 */
473static enum
474vxge_hw_status vxge_hw_wrr_rebalance(struct __vxge_hw_device *hldev)
475{
476 u64 val64;
477 u32 wrr_states[VXGE_HW_WEIGHTED_RR_SERVICE_STATES];
478 u32 i, j, how_often = 1;
479 enum vxge_hw_status status = VXGE_HW_OK;
480
481 status = __vxge_hw_device_is_privilaged(hldev);
482 if (status != VXGE_HW_OK)
483 goto exit;
484
485 /* Reset the priorities assigned to the WRR arbitration
486 phases for the receive traffic */
487 for (i = 0; i < VXGE_HW_WRR_RING_COUNT; i++)
488 writeq(0, ((&hldev->mrpcim_reg->rx_w_round_robin_0) + i));
489
490 /* Reset the transmit FIFO servicing calendar for FIFOs */
491 for (i = 0; i < VXGE_HW_WRR_FIFO_COUNT; i++) {
492 writeq(0, ((&hldev->mrpcim_reg->kdfc_w_round_robin_0) + i));
493 writeq(0, ((&hldev->mrpcim_reg->kdfc_w_round_robin_20) + i));
494 }
495
496 /* Assign WRR priority 0 for all FIFOs */
497 for (i = 1; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
498 writeq(VXGE_HW_KDFC_FIFO_0_CTRL_WRR_NUMBER(0),
499 ((&hldev->mrpcim_reg->kdfc_fifo_0_ctrl) + i));
500
501 writeq(VXGE_HW_KDFC_FIFO_17_CTRL_WRR_NUMBER(0),
502 ((&hldev->mrpcim_reg->kdfc_fifo_17_ctrl) + i));
503 }
504
505 /* Reset to service non-offload doorbells */
506 writeq(0, &hldev->mrpcim_reg->kdfc_entry_type_sel_0);
507 writeq(0, &hldev->mrpcim_reg->kdfc_entry_type_sel_1);
508
509 /* Set priority 0 to all receive queues */
510 writeq(0, &hldev->mrpcim_reg->rx_queue_priority_0);
511 writeq(0, &hldev->mrpcim_reg->rx_queue_priority_1);
512 writeq(0, &hldev->mrpcim_reg->rx_queue_priority_2);
513
514 /* Initialize all the slots as unused */
515 for (i = 0; i < VXGE_HW_WEIGHTED_RR_SERVICE_STATES; i++)
516 wrr_states[i] = -1;
517
518 /* Prepare the Fifo service states */
519 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
520
521 if (!hldev->config.vp_config[i].min_bandwidth)
522 continue;
523
524 how_often = VXGE_HW_VPATH_BANDWIDTH_MAX /
525 hldev->config.vp_config[i].min_bandwidth;
526 if (how_often) {
527
528 for (j = 0; j < VXGE_HW_WRR_FIFO_SERVICE_STATES;) {
529 if (wrr_states[j] == -1) {
530 wrr_states[j] = i;
531 /* Make sure each fifo is serviced
532 * atleast once */
533 if (i == j)
534 j += VXGE_HW_MAX_VIRTUAL_PATHS;
535 else
536 j += how_often;
537 } else
538 j++;
539 }
540 }
541 }
542
543 /* Fill the unused slots with 0 */
544 for (j = 0; j < VXGE_HW_WEIGHTED_RR_SERVICE_STATES; j++) {
545 if (wrr_states[j] == -1)
546 wrr_states[j] = 0;
547 }
548
549 /* Assign WRR priority number for FIFOs */
550 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
551 writeq(VXGE_HW_KDFC_FIFO_0_CTRL_WRR_NUMBER(i),
552 ((&hldev->mrpcim_reg->kdfc_fifo_0_ctrl) + i));
553
554 writeq(VXGE_HW_KDFC_FIFO_17_CTRL_WRR_NUMBER(i),
555 ((&hldev->mrpcim_reg->kdfc_fifo_17_ctrl) + i));
556 }
557
558 /* Modify the servicing algorithm applied to the 3 types of doorbells.
559 i.e, none-offload, message and offload */
560 writeq(VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_0(0) |
561 VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_1(0) |
562 VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_2(0) |
563 VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_3(0) |
564 VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_4(1) |
565 VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_5(0) |
566 VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_6(0) |
567 VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_7(0),
568 &hldev->mrpcim_reg->kdfc_entry_type_sel_0);
569
570 writeq(VXGE_HW_KDFC_ENTRY_TYPE_SEL_1_NUMBER_8(1),
571 &hldev->mrpcim_reg->kdfc_entry_type_sel_1);
572
573 for (i = 0, j = 0; i < VXGE_HW_WRR_FIFO_COUNT; i++) {
574
575 val64 = VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_0(wrr_states[j++]);
576 val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_1(wrr_states[j++]);
577 val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_2(wrr_states[j++]);
578 val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_3(wrr_states[j++]);
579 val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_4(wrr_states[j++]);
580 val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_5(wrr_states[j++]);
581 val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_6(wrr_states[j++]);
582 val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_7(wrr_states[j++]);
583
584 writeq(val64, (&hldev->mrpcim_reg->kdfc_w_round_robin_0 + i));
585 writeq(val64, (&hldev->mrpcim_reg->kdfc_w_round_robin_20 + i));
586 }
587
588 /* Set up the priorities assigned to receive queues */
589 writeq(VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_0(0) |
590 VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_1(1) |
591 VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_2(2) |
592 VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_3(3) |
593 VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_4(4) |
594 VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_5(5) |
595 VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_6(6) |
596 VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_7(7),
597 &hldev->mrpcim_reg->rx_queue_priority_0);
598
599 writeq(VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_8(8) |
600 VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_9(9) |
601 VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_10(10) |
602 VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_11(11) |
603 VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_12(12) |
604 VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_13(13) |
605 VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_14(14) |
606 VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_15(15),
607 &hldev->mrpcim_reg->rx_queue_priority_1);
608
609 writeq(VXGE_HW_RX_QUEUE_PRIORITY_2_RX_Q_NUMBER_16(16),
610 &hldev->mrpcim_reg->rx_queue_priority_2);
611
612 /* Initialize all the slots as unused */
613 for (i = 0; i < VXGE_HW_WEIGHTED_RR_SERVICE_STATES; i++)
614 wrr_states[i] = -1;
615
616 /* Prepare the Ring service states */
617 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
618
619 if (!hldev->config.vp_config[i].min_bandwidth)
620 continue;
621
622 how_often = VXGE_HW_VPATH_BANDWIDTH_MAX /
623 hldev->config.vp_config[i].min_bandwidth;
624
625 if (how_often) {
626 for (j = 0; j < VXGE_HW_WRR_RING_SERVICE_STATES;) {
627 if (wrr_states[j] == -1) {
628 wrr_states[j] = i;
629 /* Make sure each ring is
630 * serviced atleast once */
631 if (i == j)
632 j += VXGE_HW_MAX_VIRTUAL_PATHS;
633 else
634 j += how_often;
635 } else
636 j++;
637 }
638 }
639 }
640
641 /* Fill the unused slots with 0 */
642 for (j = 0; j < VXGE_HW_WEIGHTED_RR_SERVICE_STATES; j++) {
643 if (wrr_states[j] == -1)
644 wrr_states[j] = 0;
645 }
646
647 for (i = 0, j = 0; i < VXGE_HW_WRR_RING_COUNT; i++) {
648 val64 = VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_0(
649 wrr_states[j++]);
650 val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_1(
651 wrr_states[j++]);
652 val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_2(
653 wrr_states[j++]);
654 val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_3(
655 wrr_states[j++]);
656 val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_4(
657 wrr_states[j++]);
658 val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_5(
659 wrr_states[j++]);
660 val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_6(
661 wrr_states[j++]);
662 val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_7(
663 wrr_states[j++]);
664
665 writeq(val64, ((&hldev->mrpcim_reg->rx_w_round_robin_0) + i));
666 }
667exit:
668 return status;
669}
670
671/*
672 * __vxge_hw_device_initialize
673 * Initialize Titan-V hardware.
674 */
675enum vxge_hw_status __vxge_hw_device_initialize(struct __vxge_hw_device *hldev)
676{
677 enum vxge_hw_status status = VXGE_HW_OK;
678
679 /* Validate the pci-e link width and speed */
680 status = __vxge_hw_verify_pci_e_info(hldev);
681 if (status != VXGE_HW_OK)
682 goto exit;
683
684 vxge_hw_wrr_rebalance(hldev);
685exit:
686 return status;
687}
688
689/**
690 * vxge_hw_device_hw_info_get - Get the hw information
691 * Returns the vpath mask that has the bits set for each vpath allocated
692 * for the driver, FW version information and the first mac addresse for
693 * each vpath
694 */
695enum vxge_hw_status __devinit
696vxge_hw_device_hw_info_get(void __iomem *bar0,
697 struct vxge_hw_device_hw_info *hw_info)
698{
699 u32 i;
700 u64 val64;
701 struct vxge_hw_toc_reg __iomem *toc;
702 struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg;
703 struct vxge_hw_common_reg __iomem *common_reg;
704 struct vxge_hw_vpath_reg __iomem *vpath_reg;
705 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
706 enum vxge_hw_status status;
707
708 memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info));
709
710 toc = __vxge_hw_device_toc_get(bar0);
711 if (toc == NULL) {
712 status = VXGE_HW_ERR_CRITICAL;
713 goto exit;
714 }
715
716 val64 = readq(&toc->toc_common_pointer);
717 common_reg = (struct vxge_hw_common_reg __iomem *)(bar0 + val64);
718
719 status = __vxge_hw_device_vpath_reset_in_prog_check(
720 (u64 __iomem *)&common_reg->vpath_rst_in_prog);
721 if (status != VXGE_HW_OK)
722 goto exit;
723
724 hw_info->vpath_mask = readq(&common_reg->vpath_assignments);
725
726 val64 = readq(&common_reg->host_type_assignments);
727
728 hw_info->host_type =
729 (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
730
731 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
732
733 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
734 continue;
735
736 val64 = readq(&toc->toc_vpmgmt_pointer[i]);
737
738 vpmgmt_reg = (struct vxge_hw_vpmgmt_reg __iomem *)
739 (bar0 + val64);
740
741 hw_info->func_id = __vxge_hw_vpath_func_id_get(i, vpmgmt_reg);
742 if (__vxge_hw_device_access_rights_get(hw_info->host_type,
743 hw_info->func_id) &
744 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) {
745
746 val64 = readq(&toc->toc_mrpcim_pointer);
747
748 mrpcim_reg = (struct vxge_hw_mrpcim_reg __iomem *)
749 (bar0 + val64);
750
751 writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask);
752 wmb();
753 }
754
755 val64 = readq(&toc->toc_vpath_pointer[i]);
756
757 vpath_reg = (struct vxge_hw_vpath_reg __iomem *)(bar0 + val64);
758
759 hw_info->function_mode =
760 __vxge_hw_vpath_pci_func_mode_get(i, vpath_reg);
761
762 status = __vxge_hw_vpath_fw_ver_get(i, vpath_reg, hw_info);
763 if (status != VXGE_HW_OK)
764 goto exit;
765
766 status = __vxge_hw_vpath_card_info_get(i, vpath_reg, hw_info);
767 if (status != VXGE_HW_OK)
768 goto exit;
769
770 break;
771 }
772
773 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
774
775 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
776 continue;
777
778 val64 = readq(&toc->toc_vpath_pointer[i]);
779 vpath_reg = (struct vxge_hw_vpath_reg __iomem *)(bar0 + val64);
780
781 status = __vxge_hw_vpath_addr_get(i, vpath_reg,
782 hw_info->mac_addrs[i],
783 hw_info->mac_addr_masks[i]);
784 if (status != VXGE_HW_OK)
785 goto exit;
786 }
787exit:
788 return status;
789}
790
791/*
792 * vxge_hw_device_initialize - Initialize Titan device.
793 * Initialize Titan device. Note that all the arguments of this public API
794 * are 'IN', including @hldev. Driver cooperates with
795 * OS to find new Titan device, locate its PCI and memory spaces.
796 *
797 * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
798 * to enable the latter to perform Titan hardware initialization.
799 */
800enum vxge_hw_status __devinit
801vxge_hw_device_initialize(
802 struct __vxge_hw_device **devh,
803 struct vxge_hw_device_attr *attr,
804 struct vxge_hw_device_config *device_config)
805{
806 u32 i;
807 u32 nblocks = 0;
808 struct __vxge_hw_device *hldev = NULL;
809 enum vxge_hw_status status = VXGE_HW_OK;
810
811 status = __vxge_hw_device_config_check(device_config);
812 if (status != VXGE_HW_OK)
813 goto exit;
814
815 hldev = (struct __vxge_hw_device *)
816 vmalloc(sizeof(struct __vxge_hw_device));
817 if (hldev == NULL) {
818 status = VXGE_HW_ERR_OUT_OF_MEMORY;
819 goto exit;
820 }
821
822 memset(hldev, 0, sizeof(struct __vxge_hw_device));
823 hldev->magic = VXGE_HW_DEVICE_MAGIC;
824
825 vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_ALL);
826
827 /* apply config */
828 memcpy(&hldev->config, device_config,
829 sizeof(struct vxge_hw_device_config));
830
831 hldev->bar0 = attr->bar0;
832 hldev->bar1 = attr->bar1;
833 hldev->bar2 = attr->bar2;
834 hldev->pdev = attr->pdev;
835
836 hldev->uld_callbacks.link_up = attr->uld_callbacks.link_up;
837 hldev->uld_callbacks.link_down = attr->uld_callbacks.link_down;
838 hldev->uld_callbacks.crit_err = attr->uld_callbacks.crit_err;
839
840 __vxge_hw_device_pci_e_init(hldev);
841
842 status = __vxge_hw_device_reg_addr_get(hldev);
843 if (status != VXGE_HW_OK)
844 goto exit;
845 __vxge_hw_device_id_get(hldev);
846
847 __vxge_hw_device_host_info_get(hldev);
848
849 /* Incrementing for stats blocks */
850 nblocks++;
851
852 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
853
854 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
855 continue;
856
857 if (device_config->vp_config[i].ring.enable ==
858 VXGE_HW_RING_ENABLE)
859 nblocks += device_config->vp_config[i].ring.ring_blocks;
860
861 if (device_config->vp_config[i].fifo.enable ==
862 VXGE_HW_FIFO_ENABLE)
863 nblocks += device_config->vp_config[i].fifo.fifo_blocks;
864 nblocks++;
865 }
866
867 if (__vxge_hw_blockpool_create(hldev,
868 &hldev->block_pool,
869 device_config->dma_blockpool_initial + nblocks,
870 device_config->dma_blockpool_max + nblocks) != VXGE_HW_OK) {
871
872 vxge_hw_device_terminate(hldev);
873 status = VXGE_HW_ERR_OUT_OF_MEMORY;
874 goto exit;
875 }
876
877 status = __vxge_hw_device_initialize(hldev);
878
879 if (status != VXGE_HW_OK) {
880 vxge_hw_device_terminate(hldev);
881 goto exit;
882 }
883
884 *devh = hldev;
885exit:
886 return status;
887}
888
889/*
890 * vxge_hw_device_terminate - Terminate Titan device.
891 * Terminate HW device.
892 */
893void
894vxge_hw_device_terminate(struct __vxge_hw_device *hldev)
895{
896 vxge_assert(hldev->magic == VXGE_HW_DEVICE_MAGIC);
897
898 hldev->magic = VXGE_HW_DEVICE_DEAD;
899 __vxge_hw_blockpool_destroy(&hldev->block_pool);
900 vfree(hldev);
901}
902
903/*
904 * vxge_hw_device_stats_get - Get the device hw statistics.
905 * Returns the vpath h/w stats for the device.
906 */
907enum vxge_hw_status
908vxge_hw_device_stats_get(struct __vxge_hw_device *hldev,
909 struct vxge_hw_device_stats_hw_info *hw_stats)
910{
911 u32 i;
912 enum vxge_hw_status status = VXGE_HW_OK;
913
914 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
915
916 if (!(hldev->vpaths_deployed & vxge_mBIT(i)) ||
917 (hldev->virtual_paths[i].vp_open ==
918 VXGE_HW_VP_NOT_OPEN))
919 continue;
920
921 memcpy(hldev->virtual_paths[i].hw_stats_sav,
922 hldev->virtual_paths[i].hw_stats,
923 sizeof(struct vxge_hw_vpath_stats_hw_info));
924
925 status = __vxge_hw_vpath_stats_get(
926 &hldev->virtual_paths[i],
927 hldev->virtual_paths[i].hw_stats);
928 }
929
930 memcpy(hw_stats, &hldev->stats.hw_dev_info_stats,
931 sizeof(struct vxge_hw_device_stats_hw_info));
932
933 return status;
934}
935
936/*
937 * vxge_hw_driver_stats_get - Get the device sw statistics.
938 * Returns the vpath s/w stats for the device.
939 */
940enum vxge_hw_status vxge_hw_driver_stats_get(
941 struct __vxge_hw_device *hldev,
942 struct vxge_hw_device_stats_sw_info *sw_stats)
943{
944 enum vxge_hw_status status = VXGE_HW_OK;
945
946 memcpy(sw_stats, &hldev->stats.sw_dev_info_stats,
947 sizeof(struct vxge_hw_device_stats_sw_info));
948
949 return status;
950}
951
952/*
953 * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
954 * and offset and perform an operation
955 * Get the statistics from the given location and offset.
956 */
957enum vxge_hw_status
958vxge_hw_mrpcim_stats_access(struct __vxge_hw_device *hldev,
959 u32 operation, u32 location, u32 offset, u64 *stat)
960{
961 u64 val64;
962 enum vxge_hw_status status = VXGE_HW_OK;
963
964 status = __vxge_hw_device_is_privilaged(hldev);
965 if (status != VXGE_HW_OK)
966 goto exit;
967
968 val64 = VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation) |
969 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE |
970 VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location) |
971 VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset);
972
973 status = __vxge_hw_pio_mem_write64(val64,
974 &hldev->mrpcim_reg->xmac_stats_sys_cmd,
975 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE,
976 hldev->config.device_poll_millis);
977
978 if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
979 *stat = readq(&hldev->mrpcim_reg->xmac_stats_sys_data);
980 else
981 *stat = 0;
982exit:
983 return status;
984}
985
986/*
987 * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
988 * Get the Statistics on aggregate port
989 */
990enum vxge_hw_status
991vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device *hldev, u32 port,
992 struct vxge_hw_xmac_aggr_stats *aggr_stats)
993{
994 u64 *val64;
995 int i;
996 u32 offset = VXGE_HW_STATS_AGGRn_OFFSET;
997 enum vxge_hw_status status = VXGE_HW_OK;
998
999 val64 = (u64 *)aggr_stats;
1000
1001 status = __vxge_hw_device_is_privilaged(hldev);
1002 if (status != VXGE_HW_OK)
1003 goto exit;
1004
1005 for (i = 0; i < sizeof(struct vxge_hw_xmac_aggr_stats) / 8; i++) {
1006 status = vxge_hw_mrpcim_stats_access(hldev,
1007 VXGE_HW_STATS_OP_READ,
1008 VXGE_HW_STATS_LOC_AGGR,
1009 ((offset + (104 * port)) >> 3), val64);
1010 if (status != VXGE_HW_OK)
1011 goto exit;
1012
1013 offset += 8;
1014 val64++;
1015 }
1016exit:
1017 return status;
1018}
1019
1020/*
1021 * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
1022 * Get the Statistics on port
1023 */
1024enum vxge_hw_status
1025vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device *hldev, u32 port,
1026 struct vxge_hw_xmac_port_stats *port_stats)
1027{
1028 u64 *val64;
1029 enum vxge_hw_status status = VXGE_HW_OK;
1030 int i;
1031 u32 offset = 0x0;
1032 val64 = (u64 *) port_stats;
1033
1034 status = __vxge_hw_device_is_privilaged(hldev);
1035 if (status != VXGE_HW_OK)
1036 goto exit;
1037
1038 for (i = 0; i < sizeof(struct vxge_hw_xmac_port_stats) / 8; i++) {
1039 status = vxge_hw_mrpcim_stats_access(hldev,
1040 VXGE_HW_STATS_OP_READ,
1041 VXGE_HW_STATS_LOC_AGGR,
1042 ((offset + (608 * port)) >> 3), val64);
1043 if (status != VXGE_HW_OK)
1044 goto exit;
1045
1046 offset += 8;
1047 val64++;
1048 }
1049
1050exit:
1051 return status;
1052}
1053
1054/*
1055 * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
1056 * Get the XMAC Statistics
1057 */
1058enum vxge_hw_status
1059vxge_hw_device_xmac_stats_get(struct __vxge_hw_device *hldev,
1060 struct vxge_hw_xmac_stats *xmac_stats)
1061{
1062 enum vxge_hw_status status = VXGE_HW_OK;
1063 u32 i;
1064
1065 status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1066 0, &xmac_stats->aggr_stats[0]);
1067
1068 if (status != VXGE_HW_OK)
1069 goto exit;
1070
1071 status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1072 1, &xmac_stats->aggr_stats[1]);
1073 if (status != VXGE_HW_OK)
1074 goto exit;
1075
1076 for (i = 0; i <= VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
1077
1078 status = vxge_hw_device_xmac_port_stats_get(hldev,
1079 i, &xmac_stats->port_stats[i]);
1080 if (status != VXGE_HW_OK)
1081 goto exit;
1082 }
1083
1084 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1085
1086 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
1087 continue;
1088
1089 status = __vxge_hw_vpath_xmac_tx_stats_get(
1090 &hldev->virtual_paths[i],
1091 &xmac_stats->vpath_tx_stats[i]);
1092 if (status != VXGE_HW_OK)
1093 goto exit;
1094
1095 status = __vxge_hw_vpath_xmac_rx_stats_get(
1096 &hldev->virtual_paths[i],
1097 &xmac_stats->vpath_rx_stats[i]);
1098 if (status != VXGE_HW_OK)
1099 goto exit;
1100 }
1101exit:
1102 return status;
1103}
1104
1105/*
1106 * vxge_hw_device_debug_set - Set the debug module, level and timestamp
1107 * This routine is used to dynamically change the debug output
1108 */
1109void vxge_hw_device_debug_set(struct __vxge_hw_device *hldev,
1110 enum vxge_debug_level level, u32 mask)
1111{
1112 if (hldev == NULL)
1113 return;
1114
1115#if defined(VXGE_DEBUG_TRACE_MASK) || \
1116 defined(VXGE_DEBUG_ERR_MASK)
1117 hldev->debug_module_mask = mask;
1118 hldev->debug_level = level;
1119#endif
1120
1121#if defined(VXGE_DEBUG_ERR_MASK)
1122 hldev->level_err = level & VXGE_ERR;
1123#endif
1124
1125#if defined(VXGE_DEBUG_TRACE_MASK)
1126 hldev->level_trace = level & VXGE_TRACE;
1127#endif
1128}
1129
1130/*
1131 * vxge_hw_device_error_level_get - Get the error level
1132 * This routine returns the current error level set
1133 */
1134u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *hldev)
1135{
1136#if defined(VXGE_DEBUG_ERR_MASK)
1137 if (hldev == NULL)
1138 return VXGE_ERR;
1139 else
1140 return hldev->level_err;
1141#else
1142 return 0;
1143#endif
1144}
1145
1146/*
1147 * vxge_hw_device_trace_level_get - Get the trace level
1148 * This routine returns the current trace level set
1149 */
1150u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *hldev)
1151{
1152#if defined(VXGE_DEBUG_TRACE_MASK)
1153 if (hldev == NULL)
1154 return VXGE_TRACE;
1155 else
1156 return hldev->level_trace;
1157#else
1158 return 0;
1159#endif
1160}
1161/*
1162 * vxge_hw_device_debug_mask_get - Get the debug mask
1163 * This routine returns the current debug mask set
1164 */
1165u32 vxge_hw_device_debug_mask_get(struct __vxge_hw_device *hldev)
1166{
1167#if defined(VXGE_DEBUG_TRACE_MASK) || defined(VXGE_DEBUG_ERR_MASK)
1168 if (hldev == NULL)
1169 return 0;
1170 return hldev->debug_module_mask;
1171#else
1172 return 0;
1173#endif
1174}
1175
1176/*
1177 * vxge_hw_getpause_data -Pause frame frame generation and reception.
1178 * Returns the Pause frame generation and reception capability of the NIC.
1179 */
1180enum vxge_hw_status vxge_hw_device_getpause_data(struct __vxge_hw_device *hldev,
1181 u32 port, u32 *tx, u32 *rx)
1182{
1183 u64 val64;
1184 enum vxge_hw_status status = VXGE_HW_OK;
1185
1186 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1187 status = VXGE_HW_ERR_INVALID_DEVICE;
1188 goto exit;
1189 }
1190
1191 if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1192 status = VXGE_HW_ERR_INVALID_PORT;
1193 goto exit;
1194 }
1195
1196 if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
1197 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
1198 goto exit;
1199 }
1200
1201 val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1202 if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN)
1203 *tx = 1;
1204 if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN)
1205 *rx = 1;
1206exit:
1207 return status;
1208}
1209
1210/*
1211 * vxge_hw_device_setpause_data - set/reset pause frame generation.
1212 * It can be used to set or reset Pause frame generation or reception
1213 * support of the NIC.
1214 */
1215
1216enum vxge_hw_status vxge_hw_device_setpause_data(struct __vxge_hw_device *hldev,
1217 u32 port, u32 tx, u32 rx)
1218{
1219 u64 val64;
1220 enum vxge_hw_status status = VXGE_HW_OK;
1221
1222 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1223 status = VXGE_HW_ERR_INVALID_DEVICE;
1224 goto exit;
1225 }
1226
1227 if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1228 status = VXGE_HW_ERR_INVALID_PORT;
1229 goto exit;
1230 }
1231
1232 status = __vxge_hw_device_is_privilaged(hldev);
1233 if (status != VXGE_HW_OK)
1234 goto exit;
1235
1236 val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1237 if (tx)
1238 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1239 else
1240 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1241 if (rx)
1242 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1243 else
1244 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1245
1246 writeq(val64, &hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1247exit:
1248 return status;
1249}
1250
1251u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *hldev)
1252{
1253 int link_width, exp_cap;
1254 u16 lnk;
1255
1256 exp_cap = pci_find_capability(hldev->pdev, PCI_CAP_ID_EXP);
1257 pci_read_config_word(hldev->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk);
1258 link_width = (lnk & VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH) >> 4;
1259 return link_width;
1260}
1261
1262/*
1263 * __vxge_hw_ring_block_memblock_idx - Return the memblock index
1264 * This function returns the index of memory block
1265 */
1266static inline u32
1267__vxge_hw_ring_block_memblock_idx(u8 *block)
1268{
1269 return (u32)*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET));
1270}
1271
1272/*
1273 * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
1274 * This function sets index to a memory block
1275 */
1276static inline void
1277__vxge_hw_ring_block_memblock_idx_set(u8 *block, u32 memblock_idx)
1278{
1279 *((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)) = memblock_idx;
1280}
1281
1282/*
1283 * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
1284 * in RxD block
1285 * Sets the next block pointer in RxD block
1286 */
1287static inline void
1288__vxge_hw_ring_block_next_pointer_set(u8 *block, dma_addr_t dma_next)
1289{
1290 *((u64 *)(block + VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET)) = dma_next;
1291}
1292
1293/*
1294 * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
1295 * first block
1296 * Returns the dma address of the first RxD block
1297 */
1298u64 __vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring *ring)
1299{
1300 struct vxge_hw_mempool_dma *dma_object;
1301
1302 dma_object = ring->mempool->memblocks_dma_arr;
1303 vxge_assert(dma_object != NULL);
1304
1305 return dma_object->addr;
1306}
1307
1308/*
1309 * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
1310 * This function returns the dma address of a given item
1311 */
1312static dma_addr_t __vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool *mempoolh,
1313 void *item)
1314{
1315 u32 memblock_idx;
1316 void *memblock;
1317 struct vxge_hw_mempool_dma *memblock_dma_object;
1318 ptrdiff_t dma_item_offset;
1319
1320 /* get owner memblock index */
1321 memblock_idx = __vxge_hw_ring_block_memblock_idx(item);
1322
1323 /* get owner memblock by memblock index */
1324 memblock = mempoolh->memblocks_arr[memblock_idx];
1325
1326 /* get memblock DMA object by memblock index */
1327 memblock_dma_object = mempoolh->memblocks_dma_arr + memblock_idx;
1328
1329 /* calculate offset in the memblock of this item */
1330 dma_item_offset = (u8 *)item - (u8 *)memblock;
1331
1332 return memblock_dma_object->addr + dma_item_offset;
1333}
1334
1335/*
1336 * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
1337 * This function returns the dma address of a given item
1338 */
1339static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool *mempoolh,
1340 struct __vxge_hw_ring *ring, u32 from,
1341 u32 to)
1342{
1343 u8 *to_item , *from_item;
1344 dma_addr_t to_dma;
1345
1346 /* get "from" RxD block */
1347 from_item = mempoolh->items_arr[from];
1348 vxge_assert(from_item);
1349
1350 /* get "to" RxD block */
1351 to_item = mempoolh->items_arr[to];
1352 vxge_assert(to_item);
1353
1354 /* return address of the beginning of previous RxD block */
1355 to_dma = __vxge_hw_ring_item_dma_addr(mempoolh, to_item);
1356
1357 /* set next pointer for this RxD block to point on
1358 * previous item's DMA start address */
1359 __vxge_hw_ring_block_next_pointer_set(from_item, to_dma);
1360}
1361
1362/*
1363 * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
1364 * block callback
1365 * This function is callback passed to __vxge_hw_mempool_create to create memory
1366 * pool for RxD block
1367 */
1368static void
1369__vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool *mempoolh,
1370 u32 memblock_index,
1371 struct vxge_hw_mempool_dma *dma_object,
1372 u32 index, u32 is_last)
1373{
1374 u32 i;
1375 void *item = mempoolh->items_arr[index];
1376 struct __vxge_hw_ring *ring =
1377 (struct __vxge_hw_ring *)mempoolh->userdata;
1378
1379 /* format rxds array */
1380 for (i = 0; i < ring->rxds_per_block; i++) {
1381 void *rxdblock_priv;
1382 void *uld_priv;
1383 struct vxge_hw_ring_rxd_1 *rxdp;
1384
1385 u32 reserve_index = ring->channel.reserve_ptr -
1386 (index * ring->rxds_per_block + i + 1);
1387 u32 memblock_item_idx;
1388
1389 ring->channel.reserve_arr[reserve_index] = ((u8 *)item) +
1390 i * ring->rxd_size;
1391
1392 /* Note: memblock_item_idx is index of the item within
1393 * the memblock. For instance, in case of three RxD-blocks
1394 * per memblock this value can be 0, 1 or 2. */
1395 rxdblock_priv = __vxge_hw_mempool_item_priv(mempoolh,
1396 memblock_index, item,
1397 &memblock_item_idx);
1398
1399 rxdp = (struct vxge_hw_ring_rxd_1 *)
1400 ring->channel.reserve_arr[reserve_index];
1401
1402 uld_priv = ((u8 *)rxdblock_priv + ring->rxd_priv_size * i);
1403
1404 /* pre-format Host_Control */
1405 rxdp->host_control = (u64)(size_t)uld_priv;
1406 }
1407
1408 __vxge_hw_ring_block_memblock_idx_set(item, memblock_index);
1409
1410 if (is_last) {
1411 /* link last one with first one */
1412 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index, 0);
1413 }
1414
1415 if (index > 0) {
1416 /* link this RxD block with previous one */
1417 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index - 1, index);
1418 }
1419
1420 return;
1421}
1422
1423/*
1424 * __vxge_hw_ring_initial_replenish - Initial replenish of RxDs
1425 * This function replenishes the RxDs from reserve array to work array
1426 */
1427enum vxge_hw_status
1428vxge_hw_ring_replenish(struct __vxge_hw_ring *ring, u16 min_flag)
1429{
1430 void *rxd;
1431 int i = 0;
1432 struct __vxge_hw_channel *channel;
1433 enum vxge_hw_status status = VXGE_HW_OK;
1434
1435 channel = &ring->channel;
1436
1437 while (vxge_hw_channel_dtr_count(channel) > 0) {
1438
1439 status = vxge_hw_ring_rxd_reserve(ring, &rxd);
1440
1441 vxge_assert(status == VXGE_HW_OK);
1442
1443 if (ring->rxd_init) {
1444 status = ring->rxd_init(rxd, channel->userdata);
1445 if (status != VXGE_HW_OK) {
1446 vxge_hw_ring_rxd_free(ring, rxd);
1447 goto exit;
1448 }
1449 }
1450
1451 vxge_hw_ring_rxd_post(ring, rxd);
1452 if (min_flag) {
1453 i++;
1454 if (i == VXGE_HW_RING_MIN_BUFF_ALLOCATION)
1455 break;
1456 }
1457 }
1458 status = VXGE_HW_OK;
1459exit:
1460 return status;
1461}
1462
1463/*
1464 * __vxge_hw_ring_create - Create a Ring
1465 * This function creates Ring and initializes it.
1466 *
1467 */
1468enum vxge_hw_status
1469__vxge_hw_ring_create(struct __vxge_hw_vpath_handle *vp,
1470 struct vxge_hw_ring_attr *attr)
1471{
1472 enum vxge_hw_status status = VXGE_HW_OK;
1473 struct __vxge_hw_ring *ring;
1474 u32 ring_length;
1475 struct vxge_hw_ring_config *config;
1476 struct __vxge_hw_device *hldev;
1477 u32 vp_id;
1478 struct vxge_hw_mempool_cbs ring_mp_callback;
1479
1480 if ((vp == NULL) || (attr == NULL)) {
1481 status = VXGE_HW_FAIL;
1482 goto exit;
1483 }
1484
1485 hldev = vp->vpath->hldev;
1486 vp_id = vp->vpath->vp_id;
1487
1488 config = &hldev->config.vp_config[vp_id].ring;
1489
1490 ring_length = config->ring_blocks *
1491 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
1492
1493 ring = (struct __vxge_hw_ring *)__vxge_hw_channel_allocate(vp,
1494 VXGE_HW_CHANNEL_TYPE_RING,
1495 ring_length,
1496 attr->per_rxd_space,
1497 attr->userdata);
1498
1499 if (ring == NULL) {
1500 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1501 goto exit;
1502 }
1503
1504 vp->vpath->ringh = ring;
1505 ring->vp_id = vp_id;
1506 ring->vp_reg = vp->vpath->vp_reg;
1507 ring->common_reg = hldev->common_reg;
1508 ring->stats = &vp->vpath->sw_stats->ring_stats;
1509 ring->config = config;
1510 ring->callback = attr->callback;
1511 ring->rxd_init = attr->rxd_init;
1512 ring->rxd_term = attr->rxd_term;
1513 ring->buffer_mode = config->buffer_mode;
1514 ring->rxds_limit = config->rxds_limit;
1515
1516 ring->rxd_size = vxge_hw_ring_rxd_size_get(config->buffer_mode);
1517 ring->rxd_priv_size =
1518 sizeof(struct __vxge_hw_ring_rxd_priv) + attr->per_rxd_space;
1519 ring->per_rxd_space = attr->per_rxd_space;
1520
1521 ring->rxd_priv_size =
1522 ((ring->rxd_priv_size + VXGE_CACHE_LINE_SIZE - 1) /
1523 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
1524
1525 /* how many RxDs can fit into one block. Depends on configured
1526 * buffer_mode. */
1527 ring->rxds_per_block =
1528 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
1529
1530 /* calculate actual RxD block private size */
1531 ring->rxdblock_priv_size = ring->rxd_priv_size * ring->rxds_per_block;
1532 ring_mp_callback.item_func_alloc = __vxge_hw_ring_mempool_item_alloc;
1533 ring->mempool = __vxge_hw_mempool_create(hldev,
1534 VXGE_HW_BLOCK_SIZE,
1535 VXGE_HW_BLOCK_SIZE,
1536 ring->rxdblock_priv_size,
1537 ring->config->ring_blocks,
1538 ring->config->ring_blocks,
1539 &ring_mp_callback,
1540 ring);
1541
1542 if (ring->mempool == NULL) {
1543 __vxge_hw_ring_delete(vp);
1544 return VXGE_HW_ERR_OUT_OF_MEMORY;
1545 }
1546
1547 status = __vxge_hw_channel_initialize(&ring->channel);
1548 if (status != VXGE_HW_OK) {
1549 __vxge_hw_ring_delete(vp);
1550 goto exit;
1551 }
1552
1553 /* Note:
1554 * Specifying rxd_init callback means two things:
1555 * 1) rxds need to be initialized by driver at channel-open time;
1556 * 2) rxds need to be posted at channel-open time
1557 * (that's what the initial_replenish() below does)
1558 * Currently we don't have a case when the 1) is done without the 2).
1559 */
1560 if (ring->rxd_init) {
1561 status = vxge_hw_ring_replenish(ring, 1);
1562 if (status != VXGE_HW_OK) {
1563 __vxge_hw_ring_delete(vp);
1564 goto exit;
1565 }
1566 }
1567
1568 /* initial replenish will increment the counter in its post() routine,
1569 * we have to reset it */
1570 ring->stats->common_stats.usage_cnt = 0;
1571exit:
1572 return status;
1573}
1574
1575/*
1576 * __vxge_hw_ring_abort - Returns the RxD
1577 * This function terminates the RxDs of ring
1578 */
1579enum vxge_hw_status __vxge_hw_ring_abort(struct __vxge_hw_ring *ring)
1580{
1581 void *rxdh;
1582 struct __vxge_hw_channel *channel;
1583
1584 channel = &ring->channel;
1585
1586 for (;;) {
1587 vxge_hw_channel_dtr_try_complete(channel, &rxdh);
1588
1589 if (rxdh == NULL)
1590 break;
1591
1592 vxge_hw_channel_dtr_complete(channel);
1593
1594 if (ring->rxd_term)
1595 ring->rxd_term(rxdh, VXGE_HW_RXD_STATE_POSTED,
1596 channel->userdata);
1597
1598 vxge_hw_channel_dtr_free(channel, rxdh);
1599 }
1600
1601 return VXGE_HW_OK;
1602}
1603
1604/*
1605 * __vxge_hw_ring_reset - Resets the ring
1606 * This function resets the ring during vpath reset operation
1607 */
1608enum vxge_hw_status __vxge_hw_ring_reset(struct __vxge_hw_ring *ring)
1609{
1610 enum vxge_hw_status status = VXGE_HW_OK;
1611 struct __vxge_hw_channel *channel;
1612
1613 channel = &ring->channel;
1614
1615 __vxge_hw_ring_abort(ring);
1616
1617 status = __vxge_hw_channel_reset(channel);
1618
1619 if (status != VXGE_HW_OK)
1620 goto exit;
1621
1622 if (ring->rxd_init) {
1623 status = vxge_hw_ring_replenish(ring, 1);
1624 if (status != VXGE_HW_OK)
1625 goto exit;
1626 }
1627exit:
1628 return status;
1629}
1630
1631/*
1632 * __vxge_hw_ring_delete - Removes the ring
1633 * This function freeup the memory pool and removes the ring
1634 */
1635enum vxge_hw_status __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp)
1636{
1637 struct __vxge_hw_ring *ring = vp->vpath->ringh;
1638
1639 __vxge_hw_ring_abort(ring);
1640
1641 if (ring->mempool)
1642 __vxge_hw_mempool_destroy(ring->mempool);
1643
1644 vp->vpath->ringh = NULL;
1645 __vxge_hw_channel_free(&ring->channel);
1646
1647 return VXGE_HW_OK;
1648}
1649
1650/*
1651 * __vxge_hw_mempool_grow
1652 * Will resize mempool up to %num_allocate value.
1653 */
1654enum vxge_hw_status
1655__vxge_hw_mempool_grow(struct vxge_hw_mempool *mempool, u32 num_allocate,
1656 u32 *num_allocated)
1657{
1658 u32 i, first_time = mempool->memblocks_allocated == 0 ? 1 : 0;
1659 u32 n_items = mempool->items_per_memblock;
1660 u32 start_block_idx = mempool->memblocks_allocated;
1661 u32 end_block_idx = mempool->memblocks_allocated + num_allocate;
1662 enum vxge_hw_status status = VXGE_HW_OK;
1663
1664 *num_allocated = 0;
1665
1666 if (end_block_idx > mempool->memblocks_max) {
1667 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1668 goto exit;
1669 }
1670
1671 for (i = start_block_idx; i < end_block_idx; i++) {
1672 u32 j;
1673 u32 is_last = ((end_block_idx - 1) == i);
1674 struct vxge_hw_mempool_dma *dma_object =
1675 mempool->memblocks_dma_arr + i;
1676 void *the_memblock;
1677
1678 /* allocate memblock's private part. Each DMA memblock
1679 * has a space allocated for item's private usage upon
1680 * mempool's user request. Each time mempool grows, it will
1681 * allocate new memblock and its private part at once.
1682 * This helps to minimize memory usage a lot. */
1683 mempool->memblocks_priv_arr[i] =
1684 vmalloc(mempool->items_priv_size * n_items);
1685 if (mempool->memblocks_priv_arr[i] == NULL) {
1686 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1687 goto exit;
1688 }
1689
1690 memset(mempool->memblocks_priv_arr[i], 0,
1691 mempool->items_priv_size * n_items);
1692
1693 /* allocate DMA-capable memblock */
1694 mempool->memblocks_arr[i] =
1695 __vxge_hw_blockpool_malloc(mempool->devh,
1696 mempool->memblock_size, dma_object);
1697 if (mempool->memblocks_arr[i] == NULL) {
1698 vfree(mempool->memblocks_priv_arr[i]);
1699 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1700 goto exit;
1701 }
1702
1703 (*num_allocated)++;
1704 mempool->memblocks_allocated++;
1705
1706 memset(mempool->memblocks_arr[i], 0, mempool->memblock_size);
1707
1708 the_memblock = mempool->memblocks_arr[i];
1709
1710 /* fill the items hash array */
1711 for (j = 0; j < n_items; j++) {
1712 u32 index = i * n_items + j;
1713
1714 if (first_time && index >= mempool->items_initial)
1715 break;
1716
1717 mempool->items_arr[index] =
1718 ((char *)the_memblock + j*mempool->item_size);
1719
1720 /* let caller to do more job on each item */
1721 if (mempool->item_func_alloc != NULL)
1722 mempool->item_func_alloc(mempool, i,
1723 dma_object, index, is_last);
1724
1725 mempool->items_current = index + 1;
1726 }
1727
1728 if (first_time && mempool->items_current ==
1729 mempool->items_initial)
1730 break;
1731 }
1732exit:
1733 return status;
1734}
1735
1736/*
1737 * vxge_hw_mempool_create
1738 * This function will create memory pool object. Pool may grow but will
1739 * never shrink. Pool consists of number of dynamically allocated blocks
1740 * with size enough to hold %items_initial number of items. Memory is
1741 * DMA-able but client must map/unmap before interoperating with the device.
1742 */
1743struct vxge_hw_mempool*
1744__vxge_hw_mempool_create(
1745 struct __vxge_hw_device *devh,
1746 u32 memblock_size,
1747 u32 item_size,
1748 u32 items_priv_size,
1749 u32 items_initial,
1750 u32 items_max,
1751 struct vxge_hw_mempool_cbs *mp_callback,
1752 void *userdata)
1753{
1754 enum vxge_hw_status status = VXGE_HW_OK;
1755 u32 memblocks_to_allocate;
1756 struct vxge_hw_mempool *mempool = NULL;
1757 u32 allocated;
1758
1759 if (memblock_size < item_size) {
1760 status = VXGE_HW_FAIL;
1761 goto exit;
1762 }
1763
1764 mempool = (struct vxge_hw_mempool *)
1765 vmalloc(sizeof(struct vxge_hw_mempool));
1766 if (mempool == NULL) {
1767 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1768 goto exit;
1769 }
1770 memset(mempool, 0, sizeof(struct vxge_hw_mempool));
1771
1772 mempool->devh = devh;
1773 mempool->memblock_size = memblock_size;
1774 mempool->items_max = items_max;
1775 mempool->items_initial = items_initial;
1776 mempool->item_size = item_size;
1777 mempool->items_priv_size = items_priv_size;
1778 mempool->item_func_alloc = mp_callback->item_func_alloc;
1779 mempool->userdata = userdata;
1780
1781 mempool->memblocks_allocated = 0;
1782
1783 mempool->items_per_memblock = memblock_size / item_size;
1784
1785 mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) /
1786 mempool->items_per_memblock;
1787
1788 /* allocate array of memblocks */
1789 mempool->memblocks_arr =
1790 (void **) vmalloc(sizeof(void *) * mempool->memblocks_max);
1791 if (mempool->memblocks_arr == NULL) {
1792 __vxge_hw_mempool_destroy(mempool);
1793 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1794 mempool = NULL;
1795 goto exit;
1796 }
1797 memset(mempool->memblocks_arr, 0,
1798 sizeof(void *) * mempool->memblocks_max);
1799
1800 /* allocate array of private parts of items per memblocks */
1801 mempool->memblocks_priv_arr =
1802 (void **) vmalloc(sizeof(void *) * mempool->memblocks_max);
1803 if (mempool->memblocks_priv_arr == NULL) {
1804 __vxge_hw_mempool_destroy(mempool);
1805 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1806 mempool = NULL;
1807 goto exit;
1808 }
1809 memset(mempool->memblocks_priv_arr, 0,
1810 sizeof(void *) * mempool->memblocks_max);
1811
1812 /* allocate array of memblocks DMA objects */
1813 mempool->memblocks_dma_arr = (struct vxge_hw_mempool_dma *)
1814 vmalloc(sizeof(struct vxge_hw_mempool_dma) *
1815 mempool->memblocks_max);
1816
1817 if (mempool->memblocks_dma_arr == NULL) {
1818 __vxge_hw_mempool_destroy(mempool);
1819 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1820 mempool = NULL;
1821 goto exit;
1822 }
1823 memset(mempool->memblocks_dma_arr, 0,
1824 sizeof(struct vxge_hw_mempool_dma) *
1825 mempool->memblocks_max);
1826
1827 /* allocate hash array of items */
1828 mempool->items_arr =
1829 (void **) vmalloc(sizeof(void *) * mempool->items_max);
1830 if (mempool->items_arr == NULL) {
1831 __vxge_hw_mempool_destroy(mempool);
1832 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1833 mempool = NULL;
1834 goto exit;
1835 }
1836 memset(mempool->items_arr, 0, sizeof(void *) * mempool->items_max);
1837
1838 /* calculate initial number of memblocks */
1839 memblocks_to_allocate = (mempool->items_initial +
1840 mempool->items_per_memblock - 1) /
1841 mempool->items_per_memblock;
1842
1843 /* pre-allocate the mempool */
1844 status = __vxge_hw_mempool_grow(mempool, memblocks_to_allocate,
1845 &allocated);
1846 if (status != VXGE_HW_OK) {
1847 __vxge_hw_mempool_destroy(mempool);
1848 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1849 mempool = NULL;
1850 goto exit;
1851 }
1852
1853exit:
1854 return mempool;
1855}
1856
1857/*
1858 * vxge_hw_mempool_destroy
1859 */
1860void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool)
1861{
1862 u32 i, j;
1863 struct __vxge_hw_device *devh = mempool->devh;
1864
1865 for (i = 0; i < mempool->memblocks_allocated; i++) {
1866 struct vxge_hw_mempool_dma *dma_object;
1867
1868 vxge_assert(mempool->memblocks_arr[i]);
1869 vxge_assert(mempool->memblocks_dma_arr + i);
1870
1871 dma_object = mempool->memblocks_dma_arr + i;
1872
1873 for (j = 0; j < mempool->items_per_memblock; j++) {
1874 u32 index = i * mempool->items_per_memblock + j;
1875
1876 /* to skip last partially filled(if any) memblock */
1877 if (index >= mempool->items_current)
1878 break;
1879 }
1880
1881 vfree(mempool->memblocks_priv_arr[i]);
1882
1883 __vxge_hw_blockpool_free(devh, mempool->memblocks_arr[i],
1884 mempool->memblock_size, dma_object);
1885 }
1886
1887 if (mempool->items_arr)
1888 vfree(mempool->items_arr);
1889
1890 if (mempool->memblocks_dma_arr)
1891 vfree(mempool->memblocks_dma_arr);
1892
1893 if (mempool->memblocks_priv_arr)
1894 vfree(mempool->memblocks_priv_arr);
1895
1896 if (mempool->memblocks_arr)
1897 vfree(mempool->memblocks_arr);
1898
1899 vfree(mempool);
1900}
1901
1902/*
1903 * __vxge_hw_device_fifo_config_check - Check fifo configuration.
1904 * Check the fifo configuration
1905 */
1906enum vxge_hw_status
1907__vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config)
1908{
1909 if ((fifo_config->fifo_blocks < VXGE_HW_MIN_FIFO_BLOCKS) ||
1910 (fifo_config->fifo_blocks > VXGE_HW_MAX_FIFO_BLOCKS))
1911 return VXGE_HW_BADCFG_FIFO_BLOCKS;
1912
1913 return VXGE_HW_OK;
1914}
1915
1916/*
1917 * __vxge_hw_device_vpath_config_check - Check vpath configuration.
1918 * Check the vpath configuration
1919 */
1920enum vxge_hw_status
1921__vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config)
1922{
1923 enum vxge_hw_status status;
1924
1925 if ((vp_config->min_bandwidth < VXGE_HW_VPATH_BANDWIDTH_MIN) ||
1926 (vp_config->min_bandwidth >
1927 VXGE_HW_VPATH_BANDWIDTH_MAX))
1928 return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH;
1929
1930 status = __vxge_hw_device_fifo_config_check(&vp_config->fifo);
1931 if (status != VXGE_HW_OK)
1932 return status;
1933
1934 if ((vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) &&
1935 ((vp_config->mtu < VXGE_HW_VPATH_MIN_INITIAL_MTU) ||
1936 (vp_config->mtu > VXGE_HW_VPATH_MAX_INITIAL_MTU)))
1937 return VXGE_HW_BADCFG_VPATH_MTU;
1938
1939 if ((vp_config->rpa_strip_vlan_tag !=
1940 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) &&
1941 (vp_config->rpa_strip_vlan_tag !=
1942 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE) &&
1943 (vp_config->rpa_strip_vlan_tag !=
1944 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE))
1945 return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG;
1946
1947 return VXGE_HW_OK;
1948}
1949
1950/*
1951 * __vxge_hw_device_config_check - Check device configuration.
1952 * Check the device configuration
1953 */
1954enum vxge_hw_status
1955__vxge_hw_device_config_check(struct vxge_hw_device_config *new_config)
1956{
1957 u32 i;
1958 enum vxge_hw_status status;
1959
1960 if ((new_config->intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
1961 (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
1962 (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
1963 (new_config->intr_mode != VXGE_HW_INTR_MODE_DEF))
1964 return VXGE_HW_BADCFG_INTR_MODE;
1965
1966 if ((new_config->rts_mac_en != VXGE_HW_RTS_MAC_DISABLE) &&
1967 (new_config->rts_mac_en != VXGE_HW_RTS_MAC_ENABLE))
1968 return VXGE_HW_BADCFG_RTS_MAC_EN;
1969
1970 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1971 status = __vxge_hw_device_vpath_config_check(
1972 &new_config->vp_config[i]);
1973 if (status != VXGE_HW_OK)
1974 return status;
1975 }
1976
1977 return VXGE_HW_OK;
1978}
1979
1980/*
1981 * vxge_hw_device_config_default_get - Initialize device config with defaults.
1982 * Initialize Titan device config with default values.
1983 */
1984enum vxge_hw_status __devinit
1985vxge_hw_device_config_default_get(struct vxge_hw_device_config *device_config)
1986{
1987 u32 i;
1988
1989 device_config->dma_blockpool_initial =
1990 VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
1991 device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
1992 device_config->intr_mode = VXGE_HW_INTR_MODE_DEF;
1993 device_config->rth_en = VXGE_HW_RTH_DEFAULT;
1994 device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_DEFAULT;
1995 device_config->device_poll_millis = VXGE_HW_DEF_DEVICE_POLL_MILLIS;
1996 device_config->rts_mac_en = VXGE_HW_RTS_MAC_DEFAULT;
1997
1998 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1999
2000 device_config->vp_config[i].vp_id = i;
2001
2002 device_config->vp_config[i].min_bandwidth =
2003 VXGE_HW_VPATH_BANDWIDTH_DEFAULT;
2004
2005 device_config->vp_config[i].ring.enable = VXGE_HW_RING_DEFAULT;
2006
2007 device_config->vp_config[i].ring.ring_blocks =
2008 VXGE_HW_DEF_RING_BLOCKS;
2009
2010 device_config->vp_config[i].ring.buffer_mode =
2011 VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT;
2012
2013 device_config->vp_config[i].ring.scatter_mode =
2014 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT;
2015
2016 device_config->vp_config[i].ring.rxds_limit =
2017 VXGE_HW_DEF_RING_RXDS_LIMIT;
2018
2019 device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE;
2020
2021 device_config->vp_config[i].fifo.fifo_blocks =
2022 VXGE_HW_MIN_FIFO_BLOCKS;
2023
2024 device_config->vp_config[i].fifo.max_frags =
2025 VXGE_HW_MAX_FIFO_FRAGS;
2026
2027 device_config->vp_config[i].fifo.memblock_size =
2028 VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE;
2029
2030 device_config->vp_config[i].fifo.alignment_size =
2031 VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE;
2032
2033 device_config->vp_config[i].fifo.intr =
2034 VXGE_HW_FIFO_QUEUE_INTR_DEFAULT;
2035
2036 device_config->vp_config[i].fifo.no_snoop_bits =
2037 VXGE_HW_FIFO_NO_SNOOP_DEFAULT;
2038 device_config->vp_config[i].tti.intr_enable =
2039 VXGE_HW_TIM_INTR_DEFAULT;
2040
2041 device_config->vp_config[i].tti.btimer_val =
2042 VXGE_HW_USE_FLASH_DEFAULT;
2043
2044 device_config->vp_config[i].tti.timer_ac_en =
2045 VXGE_HW_USE_FLASH_DEFAULT;
2046
2047 device_config->vp_config[i].tti.timer_ci_en =
2048 VXGE_HW_USE_FLASH_DEFAULT;
2049
2050 device_config->vp_config[i].tti.timer_ri_en =
2051 VXGE_HW_USE_FLASH_DEFAULT;
2052
2053 device_config->vp_config[i].tti.rtimer_val =
2054 VXGE_HW_USE_FLASH_DEFAULT;
2055
2056 device_config->vp_config[i].tti.util_sel =
2057 VXGE_HW_USE_FLASH_DEFAULT;
2058
2059 device_config->vp_config[i].tti.ltimer_val =
2060 VXGE_HW_USE_FLASH_DEFAULT;
2061
2062 device_config->vp_config[i].tti.urange_a =
2063 VXGE_HW_USE_FLASH_DEFAULT;
2064
2065 device_config->vp_config[i].tti.uec_a =
2066 VXGE_HW_USE_FLASH_DEFAULT;
2067
2068 device_config->vp_config[i].tti.urange_b =
2069 VXGE_HW_USE_FLASH_DEFAULT;
2070
2071 device_config->vp_config[i].tti.uec_b =
2072 VXGE_HW_USE_FLASH_DEFAULT;
2073
2074 device_config->vp_config[i].tti.urange_c =
2075 VXGE_HW_USE_FLASH_DEFAULT;
2076
2077 device_config->vp_config[i].tti.uec_c =
2078 VXGE_HW_USE_FLASH_DEFAULT;
2079
2080 device_config->vp_config[i].tti.uec_d =
2081 VXGE_HW_USE_FLASH_DEFAULT;
2082
2083 device_config->vp_config[i].rti.intr_enable =
2084 VXGE_HW_TIM_INTR_DEFAULT;
2085
2086 device_config->vp_config[i].rti.btimer_val =
2087 VXGE_HW_USE_FLASH_DEFAULT;
2088
2089 device_config->vp_config[i].rti.timer_ac_en =
2090 VXGE_HW_USE_FLASH_DEFAULT;
2091
2092 device_config->vp_config[i].rti.timer_ci_en =
2093 VXGE_HW_USE_FLASH_DEFAULT;
2094
2095 device_config->vp_config[i].rti.timer_ri_en =
2096 VXGE_HW_USE_FLASH_DEFAULT;
2097
2098 device_config->vp_config[i].rti.rtimer_val =
2099 VXGE_HW_USE_FLASH_DEFAULT;
2100
2101 device_config->vp_config[i].rti.util_sel =
2102 VXGE_HW_USE_FLASH_DEFAULT;
2103
2104 device_config->vp_config[i].rti.ltimer_val =
2105 VXGE_HW_USE_FLASH_DEFAULT;
2106
2107 device_config->vp_config[i].rti.urange_a =
2108 VXGE_HW_USE_FLASH_DEFAULT;
2109
2110 device_config->vp_config[i].rti.uec_a =
2111 VXGE_HW_USE_FLASH_DEFAULT;
2112
2113 device_config->vp_config[i].rti.urange_b =
2114 VXGE_HW_USE_FLASH_DEFAULT;
2115
2116 device_config->vp_config[i].rti.uec_b =
2117 VXGE_HW_USE_FLASH_DEFAULT;
2118
2119 device_config->vp_config[i].rti.urange_c =
2120 VXGE_HW_USE_FLASH_DEFAULT;
2121
2122 device_config->vp_config[i].rti.uec_c =
2123 VXGE_HW_USE_FLASH_DEFAULT;
2124
2125 device_config->vp_config[i].rti.uec_d =
2126 VXGE_HW_USE_FLASH_DEFAULT;
2127
2128 device_config->vp_config[i].mtu =
2129 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU;
2130
2131 device_config->vp_config[i].rpa_strip_vlan_tag =
2132 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT;
2133 }
2134
2135 return VXGE_HW_OK;
2136}
2137
2138/*
2139 * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
2140 * Set the swapper bits appropriately for the lagacy section.
2141 */
2142enum vxge_hw_status
2143__vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg)
2144{
2145 u64 val64;
2146 enum vxge_hw_status status = VXGE_HW_OK;
2147
2148 val64 = readq(&legacy_reg->toc_swapper_fb);
2149
2150 wmb();
2151
2152 switch (val64) {
2153
2154 case VXGE_HW_SWAPPER_INITIAL_VALUE:
2155 return status;
2156
2157 case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED:
2158 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
2159 &legacy_reg->pifm_rd_swap_en);
2160 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
2161 &legacy_reg->pifm_rd_flip_en);
2162 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
2163 &legacy_reg->pifm_wr_swap_en);
2164 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
2165 &legacy_reg->pifm_wr_flip_en);
2166 break;
2167
2168 case VXGE_HW_SWAPPER_BYTE_SWAPPED:
2169 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
2170 &legacy_reg->pifm_rd_swap_en);
2171 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
2172 &legacy_reg->pifm_wr_swap_en);
2173 break;
2174
2175 case VXGE_HW_SWAPPER_BIT_FLIPPED:
2176 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
2177 &legacy_reg->pifm_rd_flip_en);
2178 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
2179 &legacy_reg->pifm_wr_flip_en);
2180 break;
2181 }
2182
2183 wmb();
2184
2185 val64 = readq(&legacy_reg->toc_swapper_fb);
2186
2187 if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE)
2188 status = VXGE_HW_ERR_SWAPPER_CTRL;
2189
2190 return status;
2191}
2192
2193/*
2194 * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
2195 * Set the swapper bits appropriately for the vpath.
2196 */
2197enum vxge_hw_status
2198__vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg)
2199{
2200#ifndef __BIG_ENDIAN
2201 u64 val64;
2202
2203 val64 = readq(&vpath_reg->vpath_general_cfg1);
2204 wmb();
2205 val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN;
2206 writeq(val64, &vpath_reg->vpath_general_cfg1);
2207 wmb();
2208#endif
2209 return VXGE_HW_OK;
2210}
2211
2212/*
2213 * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
2214 * Set the swapper bits appropriately for the vpath.
2215 */
2216enum vxge_hw_status
2217__vxge_hw_kdfc_swapper_set(
2218 struct vxge_hw_legacy_reg __iomem *legacy_reg,
2219 struct vxge_hw_vpath_reg __iomem *vpath_reg)
2220{
2221 u64 val64;
2222
2223 val64 = readq(&legacy_reg->pifm_wr_swap_en);
2224
2225 if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) {
2226 val64 = readq(&vpath_reg->kdfcctl_cfg0);
2227 wmb();
2228
2229 val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0 |
2230 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1 |
2231 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2;
2232
2233 writeq(val64, &vpath_reg->kdfcctl_cfg0);
2234 wmb();
2235 }
2236
2237 return VXGE_HW_OK;
2238}
2239
2240/*
2241 * vxge_hw_mgmt_device_config - Retrieve device configuration.
2242 * Get device configuration. Permits to retrieve at run-time configuration
2243 * values that were used to initialize and configure the device.
2244 */
2245enum vxge_hw_status
2246vxge_hw_mgmt_device_config(struct __vxge_hw_device *hldev,
2247 struct vxge_hw_device_config *dev_config, int size)
2248{
2249
2250 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC))
2251 return VXGE_HW_ERR_INVALID_DEVICE;
2252
2253 if (size != sizeof(struct vxge_hw_device_config))
2254 return VXGE_HW_ERR_VERSION_CONFLICT;
2255
2256 memcpy(dev_config, &hldev->config,
2257 sizeof(struct vxge_hw_device_config));
2258
2259 return VXGE_HW_OK;
2260}
2261
2262/*
2263 * vxge_hw_mgmt_reg_read - Read Titan register.
2264 */
2265enum vxge_hw_status
2266vxge_hw_mgmt_reg_read(struct __vxge_hw_device *hldev,
2267 enum vxge_hw_mgmt_reg_type type,
2268 u32 index, u32 offset, u64 *value)
2269{
2270 enum vxge_hw_status status = VXGE_HW_OK;
2271
2272 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
2273 status = VXGE_HW_ERR_INVALID_DEVICE;
2274 goto exit;
2275 }
2276
2277 switch (type) {
2278 case vxge_hw_mgmt_reg_type_legacy:
2279 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
2280 status = VXGE_HW_ERR_INVALID_OFFSET;
2281 break;
2282 }
2283 *value = readq((void __iomem *)hldev->legacy_reg + offset);
2284 break;
2285 case vxge_hw_mgmt_reg_type_toc:
2286 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
2287 status = VXGE_HW_ERR_INVALID_OFFSET;
2288 break;
2289 }
2290 *value = readq((void __iomem *)hldev->toc_reg + offset);
2291 break;
2292 case vxge_hw_mgmt_reg_type_common:
2293 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
2294 status = VXGE_HW_ERR_INVALID_OFFSET;
2295 break;
2296 }
2297 *value = readq((void __iomem *)hldev->common_reg + offset);
2298 break;
2299 case vxge_hw_mgmt_reg_type_mrpcim:
2300 if (!(hldev->access_rights &
2301 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
2302 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
2303 break;
2304 }
2305 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
2306 status = VXGE_HW_ERR_INVALID_OFFSET;
2307 break;
2308 }
2309 *value = readq((void __iomem *)hldev->mrpcim_reg + offset);
2310 break;
2311 case vxge_hw_mgmt_reg_type_srpcim:
2312 if (!(hldev->access_rights &
2313 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
2314 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
2315 break;
2316 }
2317 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
2318 status = VXGE_HW_ERR_INVALID_INDEX;
2319 break;
2320 }
2321 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
2322 status = VXGE_HW_ERR_INVALID_OFFSET;
2323 break;
2324 }
2325 *value = readq((void __iomem *)hldev->srpcim_reg[index] +
2326 offset);
2327 break;
2328 case vxge_hw_mgmt_reg_type_vpmgmt:
2329 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
2330 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
2331 status = VXGE_HW_ERR_INVALID_INDEX;
2332 break;
2333 }
2334 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
2335 status = VXGE_HW_ERR_INVALID_OFFSET;
2336 break;
2337 }
2338 *value = readq((void __iomem *)hldev->vpmgmt_reg[index] +
2339 offset);
2340 break;
2341 case vxge_hw_mgmt_reg_type_vpath:
2342 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) ||
2343 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
2344 status = VXGE_HW_ERR_INVALID_INDEX;
2345 break;
2346 }
2347 if (index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) {
2348 status = VXGE_HW_ERR_INVALID_INDEX;
2349 break;
2350 }
2351 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
2352 status = VXGE_HW_ERR_INVALID_OFFSET;
2353 break;
2354 }
2355 *value = readq((void __iomem *)hldev->vpath_reg[index] +
2356 offset);
2357 break;
2358 default:
2359 status = VXGE_HW_ERR_INVALID_TYPE;
2360 break;
2361 }
2362
2363exit:
2364 return status;
2365}
2366
2367/*
2368 * vxge_hw_mgmt_reg_Write - Write Titan register.
2369 */
2370enum vxge_hw_status
2371vxge_hw_mgmt_reg_write(struct __vxge_hw_device *hldev,
2372 enum vxge_hw_mgmt_reg_type type,
2373 u32 index, u32 offset, u64 value)
2374{
2375 enum vxge_hw_status status = VXGE_HW_OK;
2376
2377 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
2378 status = VXGE_HW_ERR_INVALID_DEVICE;
2379 goto exit;
2380 }
2381
2382 switch (type) {
2383 case vxge_hw_mgmt_reg_type_legacy:
2384 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
2385 status = VXGE_HW_ERR_INVALID_OFFSET;
2386 break;
2387 }
2388 writeq(value, (void __iomem *)hldev->legacy_reg + offset);
2389 break;
2390 case vxge_hw_mgmt_reg_type_toc:
2391 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
2392 status = VXGE_HW_ERR_INVALID_OFFSET;
2393 break;
2394 }
2395 writeq(value, (void __iomem *)hldev->toc_reg + offset);
2396 break;
2397 case vxge_hw_mgmt_reg_type_common:
2398 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
2399 status = VXGE_HW_ERR_INVALID_OFFSET;
2400 break;
2401 }
2402 writeq(value, (void __iomem *)hldev->common_reg + offset);
2403 break;
2404 case vxge_hw_mgmt_reg_type_mrpcim:
2405 if (!(hldev->access_rights &
2406 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
2407 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
2408 break;
2409 }
2410 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
2411 status = VXGE_HW_ERR_INVALID_OFFSET;
2412 break;
2413 }
2414 writeq(value, (void __iomem *)hldev->mrpcim_reg + offset);
2415 break;
2416 case vxge_hw_mgmt_reg_type_srpcim:
2417 if (!(hldev->access_rights &
2418 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
2419 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
2420 break;
2421 }
2422 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
2423 status = VXGE_HW_ERR_INVALID_INDEX;
2424 break;
2425 }
2426 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
2427 status = VXGE_HW_ERR_INVALID_OFFSET;
2428 break;
2429 }
2430 writeq(value, (void __iomem *)hldev->srpcim_reg[index] +
2431 offset);
2432
2433 break;
2434 case vxge_hw_mgmt_reg_type_vpmgmt:
2435 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
2436 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
2437 status = VXGE_HW_ERR_INVALID_INDEX;
2438 break;
2439 }
2440 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
2441 status = VXGE_HW_ERR_INVALID_OFFSET;
2442 break;
2443 }
2444 writeq(value, (void __iomem *)hldev->vpmgmt_reg[index] +
2445 offset);
2446 break;
2447 case vxge_hw_mgmt_reg_type_vpath:
2448 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES-1) ||
2449 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
2450 status = VXGE_HW_ERR_INVALID_INDEX;
2451 break;
2452 }
2453 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
2454 status = VXGE_HW_ERR_INVALID_OFFSET;
2455 break;
2456 }
2457 writeq(value, (void __iomem *)hldev->vpath_reg[index] +
2458 offset);
2459 break;
2460 default:
2461 status = VXGE_HW_ERR_INVALID_TYPE;
2462 break;
2463 }
2464exit:
2465 return status;
2466}
2467
2468/*
2469 * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
2470 * list callback
2471 * This function is callback passed to __vxge_hw_mempool_create to create memory
2472 * pool for TxD list
2473 */
2474static void
2475__vxge_hw_fifo_mempool_item_alloc(
2476 struct vxge_hw_mempool *mempoolh,
2477 u32 memblock_index, struct vxge_hw_mempool_dma *dma_object,
2478 u32 index, u32 is_last)
2479{
2480 u32 memblock_item_idx;
2481 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
2482 struct vxge_hw_fifo_txd *txdp =
2483 (struct vxge_hw_fifo_txd *)mempoolh->items_arr[index];
2484 struct __vxge_hw_fifo *fifo =
2485 (struct __vxge_hw_fifo *)mempoolh->userdata;
2486 void *memblock = mempoolh->memblocks_arr[memblock_index];
2487
2488 vxge_assert(txdp);
2489
2490 txdp->host_control = (u64) (size_t)
2491 __vxge_hw_mempool_item_priv(mempoolh, memblock_index, txdp,
2492 &memblock_item_idx);
2493
2494 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
2495
2496 vxge_assert(txdl_priv);
2497
2498 fifo->channel.reserve_arr[fifo->channel.reserve_ptr - 1 - index] = txdp;
2499
2500 /* pre-format HW's TxDL's private */
2501 txdl_priv->dma_offset = (char *)txdp - (char *)memblock;
2502 txdl_priv->dma_addr = dma_object->addr + txdl_priv->dma_offset;
2503 txdl_priv->dma_handle = dma_object->handle;
2504 txdl_priv->memblock = memblock;
2505 txdl_priv->first_txdp = txdp;
2506 txdl_priv->next_txdl_priv = NULL;
2507 txdl_priv->alloc_frags = 0;
2508
2509 return;
2510}
2511
2512/*
2513 * __vxge_hw_fifo_create - Create a FIFO
2514 * This function creates FIFO and initializes it.
2515 */
2516enum vxge_hw_status
2517__vxge_hw_fifo_create(struct __vxge_hw_vpath_handle *vp,
2518 struct vxge_hw_fifo_attr *attr)
2519{
2520 enum vxge_hw_status status = VXGE_HW_OK;
2521 struct __vxge_hw_fifo *fifo;
2522 struct vxge_hw_fifo_config *config;
2523 u32 txdl_size, txdl_per_memblock;
2524 struct vxge_hw_mempool_cbs fifo_mp_callback;
2525 struct __vxge_hw_virtualpath *vpath;
2526
2527 if ((vp == NULL) || (attr == NULL)) {
2528 status = VXGE_HW_ERR_INVALID_HANDLE;
2529 goto exit;
2530 }
2531 vpath = vp->vpath;
2532 config = &vpath->hldev->config.vp_config[vpath->vp_id].fifo;
2533
2534 txdl_size = config->max_frags * sizeof(struct vxge_hw_fifo_txd);
2535
2536 txdl_per_memblock = config->memblock_size / txdl_size;
2537
2538 fifo = (struct __vxge_hw_fifo *)__vxge_hw_channel_allocate(vp,
2539 VXGE_HW_CHANNEL_TYPE_FIFO,
2540 config->fifo_blocks * txdl_per_memblock,
2541 attr->per_txdl_space, attr->userdata);
2542
2543 if (fifo == NULL) {
2544 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2545 goto exit;
2546 }
2547
2548 vpath->fifoh = fifo;
2549 fifo->nofl_db = vpath->nofl_db;
2550
2551 fifo->vp_id = vpath->vp_id;
2552 fifo->vp_reg = vpath->vp_reg;
2553 fifo->stats = &vpath->sw_stats->fifo_stats;
2554
2555 fifo->config = config;
2556
2557 /* apply "interrupts per txdl" attribute */
2558 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ;
2559
2560 if (fifo->config->intr)
2561 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST;
2562
2563 fifo->no_snoop_bits = config->no_snoop_bits;
2564
2565 /*
2566 * FIFO memory management strategy:
2567 *
2568 * TxDL split into three independent parts:
2569 * - set of TxD's
2570 * - TxD HW private part
2571 * - driver private part
2572 *
2573 * Adaptative memory allocation used. i.e. Memory allocated on
2574 * demand with the size which will fit into one memory block.
2575 * One memory block may contain more than one TxDL.
2576 *
2577 * During "reserve" operations more memory can be allocated on demand
2578 * for example due to FIFO full condition.
2579 *
2580 * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
2581 * routine which will essentially stop the channel and free resources.
2582 */
2583
2584 /* TxDL common private size == TxDL private + driver private */
2585 fifo->priv_size =
2586 sizeof(struct __vxge_hw_fifo_txdl_priv) + attr->per_txdl_space;
2587 fifo->priv_size = ((fifo->priv_size + VXGE_CACHE_LINE_SIZE - 1) /
2588 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
2589
2590 fifo->per_txdl_space = attr->per_txdl_space;
2591
2592 /* recompute txdl size to be cacheline aligned */
2593 fifo->txdl_size = txdl_size;
2594 fifo->txdl_per_memblock = txdl_per_memblock;
2595
2596 fifo->txdl_term = attr->txdl_term;
2597 fifo->callback = attr->callback;
2598
2599 if (fifo->txdl_per_memblock == 0) {
2600 __vxge_hw_fifo_delete(vp);
2601 status = VXGE_HW_ERR_INVALID_BLOCK_SIZE;
2602 goto exit;
2603 }
2604
2605 fifo_mp_callback.item_func_alloc = __vxge_hw_fifo_mempool_item_alloc;
2606
2607 fifo->mempool =
2608 __vxge_hw_mempool_create(vpath->hldev,
2609 fifo->config->memblock_size,
2610 fifo->txdl_size,
2611 fifo->priv_size,
2612 (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
2613 (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
2614 &fifo_mp_callback,
2615 fifo);
2616
2617 if (fifo->mempool == NULL) {
2618 __vxge_hw_fifo_delete(vp);
2619 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2620 goto exit;
2621 }
2622
2623 status = __vxge_hw_channel_initialize(&fifo->channel);
2624 if (status != VXGE_HW_OK) {
2625 __vxge_hw_fifo_delete(vp);
2626 goto exit;
2627 }
2628
2629 vxge_assert(fifo->channel.reserve_ptr);
2630exit:
2631 return status;
2632}
2633
2634/*
2635 * __vxge_hw_fifo_abort - Returns the TxD
2636 * This function terminates the TxDs of fifo
2637 */
2638enum vxge_hw_status __vxge_hw_fifo_abort(struct __vxge_hw_fifo *fifo)
2639{
2640 void *txdlh;
2641
2642 for (;;) {
2643 vxge_hw_channel_dtr_try_complete(&fifo->channel, &txdlh);
2644
2645 if (txdlh == NULL)
2646 break;
2647
2648 vxge_hw_channel_dtr_complete(&fifo->channel);
2649
2650 if (fifo->txdl_term) {
2651 fifo->txdl_term(txdlh,
2652 VXGE_HW_TXDL_STATE_POSTED,
2653 fifo->channel.userdata);
2654 }
2655
2656 vxge_hw_channel_dtr_free(&fifo->channel, txdlh);
2657 }
2658
2659 return VXGE_HW_OK;
2660}
2661
2662/*
2663 * __vxge_hw_fifo_reset - Resets the fifo
2664 * This function resets the fifo during vpath reset operation
2665 */
2666enum vxge_hw_status __vxge_hw_fifo_reset(struct __vxge_hw_fifo *fifo)
2667{
2668 enum vxge_hw_status status = VXGE_HW_OK;
2669
2670 __vxge_hw_fifo_abort(fifo);
2671 status = __vxge_hw_channel_reset(&fifo->channel);
2672
2673 return status;
2674}
2675
2676/*
2677 * __vxge_hw_fifo_delete - Removes the FIFO
2678 * This function freeup the memory pool and removes the FIFO
2679 */
2680enum vxge_hw_status __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle *vp)
2681{
2682 struct __vxge_hw_fifo *fifo = vp->vpath->fifoh;
2683
2684 __vxge_hw_fifo_abort(fifo);
2685
2686 if (fifo->mempool)
2687 __vxge_hw_mempool_destroy(fifo->mempool);
2688
2689 vp->vpath->fifoh = NULL;
2690
2691 __vxge_hw_channel_free(&fifo->channel);
2692
2693 return VXGE_HW_OK;
2694}
2695
2696/*
2697 * __vxge_hw_vpath_pci_read - Read the content of given address
2698 * in pci config space.
2699 * Read from the vpath pci config space.
2700 */
2701enum vxge_hw_status
2702__vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath,
2703 u32 phy_func_0, u32 offset, u32 *val)
2704{
2705 u64 val64;
2706 enum vxge_hw_status status = VXGE_HW_OK;
2707 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2708
2709 val64 = VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset);
2710
2711 if (phy_func_0)
2712 val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0;
2713
2714 writeq(val64, &vp_reg->pci_config_access_cfg1);
2715 wmb();
2716 writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ,
2717 &vp_reg->pci_config_access_cfg2);
2718 wmb();
2719
2720 status = __vxge_hw_device_register_poll(
2721 &vp_reg->pci_config_access_cfg2,
2722 VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2723
2724 if (status != VXGE_HW_OK)
2725 goto exit;
2726
2727 val64 = readq(&vp_reg->pci_config_access_status);
2728
2729 if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) {
2730 status = VXGE_HW_FAIL;
2731 *val = 0;
2732 } else
2733 *val = (u32)vxge_bVALn(val64, 32, 32);
2734exit:
2735 return status;
2736}
2737
2738/*
2739 * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
2740 * Returns the function number of the vpath.
2741 */
2742u32
2743__vxge_hw_vpath_func_id_get(u32 vp_id,
2744 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg)
2745{
2746 u64 val64;
2747
2748 val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1);
2749
2750 return
2751 (u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64);
2752}
2753
2754/*
2755 * __vxge_hw_read_rts_ds - Program RTS steering critieria
2756 */
2757static inline void
2758__vxge_hw_read_rts_ds(struct vxge_hw_vpath_reg __iomem *vpath_reg,
2759 u64 dta_struct_sel)
2760{
2761 writeq(0, &vpath_reg->rts_access_steer_ctrl);
2762 wmb();
2763 writeq(dta_struct_sel, &vpath_reg->rts_access_steer_data0);
2764 writeq(0, &vpath_reg->rts_access_steer_data1);
2765 wmb();
2766 return;
2767}
2768
2769
2770/*
2771 * __vxge_hw_vpath_card_info_get - Get the serial numbers,
2772 * part number and product description.
2773 */
2774enum vxge_hw_status
2775__vxge_hw_vpath_card_info_get(
2776 u32 vp_id,
2777 struct vxge_hw_vpath_reg __iomem *vpath_reg,
2778 struct vxge_hw_device_hw_info *hw_info)
2779{
2780 u32 i, j;
2781 u64 val64;
2782 u64 data1 = 0ULL;
2783 u64 data2 = 0ULL;
2784 enum vxge_hw_status status = VXGE_HW_OK;
2785 u8 *serial_number = hw_info->serial_number;
2786 u8 *part_number = hw_info->part_number;
2787 u8 *product_desc = hw_info->product_desc;
2788
2789 __vxge_hw_read_rts_ds(vpath_reg,
2790 VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER);
2791
2792 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2793 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
2794 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2795 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2796 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2797 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2798
2799 status = __vxge_hw_pio_mem_write64(val64,
2800 &vpath_reg->rts_access_steer_ctrl,
2801 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2802 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2803
2804 if (status != VXGE_HW_OK)
2805 return status;
2806
2807 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2808
2809 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2810 data1 = readq(&vpath_reg->rts_access_steer_data0);
2811 ((u64 *)serial_number)[0] = be64_to_cpu(data1);
2812
2813 data2 = readq(&vpath_reg->rts_access_steer_data1);
2814 ((u64 *)serial_number)[1] = be64_to_cpu(data2);
2815 status = VXGE_HW_OK;
2816 } else
2817 *serial_number = 0;
2818
2819 __vxge_hw_read_rts_ds(vpath_reg,
2820 VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER);
2821
2822 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2823 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
2824 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2825 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2826 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2827 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2828
2829 status = __vxge_hw_pio_mem_write64(val64,
2830 &vpath_reg->rts_access_steer_ctrl,
2831 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2832 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2833
2834 if (status != VXGE_HW_OK)
2835 return status;
2836
2837 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2838
2839 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2840
2841 data1 = readq(&vpath_reg->rts_access_steer_data0);
2842 ((u64 *)part_number)[0] = be64_to_cpu(data1);
2843
2844 data2 = readq(&vpath_reg->rts_access_steer_data1);
2845 ((u64 *)part_number)[1] = be64_to_cpu(data2);
2846
2847 status = VXGE_HW_OK;
2848
2849 } else
2850 *part_number = 0;
2851
2852 j = 0;
2853
2854 for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0;
2855 i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) {
2856
2857 __vxge_hw_read_rts_ds(vpath_reg, i);
2858
2859 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2860 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
2861 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2862 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2863 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2864 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2865
2866 status = __vxge_hw_pio_mem_write64(val64,
2867 &vpath_reg->rts_access_steer_ctrl,
2868 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2869 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2870
2871 if (status != VXGE_HW_OK)
2872 return status;
2873
2874 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2875
2876 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2877
2878 data1 = readq(&vpath_reg->rts_access_steer_data0);
2879 ((u64 *)product_desc)[j++] = be64_to_cpu(data1);
2880
2881 data2 = readq(&vpath_reg->rts_access_steer_data1);
2882 ((u64 *)product_desc)[j++] = be64_to_cpu(data2);
2883
2884 status = VXGE_HW_OK;
2885 } else
2886 *product_desc = 0;
2887 }
2888
2889 return status;
2890}
2891
2892/*
2893 * __vxge_hw_vpath_fw_ver_get - Get the fw version
2894 * Returns FW Version
2895 */
2896enum vxge_hw_status
2897__vxge_hw_vpath_fw_ver_get(
2898 u32 vp_id,
2899 struct vxge_hw_vpath_reg __iomem *vpath_reg,
2900 struct vxge_hw_device_hw_info *hw_info)
2901{
2902 u64 val64;
2903 u64 data1 = 0ULL;
2904 u64 data2 = 0ULL;
2905 struct vxge_hw_device_version *fw_version = &hw_info->fw_version;
2906 struct vxge_hw_device_date *fw_date = &hw_info->fw_date;
2907 struct vxge_hw_device_version *flash_version = &hw_info->flash_version;
2908 struct vxge_hw_device_date *flash_date = &hw_info->flash_date;
2909 enum vxge_hw_status status = VXGE_HW_OK;
2910
2911 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2912 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY) |
2913 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2914 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2915 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2916 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2917
2918 status = __vxge_hw_pio_mem_write64(val64,
2919 &vpath_reg->rts_access_steer_ctrl,
2920 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2921 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2922
2923 if (status != VXGE_HW_OK)
2924 goto exit;
2925
2926 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2927
2928 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2929
2930 data1 = readq(&vpath_reg->rts_access_steer_data0);
2931 data2 = readq(&vpath_reg->rts_access_steer_data1);
2932
2933 fw_date->day =
2934 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(
2935 data1);
2936 fw_date->month =
2937 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(
2938 data1);
2939 fw_date->year =
2940 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(
2941 data1);
2942
2943 snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
2944 fw_date->month, fw_date->day, fw_date->year);
2945
2946 fw_version->major =
2947 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data1);
2948 fw_version->minor =
2949 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data1);
2950 fw_version->build =
2951 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data1);
2952
2953 snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
2954 fw_version->major, fw_version->minor, fw_version->build);
2955
2956 flash_date->day =
2957 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data2);
2958 flash_date->month =
2959 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data2);
2960 flash_date->year =
2961 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data2);
2962
2963 snprintf(flash_date->date, VXGE_HW_FW_STRLEN,
2964 "%2.2d/%2.2d/%4.4d",
2965 flash_date->month, flash_date->day, flash_date->year);
2966
2967 flash_version->major =
2968 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data2);
2969 flash_version->minor =
2970 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data2);
2971 flash_version->build =
2972 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data2);
2973
2974 snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
2975 flash_version->major, flash_version->minor,
2976 flash_version->build);
2977
2978 status = VXGE_HW_OK;
2979
2980 } else
2981 status = VXGE_HW_FAIL;
2982exit:
2983 return status;
2984}
2985
2986/*
2987 * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
2988 * Returns pci function mode
2989 */
2990u64
2991__vxge_hw_vpath_pci_func_mode_get(
2992 u32 vp_id,
2993 struct vxge_hw_vpath_reg __iomem *vpath_reg)
2994{
2995 u64 val64;
2996 u64 data1 = 0ULL;
2997 enum vxge_hw_status status = VXGE_HW_OK;
2998
2999 __vxge_hw_read_rts_ds(vpath_reg,
3000 VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PCI_MODE);
3001
3002 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
3003 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
3004 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
3005 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
3006 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
3007 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
3008
3009 status = __vxge_hw_pio_mem_write64(val64,
3010 &vpath_reg->rts_access_steer_ctrl,
3011 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
3012 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3013
3014 if (status != VXGE_HW_OK)
3015 goto exit;
3016
3017 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
3018
3019 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
3020 data1 = readq(&vpath_reg->rts_access_steer_data0);
3021 status = VXGE_HW_OK;
3022 } else {
3023 data1 = 0;
3024 status = VXGE_HW_FAIL;
3025 }
3026exit:
3027 return data1;
3028}
3029
3030/**
3031 * vxge_hw_device_flick_link_led - Flick (blink) link LED.
3032 * @hldev: HW device.
3033 * @on_off: TRUE if flickering to be on, FALSE to be off
3034 *
3035 * Flicker the link LED.
3036 */
3037enum vxge_hw_status
3038vxge_hw_device_flick_link_led(struct __vxge_hw_device *hldev,
3039 u64 on_off)
3040{
3041 u64 val64;
3042 enum vxge_hw_status status = VXGE_HW_OK;
3043 struct vxge_hw_vpath_reg __iomem *vp_reg;
3044
3045 if (hldev == NULL) {
3046 status = VXGE_HW_ERR_INVALID_DEVICE;
3047 goto exit;
3048 }
3049
3050 vp_reg = hldev->vpath_reg[hldev->first_vp_id];
3051
3052 writeq(0, &vp_reg->rts_access_steer_ctrl);
3053 wmb();
3054 writeq(on_off, &vp_reg->rts_access_steer_data0);
3055 writeq(0, &vp_reg->rts_access_steer_data1);
3056 wmb();
3057
3058 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
3059 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL) |
3060 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
3061 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
3062 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
3063 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
3064
3065 status = __vxge_hw_pio_mem_write64(val64,
3066 &vp_reg->rts_access_steer_ctrl,
3067 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
3068 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3069exit:
3070 return status;
3071}
3072
3073/*
3074 * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
3075 */
3076enum vxge_hw_status
3077__vxge_hw_vpath_rts_table_get(
3078 struct __vxge_hw_vpath_handle *vp,
3079 u32 action, u32 rts_table, u32 offset, u64 *data1, u64 *data2)
3080{
3081 u64 val64;
3082 struct __vxge_hw_virtualpath *vpath;
3083 struct vxge_hw_vpath_reg __iomem *vp_reg;
3084
3085 enum vxge_hw_status status = VXGE_HW_OK;
3086
3087 if (vp == NULL) {
3088 status = VXGE_HW_ERR_INVALID_HANDLE;
3089 goto exit;
3090 }
3091
3092 vpath = vp->vpath;
3093 vp_reg = vpath->vp_reg;
3094
3095 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
3096 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(rts_table) |
3097 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
3098 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset);
3099
3100 if ((rts_table ==
3101 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT) ||
3102 (rts_table ==
3103 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT) ||
3104 (rts_table ==
3105 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK) ||
3106 (rts_table ==
3107 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY)) {
3108 val64 = val64 | VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL;
3109 }
3110
3111 status = __vxge_hw_pio_mem_write64(val64,
3112 &vp_reg->rts_access_steer_ctrl,
3113 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
3114 vpath->hldev->config.device_poll_millis);
3115
3116 if (status != VXGE_HW_OK)
3117 goto exit;
3118
3119 val64 = readq(&vp_reg->rts_access_steer_ctrl);
3120
3121 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
3122
3123 *data1 = readq(&vp_reg->rts_access_steer_data0);
3124
3125 if ((rts_table ==
3126 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
3127 (rts_table ==
3128 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT)) {
3129 *data2 = readq(&vp_reg->rts_access_steer_data1);
3130 }
3131 status = VXGE_HW_OK;
3132 } else
3133 status = VXGE_HW_FAIL;
3134exit:
3135 return status;
3136}
3137
3138/*
3139 * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
3140 */
3141enum vxge_hw_status
3142__vxge_hw_vpath_rts_table_set(
3143 struct __vxge_hw_vpath_handle *vp, u32 action, u32 rts_table,
3144 u32 offset, u64 data1, u64 data2)
3145{
3146 u64 val64;
3147 struct __vxge_hw_virtualpath *vpath;
3148 enum vxge_hw_status status = VXGE_HW_OK;
3149 struct vxge_hw_vpath_reg __iomem *vp_reg;
3150
3151 if (vp == NULL) {
3152 status = VXGE_HW_ERR_INVALID_HANDLE;
3153 goto exit;
3154 }
3155
3156 vpath = vp->vpath;
3157 vp_reg = vpath->vp_reg;
3158
3159 writeq(data1, &vp_reg->rts_access_steer_data0);
3160 wmb();
3161
3162 if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
3163 (rts_table ==
3164 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT)) {
3165 writeq(data2, &vp_reg->rts_access_steer_data1);
3166 wmb();
3167 }
3168
3169 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
3170 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(rts_table) |
3171 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
3172 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset);
3173
3174 status = __vxge_hw_pio_mem_write64(val64,
3175 &vp_reg->rts_access_steer_ctrl,
3176 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
3177 vpath->hldev->config.device_poll_millis);
3178
3179 if (status != VXGE_HW_OK)
3180 goto exit;
3181
3182 val64 = readq(&vp_reg->rts_access_steer_ctrl);
3183
3184 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS)
3185 status = VXGE_HW_OK;
3186 else
3187 status = VXGE_HW_FAIL;
3188exit:
3189 return status;
3190}
3191
3192/*
3193 * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
3194 * from MAC address table.
3195 */
3196enum vxge_hw_status
3197__vxge_hw_vpath_addr_get(
3198 u32 vp_id, struct vxge_hw_vpath_reg __iomem *vpath_reg,
3199 u8 (macaddr)[ETH_ALEN], u8 (macaddr_mask)[ETH_ALEN])
3200{
3201 u32 i;
3202 u64 val64;
3203 u64 data1 = 0ULL;
3204 u64 data2 = 0ULL;
3205 enum vxge_hw_status status = VXGE_HW_OK;
3206
3207 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
3208 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY) |
3209 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
3210 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) |
3211 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
3212 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
3213
3214 status = __vxge_hw_pio_mem_write64(val64,
3215 &vpath_reg->rts_access_steer_ctrl,
3216 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
3217 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3218
3219 if (status != VXGE_HW_OK)
3220 goto exit;
3221
3222 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
3223
3224 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
3225
3226 data1 = readq(&vpath_reg->rts_access_steer_data0);
3227 data2 = readq(&vpath_reg->rts_access_steer_data1);
3228
3229 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
3230 data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
3231 data2);
3232
3233 for (i = ETH_ALEN; i > 0; i--) {
3234 macaddr[i-1] = (u8)(data1 & 0xFF);
3235 data1 >>= 8;
3236
3237 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
3238 data2 >>= 8;
3239 }
3240 status = VXGE_HW_OK;
3241 } else
3242 status = VXGE_HW_FAIL;
3243exit:
3244 return status;
3245}
3246
3247/*
3248 * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
3249 */
3250enum vxge_hw_status vxge_hw_vpath_rts_rth_set(
3251 struct __vxge_hw_vpath_handle *vp,
3252 enum vxge_hw_rth_algoritms algorithm,
3253 struct vxge_hw_rth_hash_types *hash_type,
3254 u16 bucket_size)
3255{
3256 u64 data0, data1;
3257 enum vxge_hw_status status = VXGE_HW_OK;
3258
3259 if (vp == NULL) {
3260 status = VXGE_HW_ERR_INVALID_HANDLE;
3261 goto exit;
3262 }
3263
3264 status = __vxge_hw_vpath_rts_table_get(vp,
3265 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
3266 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3267 0, &data0, &data1);
3268
3269 data0 &= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
3270 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
3271
3272 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN |
3273 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size) |
3274 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm);
3275
3276 if (hash_type->hash_type_tcpipv4_en)
3277 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN;
3278
3279 if (hash_type->hash_type_ipv4_en)
3280 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN;
3281
3282 if (hash_type->hash_type_tcpipv6_en)
3283 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN;
3284
3285 if (hash_type->hash_type_ipv6_en)
3286 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN;
3287
3288 if (hash_type->hash_type_tcpipv6ex_en)
3289 data0 |=
3290 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN;
3291
3292 if (hash_type->hash_type_ipv6ex_en)
3293 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN;
3294
3295 if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0))
3296 data0 &= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3297 else
3298 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3299
3300 status = __vxge_hw_vpath_rts_table_set(vp,
3301 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY,
3302 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3303 0, data0, 0);
3304exit:
3305 return status;
3306}
3307
3308static void
3309vxge_hw_rts_rth_data0_data1_get(u32 j, u64 *data0, u64 *data1,
3310 u16 flag, u8 *itable)
3311{
3312 switch (flag) {
3313 case 1:
3314 *data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j)|
3315 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN |
3316 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
3317 itable[j]);
3318 case 2:
3319 *data0 |=
3320 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j)|
3321 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN |
3322 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
3323 itable[j]);
3324 case 3:
3325 *data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j)|
3326 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN |
3327 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
3328 itable[j]);
3329 case 4:
3330 *data1 |=
3331 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j)|
3332 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN |
3333 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
3334 itable[j]);
3335 default:
3336 return;
3337 }
3338}
3339/*
3340 * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
3341 */
3342enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set(
3343 struct __vxge_hw_vpath_handle **vpath_handles,
3344 u32 vpath_count,
3345 u8 *mtable,
3346 u8 *itable,
3347 u32 itable_size)
3348{
3349 u32 i, j, action, rts_table;
3350 u64 data0;
3351 u64 data1;
3352 u32 max_entries;
3353 enum vxge_hw_status status = VXGE_HW_OK;
3354 struct __vxge_hw_vpath_handle *vp = vpath_handles[0];
3355
3356 if (vp == NULL) {
3357 status = VXGE_HW_ERR_INVALID_HANDLE;
3358 goto exit;
3359 }
3360
3361 max_entries = (((u32)1) << itable_size);
3362
3363 if (vp->vpath->hldev->config.rth_it_type
3364 == VXGE_HW_RTH_IT_TYPE_SOLO_IT) {
3365 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3366 rts_table =
3367 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT;
3368
3369 for (j = 0; j < max_entries; j++) {
3370
3371 data1 = 0;
3372
3373 data0 =
3374 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3375 itable[j]);
3376
3377 status = __vxge_hw_vpath_rts_table_set(vpath_handles[0],
3378 action, rts_table, j, data0, data1);
3379
3380 if (status != VXGE_HW_OK)
3381 goto exit;
3382 }
3383
3384 for (j = 0; j < max_entries; j++) {
3385
3386 data1 = 0;
3387
3388 data0 =
3389 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN |
3390 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3391 itable[j]);
3392
3393 status = __vxge_hw_vpath_rts_table_set(
3394 vpath_handles[mtable[itable[j]]], action,
3395 rts_table, j, data0, data1);
3396
3397 if (status != VXGE_HW_OK)
3398 goto exit;
3399 }
3400 } else {
3401 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3402 rts_table =
3403 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT;
3404 for (i = 0; i < vpath_count; i++) {
3405
3406 for (j = 0; j < max_entries;) {
3407
3408 data0 = 0;
3409 data1 = 0;
3410
3411 while (j < max_entries) {
3412 if (mtable[itable[j]] != i) {
3413 j++;
3414 continue;
3415 }
3416 vxge_hw_rts_rth_data0_data1_get(j,
3417 &data0, &data1, 1, itable);
3418 j++;
3419 break;
3420 }
3421
3422 while (j < max_entries) {
3423 if (mtable[itable[j]] != i) {
3424 j++;
3425 continue;
3426 }
3427 vxge_hw_rts_rth_data0_data1_get(j,
3428 &data0, &data1, 2, itable);
3429 j++;
3430 break;
3431 }
3432
3433 while (j < max_entries) {
3434 if (mtable[itable[j]] != i) {
3435 j++;
3436 continue;
3437 }
3438 vxge_hw_rts_rth_data0_data1_get(j,
3439 &data0, &data1, 3, itable);
3440 j++;
3441 break;
3442 }
3443
3444 while (j < max_entries) {
3445 if (mtable[itable[j]] != i) {
3446 j++;
3447 continue;
3448 }
3449 vxge_hw_rts_rth_data0_data1_get(j,
3450 &data0, &data1, 4, itable);
3451 j++;
3452 break;
3453 }
3454
3455 if (data0 != 0) {
3456 status = __vxge_hw_vpath_rts_table_set(
3457 vpath_handles[i],
3458 action, rts_table,
3459 0, data0, data1);
3460
3461 if (status != VXGE_HW_OK)
3462 goto exit;
3463 }
3464 }
3465 }
3466 }
3467exit:
3468 return status;
3469}
3470
3471/**
3472 * vxge_hw_vpath_check_leak - Check for memory leak
3473 * @ringh: Handle to the ring object used for receive
3474 *
3475 * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
3476 * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
3477 * Returns: VXGE_HW_FAIL, if leak has occurred.
3478 *
3479 */
3480enum vxge_hw_status
3481vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ring)
3482{
3483 enum vxge_hw_status status = VXGE_HW_OK;
3484 u64 rxd_new_count, rxd_spat;
3485
3486 if (ring == NULL)
3487 return status;
3488
3489 rxd_new_count = readl(&ring->vp_reg->prc_rxd_doorbell);
3490 rxd_spat = readq(&ring->vp_reg->prc_cfg6);
3491 rxd_spat = VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat);
3492
3493 if (rxd_new_count >= rxd_spat)
3494 status = VXGE_HW_FAIL;
3495
3496 return status;
3497}
3498
3499/*
3500 * __vxge_hw_vpath_mgmt_read
3501 * This routine reads the vpath_mgmt registers
3502 */
3503static enum vxge_hw_status
3504__vxge_hw_vpath_mgmt_read(
3505 struct __vxge_hw_device *hldev,
3506 struct __vxge_hw_virtualpath *vpath)
3507{
3508 u32 i, mtu = 0, max_pyld = 0;
3509 u64 val64;
3510 enum vxge_hw_status status = VXGE_HW_OK;
3511
3512 for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
3513
3514 val64 = readq(&vpath->vpmgmt_reg->
3515 rxmac_cfg0_port_vpmgmt_clone[i]);
3516 max_pyld =
3517 (u32)
3518 VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
3519 (val64);
3520 if (mtu < max_pyld)
3521 mtu = max_pyld;
3522 }
3523
3524 vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE;
3525
3526 val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp);
3527
3528 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3529 if (val64 & vxge_mBIT(i))
3530 vpath->vsport_number = i;
3531 }
3532
3533 val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone);
3534
3535 if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK)
3536 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP);
3537 else
3538 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN);
3539
3540 return status;
3541}
3542
3543/*
3544 * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
3545 * This routine checks the vpath_rst_in_prog register to see if
3546 * adapter completed the reset process for the vpath
3547 */
3548enum vxge_hw_status
3549__vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath)
3550{
3551 enum vxge_hw_status status;
3552
3553 status = __vxge_hw_device_register_poll(
3554 &vpath->hldev->common_reg->vpath_rst_in_prog,
3555 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
3556 1 << (16 - vpath->vp_id)),
3557 vpath->hldev->config.device_poll_millis);
3558
3559 return status;
3560}
3561
3562/*
3563 * __vxge_hw_vpath_reset
3564 * This routine resets the vpath on the device
3565 */
3566enum vxge_hw_status
3567__vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id)
3568{
3569 u64 val64;
3570 enum vxge_hw_status status = VXGE_HW_OK;
3571
3572 val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id));
3573
3574 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
3575 &hldev->common_reg->cmn_rsthdlr_cfg0);
3576
3577 return status;
3578}
3579
3580/*
3581 * __vxge_hw_vpath_sw_reset
3582 * This routine resets the vpath structures
3583 */
3584enum vxge_hw_status
3585__vxge_hw_vpath_sw_reset(struct __vxge_hw_device *hldev, u32 vp_id)
3586{
3587 enum vxge_hw_status status = VXGE_HW_OK;
3588 struct __vxge_hw_virtualpath *vpath;
3589
3590 vpath = (struct __vxge_hw_virtualpath *)&hldev->virtual_paths[vp_id];
3591
3592 if (vpath->ringh) {
3593 status = __vxge_hw_ring_reset(vpath->ringh);
3594 if (status != VXGE_HW_OK)
3595 goto exit;
3596 }
3597
3598 if (vpath->fifoh)
3599 status = __vxge_hw_fifo_reset(vpath->fifoh);
3600exit:
3601 return status;
3602}
3603
3604/*
3605 * __vxge_hw_vpath_prc_configure
3606 * This routine configures the prc registers of virtual path using the config
3607 * passed
3608 */
3609void
3610__vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
3611{
3612 u64 val64;
3613 struct __vxge_hw_virtualpath *vpath;
3614 struct vxge_hw_vp_config *vp_config;
3615 struct vxge_hw_vpath_reg __iomem *vp_reg;
3616
3617 vpath = &hldev->virtual_paths[vp_id];
3618 vp_reg = vpath->vp_reg;
3619 vp_config = vpath->vp_config;
3620
3621 if (vp_config->ring.enable == VXGE_HW_RING_DISABLE)
3622 return;
3623
3624 val64 = readq(&vp_reg->prc_cfg1);
3625 val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE;
3626 writeq(val64, &vp_reg->prc_cfg1);
3627
3628 val64 = readq(&vpath->vp_reg->prc_cfg6);
3629 val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN;
3630 writeq(val64, &vpath->vp_reg->prc_cfg6);
3631
3632 val64 = readq(&vp_reg->prc_cfg7);
3633
3634 if (vpath->vp_config->ring.scatter_mode !=
3635 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT) {
3636
3637 val64 &= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
3638
3639 switch (vpath->vp_config->ring.scatter_mode) {
3640 case VXGE_HW_RING_SCATTER_MODE_A:
3641 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
3642 VXGE_HW_PRC_CFG7_SCATTER_MODE_A);
3643 break;
3644 case VXGE_HW_RING_SCATTER_MODE_B:
3645 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
3646 VXGE_HW_PRC_CFG7_SCATTER_MODE_B);
3647 break;
3648 case VXGE_HW_RING_SCATTER_MODE_C:
3649 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
3650 VXGE_HW_PRC_CFG7_SCATTER_MODE_C);
3651 break;
3652 }
3653 }
3654
3655 writeq(val64, &vp_reg->prc_cfg7);
3656
3657 writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
3658 __vxge_hw_ring_first_block_address_get(
3659 vpath->ringh) >> 3), &vp_reg->prc_cfg5);
3660
3661 val64 = readq(&vp_reg->prc_cfg4);
3662 val64 |= VXGE_HW_PRC_CFG4_IN_SVC;
3663 val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
3664
3665 val64 |= VXGE_HW_PRC_CFG4_RING_MODE(
3666 VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER);
3667
3668 if (hldev->config.rth_en == VXGE_HW_RTH_DISABLE)
3669 val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE;
3670 else
3671 val64 &= ~VXGE_HW_PRC_CFG4_RTH_DISABLE;
3672
3673 writeq(val64, &vp_reg->prc_cfg4);
3674 return;
3675}
3676
3677/*
3678 * __vxge_hw_vpath_kdfc_configure
3679 * This routine configures the kdfc registers of virtual path using the
3680 * config passed
3681 */
3682enum vxge_hw_status
3683__vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
3684{
3685 u64 val64;
3686 u64 vpath_stride;
3687 enum vxge_hw_status status = VXGE_HW_OK;
3688 struct __vxge_hw_virtualpath *vpath;
3689 struct vxge_hw_vpath_reg __iomem *vp_reg;
3690
3691 vpath = &hldev->virtual_paths[vp_id];
3692 vp_reg = vpath->vp_reg;
3693 status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg);
3694
3695 if (status != VXGE_HW_OK)
3696 goto exit;
3697
3698 val64 = readq(&vp_reg->kdfc_drbl_triplet_total);
3699
3700 vpath->max_kdfc_db =
3701 (u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
3702 val64+1)/2;
3703
3704 if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
3705
3706 vpath->max_nofl_db = vpath->max_kdfc_db;
3707
3708 if (vpath->max_nofl_db <
3709 ((vpath->vp_config->fifo.memblock_size /
3710 (vpath->vp_config->fifo.max_frags *
3711 sizeof(struct vxge_hw_fifo_txd))) *
3712 vpath->vp_config->fifo.fifo_blocks)) {
3713
3714 return VXGE_HW_BADCFG_FIFO_BLOCKS;
3715 }
3716 val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
3717 (vpath->max_nofl_db*2)-1);
3718 }
3719
3720 writeq(val64, &vp_reg->kdfc_fifo_trpl_partition);
3721
3722 writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE,
3723 &vp_reg->kdfc_fifo_trpl_ctrl);
3724
3725 val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl);
3726
3727 val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
3728 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
3729
3730 val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
3731 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) |
3732#ifndef __BIG_ENDIAN
3733 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN |
3734#endif
3735 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
3736
3737 writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl);
3738 writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address);
3739 wmb();
3740 vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride);
3741
3742 vpath->nofl_db =
3743 (struct __vxge_hw_non_offload_db_wrapper __iomem *)
3744 (hldev->kdfc + (vp_id *
3745 VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
3746 vpath_stride)));
3747exit:
3748 return status;
3749}
3750
3751/*
3752 * __vxge_hw_vpath_mac_configure
3753 * This routine configures the mac of virtual path using the config passed
3754 */
3755enum vxge_hw_status
3756__vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev, u32 vp_id)
3757{
3758 u64 val64;
3759 enum vxge_hw_status status = VXGE_HW_OK;
3760 struct __vxge_hw_virtualpath *vpath;
3761 struct vxge_hw_vp_config *vp_config;
3762 struct vxge_hw_vpath_reg __iomem *vp_reg;
3763
3764 vpath = &hldev->virtual_paths[vp_id];
3765 vp_reg = vpath->vp_reg;
3766 vp_config = vpath->vp_config;
3767
3768 writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
3769 vpath->vsport_number), &vp_reg->xmac_vsport_choice);
3770
3771 if (vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
3772
3773 val64 = readq(&vp_reg->xmac_rpa_vcfg);
3774
3775 if (vp_config->rpa_strip_vlan_tag !=
3776 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) {
3777 if (vp_config->rpa_strip_vlan_tag)
3778 val64 |= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
3779 else
3780 val64 &= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
3781 }
3782
3783 writeq(val64, &vp_reg->xmac_rpa_vcfg);
3784 val64 = readq(&vp_reg->rxmac_vcfg0);
3785
3786 if (vp_config->mtu !=
3787 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) {
3788 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
3789 if ((vp_config->mtu +
3790 VXGE_HW_MAC_HEADER_MAX_SIZE) < vpath->max_mtu)
3791 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
3792 vp_config->mtu +
3793 VXGE_HW_MAC_HEADER_MAX_SIZE);
3794 else
3795 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
3796 vpath->max_mtu);
3797 }
3798
3799 writeq(val64, &vp_reg->rxmac_vcfg0);
3800
3801 val64 = readq(&vp_reg->rxmac_vcfg1);
3802
3803 val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
3804 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE);
3805
3806 if (hldev->config.rth_it_type ==
3807 VXGE_HW_RTH_IT_TYPE_MULTI_IT) {
3808 val64 |= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
3809 0x2) |
3810 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE;
3811 }
3812
3813 writeq(val64, &vp_reg->rxmac_vcfg1);
3814 }
3815 return status;
3816}
3817
3818/*
3819 * __vxge_hw_vpath_tim_configure
3820 * This routine configures the tim registers of virtual path using the config
3821 * passed
3822 */
3823enum vxge_hw_status
3824__vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id)
3825{
3826 u64 val64;
3827 enum vxge_hw_status status = VXGE_HW_OK;
3828 struct __vxge_hw_virtualpath *vpath;
3829 struct vxge_hw_vpath_reg __iomem *vp_reg;
3830 struct vxge_hw_vp_config *config;
3831
3832 vpath = &hldev->virtual_paths[vp_id];
3833 vp_reg = vpath->vp_reg;
3834 config = vpath->vp_config;
3835
3836 writeq((u64)0, &vp_reg->tim_dest_addr);
3837 writeq((u64)0, &vp_reg->tim_vpath_map);
3838 writeq((u64)0, &vp_reg->tim_bitmap);
3839 writeq((u64)0, &vp_reg->tim_remap);
3840
3841 if (config->ring.enable == VXGE_HW_RING_ENABLE)
3842 writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
3843 (vp_id * VXGE_HW_MAX_INTR_PER_VP) +
3844 VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn);
3845
3846 val64 = readq(&vp_reg->tim_pci_cfg);
3847 val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD;
3848 writeq(val64, &vp_reg->tim_pci_cfg);
3849
3850 if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
3851
3852 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
3853
3854 if (config->tti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3855 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
3856 0x3ffffff);
3857 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
3858 config->tti.btimer_val);
3859 }
3860
3861 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
3862
3863 if (config->tti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
3864 if (config->tti.timer_ac_en)
3865 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
3866 else
3867 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
3868 }
3869
3870 if (config->tti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
3871 if (config->tti.timer_ci_en)
3872 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3873 else
3874 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3875 }
3876
3877 if (config->tti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
3878 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
3879 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
3880 config->tti.urange_a);
3881 }
3882
3883 if (config->tti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
3884 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
3885 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
3886 config->tti.urange_b);
3887 }
3888
3889 if (config->tti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
3890 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
3891 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
3892 config->tti.urange_c);
3893 }
3894
3895 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
3896 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
3897
3898 if (config->tti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
3899 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
3900 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
3901 config->tti.uec_a);
3902 }
3903
3904 if (config->tti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
3905 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
3906 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
3907 config->tti.uec_b);
3908 }
3909
3910 if (config->tti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
3911 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
3912 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
3913 config->tti.uec_c);
3914 }
3915
3916 if (config->tti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
3917 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
3918 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
3919 config->tti.uec_d);
3920 }
3921
3922 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
3923 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
3924
3925 if (config->tti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
3926 if (config->tti.timer_ri_en)
3927 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
3928 else
3929 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
3930 }
3931
3932 if (config->tti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3933 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
3934 0x3ffffff);
3935 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
3936 config->tti.rtimer_val);
3937 }
3938
3939 if (config->tti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
3940 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
3941 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(
3942 config->tti.util_sel);
3943 }
3944
3945 if (config->tti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3946 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
3947 0x3ffffff);
3948 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
3949 config->tti.ltimer_val);
3950 }
3951
3952 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
3953 }
3954
3955 if (config->ring.enable == VXGE_HW_RING_ENABLE) {
3956
3957 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
3958
3959 if (config->rti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3960 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
3961 0x3ffffff);
3962 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
3963 config->rti.btimer_val);
3964 }
3965
3966 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
3967
3968 if (config->rti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
3969 if (config->rti.timer_ac_en)
3970 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
3971 else
3972 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
3973 }
3974
3975 if (config->rti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
3976 if (config->rti.timer_ci_en)
3977 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3978 else
3979 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3980 }
3981
3982 if (config->rti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
3983 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
3984 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
3985 config->rti.urange_a);
3986 }
3987
3988 if (config->rti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
3989 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
3990 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
3991 config->rti.urange_b);
3992 }
3993
3994 if (config->rti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
3995 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
3996 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
3997 config->rti.urange_c);
3998 }
3999
4000 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4001 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4002
4003 if (config->rti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4004 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4005 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4006 config->rti.uec_a);
4007 }
4008
4009 if (config->rti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4010 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4011 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4012 config->rti.uec_b);
4013 }
4014
4015 if (config->rti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4016 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4017 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4018 config->rti.uec_c);
4019 }
4020
4021 if (config->rti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4022 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4023 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4024 config->rti.uec_d);
4025 }
4026
4027 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4028 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4029
4030 if (config->rti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4031 if (config->rti.timer_ri_en)
4032 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4033 else
4034 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4035 }
4036
4037 if (config->rti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4038 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4039 0x3ffffff);
4040 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4041 config->rti.rtimer_val);
4042 }
4043
4044 if (config->rti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4045 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4046 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(
4047 config->rti.util_sel);
4048 }
4049
4050 if (config->rti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4051 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4052 0x3ffffff);
4053 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4054 config->rti.ltimer_val);
4055 }
4056
4057 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4058 }
4059
4060 val64 = 0;
4061 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4062 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4063 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4064 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4065 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4066 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4067
4068 return status;
4069}
4070
4071/*
4072 * __vxge_hw_vpath_initialize
4073 * This routine is the final phase of init which initializes the
4074 * registers of the vpath using the configuration passed.
4075 */
4076enum vxge_hw_status
4077__vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id)
4078{
4079 u64 val64;
4080 u32 val32;
4081 enum vxge_hw_status status = VXGE_HW_OK;
4082 struct __vxge_hw_virtualpath *vpath;
4083 struct vxge_hw_vpath_reg __iomem *vp_reg;
4084
4085 vpath = &hldev->virtual_paths[vp_id];
4086
4087 if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4088 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4089 goto exit;
4090 }
4091 vp_reg = vpath->vp_reg;
4092
4093 status = __vxge_hw_vpath_swapper_set(vpath->vp_reg);
4094
4095 if (status != VXGE_HW_OK)
4096 goto exit;
4097
4098 status = __vxge_hw_vpath_mac_configure(hldev, vp_id);
4099
4100 if (status != VXGE_HW_OK)
4101 goto exit;
4102
4103 status = __vxge_hw_vpath_kdfc_configure(hldev, vp_id);
4104
4105 if (status != VXGE_HW_OK)
4106 goto exit;
4107
4108 status = __vxge_hw_vpath_tim_configure(hldev, vp_id);
4109
4110 if (status != VXGE_HW_OK)
4111 goto exit;
4112
4113 writeq(0, &vp_reg->gendma_int);
4114
4115 val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl);
4116
4117 /* Get MRRS value from device control */
4118 status = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32);
4119
4120 if (status == VXGE_HW_OK) {
4121 val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12;
4122 val64 &=
4123 ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
4124 val64 |=
4125 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32);
4126
4127 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE;
4128 }
4129
4130 val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
4131 val64 |=
4132 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
4133 VXGE_HW_MAX_PAYLOAD_SIZE_512);
4134
4135 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN;
4136 writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl);
4137
4138exit:
4139 return status;
4140}
4141
4142/*
4143 * __vxge_hw_vp_initialize - Initialize Virtual Path structure
4144 * This routine is the initial phase of init which resets the vpath and
4145 * initializes the software support structures.
4146 */
4147enum vxge_hw_status
4148__vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id,
4149 struct vxge_hw_vp_config *config)
4150{
4151 struct __vxge_hw_virtualpath *vpath;
4152 enum vxge_hw_status status = VXGE_HW_OK;
4153
4154 if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4155 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4156 goto exit;
4157 }
4158
4159 vpath = &hldev->virtual_paths[vp_id];
4160
4161 vpath->vp_id = vp_id;
4162 vpath->vp_open = VXGE_HW_VP_OPEN;
4163 vpath->hldev = hldev;
4164 vpath->vp_config = config;
4165 vpath->vp_reg = hldev->vpath_reg[vp_id];
4166 vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id];
4167
4168 __vxge_hw_vpath_reset(hldev, vp_id);
4169
4170 status = __vxge_hw_vpath_reset_check(vpath);
4171
4172 if (status != VXGE_HW_OK) {
4173 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4174 goto exit;
4175 }
4176
4177 status = __vxge_hw_vpath_mgmt_read(hldev, vpath);
4178
4179 if (status != VXGE_HW_OK) {
4180 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4181 goto exit;
4182 }
4183
4184 INIT_LIST_HEAD(&vpath->vpath_handles);
4185
4186 vpath->sw_stats = &hldev->stats.sw_dev_info_stats.vpath_info[vp_id];
4187
4188 VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0,
4189 hldev->tim_int_mask1, vp_id);
4190
4191 status = __vxge_hw_vpath_initialize(hldev, vp_id);
4192
4193 if (status != VXGE_HW_OK)
4194 __vxge_hw_vp_terminate(hldev, vp_id);
4195exit:
4196 return status;
4197}
4198
4199/*
4200 * __vxge_hw_vp_terminate - Terminate Virtual Path structure
4201 * This routine closes all channels it opened and freeup memory
4202 */
4203void
4204__vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, u32 vp_id)
4205{
4206 struct __vxge_hw_virtualpath *vpath;
4207
4208 vpath = &hldev->virtual_paths[vp_id];
4209
4210 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN)
4211 goto exit;
4212
4213 VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath->hldev->tim_int_mask0,
4214 vpath->hldev->tim_int_mask1, vpath->vp_id);
4215 hldev->stats.hw_dev_info_stats.vpath_info[vpath->vp_id] = NULL;
4216
4217 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4218exit:
4219 return;
4220}
4221
4222/*
4223 * vxge_hw_vpath_mtu_set - Set MTU.
4224 * Set new MTU value. Example, to use jumbo frames:
4225 * vxge_hw_vpath_mtu_set(my_device, 9600);
4226 */
4227enum vxge_hw_status
4228vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle *vp, u32 new_mtu)
4229{
4230 u64 val64;
4231 enum vxge_hw_status status = VXGE_HW_OK;
4232 struct __vxge_hw_virtualpath *vpath;
4233
4234 if (vp == NULL) {
4235 status = VXGE_HW_ERR_INVALID_HANDLE;
4236 goto exit;
4237 }
4238 vpath = vp->vpath;
4239
4240 new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE;
4241
4242 if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu))
4243 status = VXGE_HW_ERR_INVALID_MTU_SIZE;
4244
4245 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
4246
4247 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4248 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu);
4249
4250 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
4251
4252 vpath->vp_config->mtu = new_mtu - VXGE_HW_MAC_HEADER_MAX_SIZE;
4253
4254exit:
4255 return status;
4256}
4257
4258/*
4259 * vxge_hw_vpath_open - Open a virtual path on a given adapter
4260 * This function is used to open access to virtual path of an
4261 * adapter for offload, GRO operations. This function returns
4262 * synchronously.
4263 */
4264enum vxge_hw_status
4265vxge_hw_vpath_open(struct __vxge_hw_device *hldev,
4266 struct vxge_hw_vpath_attr *attr,
4267 struct __vxge_hw_vpath_handle **vpath_handle)
4268{
4269 struct __vxge_hw_virtualpath *vpath;
4270 struct __vxge_hw_vpath_handle *vp;
4271 enum vxge_hw_status status;
4272
4273 vpath = &hldev->virtual_paths[attr->vp_id];
4274
4275 if (vpath->vp_open == VXGE_HW_VP_OPEN) {
4276 status = VXGE_HW_ERR_INVALID_STATE;
4277 goto vpath_open_exit1;
4278 }
4279
4280 status = __vxge_hw_vp_initialize(hldev, attr->vp_id,
4281 &hldev->config.vp_config[attr->vp_id]);
4282
4283 if (status != VXGE_HW_OK)
4284 goto vpath_open_exit1;
4285
4286 vp = (struct __vxge_hw_vpath_handle *)
4287 vmalloc(sizeof(struct __vxge_hw_vpath_handle));
4288 if (vp == NULL) {
4289 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4290 goto vpath_open_exit2;
4291 }
4292
4293 memset(vp, 0, sizeof(struct __vxge_hw_vpath_handle));
4294
4295 vp->vpath = vpath;
4296
4297 if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4298 status = __vxge_hw_fifo_create(vp, &attr->fifo_attr);
4299 if (status != VXGE_HW_OK)
4300 goto vpath_open_exit6;
4301 }
4302
4303 if (vpath->vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4304 status = __vxge_hw_ring_create(vp, &attr->ring_attr);
4305 if (status != VXGE_HW_OK)
4306 goto vpath_open_exit7;
4307
4308 __vxge_hw_vpath_prc_configure(hldev, attr->vp_id);
4309 }
4310
4311 vpath->fifoh->tx_intr_num =
4312 (attr->vp_id * VXGE_HW_MAX_INTR_PER_VP) +
4313 VXGE_HW_VPATH_INTR_TX;
4314
4315 vpath->stats_block = __vxge_hw_blockpool_block_allocate(hldev,
4316 VXGE_HW_BLOCK_SIZE);
4317
4318 if (vpath->stats_block == NULL) {
4319 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4320 goto vpath_open_exit8;
4321 }
4322
4323 vpath->hw_stats = (struct vxge_hw_vpath_stats_hw_info *)vpath->
4324 stats_block->memblock;
4325 memset(vpath->hw_stats, 0,
4326 sizeof(struct vxge_hw_vpath_stats_hw_info));
4327
4328 hldev->stats.hw_dev_info_stats.vpath_info[attr->vp_id] =
4329 vpath->hw_stats;
4330
4331 vpath->hw_stats_sav =
4332 &hldev->stats.hw_dev_info_stats.vpath_info_sav[attr->vp_id];
4333 memset(vpath->hw_stats_sav, 0,
4334 sizeof(struct vxge_hw_vpath_stats_hw_info));
4335
4336 writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg);
4337
4338 status = vxge_hw_vpath_stats_enable(vp);
4339 if (status != VXGE_HW_OK)
4340 goto vpath_open_exit8;
4341
4342 list_add(&vp->item, &vpath->vpath_handles);
4343
4344 hldev->vpaths_deployed |= vxge_mBIT(vpath->vp_id);
4345
4346 *vpath_handle = vp;
4347
4348 attr->fifo_attr.userdata = vpath->fifoh;
4349 attr->ring_attr.userdata = vpath->ringh;
4350
4351 return VXGE_HW_OK;
4352
4353vpath_open_exit8:
4354 if (vpath->ringh != NULL)
4355 __vxge_hw_ring_delete(vp);
4356vpath_open_exit7:
4357 if (vpath->fifoh != NULL)
4358 __vxge_hw_fifo_delete(vp);
4359vpath_open_exit6:
4360 vfree(vp);
4361vpath_open_exit2:
4362 __vxge_hw_vp_terminate(hldev, attr->vp_id);
4363vpath_open_exit1:
4364
4365 return status;
4366}
4367
4368/**
4369 * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
4370 * (vpath) open
4371 * @vp: Handle got from previous vpath open
4372 *
4373 * This function is used to close access to virtual path opened
4374 * earlier.
4375 */
4376void
4377vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp)
4378{
4379 struct __vxge_hw_virtualpath *vpath = NULL;
4380 u64 new_count, val64, val164;
4381 struct __vxge_hw_ring *ring;
4382
4383 vpath = vp->vpath;
4384 ring = vpath->ringh;
4385
4386 new_count = readq(&vpath->vp_reg->rxdmem_size);
4387 new_count &= 0x1fff;
4388 val164 = (VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count));
4389
4390 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164),
4391 &vpath->vp_reg->prc_rxd_doorbell);
4392 readl(&vpath->vp_reg->prc_rxd_doorbell);
4393
4394 val164 /= 2;
4395 val64 = readq(&vpath->vp_reg->prc_cfg6);
4396 val64 = VXGE_HW_PRC_CFG6_RXD_SPAT(val64);
4397 val64 &= 0x1ff;
4398
4399 /*
4400 * Each RxD is of 4 qwords
4401 */
4402 new_count -= (val64 + 1);
4403 val64 = min(val164, new_count) / 4;
4404
4405 ring->rxds_limit = min(ring->rxds_limit, val64);
4406 if (ring->rxds_limit < 4)
4407 ring->rxds_limit = 4;
4408}
4409
4410/*
4411 * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
4412 * This function is used to close access to virtual path opened
4413 * earlier.
4414 */
4415enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_vpath_handle *vp)
4416{
4417 struct __vxge_hw_virtualpath *vpath = NULL;
4418 struct __vxge_hw_device *devh = NULL;
4419 u32 vp_id = vp->vpath->vp_id;
4420 u32 is_empty = TRUE;
4421 enum vxge_hw_status status = VXGE_HW_OK;
4422
4423 vpath = vp->vpath;
4424 devh = vpath->hldev;
4425
4426 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4427 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4428 goto vpath_close_exit;
4429 }
4430
4431 list_del(&vp->item);
4432
4433 if (!list_empty(&vpath->vpath_handles)) {
4434 list_add(&vp->item, &vpath->vpath_handles);
4435 is_empty = FALSE;
4436 }
4437
4438 if (!is_empty) {
4439 status = VXGE_HW_FAIL;
4440 goto vpath_close_exit;
4441 }
4442
4443 devh->vpaths_deployed &= ~vxge_mBIT(vp_id);
4444
4445 if (vpath->ringh != NULL)
4446 __vxge_hw_ring_delete(vp);
4447
4448 if (vpath->fifoh != NULL)
4449 __vxge_hw_fifo_delete(vp);
4450
4451 if (vpath->stats_block != NULL)
4452 __vxge_hw_blockpool_block_free(devh, vpath->stats_block);
4453
4454 vfree(vp);
4455
4456 __vxge_hw_vp_terminate(devh, vp_id);
4457
4458 vpath->vp_open = VXGE_HW_VP_NOT_OPEN;
4459
4460vpath_close_exit:
4461 return status;
4462}
4463
4464/*
4465 * vxge_hw_vpath_reset - Resets vpath
4466 * This function is used to request a reset of vpath
4467 */
4468enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle *vp)
4469{
4470 enum vxge_hw_status status;
4471 u32 vp_id;
4472 struct __vxge_hw_virtualpath *vpath = vp->vpath;
4473
4474 vp_id = vpath->vp_id;
4475
4476 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4477 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4478 goto exit;
4479 }
4480
4481 status = __vxge_hw_vpath_reset(vpath->hldev, vp_id);
4482 if (status == VXGE_HW_OK)
4483 vpath->sw_stats->soft_reset_cnt++;
4484exit:
4485 return status;
4486}
4487
4488/*
4489 * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
4490 * This function poll's for the vpath reset completion and re initializes
4491 * the vpath.
4492 */
4493enum vxge_hw_status
4494vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle *vp)
4495{
4496 struct __vxge_hw_virtualpath *vpath = NULL;
4497 enum vxge_hw_status status;
4498 struct __vxge_hw_device *hldev;
4499 u32 vp_id;
4500
4501 vp_id = vp->vpath->vp_id;
4502 vpath = vp->vpath;
4503 hldev = vpath->hldev;
4504
4505 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4506 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4507 goto exit;
4508 }
4509
4510 status = __vxge_hw_vpath_reset_check(vpath);
4511 if (status != VXGE_HW_OK)
4512 goto exit;
4513
4514 status = __vxge_hw_vpath_sw_reset(hldev, vp_id);
4515 if (status != VXGE_HW_OK)
4516 goto exit;
4517
4518 status = __vxge_hw_vpath_initialize(hldev, vp_id);
4519 if (status != VXGE_HW_OK)
4520 goto exit;
4521
4522 if (vpath->ringh != NULL)
4523 __vxge_hw_vpath_prc_configure(hldev, vp_id);
4524
4525 memset(vpath->hw_stats, 0,
4526 sizeof(struct vxge_hw_vpath_stats_hw_info));
4527
4528 memset(vpath->hw_stats_sav, 0,
4529 sizeof(struct vxge_hw_vpath_stats_hw_info));
4530
4531 writeq(vpath->stats_block->dma_addr,
4532 &vpath->vp_reg->stats_cfg);
4533
4534 status = vxge_hw_vpath_stats_enable(vp);
4535
4536exit:
4537 return status;
4538}
4539
4540/*
4541 * vxge_hw_vpath_enable - Enable vpath.
4542 * This routine clears the vpath reset thereby enabling a vpath
4543 * to start forwarding frames and generating interrupts.
4544 */
4545void
4546vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp)
4547{
4548 struct __vxge_hw_device *hldev;
4549 u64 val64;
4550
4551 hldev = vp->vpath->hldev;
4552
4553 val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
4554 1 << (16 - vp->vpath->vp_id));
4555
4556 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
4557 &hldev->common_reg->cmn_rsthdlr_cfg1);
4558}
4559
4560/*
4561 * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
4562 * Enable the DMA vpath statistics. The function is to be called to re-enable
4563 * the adapter to update stats into the host memory
4564 */
4565enum vxge_hw_status
4566vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vp)
4567{
4568 enum vxge_hw_status status = VXGE_HW_OK;
4569 struct __vxge_hw_virtualpath *vpath;
4570
4571 vpath = vp->vpath;
4572
4573 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4574 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4575 goto exit;
4576 }
4577
4578 memcpy(vpath->hw_stats_sav, vpath->hw_stats,
4579 sizeof(struct vxge_hw_vpath_stats_hw_info));
4580
4581 status = __vxge_hw_vpath_stats_get(vpath, vpath->hw_stats);
4582exit:
4583 return status;
4584}
4585
4586/*
4587 * __vxge_hw_vpath_stats_access - Get the statistics from the given location
4588 * and offset and perform an operation
4589 */
4590enum vxge_hw_status
4591__vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath,
4592 u32 operation, u32 offset, u64 *stat)
4593{
4594 u64 val64;
4595 enum vxge_hw_status status = VXGE_HW_OK;
4596 struct vxge_hw_vpath_reg __iomem *vp_reg;
4597
4598 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4599 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4600 goto vpath_stats_access_exit;
4601 }
4602
4603 vp_reg = vpath->vp_reg;
4604
4605 val64 = VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation) |
4606 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE |
4607 VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset);
4608
4609 status = __vxge_hw_pio_mem_write64(val64,
4610 &vp_reg->xmac_stats_access_cmd,
4611 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE,
4612 vpath->hldev->config.device_poll_millis);
4613
4614 if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
4615 *stat = readq(&vp_reg->xmac_stats_access_data);
4616 else
4617 *stat = 0;
4618
4619vpath_stats_access_exit:
4620 return status;
4621}
4622
4623/*
4624 * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
4625 */
4626enum vxge_hw_status
4627__vxge_hw_vpath_xmac_tx_stats_get(
4628 struct __vxge_hw_virtualpath *vpath,
4629 struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats)
4630{
4631 u64 *val64;
4632 int i;
4633 u32 offset = VXGE_HW_STATS_VPATH_TX_OFFSET;
4634 enum vxge_hw_status status = VXGE_HW_OK;
4635
4636 val64 = (u64 *) vpath_tx_stats;
4637
4638 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4639 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4640 goto exit;
4641 }
4642
4643 for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_tx_stats) / 8; i++) {
4644 status = __vxge_hw_vpath_stats_access(vpath,
4645 VXGE_HW_STATS_OP_READ,
4646 offset, val64);
4647 if (status != VXGE_HW_OK)
4648 goto exit;
4649 offset++;
4650 val64++;
4651 }
4652exit:
4653 return status;
4654}
4655
4656/*
4657 * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
4658 */
4659enum vxge_hw_status
4660__vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath,
4661 struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats)
4662{
4663 u64 *val64;
4664 enum vxge_hw_status status = VXGE_HW_OK;
4665 int i;
4666 u32 offset = VXGE_HW_STATS_VPATH_RX_OFFSET;
4667 val64 = (u64 *) vpath_rx_stats;
4668
4669 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4670 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4671 goto exit;
4672 }
4673 for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_rx_stats) / 8; i++) {
4674 status = __vxge_hw_vpath_stats_access(vpath,
4675 VXGE_HW_STATS_OP_READ,
4676 offset >> 3, val64);
4677 if (status != VXGE_HW_OK)
4678 goto exit;
4679
4680 offset += 8;
4681 val64++;
4682 }
4683exit:
4684 return status;
4685}
4686
4687/*
4688 * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
4689 */
4690enum vxge_hw_status __vxge_hw_vpath_stats_get(
4691 struct __vxge_hw_virtualpath *vpath,
4692 struct vxge_hw_vpath_stats_hw_info *hw_stats)
4693{
4694 u64 val64;
4695 enum vxge_hw_status status = VXGE_HW_OK;
4696 struct vxge_hw_vpath_reg __iomem *vp_reg;
4697
4698 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4699 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4700 goto exit;
4701 }
4702 vp_reg = vpath->vp_reg;
4703
4704 val64 = readq(&vp_reg->vpath_debug_stats0);
4705 hw_stats->ini_num_mwr_sent =
4706 (u32)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64);
4707
4708 val64 = readq(&vp_reg->vpath_debug_stats1);
4709 hw_stats->ini_num_mrd_sent =
4710 (u32)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64);
4711
4712 val64 = readq(&vp_reg->vpath_debug_stats2);
4713 hw_stats->ini_num_cpl_rcvd =
4714 (u32)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64);
4715
4716 val64 = readq(&vp_reg->vpath_debug_stats3);
4717 hw_stats->ini_num_mwr_byte_sent =
4718 VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64);
4719
4720 val64 = readq(&vp_reg->vpath_debug_stats4);
4721 hw_stats->ini_num_cpl_byte_rcvd =
4722 VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64);
4723
4724 val64 = readq(&vp_reg->vpath_debug_stats5);
4725 hw_stats->wrcrdtarb_xoff =
4726 (u32)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64);
4727
4728 val64 = readq(&vp_reg->vpath_debug_stats6);
4729 hw_stats->rdcrdtarb_xoff =
4730 (u32)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64);
4731
4732 val64 = readq(&vp_reg->vpath_genstats_count01);
4733 hw_stats->vpath_genstats_count0 =
4734 (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
4735 val64);
4736
4737 val64 = readq(&vp_reg->vpath_genstats_count01);
4738 hw_stats->vpath_genstats_count1 =
4739 (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
4740 val64);
4741
4742 val64 = readq(&vp_reg->vpath_genstats_count23);
4743 hw_stats->vpath_genstats_count2 =
4744 (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
4745 val64);
4746
4747 val64 = readq(&vp_reg->vpath_genstats_count01);
4748 hw_stats->vpath_genstats_count3 =
4749 (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
4750 val64);
4751
4752 val64 = readq(&vp_reg->vpath_genstats_count4);
4753 hw_stats->vpath_genstats_count4 =
4754 (u32)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
4755 val64);
4756
4757 val64 = readq(&vp_reg->vpath_genstats_count5);
4758 hw_stats->vpath_genstats_count5 =
4759 (u32)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
4760 val64);
4761
4762 status = __vxge_hw_vpath_xmac_tx_stats_get(vpath, &hw_stats->tx_stats);
4763 if (status != VXGE_HW_OK)
4764 goto exit;
4765
4766 status = __vxge_hw_vpath_xmac_rx_stats_get(vpath, &hw_stats->rx_stats);
4767 if (status != VXGE_HW_OK)
4768 goto exit;
4769
4770 VXGE_HW_VPATH_STATS_PIO_READ(
4771 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET);
4772
4773 hw_stats->prog_event_vnum0 =
4774 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64);
4775
4776 hw_stats->prog_event_vnum1 =
4777 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64);
4778
4779 VXGE_HW_VPATH_STATS_PIO_READ(
4780 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET);
4781
4782 hw_stats->prog_event_vnum2 =
4783 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64);
4784
4785 hw_stats->prog_event_vnum3 =
4786 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64);
4787
4788 val64 = readq(&vp_reg->rx_multi_cast_stats);
4789 hw_stats->rx_multi_cast_frame_discard =
4790 (u16)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64);
4791
4792 val64 = readq(&vp_reg->rx_frm_transferred);
4793 hw_stats->rx_frm_transferred =
4794 (u32)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64);
4795
4796 val64 = readq(&vp_reg->rxd_returned);
4797 hw_stats->rxd_returned =
4798 (u16)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64);
4799
4800 val64 = readq(&vp_reg->dbg_stats_rx_mpa);
4801 hw_stats->rx_mpa_len_fail_frms =
4802 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64);
4803 hw_stats->rx_mpa_mrk_fail_frms =
4804 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64);
4805 hw_stats->rx_mpa_crc_fail_frms =
4806 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64);
4807
4808 val64 = readq(&vp_reg->dbg_stats_rx_fau);
4809 hw_stats->rx_permitted_frms =
4810 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64);
4811 hw_stats->rx_vp_reset_discarded_frms =
4812 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64);
4813 hw_stats->rx_wol_frms =
4814 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64);
4815
4816 val64 = readq(&vp_reg->tx_vp_reset_discarded_frms);
4817 hw_stats->tx_vp_reset_discarded_frms =
4818 (u16)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
4819 val64);
4820exit:
4821 return status;
4822}
4823
4824/*
4825 * __vxge_hw_blockpool_create - Create block pool
4826 */
4827
4828enum vxge_hw_status
4829__vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
4830 struct __vxge_hw_blockpool *blockpool,
4831 u32 pool_size,
4832 u32 pool_max)
4833{
4834 u32 i;
4835 struct __vxge_hw_blockpool_entry *entry = NULL;
4836 void *memblock;
4837 dma_addr_t dma_addr;
4838 struct pci_dev *dma_handle;
4839 struct pci_dev *acc_handle;
4840 enum vxge_hw_status status = VXGE_HW_OK;
4841
4842 if (blockpool == NULL) {
4843 status = VXGE_HW_FAIL;
4844 goto blockpool_create_exit;
4845 }
4846
4847 blockpool->hldev = hldev;
4848 blockpool->block_size = VXGE_HW_BLOCK_SIZE;
4849 blockpool->pool_size = 0;
4850 blockpool->pool_max = pool_max;
4851 blockpool->req_out = 0;
4852
4853 INIT_LIST_HEAD(&blockpool->free_block_list);
4854 INIT_LIST_HEAD(&blockpool->free_entry_list);
4855
4856 for (i = 0; i < pool_size + pool_max; i++) {
4857 entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
4858 GFP_KERNEL);
4859 if (entry == NULL) {
4860 __vxge_hw_blockpool_destroy(blockpool);
4861 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4862 goto blockpool_create_exit;
4863 }
4864 list_add(&entry->item, &blockpool->free_entry_list);
4865 }
4866
4867 for (i = 0; i < pool_size; i++) {
4868
4869 memblock = vxge_os_dma_malloc(
4870 hldev->pdev,
4871 VXGE_HW_BLOCK_SIZE,
4872 &dma_handle,
4873 &acc_handle);
4874
4875 if (memblock == NULL) {
4876 __vxge_hw_blockpool_destroy(blockpool);
4877 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4878 goto blockpool_create_exit;
4879 }
4880
4881 dma_addr = pci_map_single(hldev->pdev, memblock,
4882 VXGE_HW_BLOCK_SIZE, PCI_DMA_BIDIRECTIONAL);
4883
4884 if (unlikely(pci_dma_mapping_error(hldev->pdev,
4885 dma_addr))) {
4886
4887 vxge_os_dma_free(hldev->pdev, memblock, &acc_handle);
4888 __vxge_hw_blockpool_destroy(blockpool);
4889 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4890 goto blockpool_create_exit;
4891 }
4892
4893 if (!list_empty(&blockpool->free_entry_list))
4894 entry = (struct __vxge_hw_blockpool_entry *)
4895 list_first_entry(&blockpool->free_entry_list,
4896 struct __vxge_hw_blockpool_entry,
4897 item);
4898
4899 if (entry == NULL)
4900 entry =
4901 kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
4902 GFP_KERNEL);
4903 if (entry != NULL) {
4904 list_del(&entry->item);
4905 entry->length = VXGE_HW_BLOCK_SIZE;
4906 entry->memblock = memblock;
4907 entry->dma_addr = dma_addr;
4908 entry->acc_handle = acc_handle;
4909 entry->dma_handle = dma_handle;
4910 list_add(&entry->item,
4911 &blockpool->free_block_list);
4912 blockpool->pool_size++;
4913 } else {
4914 __vxge_hw_blockpool_destroy(blockpool);
4915 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4916 goto blockpool_create_exit;
4917 }
4918 }
4919
4920blockpool_create_exit:
4921 return status;
4922}
4923
4924/*
4925 * __vxge_hw_blockpool_destroy - Deallocates the block pool
4926 */
4927
4928void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool)
4929{
4930
4931 struct __vxge_hw_device *hldev;
4932 struct list_head *p, *n;
4933 u16 ret;
4934
4935 if (blockpool == NULL) {
4936 ret = 1;
4937 goto exit;
4938 }
4939
4940 hldev = blockpool->hldev;
4941
4942 list_for_each_safe(p, n, &blockpool->free_block_list) {
4943
4944 pci_unmap_single(hldev->pdev,
4945 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
4946 ((struct __vxge_hw_blockpool_entry *)p)->length,
4947 PCI_DMA_BIDIRECTIONAL);
4948
4949 vxge_os_dma_free(hldev->pdev,
4950 ((struct __vxge_hw_blockpool_entry *)p)->memblock,
4951 &((struct __vxge_hw_blockpool_entry *) p)->acc_handle);
4952
4953 list_del(
4954 &((struct __vxge_hw_blockpool_entry *)p)->item);
4955 kfree(p);
4956 blockpool->pool_size--;
4957 }
4958
4959 list_for_each_safe(p, n, &blockpool->free_entry_list) {
4960 list_del(
4961 &((struct __vxge_hw_blockpool_entry *)p)->item);
4962 kfree((void *)p);
4963 }
4964 ret = 0;
4965exit:
4966 return;
4967}
4968
4969/*
4970 * __vxge_hw_blockpool_blocks_add - Request additional blocks
4971 */
4972static
4973void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool *blockpool)
4974{
4975 u32 nreq = 0, i;
4976
4977 if ((blockpool->pool_size + blockpool->req_out) <
4978 VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE) {
4979 nreq = VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE;
4980 blockpool->req_out += nreq;
4981 }
4982
4983 for (i = 0; i < nreq; i++)
4984 vxge_os_dma_malloc_async(
4985 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
4986 blockpool->hldev, VXGE_HW_BLOCK_SIZE);
4987}
4988
4989/*
4990 * __vxge_hw_blockpool_blocks_remove - Free additional blocks
4991 */
4992static
4993void __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool *blockpool)
4994{
4995 struct list_head *p, *n;
4996
4997 list_for_each_safe(p, n, &blockpool->free_block_list) {
4998
4999 if (blockpool->pool_size < blockpool->pool_max)
5000 break;
5001
5002 pci_unmap_single(
5003 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
5004 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
5005 ((struct __vxge_hw_blockpool_entry *)p)->length,
5006 PCI_DMA_BIDIRECTIONAL);
5007
5008 vxge_os_dma_free(
5009 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
5010 ((struct __vxge_hw_blockpool_entry *)p)->memblock,
5011 &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
5012
5013 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
5014
5015 list_add(p, &blockpool->free_entry_list);
5016
5017 blockpool->pool_size--;
5018
5019 }
5020}
5021
5022/*
5023 * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
5024 * Adds a block to block pool
5025 */
5026void vxge_hw_blockpool_block_add(
5027 struct __vxge_hw_device *devh,
5028 void *block_addr,
5029 u32 length,
5030 struct pci_dev *dma_h,
5031 struct pci_dev *acc_handle)
5032{
5033 struct __vxge_hw_blockpool *blockpool;
5034 struct __vxge_hw_blockpool_entry *entry = NULL;
5035 dma_addr_t dma_addr;
5036 enum vxge_hw_status status = VXGE_HW_OK;
5037 u32 req_out;
5038
5039 blockpool = &devh->block_pool;
5040
5041 if (block_addr == NULL) {
5042 blockpool->req_out--;
5043 status = VXGE_HW_FAIL;
5044 goto exit;
5045 }
5046
5047 dma_addr = pci_map_single(devh->pdev, block_addr, length,
5048 PCI_DMA_BIDIRECTIONAL);
5049
5050 if (unlikely(pci_dma_mapping_error(devh->pdev, dma_addr))) {
5051
5052 vxge_os_dma_free(devh->pdev, block_addr, &acc_handle);
5053 blockpool->req_out--;
5054 status = VXGE_HW_FAIL;
5055 goto exit;
5056 }
5057
5058
5059 if (!list_empty(&blockpool->free_entry_list))
5060 entry = (struct __vxge_hw_blockpool_entry *)
5061 list_first_entry(&blockpool->free_entry_list,
5062 struct __vxge_hw_blockpool_entry,
5063 item);
5064
5065 if (entry == NULL)
5066 entry = (struct __vxge_hw_blockpool_entry *)
5067 vmalloc(sizeof(struct __vxge_hw_blockpool_entry));
5068 else
5069 list_del(&entry->item);
5070
5071 if (entry != NULL) {
5072 entry->length = length;
5073 entry->memblock = block_addr;
5074 entry->dma_addr = dma_addr;
5075 entry->acc_handle = acc_handle;
5076 entry->dma_handle = dma_h;
5077 list_add(&entry->item, &blockpool->free_block_list);
5078 blockpool->pool_size++;
5079 status = VXGE_HW_OK;
5080 } else
5081 status = VXGE_HW_ERR_OUT_OF_MEMORY;
5082
5083 blockpool->req_out--;
5084
5085 req_out = blockpool->req_out;
5086exit:
5087 return;
5088}
5089
5090/*
5091 * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
5092 * Allocates a block of memory of given size, either from block pool
5093 * or by calling vxge_os_dma_malloc()
5094 */
5095void *
5096__vxge_hw_blockpool_malloc(struct __vxge_hw_device *devh, u32 size,
5097 struct vxge_hw_mempool_dma *dma_object)
5098{
5099 struct __vxge_hw_blockpool_entry *entry = NULL;
5100 struct __vxge_hw_blockpool *blockpool;
5101 void *memblock = NULL;
5102 enum vxge_hw_status status = VXGE_HW_OK;
5103
5104 blockpool = &devh->block_pool;
5105
5106 if (size != blockpool->block_size) {
5107
5108 memblock = vxge_os_dma_malloc(devh->pdev, size,
5109 &dma_object->handle,
5110 &dma_object->acc_handle);
5111
5112 if (memblock == NULL) {
5113 status = VXGE_HW_ERR_OUT_OF_MEMORY;
5114 goto exit;
5115 }
5116
5117 dma_object->addr = pci_map_single(devh->pdev, memblock, size,
5118 PCI_DMA_BIDIRECTIONAL);
5119
5120 if (unlikely(pci_dma_mapping_error(devh->pdev,
5121 dma_object->addr))) {
5122 vxge_os_dma_free(devh->pdev, memblock,
5123 &dma_object->acc_handle);
5124 status = VXGE_HW_ERR_OUT_OF_MEMORY;
5125 goto exit;
5126 }
5127
5128 } else {
5129
5130 if (!list_empty(&blockpool->free_block_list))
5131 entry = (struct __vxge_hw_blockpool_entry *)
5132 list_first_entry(&blockpool->free_block_list,
5133 struct __vxge_hw_blockpool_entry,
5134 item);
5135
5136 if (entry != NULL) {
5137 list_del(&entry->item);
5138 dma_object->addr = entry->dma_addr;
5139 dma_object->handle = entry->dma_handle;
5140 dma_object->acc_handle = entry->acc_handle;
5141 memblock = entry->memblock;
5142
5143 list_add(&entry->item,
5144 &blockpool->free_entry_list);
5145 blockpool->pool_size--;
5146 }
5147
5148 if (memblock != NULL)
5149 __vxge_hw_blockpool_blocks_add(blockpool);
5150 }
5151exit:
5152 return memblock;
5153}
5154
5155/*
5156 * __vxge_hw_blockpool_free - Frees the memory allcoated with
5157 __vxge_hw_blockpool_malloc
5158 */
5159void
5160__vxge_hw_blockpool_free(struct __vxge_hw_device *devh,
5161 void *memblock, u32 size,
5162 struct vxge_hw_mempool_dma *dma_object)
5163{
5164 struct __vxge_hw_blockpool_entry *entry = NULL;
5165 struct __vxge_hw_blockpool *blockpool;
5166 enum vxge_hw_status status = VXGE_HW_OK;
5167
5168 blockpool = &devh->block_pool;
5169
5170 if (size != blockpool->block_size) {
5171 pci_unmap_single(devh->pdev, dma_object->addr, size,
5172 PCI_DMA_BIDIRECTIONAL);
5173 vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle);
5174 } else {
5175
5176 if (!list_empty(&blockpool->free_entry_list))
5177 entry = (struct __vxge_hw_blockpool_entry *)
5178 list_first_entry(&blockpool->free_entry_list,
5179 struct __vxge_hw_blockpool_entry,
5180 item);
5181
5182 if (entry == NULL)
5183 entry = (struct __vxge_hw_blockpool_entry *)
5184 vmalloc(sizeof(
5185 struct __vxge_hw_blockpool_entry));
5186 else
5187 list_del(&entry->item);
5188
5189 if (entry != NULL) {
5190 entry->length = size;
5191 entry->memblock = memblock;
5192 entry->dma_addr = dma_object->addr;
5193 entry->acc_handle = dma_object->acc_handle;
5194 entry->dma_handle = dma_object->handle;
5195 list_add(&entry->item,
5196 &blockpool->free_block_list);
5197 blockpool->pool_size++;
5198 status = VXGE_HW_OK;
5199 } else
5200 status = VXGE_HW_ERR_OUT_OF_MEMORY;
5201
5202 if (status == VXGE_HW_OK)
5203 __vxge_hw_blockpool_blocks_remove(blockpool);
5204 }
5205
5206 return;
5207}
5208
5209/*
5210 * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
5211 * This function allocates a block from block pool or from the system
5212 */
5213struct __vxge_hw_blockpool_entry *
5214__vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *devh, u32 size)
5215{
5216 struct __vxge_hw_blockpool_entry *entry = NULL;
5217 struct __vxge_hw_blockpool *blockpool;
5218
5219 blockpool = &devh->block_pool;
5220
5221 if (size == blockpool->block_size) {
5222
5223 if (!list_empty(&blockpool->free_block_list))
5224 entry = (struct __vxge_hw_blockpool_entry *)
5225 list_first_entry(&blockpool->free_block_list,
5226 struct __vxge_hw_blockpool_entry,
5227 item);
5228
5229 if (entry != NULL) {
5230 list_del(&entry->item);
5231 blockpool->pool_size--;
5232 }
5233 }
5234
5235 if (entry != NULL)
5236 __vxge_hw_blockpool_blocks_add(blockpool);
5237
5238 return entry;
5239}
5240
5241/*
5242 * __vxge_hw_blockpool_block_free - Frees a block from block pool
5243 * @devh: Hal device
5244 * @entry: Entry of block to be freed
5245 *
5246 * This function frees a block from block pool
5247 */
5248void
5249__vxge_hw_blockpool_block_free(struct __vxge_hw_device *devh,
5250 struct __vxge_hw_blockpool_entry *entry)
5251{
5252 struct __vxge_hw_blockpool *blockpool;
5253
5254 blockpool = &devh->block_pool;
5255
5256 if (entry->length == blockpool->block_size) {
5257 list_add(&entry->item, &blockpool->free_block_list);
5258 blockpool->pool_size++;
5259 }
5260
5261 __vxge_hw_blockpool_blocks_remove(blockpool);
5262
5263 return;
5264}
diff --git a/drivers/net/vxge/vxge-config.h b/drivers/net/vxge/vxge-config.h
new file mode 100644
index 00000000000..afbdf6f4d22
--- /dev/null
+++ b/drivers/net/vxge/vxge-config.h
@@ -0,0 +1,2259 @@
1/******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
9 *
10 * vxge-config.h: Driver for Neterion Inc's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2009 Neterion Inc.
13 ******************************************************************************/
14#ifndef VXGE_CONFIG_H
15#define VXGE_CONFIG_H
16#include <linux/list.h>
17
18#ifndef VXGE_CACHE_LINE_SIZE
19#define VXGE_CACHE_LINE_SIZE 128
20#endif
21
22#define vxge_os_vaprintf(level, mask, fmt, ...) { \
23 char buff[255]; \
24 snprintf(buff, 255, fmt, __VA_ARGS__); \
25 printk(buff); \
26 printk("\n"); \
27}
28
29#ifndef VXGE_ALIGN
30#define VXGE_ALIGN(adrs, size) \
31 (((size) - (((u64)adrs) & ((size)-1))) & ((size)-1))
32#endif
33
34#define VXGE_HW_MIN_MTU 68
35#define VXGE_HW_MAX_MTU 9600
36#define VXGE_HW_DEFAULT_MTU 1500
37
38#ifdef VXGE_DEBUG_ASSERT
39
40/**
41 * vxge_assert
42 * @test: C-condition to check
43 * @fmt: printf like format string
44 *
45 * This function implements traditional assert. By default assertions
46 * are enabled. It can be disabled by undefining VXGE_DEBUG_ASSERT macro in
47 * compilation
48 * time.
49 */
50#define vxge_assert(test) { \
51 if (!(test)) \
52 vxge_os_bug("bad cond: "#test" at %s:%d\n", \
53 __FILE__, __LINE__); }
54#else
55#define vxge_assert(test)
56#endif /* end of VXGE_DEBUG_ASSERT */
57
58/**
59 * enum enum vxge_debug_level
60 * @VXGE_NONE: debug disabled
61 * @VXGE_ERR: all errors going to be logged out
62 * @VXGE_TRACE: all errors plus all kind of verbose tracing print outs
63 * going to be logged out. Very noisy.
64 *
65 * This enumeration going to be used to switch between different
66 * debug levels during runtime if DEBUG macro defined during
67 * compilation. If DEBUG macro not defined than code will be
68 * compiled out.
69 */
70enum vxge_debug_level {
71 VXGE_NONE = 0,
72 VXGE_TRACE = 1,
73 VXGE_ERR = 2
74};
75
76#define NULL_VPID 0xFFFFFFFF
77#ifdef CONFIG_VXGE_DEBUG_TRACE_ALL
78#define VXGE_DEBUG_MODULE_MASK 0xffffffff
79#define VXGE_DEBUG_TRACE_MASK 0xffffffff
80#define VXGE_DEBUG_ERR_MASK 0xffffffff
81#define VXGE_DEBUG_MASK 0x000001ff
82#else
83#define VXGE_DEBUG_MODULE_MASK 0x20000000
84#define VXGE_DEBUG_TRACE_MASK 0x20000000
85#define VXGE_DEBUG_ERR_MASK 0x20000000
86#define VXGE_DEBUG_MASK 0x00000001
87#endif
88
89/*
90 * @VXGE_COMPONENT_LL: do debug for vxge link layer module
91 * @VXGE_COMPONENT_ALL: activate debug for all modules with no exceptions
92 *
93 * This enumeration going to be used to distinguish modules
94 * or libraries during compilation and runtime. Makefile must declare
95 * VXGE_DEBUG_MODULE_MASK macro and set it to proper value.
96 */
97#define VXGE_COMPONENT_LL 0x20000000
98#define VXGE_COMPONENT_ALL 0xffffffff
99
100#define VXGE_HW_BASE_INF 100
101#define VXGE_HW_BASE_ERR 200
102#define VXGE_HW_BASE_BADCFG 300
103
104enum vxge_hw_status {
105 VXGE_HW_OK = 0,
106 VXGE_HW_FAIL = 1,
107 VXGE_HW_PENDING = 2,
108 VXGE_HW_COMPLETIONS_REMAIN = 3,
109
110 VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS = VXGE_HW_BASE_INF + 1,
111 VXGE_HW_INF_OUT_OF_DESCRIPTORS = VXGE_HW_BASE_INF + 2,
112
113 VXGE_HW_ERR_INVALID_HANDLE = VXGE_HW_BASE_ERR + 1,
114 VXGE_HW_ERR_OUT_OF_MEMORY = VXGE_HW_BASE_ERR + 2,
115 VXGE_HW_ERR_VPATH_NOT_AVAILABLE = VXGE_HW_BASE_ERR + 3,
116 VXGE_HW_ERR_VPATH_NOT_OPEN = VXGE_HW_BASE_ERR + 4,
117 VXGE_HW_ERR_WRONG_IRQ = VXGE_HW_BASE_ERR + 5,
118 VXGE_HW_ERR_SWAPPER_CTRL = VXGE_HW_BASE_ERR + 6,
119 VXGE_HW_ERR_INVALID_MTU_SIZE = VXGE_HW_BASE_ERR + 7,
120 VXGE_HW_ERR_INVALID_INDEX = VXGE_HW_BASE_ERR + 8,
121 VXGE_HW_ERR_INVALID_TYPE = VXGE_HW_BASE_ERR + 9,
122 VXGE_HW_ERR_INVALID_OFFSET = VXGE_HW_BASE_ERR + 10,
123 VXGE_HW_ERR_INVALID_DEVICE = VXGE_HW_BASE_ERR + 11,
124 VXGE_HW_ERR_VERSION_CONFLICT = VXGE_HW_BASE_ERR + 12,
125 VXGE_HW_ERR_INVALID_PCI_INFO = VXGE_HW_BASE_ERR + 13,
126 VXGE_HW_ERR_INVALID_TCODE = VXGE_HW_BASE_ERR + 14,
127 VXGE_HW_ERR_INVALID_BLOCK_SIZE = VXGE_HW_BASE_ERR + 15,
128 VXGE_HW_ERR_INVALID_STATE = VXGE_HW_BASE_ERR + 16,
129 VXGE_HW_ERR_PRIVILAGED_OPEARATION = VXGE_HW_BASE_ERR + 17,
130 VXGE_HW_ERR_INVALID_PORT = VXGE_HW_BASE_ERR + 18,
131 VXGE_HW_ERR_FIFO = VXGE_HW_BASE_ERR + 19,
132 VXGE_HW_ERR_VPATH = VXGE_HW_BASE_ERR + 20,
133 VXGE_HW_ERR_CRITICAL = VXGE_HW_BASE_ERR + 21,
134 VXGE_HW_ERR_SLOT_FREEZE = VXGE_HW_BASE_ERR + 22,
135
136 VXGE_HW_BADCFG_RING_INDICATE_MAX_PKTS = VXGE_HW_BASE_BADCFG + 1,
137 VXGE_HW_BADCFG_FIFO_BLOCKS = VXGE_HW_BASE_BADCFG + 2,
138 VXGE_HW_BADCFG_VPATH_MTU = VXGE_HW_BASE_BADCFG + 3,
139 VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG = VXGE_HW_BASE_BADCFG + 4,
140 VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH = VXGE_HW_BASE_BADCFG + 5,
141 VXGE_HW_BADCFG_INTR_MODE = VXGE_HW_BASE_BADCFG + 6,
142 VXGE_HW_BADCFG_RTS_MAC_EN = VXGE_HW_BASE_BADCFG + 7,
143
144 VXGE_HW_EOF_TRACE_BUF = -1
145};
146
147/**
148 * enum enum vxge_hw_device_link_state - Link state enumeration.
149 * @VXGE_HW_LINK_NONE: Invalid link state.
150 * @VXGE_HW_LINK_DOWN: Link is down.
151 * @VXGE_HW_LINK_UP: Link is up.
152 *
153 */
154enum vxge_hw_device_link_state {
155 VXGE_HW_LINK_NONE,
156 VXGE_HW_LINK_DOWN,
157 VXGE_HW_LINK_UP
158};
159
160/**
161 * struct vxge_hw_device_date - Date Format
162 * @day: Day
163 * @month: Month
164 * @year: Year
165 * @date: Date in string format
166 *
167 * Structure for returning date
168 */
169
170#define VXGE_HW_FW_STRLEN 32
171struct vxge_hw_device_date {
172 u32 day;
173 u32 month;
174 u32 year;
175 char date[VXGE_HW_FW_STRLEN];
176};
177
178struct vxge_hw_device_version {
179 u32 major;
180 u32 minor;
181 u32 build;
182 char version[VXGE_HW_FW_STRLEN];
183};
184
185u64
186__vxge_hw_vpath_pci_func_mode_get(
187 u32 vp_id,
188 struct vxge_hw_vpath_reg __iomem *vpath_reg);
189
190/**
191 * struct vxge_hw_fifo_config - Configuration of fifo.
192 * @enable: Is this fifo to be commissioned
193 * @fifo_blocks: Numbers of TxDL (that is, lists of Tx descriptors)
194 * blocks per queue.
195 * @max_frags: Max number of Tx buffers per TxDL (that is, per single
196 * transmit operation).
197 * No more than 256 transmit buffers can be specified.
198 * @memblock_size: Fifo descriptors are allocated in blocks of @mem_block_size
199 * bytes. Setting @memblock_size to page size ensures
200 * by-page allocation of descriptors. 128K bytes is the
201 * maximum supported block size.
202 * @alignment_size: per Tx fragment DMA-able memory used to align transmit data
203 * (e.g., to align on a cache line).
204 * @intr: Boolean. Use 1 to generate interrupt for each completed TxDL.
205 * Use 0 otherwise.
206 * @no_snoop_bits: If non-zero, specifies no-snoop PCI operation,
207 * which generally improves latency of the host bridge operation
208 * (see PCI specification). For valid values please refer
209 * to struct vxge_hw_fifo_config{} in the driver sources.
210 * Configuration of all Titan fifos.
211 * Note: Valid (min, max) range for each attribute is specified in the body of
212 * the struct vxge_hw_fifo_config{} structure.
213 */
214struct vxge_hw_fifo_config {
215 u32 enable;
216#define VXGE_HW_FIFO_ENABLE 1
217#define VXGE_HW_FIFO_DISABLE 0
218
219 u32 fifo_blocks;
220#define VXGE_HW_MIN_FIFO_BLOCKS 2
221#define VXGE_HW_MAX_FIFO_BLOCKS 128
222
223 u32 max_frags;
224#define VXGE_HW_MIN_FIFO_FRAGS 1
225#define VXGE_HW_MAX_FIFO_FRAGS 256
226
227 u32 memblock_size;
228#define VXGE_HW_MIN_FIFO_MEMBLOCK_SIZE VXGE_HW_BLOCK_SIZE
229#define VXGE_HW_MAX_FIFO_MEMBLOCK_SIZE 131072
230#define VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE 8096
231
232 u32 alignment_size;
233#define VXGE_HW_MIN_FIFO_ALIGNMENT_SIZE 0
234#define VXGE_HW_MAX_FIFO_ALIGNMENT_SIZE 65536
235#define VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE VXGE_CACHE_LINE_SIZE
236
237 u32 intr;
238#define VXGE_HW_FIFO_QUEUE_INTR_ENABLE 1
239#define VXGE_HW_FIFO_QUEUE_INTR_DISABLE 0
240#define VXGE_HW_FIFO_QUEUE_INTR_DEFAULT 0
241
242 u32 no_snoop_bits;
243#define VXGE_HW_FIFO_NO_SNOOP_DISABLED 0
244#define VXGE_HW_FIFO_NO_SNOOP_TXD 1
245#define VXGE_HW_FIFO_NO_SNOOP_FRM 2
246#define VXGE_HW_FIFO_NO_SNOOP_ALL 3
247#define VXGE_HW_FIFO_NO_SNOOP_DEFAULT 0
248
249};
250/**
251 * struct vxge_hw_ring_config - Ring configurations.
252 * @enable: Is this ring to be commissioned
253 * @ring_blocks: Numbers of RxD blocks in the ring
254 * @buffer_mode: Receive buffer mode (1, 2, 3, or 5); for details please refer
255 * to Titan User Guide.
256 * @scatter_mode: Titan supports two receive scatter modes: A and B.
257 * For details please refer to Titan User Guide.
258 * @rx_timer_val: The number of 32ns periods that would be counted between two
259 * timer interrupts.
260 * @greedy_return: If Set it forces the device to return absolutely all RxD
261 * that are consumed and still on board when a timer interrupt
262 * triggers. If Clear, then if the device has already returned
263 * RxD before current timer interrupt trigerred and after the
264 * previous timer interrupt triggered, then the device is not
265 * forced to returned the rest of the consumed RxD that it has
266 * on board which account for a byte count less than the one
267 * programmed into PRC_CFG6.RXD_CRXDT field
268 * @rx_timer_ci: TBD
269 * @backoff_interval_us: Time (in microseconds), after which Titan
270 * tries to download RxDs posted by the host.
271 * Note that the "backoff" does not happen if host posts receive
272 * descriptors in the timely fashion.
273 * Ring configuration.
274 */
275struct vxge_hw_ring_config {
276 u32 enable;
277#define VXGE_HW_RING_ENABLE 1
278#define VXGE_HW_RING_DISABLE 0
279#define VXGE_HW_RING_DEFAULT 1
280
281 u32 ring_blocks;
282#define VXGE_HW_MIN_RING_BLOCKS 1
283#define VXGE_HW_MAX_RING_BLOCKS 128
284#define VXGE_HW_DEF_RING_BLOCKS 2
285
286 u32 buffer_mode;
287#define VXGE_HW_RING_RXD_BUFFER_MODE_1 1
288#define VXGE_HW_RING_RXD_BUFFER_MODE_3 3
289#define VXGE_HW_RING_RXD_BUFFER_MODE_5 5
290#define VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT 1
291
292 u32 scatter_mode;
293#define VXGE_HW_RING_SCATTER_MODE_A 0
294#define VXGE_HW_RING_SCATTER_MODE_B 1
295#define VXGE_HW_RING_SCATTER_MODE_C 2
296#define VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT 0xffffffff
297
298 u64 rxds_limit;
299#define VXGE_HW_DEF_RING_RXDS_LIMIT 44
300};
301
302/**
303 * struct vxge_hw_vp_config - Configuration of virtual path
304 * @vp_id: Virtual Path Id
305 * @min_bandwidth: Minimum Guaranteed bandwidth
306 * @ring: See struct vxge_hw_ring_config{}.
307 * @fifo: See struct vxge_hw_fifo_config{}.
308 * @tti: Configuration of interrupt associated with Transmit.
309 * see struct vxge_hw_tim_intr_config();
310 * @rti: Configuration of interrupt associated with Receive.
311 * see struct vxge_hw_tim_intr_config();
312 * @mtu: mtu size used on this port.
313 * @rpa_strip_vlan_tag: Strip VLAN Tag enable/disable. Instructs the device to
314 * remove the VLAN tag from all received tagged frames that are not
315 * replicated at the internal L2 switch.
316 * 0 - Do not strip the VLAN tag.
317 * 1 - Strip the VLAN tag. Regardless of this setting, VLAN tags are
318 * always placed into the RxDMA descriptor.
319 *
320 * This structure is used by the driver to pass the configuration parameters to
321 * configure Virtual Path.
322 */
323struct vxge_hw_vp_config {
324 u32 vp_id;
325
326#define VXGE_HW_VPATH_PRIORITY_MIN 0
327#define VXGE_HW_VPATH_PRIORITY_MAX 16
328#define VXGE_HW_VPATH_PRIORITY_DEFAULT 0
329
330 u32 min_bandwidth;
331#define VXGE_HW_VPATH_BANDWIDTH_MIN 0
332#define VXGE_HW_VPATH_BANDWIDTH_MAX 100
333#define VXGE_HW_VPATH_BANDWIDTH_DEFAULT 0
334
335 struct vxge_hw_ring_config ring;
336 struct vxge_hw_fifo_config fifo;
337 struct vxge_hw_tim_intr_config tti;
338 struct vxge_hw_tim_intr_config rti;
339
340 u32 mtu;
341#define VXGE_HW_VPATH_MIN_INITIAL_MTU VXGE_HW_MIN_MTU
342#define VXGE_HW_VPATH_MAX_INITIAL_MTU VXGE_HW_MAX_MTU
343#define VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU 0xffffffff
344
345 u32 rpa_strip_vlan_tag;
346#define VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE 1
347#define VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE 0
348#define VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT 0xffffffff
349
350};
351/**
352 * struct vxge_hw_device_config - Device configuration.
353 * @dma_blockpool_initial: Initial size of DMA Pool
354 * @dma_blockpool_max: Maximum blocks in DMA pool
355 * @intr_mode: Line, or MSI-X interrupt.
356 *
357 * @rth_en: Enable Receive Traffic Hashing(RTH) using IT(Indirection Table).
358 * @rth_it_type: RTH IT table programming type
359 * @rts_mac_en: Enable Receive Traffic Steering using MAC destination address
360 * @vp_config: Configuration for virtual paths
361 * @device_poll_millis: Specify the interval (in mulliseconds)
362 * to wait for register reads
363 *
364 * Titan configuration.
365 * Contains per-device configuration parameters, including:
366 * - stats sampling interval, etc.
367 *
368 * In addition, struct vxge_hw_device_config{} includes "subordinate"
369 * configurations, including:
370 * - fifos and rings;
371 * - MAC (done at firmware level).
372 *
373 * See Titan User Guide for more details.
374 * Note: Valid (min, max) range for each attribute is specified in the body of
375 * the struct vxge_hw_device_config{} structure. Please refer to the
376 * corresponding include file.
377 * See also: struct vxge_hw_tim_intr_config{}.
378 */
379struct vxge_hw_device_config {
380 u32 dma_blockpool_initial;
381 u32 dma_blockpool_max;
382#define VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE 0
383#define VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE 0
384#define VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE 4
385#define VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE 4096
386
387#define VXGE_HW_MAX_PAYLOAD_SIZE_512 2
388
389 u32 intr_mode;
390#define VXGE_HW_INTR_MODE_IRQLINE 0
391#define VXGE_HW_INTR_MODE_MSIX 1
392#define VXGE_HW_INTR_MODE_MSIX_ONE_SHOT 2
393
394#define VXGE_HW_INTR_MODE_DEF 0
395
396 u32 rth_en;
397#define VXGE_HW_RTH_DISABLE 0
398#define VXGE_HW_RTH_ENABLE 1
399#define VXGE_HW_RTH_DEFAULT 0
400
401 u32 rth_it_type;
402#define VXGE_HW_RTH_IT_TYPE_SOLO_IT 0
403#define VXGE_HW_RTH_IT_TYPE_MULTI_IT 1
404#define VXGE_HW_RTH_IT_TYPE_DEFAULT 0
405
406 u32 rts_mac_en;
407#define VXGE_HW_RTS_MAC_DISABLE 0
408#define VXGE_HW_RTS_MAC_ENABLE 1
409#define VXGE_HW_RTS_MAC_DEFAULT 0
410
411 struct vxge_hw_vp_config vp_config[VXGE_HW_MAX_VIRTUAL_PATHS];
412
413 u32 device_poll_millis;
414#define VXGE_HW_MIN_DEVICE_POLL_MILLIS 1
415#define VXGE_HW_MAX_DEVICE_POLL_MILLIS 100000
416#define VXGE_HW_DEF_DEVICE_POLL_MILLIS 1000
417
418};
419
420/**
421 * function vxge_uld_link_up_f - Link-Up callback provided by driver.
422 * @devh: HW device handle.
423 * Link-up notification callback provided by the driver.
424 * This is one of the per-driver callbacks, see struct vxge_hw_uld_cbs{}.
425 *
426 * See also: struct vxge_hw_uld_cbs{}, vxge_uld_link_down_f{},
427 * vxge_hw_driver_initialize().
428 */
429
430/**
431 * function vxge_uld_link_down_f - Link-Down callback provided by
432 * driver.
433 * @devh: HW device handle.
434 *
435 * Link-Down notification callback provided by the driver.
436 * This is one of the per-driver callbacks, see struct vxge_hw_uld_cbs{}.
437 *
438 * See also: struct vxge_hw_uld_cbs{}, vxge_uld_link_up_f{},
439 * vxge_hw_driver_initialize().
440 */
441
442/**
443 * function vxge_uld_crit_err_f - Critical Error notification callback.
444 * @devh: HW device handle.
445 * (typically - at HW device iinitialization time).
446 * @type: Enumerated hw error, e.g.: double ECC.
447 * @serr_data: Titan status.
448 * @ext_data: Extended data. The contents depends on the @type.
449 *
450 * Link-Down notification callback provided by the driver.
451 * This is one of the per-driver callbacks, see struct vxge_hw_uld_cbs{}.
452 *
453 * See also: struct vxge_hw_uld_cbs{}, enum vxge_hw_event{},
454 * vxge_hw_driver_initialize().
455 */
456
457/**
458 * struct vxge_hw_uld_cbs - driver "slow-path" callbacks.
459 * @link_up: See vxge_uld_link_up_f{}.
460 * @link_down: See vxge_uld_link_down_f{}.
461 * @crit_err: See vxge_uld_crit_err_f{}.
462 *
463 * Driver slow-path (per-driver) callbacks.
464 * Implemented by driver and provided to HW via
465 * vxge_hw_driver_initialize().
466 * Note that these callbacks are not mandatory: HW will not invoke
467 * a callback if NULL is specified.
468 *
469 * See also: vxge_hw_driver_initialize().
470 */
471struct vxge_hw_uld_cbs {
472
473 void (*link_up)(struct __vxge_hw_device *devh);
474 void (*link_down)(struct __vxge_hw_device *devh);
475 void (*crit_err)(struct __vxge_hw_device *devh,
476 enum vxge_hw_event type, u64 ext_data);
477};
478
479/*
480 * struct __vxge_hw_blockpool_entry - Block private data structure
481 * @item: List header used to link.
482 * @length: Length of the block
483 * @memblock: Virtual address block
484 * @dma_addr: DMA Address of the block.
485 * @dma_handle: DMA handle of the block.
486 * @acc_handle: DMA acc handle
487 *
488 * Block is allocated with a header to put the blocks into list.
489 *
490 */
491struct __vxge_hw_blockpool_entry {
492 struct list_head item;
493 u32 length;
494 void *memblock;
495 dma_addr_t dma_addr;
496 struct pci_dev *dma_handle;
497 struct pci_dev *acc_handle;
498};
499
500/*
501 * struct __vxge_hw_blockpool - Block Pool
502 * @hldev: HW device
503 * @block_size: size of each block.
504 * @Pool_size: Number of blocks in the pool
505 * @pool_max: Maximum number of blocks above which to free additional blocks
506 * @req_out: Number of block requests with OS out standing
507 * @free_block_list: List of free blocks
508 *
509 * Block pool contains the DMA blocks preallocated.
510 *
511 */
512struct __vxge_hw_blockpool {
513 struct __vxge_hw_device *hldev;
514 u32 block_size;
515 u32 pool_size;
516 u32 pool_max;
517 u32 req_out;
518 struct list_head free_block_list;
519 struct list_head free_entry_list;
520};
521
522/*
523 * enum enum __vxge_hw_channel_type - Enumerated channel types.
524 * @VXGE_HW_CHANNEL_TYPE_UNKNOWN: Unknown channel.
525 * @VXGE_HW_CHANNEL_TYPE_FIFO: fifo.
526 * @VXGE_HW_CHANNEL_TYPE_RING: ring.
527 * @VXGE_HW_CHANNEL_TYPE_MAX: Maximum number of HW-supported
528 * (and recognized) channel types. Currently: 2.
529 *
530 * Enumerated channel types. Currently there are only two link-layer
531 * channels - Titan fifo and Titan ring. In the future the list will grow.
532 */
533enum __vxge_hw_channel_type {
534 VXGE_HW_CHANNEL_TYPE_UNKNOWN = 0,
535 VXGE_HW_CHANNEL_TYPE_FIFO = 1,
536 VXGE_HW_CHANNEL_TYPE_RING = 2,
537 VXGE_HW_CHANNEL_TYPE_MAX = 3
538};
539
540/*
541 * struct __vxge_hw_channel
542 * @item: List item; used to maintain a list of open channels.
543 * @type: Channel type. See enum vxge_hw_channel_type{}.
544 * @devh: Device handle. HW device object that contains _this_ channel.
545 * @vph: Virtual path handle. Virtual Path Object that contains _this_ channel.
546 * @length: Channel length. Currently allocated number of descriptors.
547 * The channel length "grows" when more descriptors get allocated.
548 * See _hw_mempool_grow.
549 * @reserve_arr: Reserve array. Contains descriptors that can be reserved
550 * by driver for the subsequent send or receive operation.
551 * See vxge_hw_fifo_txdl_reserve(),
552 * vxge_hw_ring_rxd_reserve().
553 * @reserve_ptr: Current pointer in the resrve array
554 * @reserve_top: Reserve top gives the maximum number of dtrs available in
555 * reserve array.
556 * @work_arr: Work array. Contains descriptors posted to the channel.
557 * Note that at any point in time @work_arr contains 3 types of
558 * descriptors:
559 * 1) posted but not yet consumed by Titan device;
560 * 2) consumed but not yet completed;
561 * 3) completed but not yet freed
562 * (via vxge_hw_fifo_txdl_free() or vxge_hw_ring_rxd_free())
563 * @post_index: Post index. At any point in time points on the
564 * position in the channel, which'll contain next to-be-posted
565 * descriptor.
566 * @compl_index: Completion index. At any point in time points on the
567 * position in the channel, which will contain next
568 * to-be-completed descriptor.
569 * @free_arr: Free array. Contains completed descriptors that were freed
570 * (i.e., handed over back to HW) by driver.
571 * See vxge_hw_fifo_txdl_free(), vxge_hw_ring_rxd_free().
572 * @free_ptr: current pointer in free array
573 * @per_dtr_space: Per-descriptor space (in bytes) that channel user can utilize
574 * to store per-operation control information.
575 * @stats: Pointer to common statistics
576 * @userdata: Per-channel opaque (void*) user-defined context, which may be
577 * driver object, ULP connection, etc.
578 * Once channel is open, @userdata is passed back to user via
579 * vxge_hw_channel_callback_f.
580 *
581 * HW channel object.
582 *
583 * See also: enum vxge_hw_channel_type{}, enum vxge_hw_channel_flag
584 */
585struct __vxge_hw_channel {
586 struct list_head item;
587 enum __vxge_hw_channel_type type;
588 struct __vxge_hw_device *devh;
589 struct __vxge_hw_vpath_handle *vph;
590 u32 length;
591 u32 vp_id;
592 void **reserve_arr;
593 u32 reserve_ptr;
594 u32 reserve_top;
595 void **work_arr;
596 u32 post_index ____cacheline_aligned;
597 u32 compl_index ____cacheline_aligned;
598 void **free_arr;
599 u32 free_ptr;
600 void **orig_arr;
601 u32 per_dtr_space;
602 void *userdata;
603 struct vxge_hw_common_reg __iomem *common_reg;
604 u32 first_vp_id;
605 struct vxge_hw_vpath_stats_sw_common_info *stats;
606
607} ____cacheline_aligned;
608
609/*
610 * struct __vxge_hw_virtualpath - Virtual Path
611 *
612 * @vp_id: Virtual path id
613 * @vp_open: This flag specifies if vxge_hw_vp_open is called from LL Driver
614 * @hldev: Hal device
615 * @vp_config: Virtual Path Config
616 * @vp_reg: VPATH Register map address in BAR0
617 * @vpmgmt_reg: VPATH_MGMT register map address
618 * @max_mtu: Max mtu that can be supported
619 * @vsport_number: vsport attached to this vpath
620 * @max_kdfc_db: Maximum kernel mode doorbells
621 * @max_nofl_db: Maximum non offload doorbells
622 * @tx_intr_num: Interrupt Number associated with the TX
623
624 * @ringh: Ring Queue
625 * @fifoh: FIFO Queue
626 * @vpath_handles: Virtual Path handles list
627 * @stats_block: Memory for DMAing stats
628 * @stats: Vpath statistics
629 *
630 * Virtual path structure to encapsulate the data related to a virtual path.
631 * Virtual paths are allocated by the HW upon getting configuration from the
632 * driver and inserted into the list of virtual paths.
633 */
634struct __vxge_hw_virtualpath {
635 u32 vp_id;
636
637 u32 vp_open;
638#define VXGE_HW_VP_NOT_OPEN 0
639#define VXGE_HW_VP_OPEN 1
640
641 struct __vxge_hw_device *hldev;
642 struct vxge_hw_vp_config *vp_config;
643 struct vxge_hw_vpath_reg __iomem *vp_reg;
644 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
645 struct __vxge_hw_non_offload_db_wrapper __iomem *nofl_db;
646
647 u32 max_mtu;
648 u32 vsport_number;
649 u32 max_kdfc_db;
650 u32 max_nofl_db;
651
652 struct __vxge_hw_ring *____cacheline_aligned ringh;
653 struct __vxge_hw_fifo *____cacheline_aligned fifoh;
654 struct list_head vpath_handles;
655 struct __vxge_hw_blockpool_entry *stats_block;
656 struct vxge_hw_vpath_stats_hw_info *hw_stats;
657 struct vxge_hw_vpath_stats_hw_info *hw_stats_sav;
658 struct vxge_hw_vpath_stats_sw_info *sw_stats;
659};
660
661/*
662 * struct __vxge_hw_vpath_handle - List item to store callback information
663 * @item: List head to keep the item in linked list
664 * @vpath: Virtual path to which this item belongs
665 *
666 * This structure is used to store the callback information.
667 */
668struct __vxge_hw_vpath_handle{
669 struct list_head item;
670 struct __vxge_hw_virtualpath *vpath;
671};
672
673/*
674 * struct __vxge_hw_device
675 *
676 * HW device object.
677 */
678/**
679 * struct __vxge_hw_device - Hal device object
680 * @magic: Magic Number
681 * @device_id: PCI Device Id of the adapter
682 * @major_revision: PCI Device major revision
683 * @minor_revision: PCI Device minor revision
684 * @bar0: BAR0 virtual address.
685 * @bar1: BAR1 virtual address.
686 * @bar2: BAR2 virtual address.
687 * @pdev: Physical device handle
688 * @config: Confguration passed by the LL driver at initialization
689 * @link_state: Link state
690 *
691 * HW device object. Represents Titan adapter
692 */
693struct __vxge_hw_device {
694 u32 magic;
695#define VXGE_HW_DEVICE_MAGIC 0x12345678
696#define VXGE_HW_DEVICE_DEAD 0xDEADDEAD
697 u16 device_id;
698 u8 major_revision;
699 u8 minor_revision;
700 void __iomem *bar0;
701 void __iomem *bar1;
702 void __iomem *bar2;
703 struct pci_dev *pdev;
704 struct net_device *ndev;
705 struct vxge_hw_device_config config;
706 enum vxge_hw_device_link_state link_state;
707
708 struct vxge_hw_uld_cbs uld_callbacks;
709
710 u32 host_type;
711 u32 func_id;
712 u32 access_rights;
713#define VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH 0x1
714#define VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM 0x2
715#define VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM 0x4
716 struct vxge_hw_legacy_reg __iomem *legacy_reg;
717 struct vxge_hw_toc_reg __iomem *toc_reg;
718 struct vxge_hw_common_reg __iomem *common_reg;
719 struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg;
720 struct vxge_hw_srpcim_reg __iomem *srpcim_reg \
721 [VXGE_HW_TITAN_SRPCIM_REG_SPACES];
722 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg \
723 [VXGE_HW_TITAN_VPMGMT_REG_SPACES];
724 struct vxge_hw_vpath_reg __iomem *vpath_reg \
725 [VXGE_HW_TITAN_VPATH_REG_SPACES];
726 u8 __iomem *kdfc;
727 u8 __iomem *usdc;
728 struct __vxge_hw_virtualpath virtual_paths \
729 [VXGE_HW_MAX_VIRTUAL_PATHS];
730 u64 vpath_assignments;
731 u64 vpaths_deployed;
732 u32 first_vp_id;
733 u64 tim_int_mask0[4];
734 u32 tim_int_mask1[4];
735
736 struct __vxge_hw_blockpool block_pool;
737 struct vxge_hw_device_stats stats;
738 u32 debug_module_mask;
739 u32 debug_level;
740 u32 level_err;
741 u32 level_trace;
742};
743
744#define VXGE_HW_INFO_LEN 64
745/**
746 * struct vxge_hw_device_hw_info - Device information
747 * @host_type: Host Type
748 * @func_id: Function Id
749 * @vpath_mask: vpath bit mask
750 * @fw_version: Firmware version
751 * @fw_date: Firmware Date
752 * @flash_version: Firmware version
753 * @flash_date: Firmware Date
754 * @mac_addrs: Mac addresses for each vpath
755 * @mac_addr_masks: Mac address masks for each vpath
756 *
757 * Returns the vpath mask that has the bits set for each vpath allocated
758 * for the driver and the first mac address for each vpath
759 */
760struct vxge_hw_device_hw_info {
761 u32 host_type;
762#define VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION 0
763#define VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION 1
764#define VXGE_HW_NO_MR_SR_VH0_FUNCTION0 2
765#define VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION 3
766#define VXGE_HW_MR_SR_VH0_INVALID_CONFIG 4
767#define VXGE_HW_SR_VH_FUNCTION0 5
768#define VXGE_HW_SR_VH_VIRTUAL_FUNCTION 6
769#define VXGE_HW_VH_NORMAL_FUNCTION 7
770 u64 function_mode;
771#define VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION 0
772#define VXGE_HW_FUNCTION_MODE_SINGLE_FUNCTION 1
773#define VXGE_HW_FUNCTION_MODE_SRIOV 2
774#define VXGE_HW_FUNCTION_MODE_MRIOV 3
775 u32 func_id;
776 u64 vpath_mask;
777 struct vxge_hw_device_version fw_version;
778 struct vxge_hw_device_date fw_date;
779 struct vxge_hw_device_version flash_version;
780 struct vxge_hw_device_date flash_date;
781 u8 serial_number[VXGE_HW_INFO_LEN];
782 u8 part_number[VXGE_HW_INFO_LEN];
783 u8 product_desc[VXGE_HW_INFO_LEN];
784 u8 (mac_addrs)[VXGE_HW_MAX_VIRTUAL_PATHS][ETH_ALEN];
785 u8 (mac_addr_masks)[VXGE_HW_MAX_VIRTUAL_PATHS][ETH_ALEN];
786};
787
788/**
789 * struct vxge_hw_device_attr - Device memory spaces.
790 * @bar0: BAR0 virtual address.
791 * @bar1: BAR1 virtual address.
792 * @bar2: BAR2 virtual address.
793 * @pdev: PCI device object.
794 *
795 * Device memory spaces. Includes configuration, BAR0, BAR1, etc. per device
796 * mapped memories. Also, includes a pointer to OS-specific PCI device object.
797 */
798struct vxge_hw_device_attr {
799 void __iomem *bar0;
800 void __iomem *bar1;
801 void __iomem *bar2;
802 struct pci_dev *pdev;
803 struct vxge_hw_uld_cbs uld_callbacks;
804};
805
806#define VXGE_HW_DEVICE_LINK_STATE_SET(hldev, ls) (hldev->link_state = ls)
807
808#define VXGE_HW_DEVICE_TIM_INT_MASK_SET(m0, m1, i) { \
809 if (i < 16) { \
810 m0[0] |= vxge_vBIT(0x8, (i*4), 4); \
811 m0[1] |= vxge_vBIT(0x4, (i*4), 4); \
812 } \
813 else { \
814 m1[0] = 0x80000000; \
815 m1[1] = 0x40000000; \
816 } \
817}
818
819#define VXGE_HW_DEVICE_TIM_INT_MASK_RESET(m0, m1, i) { \
820 if (i < 16) { \
821 m0[0] &= ~vxge_vBIT(0x8, (i*4), 4); \
822 m0[1] &= ~vxge_vBIT(0x4, (i*4), 4); \
823 } \
824 else { \
825 m1[0] = 0; \
826 m1[1] = 0; \
827 } \
828}
829
830#define VXGE_HW_DEVICE_STATS_PIO_READ(loc, offset) { \
831 status = vxge_hw_mrpcim_stats_access(hldev, \
832 VXGE_HW_STATS_OP_READ, \
833 loc, \
834 offset, \
835 &val64); \
836 \
837 if (status != VXGE_HW_OK) \
838 return status; \
839}
840
841#define VXGE_HW_VPATH_STATS_PIO_READ(offset) { \
842 status = __vxge_hw_vpath_stats_access(vpath, \
843 VXGE_HW_STATS_OP_READ, \
844 offset, \
845 &val64); \
846 if (status != VXGE_HW_OK) \
847 return status; \
848}
849
850/*
851 * struct __vxge_hw_ring - Ring channel.
852 * @channel: Channel "base" of this ring, the common part of all HW
853 * channels.
854 * @mempool: Memory pool, the pool from which descriptors get allocated.
855 * (See vxge_hw_mm.h).
856 * @config: Ring configuration, part of device configuration
857 * (see struct vxge_hw_device_config{}).
858 * @ring_length: Length of the ring
859 * @buffer_mode: 1, 3, or 5. The value specifies a receive buffer mode,
860 * as per Titan User Guide.
861 * @rxd_size: RxD sizes for 1-, 3- or 5- buffer modes. As per Titan spec,
862 * 1-buffer mode descriptor is 32 byte long, etc.
863 * @rxd_priv_size: Per RxD size reserved (by HW) for driver to keep
864 * per-descriptor data (e.g., DMA handle for Solaris)
865 * @per_rxd_space: Per rxd space requested by driver
866 * @rxds_per_block: Number of descriptors per hardware-defined RxD
867 * block. Depends on the (1-, 3-, 5-) buffer mode.
868 * @rxdblock_priv_size: Reserved at the end of each RxD block. HW internal
869 * usage. Not to confuse with @rxd_priv_size.
870 * @cmpl_cnt: Completion counter. Is reset to zero upon entering the ISR.
871 * @callback: Channel completion callback. HW invokes the callback when there
872 * are new completions on that channel. In many implementations
873 * the @callback executes in the hw interrupt context.
874 * @rxd_init: Channel's descriptor-initialize callback.
875 * See vxge_hw_ring_rxd_init_f{}.
876 * If not NULL, HW invokes the callback when opening
877 * the ring.
878 * @rxd_term: Channel's descriptor-terminate callback. If not NULL,
879 * HW invokes the callback when closing the corresponding channel.
880 * See also vxge_hw_channel_rxd_term_f{}.
881 * @stats: Statistics for ring
882 * Ring channel.
883 *
884 * Note: The structure is cache line aligned to better utilize
885 * CPU cache performance.
886 */
887struct __vxge_hw_ring {
888 struct __vxge_hw_channel channel;
889 struct vxge_hw_mempool *mempool;
890 struct vxge_hw_vpath_reg __iomem *vp_reg;
891 struct vxge_hw_common_reg __iomem *common_reg;
892 u32 ring_length;
893 u32 buffer_mode;
894 u32 rxd_size;
895 u32 rxd_priv_size;
896 u32 per_rxd_space;
897 u32 rxds_per_block;
898 u32 rxdblock_priv_size;
899 u32 cmpl_cnt;
900 u32 vp_id;
901 u32 doorbell_cnt;
902 u32 total_db_cnt;
903 u64 rxds_limit;
904
905 enum vxge_hw_status (*callback)(
906 struct __vxge_hw_ring *ringh,
907 void *rxdh,
908 u8 t_code,
909 void *userdata);
910
911 enum vxge_hw_status (*rxd_init)(
912 void *rxdh,
913 void *userdata);
914
915 void (*rxd_term)(
916 void *rxdh,
917 enum vxge_hw_rxd_state state,
918 void *userdata);
919
920 struct vxge_hw_vpath_stats_sw_ring_info *stats ____cacheline_aligned;
921 struct vxge_hw_ring_config *config;
922} ____cacheline_aligned;
923
924/**
925 * enum enum vxge_hw_txdl_state - Descriptor (TXDL) state.
926 * @VXGE_HW_TXDL_STATE_NONE: Invalid state.
927 * @VXGE_HW_TXDL_STATE_AVAIL: Descriptor is available for reservation.
928 * @VXGE_HW_TXDL_STATE_POSTED: Descriptor is posted for processing by the
929 * device.
930 * @VXGE_HW_TXDL_STATE_FREED: Descriptor is free and can be reused for
931 * filling-in and posting later.
932 *
933 * Titan/HW descriptor states.
934 *
935 */
936enum vxge_hw_txdl_state {
937 VXGE_HW_TXDL_STATE_NONE = 0,
938 VXGE_HW_TXDL_STATE_AVAIL = 1,
939 VXGE_HW_TXDL_STATE_POSTED = 2,
940 VXGE_HW_TXDL_STATE_FREED = 3
941};
942/*
943 * struct __vxge_hw_fifo - Fifo.
944 * @channel: Channel "base" of this fifo, the common part of all HW
945 * channels.
946 * @mempool: Memory pool, from which descriptors get allocated.
947 * @config: Fifo configuration, part of device configuration
948 * (see struct vxge_hw_device_config{}).
949 * @interrupt_type: Interrupt type to be used
950 * @no_snoop_bits: See struct vxge_hw_fifo_config{}.
951 * @txdl_per_memblock: Number of TxDLs (TxD lists) per memblock.
952 * on TxDL please refer to Titan UG.
953 * @txdl_size: Configured TxDL size (i.e., number of TxDs in a list), plus
954 * per-TxDL HW private space (struct __vxge_hw_fifo_txdl_priv).
955 * @priv_size: Per-Tx descriptor space reserved for driver
956 * usage.
957 * @per_txdl_space: Per txdl private space for the driver
958 * @callback: Fifo completion callback. HW invokes the callback when there
959 * are new completions on that fifo. In many implementations
960 * the @callback executes in the hw interrupt context.
961 * @txdl_term: Fifo's descriptor-terminate callback. If not NULL,
962 * HW invokes the callback when closing the corresponding fifo.
963 * See also vxge_hw_fifo_txdl_term_f{}.
964 * @stats: Statistics of this fifo
965 *
966 * Fifo channel.
967 * Note: The structure is cache line aligned.
968 */
969struct __vxge_hw_fifo {
970 struct __vxge_hw_channel channel;
971 struct vxge_hw_mempool *mempool;
972 struct vxge_hw_fifo_config *config;
973 struct vxge_hw_vpath_reg __iomem *vp_reg;
974 struct __vxge_hw_non_offload_db_wrapper __iomem *nofl_db;
975 u64 interrupt_type;
976 u32 no_snoop_bits;
977 u32 txdl_per_memblock;
978 u32 txdl_size;
979 u32 priv_size;
980 u32 per_txdl_space;
981 u32 vp_id;
982 u32 tx_intr_num;
983
984 enum vxge_hw_status (*callback)(
985 struct __vxge_hw_fifo *fifo_handle,
986 void *txdlh,
987 enum vxge_hw_fifo_tcode t_code,
988 void *userdata,
989 void **skb_ptr);
990
991 void (*txdl_term)(
992 void *txdlh,
993 enum vxge_hw_txdl_state state,
994 void *userdata);
995
996 struct vxge_hw_vpath_stats_sw_fifo_info *stats ____cacheline_aligned;
997} ____cacheline_aligned;
998
999/*
1000 * struct __vxge_hw_fifo_txdl_priv - Transmit descriptor HW-private data.
1001 * @dma_addr: DMA (mapped) address of _this_ descriptor.
1002 * @dma_handle: DMA handle used to map the descriptor onto device.
1003 * @dma_offset: Descriptor's offset in the memory block. HW allocates
1004 * descriptors in memory blocks (see struct vxge_hw_fifo_config{})
1005 * Each memblock is a contiguous block of DMA-able memory.
1006 * @frags: Total number of fragments (that is, contiguous data buffers)
1007 * carried by this TxDL.
1008 * @align_vaddr_start: Aligned virtual address start
1009 * @align_vaddr: Virtual address of the per-TxDL area in memory used for
1010 * alignement. Used to place one or more mis-aligned fragments
1011 * @align_dma_addr: DMA address translated from the @align_vaddr.
1012 * @align_dma_handle: DMA handle that corresponds to @align_dma_addr.
1013 * @align_dma_acch: DMA access handle corresponds to @align_dma_addr.
1014 * @align_dma_offset: The current offset into the @align_vaddr area.
1015 * Grows while filling the descriptor, gets reset.
1016 * @align_used_frags: Number of fragments used.
1017 * @alloc_frags: Total number of fragments allocated.
1018 * @unused: TODO
1019 * @next_txdl_priv: (TODO).
1020 * @first_txdp: (TODO).
1021 * @linked_txdl_priv: Pointer to any linked TxDL for creating contiguous
1022 * TxDL list.
1023 * @txdlh: Corresponding txdlh to this TxDL.
1024 * @memblock: Pointer to the TxDL memory block or memory page.
1025 * on the next send operation.
1026 * @dma_object: DMA address and handle of the memory block that contains
1027 * the descriptor. This member is used only in the "checked"
1028 * version of the HW (to enforce certain assertions);
1029 * otherwise it gets compiled out.
1030 * @allocated: True if the descriptor is reserved, 0 otherwise. Internal usage.
1031 *
1032 * Per-transmit decsriptor HW-private data. HW uses the space to keep DMA
1033 * information associated with the descriptor. Note that driver can ask HW
1034 * to allocate additional per-descriptor space for its own (driver-specific)
1035 * purposes.
1036 *
1037 * See also: struct vxge_hw_ring_rxd_priv{}.
1038 */
1039struct __vxge_hw_fifo_txdl_priv {
1040 dma_addr_t dma_addr;
1041 struct pci_dev *dma_handle;
1042 ptrdiff_t dma_offset;
1043 u32 frags;
1044 u8 *align_vaddr_start;
1045 u8 *align_vaddr;
1046 dma_addr_t align_dma_addr;
1047 struct pci_dev *align_dma_handle;
1048 struct pci_dev *align_dma_acch;
1049 ptrdiff_t align_dma_offset;
1050 u32 align_used_frags;
1051 u32 alloc_frags;
1052 u32 unused;
1053 struct __vxge_hw_fifo_txdl_priv *next_txdl_priv;
1054 struct vxge_hw_fifo_txd *first_txdp;
1055 void *memblock;
1056};
1057
1058/*
1059 * struct __vxge_hw_non_offload_db_wrapper - Non-offload Doorbell Wrapper
1060 * @control_0: Bits 0 to 7 - Doorbell type.
1061 * Bits 8 to 31 - Reserved.
1062 * Bits 32 to 39 - The highest TxD in this TxDL.
1063 * Bits 40 to 47 - Reserved.
1064 * Bits 48 to 55 - Reserved.
1065 * Bits 56 to 63 - No snoop flags.
1066 * @txdl_ptr: The starting location of the TxDL in host memory.
1067 *
1068 * Created by the host and written to the adapter via PIO to a Kernel Doorbell
1069 * FIFO. All non-offload doorbell wrapper fields must be written by the host as
1070 * part of a doorbell write. Consumed by the adapter but is not written by the
1071 * adapter.
1072 */
1073struct __vxge_hw_non_offload_db_wrapper {
1074 u64 control_0;
1075#define VXGE_HW_NODBW_GET_TYPE(ctrl0) vxge_bVALn(ctrl0, 0, 8)
1076#define VXGE_HW_NODBW_TYPE(val) vxge_vBIT(val, 0, 8)
1077#define VXGE_HW_NODBW_TYPE_NODBW 0
1078
1079#define VXGE_HW_NODBW_GET_LAST_TXD_NUMBER(ctrl0) vxge_bVALn(ctrl0, 32, 8)
1080#define VXGE_HW_NODBW_LAST_TXD_NUMBER(val) vxge_vBIT(val, 32, 8)
1081
1082#define VXGE_HW_NODBW_GET_NO_SNOOP(ctrl0) vxge_bVALn(ctrl0, 56, 8)
1083#define VXGE_HW_NODBW_LIST_NO_SNOOP(val) vxge_vBIT(val, 56, 8)
1084#define VXGE_HW_NODBW_LIST_NO_SNOOP_TXD_READ_TXD0_WRITE 0x2
1085#define VXGE_HW_NODBW_LIST_NO_SNOOP_TX_FRAME_DATA_READ 0x1
1086
1087 u64 txdl_ptr;
1088};
1089
1090/*
1091 * TX Descriptor
1092 */
1093
1094/**
1095 * struct vxge_hw_fifo_txd - Transmit Descriptor
1096 * @control_0: Bits 0 to 6 - Reserved.
1097 * Bit 7 - List Ownership. This field should be initialized
1098 * to '1' by the driver before the transmit list pointer is
1099 * written to the adapter. This field will be set to '0' by the
1100 * adapter once it has completed transmitting the frame or frames in
1101 * the list. Note - This field is only valid in TxD0. Additionally,
1102 * for multi-list sequences, the driver should not release any
1103 * buffers until the ownership of the last list in the multi-list
1104 * sequence has been returned to the host.
1105 * Bits 8 to 11 - Reserved
1106 * Bits 12 to 15 - Transfer_Code. This field is only valid in
1107 * TxD0. It is used to describe the status of the transmit data
1108 * buffer transfer. This field is always overwritten by the
1109 * adapter, so this field may be initialized to any value.
1110 * Bits 16 to 17 - Host steering. This field allows the host to
1111 * override the selection of the physical transmit port.
1112 * Attention:
1113 * Normal sounds as if learned from the switch rather than from
1114 * the aggregation algorythms.
1115 * 00: Normal. Use Destination/MAC Address
1116 * lookup to determine the transmit port.
1117 * 01: Send on physical Port1.
1118 * 10: Send on physical Port0.
1119 * 11: Send on both ports.
1120 * Bits 18 to 21 - Reserved
1121 * Bits 22 to 23 - Gather_Code. This field is set by the host and
1122 * is used to describe how individual buffers comprise a frame.
1123 * 10: First descriptor of a frame.
1124 * 00: Middle of a multi-descriptor frame.
1125 * 01: Last descriptor of a frame.
1126 * 11: First and last descriptor of a frame (the entire frame
1127 * resides in a single buffer).
1128 * For multi-descriptor frames, the only valid gather code sequence
1129 * is {10, [00], 01}. In other words, the descriptors must be placed
1130 * in the list in the correct order.
1131 * Bits 24 to 27 - Reserved
1132 * Bits 28 to 29 - LSO_Frm_Encap. LSO Frame Encapsulation
1133 * definition. Only valid in TxD0. This field allows the host to
1134 * indicate the Ethernet encapsulation of an outbound LSO packet.
1135 * 00 - classic mode (best guess)
1136 * 01 - LLC
1137 * 10 - SNAP
1138 * 11 - DIX
1139 * If "classic mode" is selected, the adapter will attempt to
1140 * decode the frame's Ethernet encapsulation by examining the L/T
1141 * field as follows:
1142 * <= 0x05DC LLC/SNAP encoding; must examine DSAP/SSAP to determine
1143 * if packet is IPv4 or IPv6.
1144 * 0x8870 Jumbo-SNAP encoding.
1145 * 0x0800 IPv4 DIX encoding
1146 * 0x86DD IPv6 DIX encoding
1147 * others illegal encapsulation
1148 * Bits 30 - LSO_ Flag. Large Send Offload (LSO) flag.
1149 * Set to 1 to perform segmentation offload for TCP/UDP.
1150 * This field is valid only in TxD0.
1151 * Bits 31 to 33 - Reserved.
1152 * Bits 34 to 47 - LSO_MSS. TCP/UDP LSO Maximum Segment Size
1153 * This field is meaningful only when LSO_Control is non-zero.
1154 * When LSO_Control is set to TCP_LSO, the single (possibly large)
1155 * TCP segment described by this TxDL will be sent as a series of
1156 * TCP segments each of which contains no more than LSO_MSS
1157 * payload bytes.
1158 * When LSO_Control is set to UDP_LSO, the single (possibly large)
1159 * UDP datagram described by this TxDL will be sent as a series of
1160 * UDP datagrams each of which contains no more than LSO_MSS
1161 * payload bytes.
1162 * All outgoing frames from this TxDL will have LSO_MSS bytes of UDP
1163 * or TCP payload, with the exception of the last, which will have
1164 * <= LSO_MSS bytes of payload.
1165 * Bits 48 to 63 - Buffer_Size. Number of valid bytes in the
1166 * buffer to be read by the adapter. This field is written by the
1167 * host. A value of 0 is illegal.
1168 * Bits 32 to 63 - This value is written by the adapter upon
1169 * completion of a UDP or TCP LSO operation and indicates the number
1170 * of UDP or TCP payload bytes that were transmitted. 0x0000 will be
1171 * returned for any non-LSO operation.
1172 * @control_1: Bits 0 to 4 - Reserved.
1173 * Bit 5 - Tx_CKO_IPv4 Set to a '1' to enable IPv4 header checksum
1174 * offload. This field is only valid in the first TxD of a frame.
1175 * Bit 6 - Tx_CKO_TCP Set to a '1' to enable TCP checksum offload.
1176 * This field is only valid in the first TxD of a frame (the TxD's
1177 * gather code must be 10 or 11). The driver should only set this
1178 * bit if it can guarantee that TCP is present.
1179 * Bit 7 - Tx_CKO_UDP Set to a '1' to enable UDP checksum offload.
1180 * This field is only valid in the first TxD of a frame (the TxD's
1181 * gather code must be 10 or 11). The driver should only set this
1182 * bit if it can guarantee that UDP is present.
1183 * Bits 8 to 14 - Reserved.
1184 * Bit 15 - Tx_VLAN_Enable VLAN tag insertion flag. Set to a '1' to
1185 * instruct the adapter to insert the VLAN tag specified by the
1186 * Tx_VLAN_Tag field. This field is only valid in the first TxD of
1187 * a frame.
1188 * Bits 16 to 31 - Tx_VLAN_Tag. Variable portion of the VLAN tag
1189 * to be inserted into the frame by the adapter (the first two bytes
1190 * of a VLAN tag are always 0x8100). This field is only valid if the
1191 * Tx_VLAN_Enable field is set to '1'.
1192 * Bits 32 to 33 - Reserved.
1193 * Bits 34 to 39 - Tx_Int_Number. Indicates which Tx interrupt
1194 * number the frame associated with. This field is written by the
1195 * host. It is only valid in the first TxD of a frame.
1196 * Bits 40 to 42 - Reserved.
1197 * Bit 43 - Set to 1 to exclude the frame from bandwidth metering
1198 * functions. This field is valid only in the first TxD
1199 * of a frame.
1200 * Bits 44 to 45 - Reserved.
1201 * Bit 46 - Tx_Int_Per_List Set to a '1' to instruct the adapter to
1202 * generate an interrupt as soon as all of the frames in the list
1203 * have been transmitted. In order to have per-frame interrupts,
1204 * the driver should place a maximum of one frame per list. This
1205 * field is only valid in the first TxD of a frame.
1206 * Bit 47 - Tx_Int_Utilization Set to a '1' to instruct the adapter
1207 * to count the frame toward the utilization interrupt specified in
1208 * the Tx_Int_Number field. This field is only valid in the first
1209 * TxD of a frame.
1210 * Bits 48 to 63 - Reserved.
1211 * @buffer_pointer: Buffer start address.
1212 * @host_control: Host_Control.Opaque 64bit data stored by driver inside the
1213 * Titan descriptor prior to posting the latter on the fifo
1214 * via vxge_hw_fifo_txdl_post().The %host_control is returned as is
1215 * to the driver with each completed descriptor.
1216 *
1217 * Transmit descriptor (TxD).Fifo descriptor contains configured number
1218 * (list) of TxDs. * For more details please refer to Titan User Guide,
1219 * Section 5.4.2 "Transmit Descriptor (TxD) Format".
1220 */
1221struct vxge_hw_fifo_txd {
1222 u64 control_0;
1223#define VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER vxge_mBIT(7)
1224
1225#define VXGE_HW_FIFO_TXD_T_CODE_GET(ctrl0) vxge_bVALn(ctrl0, 12, 4)
1226#define VXGE_HW_FIFO_TXD_T_CODE(val) vxge_vBIT(val, 12, 4)
1227#define VXGE_HW_FIFO_TXD_T_CODE_UNUSED VXGE_HW_FIFO_T_CODE_UNUSED
1228
1229
1230#define VXGE_HW_FIFO_TXD_GATHER_CODE(val) vxge_vBIT(val, 22, 2)
1231#define VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST VXGE_HW_FIFO_GATHER_CODE_FIRST
1232#define VXGE_HW_FIFO_TXD_GATHER_CODE_LAST VXGE_HW_FIFO_GATHER_CODE_LAST
1233
1234
1235#define VXGE_HW_FIFO_TXD_LSO_EN vxge_mBIT(30)
1236
1237#define VXGE_HW_FIFO_TXD_LSO_MSS(val) vxge_vBIT(val, 34, 14)
1238
1239#define VXGE_HW_FIFO_TXD_BUFFER_SIZE(val) vxge_vBIT(val, 48, 16)
1240
1241 u64 control_1;
1242#define VXGE_HW_FIFO_TXD_TX_CKO_IPV4_EN vxge_mBIT(5)
1243#define VXGE_HW_FIFO_TXD_TX_CKO_TCP_EN vxge_mBIT(6)
1244#define VXGE_HW_FIFO_TXD_TX_CKO_UDP_EN vxge_mBIT(7)
1245#define VXGE_HW_FIFO_TXD_VLAN_ENABLE vxge_mBIT(15)
1246
1247#define VXGE_HW_FIFO_TXD_VLAN_TAG(val) vxge_vBIT(val, 16, 16)
1248
1249#define VXGE_HW_FIFO_TXD_INT_NUMBER(val) vxge_vBIT(val, 34, 6)
1250
1251#define VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST vxge_mBIT(46)
1252#define VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ vxge_mBIT(47)
1253
1254 u64 buffer_pointer;
1255
1256 u64 host_control;
1257};
1258
1259/**
1260 * struct vxge_hw_ring_rxd_1 - One buffer mode RxD for ring
1261 * @host_control: This field is exclusively for host use and is "readonly"
1262 * from the adapter's perspective.
1263 * @control_0:Bits 0 to 6 - RTH_Bucket get
1264 * Bit 7 - Own Descriptor ownership bit. This bit is set to 1
1265 * by the host, and is set to 0 by the adapter.
1266 * 0 - Host owns RxD and buffer.
1267 * 1 - The adapter owns RxD and buffer.
1268 * Bit 8 - Fast_Path_Eligible When set, indicates that the
1269 * received frame meets all of the criteria for fast path processing.
1270 * The required criteria are as follows:
1271 * !SYN &
1272 * (Transfer_Code == "Transfer OK") &
1273 * (!Is_IP_Fragment) &
1274 * ((Is_IPv4 & computed_L3_checksum == 0xFFFF) |
1275 * (Is_IPv6)) &
1276 * ((Is_TCP & computed_L4_checksum == 0xFFFF) |
1277 * (Is_UDP & (computed_L4_checksum == 0xFFFF |
1278 * computed _L4_checksum == 0x0000)))
1279 * (same meaning for all RxD buffer modes)
1280 * Bit 9 - L3 Checksum Correct
1281 * Bit 10 - L4 Checksum Correct
1282 * Bit 11 - Reserved
1283 * Bit 12 to 15 - This field is written by the adapter. It is
1284 * used to report the status of the frame transfer to the host.
1285 * 0x0 - Transfer OK
1286 * 0x4 - RDA Failure During Transfer
1287 * 0x5 - Unparseable Packet, such as unknown IPv6 header.
1288 * 0x6 - Frame integrity error (FCS or ECC).
1289 * 0x7 - Buffer Size Error. The provided buffer(s) were not
1290 * appropriately sized and data loss occurred.
1291 * 0x8 - Internal ECC Error. RxD corrupted.
1292 * 0x9 - IPv4 Checksum error
1293 * 0xA - TCP/UDP Checksum error
1294 * 0xF - Unknown Error or Multiple Error. Indicates an
1295 * unknown problem or that more than one of transfer codes is set.
1296 * Bit 16 - SYN The adapter sets this field to indicate that
1297 * the incoming frame contained a TCP segment with its SYN bit
1298 * set and its ACK bit NOT set. (same meaning for all RxD buffer
1299 * modes)
1300 * Bit 17 - Is ICMP
1301 * Bit 18 - RTH_SPDM_HIT Set to 1 if there was a match in the
1302 * Socket Pair Direct Match Table and the frame was steered based
1303 * on SPDM.
1304 * Bit 19 - RTH_IT_HIT Set to 1 if there was a match in the
1305 * Indirection Table and the frame was steered based on hash
1306 * indirection.
1307 * Bit 20 to 23 - RTH_HASH_TYPE Indicates the function (hash
1308 * type) that was used to calculate the hash.
1309 * Bit 19 - IS_VLAN Set to '1' if the frame was/is VLAN
1310 * tagged.
1311 * Bit 25 to 26 - ETHER_ENCAP Reflects the Ethernet encapsulation
1312 * of the received frame.
1313 * 0x0 - Ethernet DIX
1314 * 0x1 - LLC
1315 * 0x2 - SNAP (includes Jumbo-SNAP)
1316 * 0x3 - IPX
1317 * Bit 27 - IS_IPV4 Set to '1' if the frame contains an IPv4 packet.
1318 * Bit 28 - IS_IPV6 Set to '1' if the frame contains an IPv6 packet.
1319 * Bit 29 - IS_IP_FRAG Set to '1' if the frame contains a fragmented
1320 * IP packet.
1321 * Bit 30 - IS_TCP Set to '1' if the frame contains a TCP segment.
1322 * Bit 31 - IS_UDP Set to '1' if the frame contains a UDP message.
1323 * Bit 32 to 47 - L3_Checksum[0:15] The IPv4 checksum value that
1324 * arrived with the frame. If the resulting computed IPv4 header
1325 * checksum for the frame did not produce the expected 0xFFFF value,
1326 * then the transfer code would be set to 0x9.
1327 * Bit 48 to 63 - L4_Checksum[0:15] The TCP/UDP checksum value that
1328 * arrived with the frame. If the resulting computed TCP/UDP checksum
1329 * for the frame did not produce the expected 0xFFFF value, then the
1330 * transfer code would be set to 0xA.
1331 * @control_1:Bits 0 to 1 - Reserved
1332 * Bits 2 to 15 - Buffer0_Size.This field is set by the host and
1333 * eventually overwritten by the adapter. The host writes the
1334 * available buffer size in bytes when it passes the descriptor to
1335 * the adapter. When a frame is delivered the host, the adapter
1336 * populates this field with the number of bytes written into the
1337 * buffer. The largest supported buffer is 16, 383 bytes.
1338 * Bit 16 to 47 - RTH Hash Value 32-bit RTH hash value. Only valid if
1339 * RTH_HASH_TYPE (Control_0, bits 20:23) is nonzero.
1340 * Bit 48 to 63 - VLAN_Tag[0:15] The contents of the variable portion
1341 * of the VLAN tag, if one was detected by the adapter. This field is
1342 * populated even if VLAN-tag stripping is enabled.
1343 * @buffer0_ptr: Pointer to buffer. This field is populated by the driver.
1344 *
1345 * One buffer mode RxD for ring structure
1346 */
1347struct vxge_hw_ring_rxd_1 {
1348 u64 host_control;
1349 u64 control_0;
1350#define VXGE_HW_RING_RXD_RTH_BUCKET_GET(ctrl0) vxge_bVALn(ctrl0, 0, 7)
1351
1352#define VXGE_HW_RING_RXD_LIST_OWN_ADAPTER vxge_mBIT(7)
1353
1354#define VXGE_HW_RING_RXD_FAST_PATH_ELIGIBLE_GET(ctrl0) vxge_bVALn(ctrl0, 8, 1)
1355
1356#define VXGE_HW_RING_RXD_L3_CKSUM_CORRECT_GET(ctrl0) vxge_bVALn(ctrl0, 9, 1)
1357
1358#define VXGE_HW_RING_RXD_L4_CKSUM_CORRECT_GET(ctrl0) vxge_bVALn(ctrl0, 10, 1)
1359
1360#define VXGE_HW_RING_RXD_T_CODE_GET(ctrl0) vxge_bVALn(ctrl0, 12, 4)
1361#define VXGE_HW_RING_RXD_T_CODE(val) vxge_vBIT(val, 12, 4)
1362
1363#define VXGE_HW_RING_RXD_T_CODE_UNUSED VXGE_HW_RING_T_CODE_UNUSED
1364
1365#define VXGE_HW_RING_RXD_SYN_GET(ctrl0) vxge_bVALn(ctrl0, 16, 1)
1366
1367#define VXGE_HW_RING_RXD_IS_ICMP_GET(ctrl0) vxge_bVALn(ctrl0, 17, 1)
1368
1369#define VXGE_HW_RING_RXD_RTH_SPDM_HIT_GET(ctrl0) vxge_bVALn(ctrl0, 18, 1)
1370
1371#define VXGE_HW_RING_RXD_RTH_IT_HIT_GET(ctrl0) vxge_bVALn(ctrl0, 19, 1)
1372
1373#define VXGE_HW_RING_RXD_RTH_HASH_TYPE_GET(ctrl0) vxge_bVALn(ctrl0, 20, 4)
1374
1375#define VXGE_HW_RING_RXD_IS_VLAN_GET(ctrl0) vxge_bVALn(ctrl0, 24, 1)
1376
1377#define VXGE_HW_RING_RXD_ETHER_ENCAP_GET(ctrl0) vxge_bVALn(ctrl0, 25, 2)
1378
1379#define VXGE_HW_RING_RXD_FRAME_PROTO_GET(ctrl0) vxge_bVALn(ctrl0, 27, 5)
1380
1381#define VXGE_HW_RING_RXD_L3_CKSUM_GET(ctrl0) vxge_bVALn(ctrl0, 32, 16)
1382
1383#define VXGE_HW_RING_RXD_L4_CKSUM_GET(ctrl0) vxge_bVALn(ctrl0, 48, 16)
1384
1385 u64 control_1;
1386
1387#define VXGE_HW_RING_RXD_1_BUFFER0_SIZE_GET(ctrl1) vxge_bVALn(ctrl1, 2, 14)
1388#define VXGE_HW_RING_RXD_1_BUFFER0_SIZE(val) vxge_vBIT(val, 2, 14)
1389#define VXGE_HW_RING_RXD_1_BUFFER0_SIZE_MASK vxge_vBIT(0x3FFF, 2, 14)
1390
1391#define VXGE_HW_RING_RXD_1_RTH_HASH_VAL_GET(ctrl1) vxge_bVALn(ctrl1, 16, 32)
1392
1393#define VXGE_HW_RING_RXD_VLAN_TAG_GET(ctrl1) vxge_bVALn(ctrl1, 48, 16)
1394
1395 u64 buffer0_ptr;
1396};
1397
1398enum vxge_hw_rth_algoritms {
1399 RTH_ALG_JENKINS = 0,
1400 RTH_ALG_MS_RSS = 1,
1401 RTH_ALG_CRC32C = 2
1402};
1403
1404/**
1405 * struct vxge_hw_rth_hash_types - RTH hash types.
1406 * @hash_type_tcpipv4_en: Enables RTH field type HashTypeTcpIPv4
1407 * @hash_type_ipv4_en: Enables RTH field type HashTypeIPv4
1408 * @hash_type_tcpipv6_en: Enables RTH field type HashTypeTcpIPv6
1409 * @hash_type_ipv6_en: Enables RTH field type HashTypeIPv6
1410 * @hash_type_tcpipv6ex_en: Enables RTH field type HashTypeTcpIPv6Ex
1411 * @hash_type_ipv6ex_en: Enables RTH field type HashTypeIPv6Ex
1412 *
1413 * Used to pass RTH hash types to rts_rts_set.
1414 *
1415 * See also: vxge_hw_vpath_rts_rth_set(), vxge_hw_vpath_rts_rth_get().
1416 */
1417struct vxge_hw_rth_hash_types {
1418 u8 hash_type_tcpipv4_en;
1419 u8 hash_type_ipv4_en;
1420 u8 hash_type_tcpipv6_en;
1421 u8 hash_type_ipv6_en;
1422 u8 hash_type_tcpipv6ex_en;
1423 u8 hash_type_ipv6ex_en;
1424};
1425
1426u32
1427vxge_hw_device_debug_mask_get(struct __vxge_hw_device *devh);
1428
1429void vxge_hw_device_debug_set(
1430 struct __vxge_hw_device *devh,
1431 enum vxge_debug_level level,
1432 u32 mask);
1433
1434u32
1435vxge_hw_device_error_level_get(struct __vxge_hw_device *devh);
1436
1437u32
1438vxge_hw_device_trace_level_get(struct __vxge_hw_device *devh);
1439
1440u32
1441vxge_hw_device_debug_mask_get(struct __vxge_hw_device *devh);
1442
1443/**
1444 * vxge_hw_ring_rxd_size_get - Get the size of ring descriptor.
1445 * @buf_mode: Buffer mode (1, 3 or 5)
1446 *
1447 * This function returns the size of RxD for given buffer mode
1448 */
1449static inline u32 vxge_hw_ring_rxd_size_get(u32 buf_mode)
1450{
1451 return sizeof(struct vxge_hw_ring_rxd_1);
1452}
1453
1454/**
1455 * vxge_hw_ring_rxds_per_block_get - Get the number of rxds per block.
1456 * @buf_mode: Buffer mode (1 buffer mode only)
1457 *
1458 * This function returns the number of RxD for RxD block for given buffer mode
1459 */
1460static inline u32 vxge_hw_ring_rxds_per_block_get(u32 buf_mode)
1461{
1462 return (u32)((VXGE_HW_BLOCK_SIZE-16) /
1463 sizeof(struct vxge_hw_ring_rxd_1));
1464}
1465
1466/**
1467 * vxge_hw_ring_rxd_1b_set - Prepare 1-buffer-mode descriptor.
1468 * @rxdh: Descriptor handle.
1469 * @dma_pointer: DMA address of a single receive buffer this descriptor
1470 * should carry. Note that by the time vxge_hw_ring_rxd_1b_set is called,
1471 * the receive buffer should be already mapped to the device
1472 * @size: Size of the receive @dma_pointer buffer.
1473 *
1474 * Prepare 1-buffer-mode Rx descriptor for posting
1475 * (via vxge_hw_ring_rxd_post()).
1476 *
1477 * This inline helper-function does not return any parameters and always
1478 * succeeds.
1479 *
1480 */
1481static inline
1482void vxge_hw_ring_rxd_1b_set(
1483 void *rxdh,
1484 dma_addr_t dma_pointer,
1485 u32 size)
1486{
1487 struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1488 rxdp->buffer0_ptr = dma_pointer;
1489 rxdp->control_1 &= ~VXGE_HW_RING_RXD_1_BUFFER0_SIZE_MASK;
1490 rxdp->control_1 |= VXGE_HW_RING_RXD_1_BUFFER0_SIZE(size);
1491}
1492
1493/**
1494 * vxge_hw_ring_rxd_1b_get - Get data from the completed 1-buf
1495 * descriptor.
1496 * @vpath_handle: Virtual Path handle.
1497 * @rxdh: Descriptor handle.
1498 * @dma_pointer: DMA address of a single receive buffer this descriptor
1499 * carries. Returned by HW.
1500 * @pkt_length: Length (in bytes) of the data in the buffer pointed by
1501 *
1502 * Retrieve protocol data from the completed 1-buffer-mode Rx descriptor.
1503 * This inline helper-function uses completed descriptor to populate receive
1504 * buffer pointer and other "out" parameters. The function always succeeds.
1505 *
1506 */
1507static inline
1508void vxge_hw_ring_rxd_1b_get(
1509 struct __vxge_hw_ring *ring_handle,
1510 void *rxdh,
1511 u32 *pkt_length)
1512{
1513 struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1514
1515 *pkt_length =
1516 (u32)VXGE_HW_RING_RXD_1_BUFFER0_SIZE_GET(rxdp->control_1);
1517}
1518
1519/**
1520 * vxge_hw_ring_rxd_1b_info_get - Get extended information associated with
1521 * a completed receive descriptor for 1b mode.
1522 * @vpath_handle: Virtual Path handle.
1523 * @rxdh: Descriptor handle.
1524 * @rxd_info: Descriptor information
1525 *
1526 * Retrieve extended information associated with a completed receive descriptor.
1527 *
1528 */
1529static inline
1530void vxge_hw_ring_rxd_1b_info_get(
1531 struct __vxge_hw_ring *ring_handle,
1532 void *rxdh,
1533 struct vxge_hw_ring_rxd_info *rxd_info)
1534{
1535
1536 struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1537 rxd_info->syn_flag =
1538 (u32)VXGE_HW_RING_RXD_SYN_GET(rxdp->control_0);
1539 rxd_info->is_icmp =
1540 (u32)VXGE_HW_RING_RXD_IS_ICMP_GET(rxdp->control_0);
1541 rxd_info->fast_path_eligible =
1542 (u32)VXGE_HW_RING_RXD_FAST_PATH_ELIGIBLE_GET(rxdp->control_0);
1543 rxd_info->l3_cksum_valid =
1544 (u32)VXGE_HW_RING_RXD_L3_CKSUM_CORRECT_GET(rxdp->control_0);
1545 rxd_info->l3_cksum =
1546 (u32)VXGE_HW_RING_RXD_L3_CKSUM_GET(rxdp->control_0);
1547 rxd_info->l4_cksum_valid =
1548 (u32)VXGE_HW_RING_RXD_L4_CKSUM_CORRECT_GET(rxdp->control_0);
1549 rxd_info->l4_cksum =
1550 (u32)VXGE_HW_RING_RXD_L4_CKSUM_GET(rxdp->control_0);;
1551 rxd_info->frame =
1552 (u32)VXGE_HW_RING_RXD_ETHER_ENCAP_GET(rxdp->control_0);
1553 rxd_info->proto =
1554 (u32)VXGE_HW_RING_RXD_FRAME_PROTO_GET(rxdp->control_0);
1555 rxd_info->is_vlan =
1556 (u32)VXGE_HW_RING_RXD_IS_VLAN_GET(rxdp->control_0);
1557 rxd_info->vlan =
1558 (u32)VXGE_HW_RING_RXD_VLAN_TAG_GET(rxdp->control_1);
1559 rxd_info->rth_bucket =
1560 (u32)VXGE_HW_RING_RXD_RTH_BUCKET_GET(rxdp->control_0);
1561 rxd_info->rth_it_hit =
1562 (u32)VXGE_HW_RING_RXD_RTH_IT_HIT_GET(rxdp->control_0);
1563 rxd_info->rth_spdm_hit =
1564 (u32)VXGE_HW_RING_RXD_RTH_SPDM_HIT_GET(rxdp->control_0);
1565 rxd_info->rth_hash_type =
1566 (u32)VXGE_HW_RING_RXD_RTH_HASH_TYPE_GET(rxdp->control_0);
1567 rxd_info->rth_value =
1568 (u32)VXGE_HW_RING_RXD_1_RTH_HASH_VAL_GET(rxdp->control_1);
1569}
1570
1571/**
1572 * vxge_hw_ring_rxd_private_get - Get driver private per-descriptor data
1573 * of 1b mode 3b mode ring.
1574 * @rxdh: Descriptor handle.
1575 *
1576 * Returns: private driver info associated with the descriptor.
1577 * driver requests per-descriptor space via vxge_hw_ring_attr.
1578 *
1579 */
1580static inline void *vxge_hw_ring_rxd_private_get(void *rxdh)
1581{
1582 struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1583 return (void *)(size_t)rxdp->host_control;
1584}
1585
1586/**
1587 * vxge_hw_fifo_txdl_cksum_set_bits - Offload checksum.
1588 * @txdlh: Descriptor handle.
1589 * @cksum_bits: Specifies which checksums are to be offloaded: IPv4,
1590 * and/or TCP and/or UDP.
1591 *
1592 * Ask Titan to calculate IPv4 & transport checksums for _this_ transmit
1593 * descriptor.
1594 * This API is part of the preparation of the transmit descriptor for posting
1595 * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
1596 * vxge_hw_fifo_txdl_mss_set(), vxge_hw_fifo_txdl_buffer_set_aligned(),
1597 * and vxge_hw_fifo_txdl_buffer_set().
1598 * All these APIs fill in the fields of the fifo descriptor,
1599 * in accordance with the Titan specification.
1600 *
1601 */
1602static inline void vxge_hw_fifo_txdl_cksum_set_bits(void *txdlh, u64 cksum_bits)
1603{
1604 struct vxge_hw_fifo_txd *txdp = (struct vxge_hw_fifo_txd *)txdlh;
1605 txdp->control_1 |= cksum_bits;
1606}
1607
1608/**
1609 * vxge_hw_fifo_txdl_mss_set - Set MSS.
1610 * @txdlh: Descriptor handle.
1611 * @mss: MSS size for _this_ TCP connection. Passed by TCP stack down to the
1612 * driver, which in turn inserts the MSS into the @txdlh.
1613 *
1614 * This API is part of the preparation of the transmit descriptor for posting
1615 * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
1616 * vxge_hw_fifo_txdl_buffer_set(), vxge_hw_fifo_txdl_buffer_set_aligned(),
1617 * and vxge_hw_fifo_txdl_cksum_set_bits().
1618 * All these APIs fill in the fields of the fifo descriptor,
1619 * in accordance with the Titan specification.
1620 *
1621 */
1622static inline void vxge_hw_fifo_txdl_mss_set(void *txdlh, int mss)
1623{
1624 struct vxge_hw_fifo_txd *txdp = (struct vxge_hw_fifo_txd *)txdlh;
1625
1626 txdp->control_0 |= VXGE_HW_FIFO_TXD_LSO_EN;
1627 txdp->control_0 |= VXGE_HW_FIFO_TXD_LSO_MSS(mss);
1628}
1629
1630/**
1631 * vxge_hw_fifo_txdl_vlan_set - Set VLAN tag.
1632 * @txdlh: Descriptor handle.
1633 * @vlan_tag: 16bit VLAN tag.
1634 *
1635 * Insert VLAN tag into specified transmit descriptor.
1636 * The actual insertion of the tag into outgoing frame is done by the hardware.
1637 */
1638static inline void vxge_hw_fifo_txdl_vlan_set(void *txdlh, u16 vlan_tag)
1639{
1640 struct vxge_hw_fifo_txd *txdp = (struct vxge_hw_fifo_txd *)txdlh;
1641
1642 txdp->control_1 |= VXGE_HW_FIFO_TXD_VLAN_ENABLE;
1643 txdp->control_1 |= VXGE_HW_FIFO_TXD_VLAN_TAG(vlan_tag);
1644}
1645
1646/**
1647 * vxge_hw_fifo_txdl_private_get - Retrieve per-descriptor private data.
1648 * @txdlh: Descriptor handle.
1649 *
1650 * Retrieve per-descriptor private data.
1651 * Note that driver requests per-descriptor space via
1652 * struct vxge_hw_fifo_attr passed to
1653 * vxge_hw_vpath_open().
1654 *
1655 * Returns: private driver data associated with the descriptor.
1656 */
1657static inline void *vxge_hw_fifo_txdl_private_get(void *txdlh)
1658{
1659 struct vxge_hw_fifo_txd *txdp = (struct vxge_hw_fifo_txd *)txdlh;
1660
1661 return (void *)(size_t)txdp->host_control;
1662}
1663
1664/**
1665 * struct vxge_hw_ring_attr - Ring open "template".
1666 * @callback: Ring completion callback. HW invokes the callback when there
1667 * are new completions on that ring. In many implementations
1668 * the @callback executes in the hw interrupt context.
1669 * @rxd_init: Ring's descriptor-initialize callback.
1670 * See vxge_hw_ring_rxd_init_f{}.
1671 * If not NULL, HW invokes the callback when opening
1672 * the ring.
1673 * @rxd_term: Ring's descriptor-terminate callback. If not NULL,
1674 * HW invokes the callback when closing the corresponding ring.
1675 * See also vxge_hw_ring_rxd_term_f{}.
1676 * @userdata: User-defined "context" of _that_ ring. Passed back to the
1677 * user as one of the @callback, @rxd_init, and @rxd_term arguments.
1678 * @per_rxd_space: If specified (i.e., greater than zero): extra space
1679 * reserved by HW per each receive descriptor.
1680 * Can be used to store
1681 * and retrieve on completion, information specific
1682 * to the driver.
1683 *
1684 * Ring open "template". User fills the structure with ring
1685 * attributes and passes it to vxge_hw_vpath_open().
1686 */
1687struct vxge_hw_ring_attr {
1688 enum vxge_hw_status (*callback)(
1689 struct __vxge_hw_ring *ringh,
1690 void *rxdh,
1691 u8 t_code,
1692 void *userdata);
1693
1694 enum vxge_hw_status (*rxd_init)(
1695 void *rxdh,
1696 void *userdata);
1697
1698 void (*rxd_term)(
1699 void *rxdh,
1700 enum vxge_hw_rxd_state state,
1701 void *userdata);
1702
1703 void *userdata;
1704 u32 per_rxd_space;
1705};
1706
1707/**
1708 * function vxge_hw_fifo_callback_f - FIFO callback.
1709 * @vpath_handle: Virtual path whose Fifo "containing" 1 or more completed
1710 * descriptors.
1711 * @txdlh: First completed descriptor.
1712 * @txdl_priv: Pointer to per txdl space allocated
1713 * @t_code: Transfer code, as per Titan User Guide.
1714 * Returned by HW.
1715 * @host_control: Opaque 64bit data stored by driver inside the Titan
1716 * descriptor prior to posting the latter on the fifo
1717 * via vxge_hw_fifo_txdl_post(). The @host_control is returned
1718 * as is to the driver with each completed descriptor.
1719 * @userdata: Opaque per-fifo data specified at fifo open
1720 * time, via vxge_hw_vpath_open().
1721 *
1722 * Fifo completion callback (type declaration). A single per-fifo
1723 * callback is specified at fifo open time, via
1724 * vxge_hw_vpath_open(). Typically gets called as part of the processing
1725 * of the Interrupt Service Routine.
1726 *
1727 * Fifo callback gets called by HW if, and only if, there is at least
1728 * one new completion on a given fifo. Upon processing the first @txdlh driver
1729 * is _supposed_ to continue consuming completions using:
1730 * - vxge_hw_fifo_txdl_next_completed()
1731 *
1732 * Note that failure to process new completions in a timely fashion
1733 * leads to VXGE_HW_INF_OUT_OF_DESCRIPTORS condition.
1734 *
1735 * Non-zero @t_code means failure to process transmit descriptor.
1736 *
1737 * In the "transmit" case the failure could happen, for instance, when the
1738 * link is down, in which case Titan completes the descriptor because it
1739 * is not able to send the data out.
1740 *
1741 * For details please refer to Titan User Guide.
1742 *
1743 * See also: vxge_hw_fifo_txdl_next_completed(), vxge_hw_fifo_txdl_term_f{}.
1744 */
1745/**
1746 * function vxge_hw_fifo_txdl_term_f - Terminate descriptor callback.
1747 * @txdlh: First completed descriptor.
1748 * @txdl_priv: Pointer to per txdl space allocated
1749 * @state: One of the enum vxge_hw_txdl_state{} enumerated states.
1750 * @userdata: Per-fifo user data (a.k.a. context) specified at
1751 * fifo open time, via vxge_hw_vpath_open().
1752 *
1753 * Terminate descriptor callback. Unless NULL is specified in the
1754 * struct vxge_hw_fifo_attr{} structure passed to vxge_hw_vpath_open()),
1755 * HW invokes the callback as part of closing fifo, prior to
1756 * de-allocating the ring and associated data structures
1757 * (including descriptors).
1758 * driver should utilize the callback to (for instance) unmap
1759 * and free DMA data buffers associated with the posted (state =
1760 * VXGE_HW_TXDL_STATE_POSTED) descriptors,
1761 * as well as other relevant cleanup functions.
1762 *
1763 * See also: struct vxge_hw_fifo_attr{}
1764 */
1765/**
1766 * struct vxge_hw_fifo_attr - Fifo open "template".
1767 * @callback: Fifo completion callback. HW invokes the callback when there
1768 * are new completions on that fifo. In many implementations
1769 * the @callback executes in the hw interrupt context.
1770 * @txdl_term: Fifo's descriptor-terminate callback. If not NULL,
1771 * HW invokes the callback when closing the corresponding fifo.
1772 * See also vxge_hw_fifo_txdl_term_f{}.
1773 * @userdata: User-defined "context" of _that_ fifo. Passed back to the
1774 * user as one of the @callback, and @txdl_term arguments.
1775 * @per_txdl_space: If specified (i.e., greater than zero): extra space
1776 * reserved by HW per each transmit descriptor. Can be used to
1777 * store, and retrieve on completion, information specific
1778 * to the driver.
1779 *
1780 * Fifo open "template". User fills the structure with fifo
1781 * attributes and passes it to vxge_hw_vpath_open().
1782 */
1783struct vxge_hw_fifo_attr {
1784
1785 enum vxge_hw_status (*callback)(
1786 struct __vxge_hw_fifo *fifo_handle,
1787 void *txdlh,
1788 enum vxge_hw_fifo_tcode t_code,
1789 void *userdata,
1790 void **skb_ptr);
1791
1792 void (*txdl_term)(
1793 void *txdlh,
1794 enum vxge_hw_txdl_state state,
1795 void *userdata);
1796
1797 void *userdata;
1798 u32 per_txdl_space;
1799};
1800
1801/**
1802 * struct vxge_hw_vpath_attr - Attributes of virtual path
1803 * @vp_id: Identifier of Virtual Path
1804 * @ring_attr: Attributes of ring for non-offload receive
1805 * @fifo_attr: Attributes of fifo for non-offload transmit
1806 *
1807 * Attributes of virtual path. This structure is passed as parameter
1808 * to the vxge_hw_vpath_open() routine to set the attributes of ring and fifo.
1809 */
1810struct vxge_hw_vpath_attr {
1811 u32 vp_id;
1812 struct vxge_hw_ring_attr ring_attr;
1813 struct vxge_hw_fifo_attr fifo_attr;
1814};
1815
1816enum vxge_hw_status
1817__vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
1818 struct __vxge_hw_blockpool *blockpool,
1819 u32 pool_size,
1820 u32 pool_max);
1821
1822void
1823__vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool);
1824
1825struct __vxge_hw_blockpool_entry *
1826__vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *hldev,
1827 u32 size);
1828
1829void
1830__vxge_hw_blockpool_block_free(struct __vxge_hw_device *hldev,
1831 struct __vxge_hw_blockpool_entry *entry);
1832
1833void *
1834__vxge_hw_blockpool_malloc(struct __vxge_hw_device *hldev,
1835 u32 size,
1836 struct vxge_hw_mempool_dma *dma_object);
1837
1838void
1839__vxge_hw_blockpool_free(struct __vxge_hw_device *hldev,
1840 void *memblock,
1841 u32 size,
1842 struct vxge_hw_mempool_dma *dma_object);
1843
1844enum vxge_hw_status
1845__vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config);
1846
1847enum vxge_hw_status
1848__vxge_hw_device_config_check(struct vxge_hw_device_config *new_config);
1849
1850enum vxge_hw_status
1851vxge_hw_mgmt_device_config(struct __vxge_hw_device *devh,
1852 struct vxge_hw_device_config *dev_config, int size);
1853
1854enum vxge_hw_status __devinit vxge_hw_device_hw_info_get(
1855 void __iomem *bar0,
1856 struct vxge_hw_device_hw_info *hw_info);
1857
1858enum vxge_hw_status
1859__vxge_hw_vpath_fw_ver_get(
1860 u32 vp_id,
1861 struct vxge_hw_vpath_reg __iomem *vpath_reg,
1862 struct vxge_hw_device_hw_info *hw_info);
1863
1864enum vxge_hw_status
1865__vxge_hw_vpath_card_info_get(
1866 u32 vp_id,
1867 struct vxge_hw_vpath_reg __iomem *vpath_reg,
1868 struct vxge_hw_device_hw_info *hw_info);
1869
1870enum vxge_hw_status __devinit vxge_hw_device_config_default_get(
1871 struct vxge_hw_device_config *device_config);
1872
1873/**
1874 * vxge_hw_device_link_state_get - Get link state.
1875 * @devh: HW device handle.
1876 *
1877 * Get link state.
1878 * Returns: link state.
1879 */
1880static inline
1881enum vxge_hw_device_link_state vxge_hw_device_link_state_get(
1882 struct __vxge_hw_device *devh)
1883{
1884 return devh->link_state;
1885}
1886
1887void vxge_hw_device_terminate(struct __vxge_hw_device *devh);
1888
1889const u8 *
1890vxge_hw_device_serial_number_get(struct __vxge_hw_device *devh);
1891
1892u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *devh);
1893
1894const u8 *
1895vxge_hw_device_product_name_get(struct __vxge_hw_device *devh);
1896
1897enum vxge_hw_status __devinit vxge_hw_device_initialize(
1898 struct __vxge_hw_device **devh,
1899 struct vxge_hw_device_attr *attr,
1900 struct vxge_hw_device_config *device_config);
1901
1902enum vxge_hw_status vxge_hw_device_getpause_data(
1903 struct __vxge_hw_device *devh,
1904 u32 port,
1905 u32 *tx,
1906 u32 *rx);
1907
1908enum vxge_hw_status vxge_hw_device_setpause_data(
1909 struct __vxge_hw_device *devh,
1910 u32 port,
1911 u32 tx,
1912 u32 rx);
1913
1914static inline void *vxge_os_dma_malloc(struct pci_dev *pdev,
1915 unsigned long size,
1916 struct pci_dev **p_dmah,
1917 struct pci_dev **p_dma_acch)
1918{
1919 gfp_t flags;
1920 void *vaddr;
1921 unsigned long misaligned = 0;
1922 *p_dma_acch = *p_dmah = NULL;
1923
1924 if (in_interrupt())
1925 flags = GFP_ATOMIC | GFP_DMA;
1926 else
1927 flags = GFP_KERNEL | GFP_DMA;
1928
1929 size += VXGE_CACHE_LINE_SIZE;
1930
1931 vaddr = kmalloc((size), flags);
1932 if (vaddr == NULL)
1933 return vaddr;
1934 misaligned = (unsigned long)VXGE_ALIGN(*((u64 *)&vaddr),
1935 VXGE_CACHE_LINE_SIZE);
1936 *(unsigned long *)p_dma_acch = misaligned;
1937 vaddr = (void *)((u8 *)vaddr + misaligned);
1938 return vaddr;
1939}
1940
1941extern void vxge_hw_blockpool_block_add(
1942 struct __vxge_hw_device *devh,
1943 void *block_addr,
1944 u32 length,
1945 struct pci_dev *dma_h,
1946 struct pci_dev *acc_handle);
1947
1948static inline void vxge_os_dma_malloc_async(struct pci_dev *pdev, void *devh,
1949 unsigned long size)
1950{
1951 gfp_t flags;
1952 void *vaddr;
1953
1954 if (in_interrupt())
1955 flags = GFP_ATOMIC | GFP_DMA;
1956 else
1957 flags = GFP_KERNEL | GFP_DMA;
1958
1959 vaddr = kmalloc((size), flags);
1960
1961 vxge_hw_blockpool_block_add(devh, vaddr, size, pdev, pdev);
1962}
1963
1964static inline void vxge_os_dma_free(struct pci_dev *pdev, const void *vaddr,
1965 struct pci_dev **p_dma_acch)
1966{
1967 unsigned long misaligned = *(unsigned long *)p_dma_acch;
1968 u8 *tmp = (u8 *)vaddr;
1969 tmp -= misaligned;
1970 kfree((void *)tmp);
1971}
1972
1973/*
1974 * __vxge_hw_mempool_item_priv - will return pointer on per item private space
1975 */
1976static inline void*
1977__vxge_hw_mempool_item_priv(
1978 struct vxge_hw_mempool *mempool,
1979 u32 memblock_idx,
1980 void *item,
1981 u32 *memblock_item_idx)
1982{
1983 ptrdiff_t offset;
1984 void *memblock = mempool->memblocks_arr[memblock_idx];
1985
1986
1987 offset = (u32)((u8 *)item - (u8 *)memblock);
1988 vxge_assert(offset >= 0 && (u32)offset < mempool->memblock_size);
1989
1990 (*memblock_item_idx) = (u32) offset / mempool->item_size;
1991 vxge_assert((*memblock_item_idx) < mempool->items_per_memblock);
1992
1993 return (u8 *)mempool->memblocks_priv_arr[memblock_idx] +
1994 (*memblock_item_idx) * mempool->items_priv_size;
1995}
1996
1997enum vxge_hw_status
1998__vxge_hw_mempool_grow(
1999 struct vxge_hw_mempool *mempool,
2000 u32 num_allocate,
2001 u32 *num_allocated);
2002
2003struct vxge_hw_mempool*
2004__vxge_hw_mempool_create(
2005 struct __vxge_hw_device *devh,
2006 u32 memblock_size,
2007 u32 item_size,
2008 u32 private_size,
2009 u32 items_initial,
2010 u32 items_max,
2011 struct vxge_hw_mempool_cbs *mp_callback,
2012 void *userdata);
2013
2014struct __vxge_hw_channel*
2015__vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
2016 enum __vxge_hw_channel_type type, u32 length,
2017 u32 per_dtr_space, void *userdata);
2018
2019void
2020__vxge_hw_channel_free(
2021 struct __vxge_hw_channel *channel);
2022
2023enum vxge_hw_status
2024__vxge_hw_channel_initialize(
2025 struct __vxge_hw_channel *channel);
2026
2027enum vxge_hw_status
2028__vxge_hw_channel_reset(
2029 struct __vxge_hw_channel *channel);
2030
2031/*
2032 * __vxge_hw_fifo_txdl_priv - Return the max fragments allocated
2033 * for the fifo.
2034 * @fifo: Fifo
2035 * @txdp: Poniter to a TxD
2036 */
2037static inline struct __vxge_hw_fifo_txdl_priv *
2038__vxge_hw_fifo_txdl_priv(
2039 struct __vxge_hw_fifo *fifo,
2040 struct vxge_hw_fifo_txd *txdp)
2041{
2042 return (struct __vxge_hw_fifo_txdl_priv *)
2043 (((char *)((ulong)txdp->host_control)) +
2044 fifo->per_txdl_space);
2045}
2046
2047enum vxge_hw_status vxge_hw_vpath_open(
2048 struct __vxge_hw_device *devh,
2049 struct vxge_hw_vpath_attr *attr,
2050 struct __vxge_hw_vpath_handle **vpath_handle);
2051
2052enum vxge_hw_status
2053__vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog);
2054
2055enum vxge_hw_status vxge_hw_vpath_close(
2056 struct __vxge_hw_vpath_handle *vpath_handle);
2057
2058enum vxge_hw_status
2059vxge_hw_vpath_reset(
2060 struct __vxge_hw_vpath_handle *vpath_handle);
2061
2062enum vxge_hw_status
2063vxge_hw_vpath_recover_from_reset(
2064 struct __vxge_hw_vpath_handle *vpath_handle);
2065
2066void
2067vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp);
2068
2069enum vxge_hw_status
2070vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ringh);
2071
2072enum vxge_hw_status vxge_hw_vpath_mtu_set(
2073 struct __vxge_hw_vpath_handle *vpath_handle,
2074 u32 new_mtu);
2075
2076enum vxge_hw_status vxge_hw_vpath_stats_enable(
2077 struct __vxge_hw_vpath_handle *vpath_handle);
2078
2079enum vxge_hw_status
2080__vxge_hw_vpath_stats_access(
2081 struct __vxge_hw_virtualpath *vpath,
2082 u32 operation,
2083 u32 offset,
2084 u64 *stat);
2085
2086enum vxge_hw_status
2087__vxge_hw_vpath_xmac_tx_stats_get(
2088 struct __vxge_hw_virtualpath *vpath,
2089 struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats);
2090
2091enum vxge_hw_status
2092__vxge_hw_vpath_xmac_rx_stats_get(
2093 struct __vxge_hw_virtualpath *vpath,
2094 struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats);
2095
2096enum vxge_hw_status
2097__vxge_hw_vpath_stats_get(
2098 struct __vxge_hw_virtualpath *vpath,
2099 struct vxge_hw_vpath_stats_hw_info *hw_stats);
2100
2101void
2102vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp);
2103
2104enum vxge_hw_status
2105__vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config);
2106
2107void
2108__vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev);
2109
2110enum vxge_hw_status
2111__vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg);
2112
2113enum vxge_hw_status
2114__vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg);
2115
2116enum vxge_hw_status
2117__vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg,
2118 struct vxge_hw_vpath_reg __iomem *vpath_reg);
2119
2120enum vxge_hw_status
2121__vxge_hw_device_register_poll(
2122 void __iomem *reg,
2123 u64 mask, u32 max_millis);
2124
2125#ifndef readq
2126static inline u64 readq(void __iomem *addr)
2127{
2128 u64 ret = 0;
2129 ret = readl(addr + 4);
2130 ret <<= 32;
2131 ret |= readl(addr);
2132
2133 return ret;
2134}
2135#endif
2136
2137#ifndef writeq
2138static inline void writeq(u64 val, void __iomem *addr)
2139{
2140 writel((u32) (val), addr);
2141 writel((u32) (val >> 32), (addr + 4));
2142}
2143#endif
2144
2145static inline void __vxge_hw_pio_mem_write32_upper(u32 val, void __iomem *addr)
2146{
2147 writel(val, addr + 4);
2148}
2149
2150static inline void __vxge_hw_pio_mem_write32_lower(u32 val, void __iomem *addr)
2151{
2152 writel(val, addr);
2153}
2154
2155static inline enum vxge_hw_status
2156__vxge_hw_pio_mem_write64(u64 val64, void __iomem *addr,
2157 u64 mask, u32 max_millis)
2158{
2159 enum vxge_hw_status status = VXGE_HW_OK;
2160
2161 __vxge_hw_pio_mem_write32_lower((u32)vxge_bVALn(val64, 32, 32), addr);
2162 wmb();
2163 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), addr);
2164 wmb();
2165
2166 status = __vxge_hw_device_register_poll(addr, mask, max_millis);
2167 return status;
2168}
2169
2170struct vxge_hw_toc_reg __iomem *
2171__vxge_hw_device_toc_get(void __iomem *bar0);
2172
2173enum vxge_hw_status
2174__vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev);
2175
2176void
2177__vxge_hw_device_id_get(struct __vxge_hw_device *hldev);
2178
2179void
2180__vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev);
2181
2182enum vxge_hw_status
2183vxge_hw_device_flick_link_led(struct __vxge_hw_device *devh, u64 on_off);
2184
2185enum vxge_hw_status
2186__vxge_hw_device_initialize(struct __vxge_hw_device *hldev);
2187
2188enum vxge_hw_status
2189__vxge_hw_vpath_pci_read(
2190 struct __vxge_hw_virtualpath *vpath,
2191 u32 phy_func_0,
2192 u32 offset,
2193 u32 *val);
2194
2195enum vxge_hw_status
2196__vxge_hw_vpath_addr_get(
2197 u32 vp_id,
2198 struct vxge_hw_vpath_reg __iomem *vpath_reg,
2199 u8 (macaddr)[ETH_ALEN],
2200 u8 (macaddr_mask)[ETH_ALEN]);
2201
2202u32
2203__vxge_hw_vpath_func_id_get(
2204 u32 vp_id, struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg);
2205
2206enum vxge_hw_status
2207__vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath);
2208
2209/**
2210 * vxge_debug
2211 * @level: level of debug verbosity.
2212 * @mask: mask for the debug
2213 * @buf: Circular buffer for tracing
2214 * @fmt: printf like format string
2215 *
2216 * Provides logging facilities. Can be customized on per-module
2217 * basis or/and with debug levels. Input parameters, except
2218 * module and level, are the same as posix printf. This function
2219 * may be compiled out if DEBUG macro was never defined.
2220 * See also: enum vxge_debug_level{}.
2221 */
2222
2223#define vxge_trace_aux(level, mask, fmt, ...) \
2224{\
2225 vxge_os_vaprintf(level, mask, fmt, __VA_ARGS__);\
2226}
2227
2228#define vxge_debug(module, level, mask, fmt, ...) { \
2229if ((level >= VXGE_TRACE && ((module & VXGE_DEBUG_TRACE_MASK) == module)) || \
2230 (level >= VXGE_ERR && ((module & VXGE_DEBUG_ERR_MASK) == module))) {\
2231 if ((mask & VXGE_DEBUG_MASK) == mask)\
2232 vxge_trace_aux(level, mask, fmt, __VA_ARGS__); \
2233} \
2234}
2235
2236#if (VXGE_COMPONENT_LL & VXGE_DEBUG_MODULE_MASK)
2237#define vxge_debug_ll(level, mask, fmt, ...) \
2238{\
2239 vxge_debug(VXGE_COMPONENT_LL, level, mask, fmt, __VA_ARGS__);\
2240}
2241
2242#else
2243#define vxge_debug_ll(level, mask, fmt, ...)
2244#endif
2245
2246enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set(
2247 struct __vxge_hw_vpath_handle **vpath_handles,
2248 u32 vpath_count,
2249 u8 *mtable,
2250 u8 *itable,
2251 u32 itable_size);
2252
2253enum vxge_hw_status vxge_hw_vpath_rts_rth_set(
2254 struct __vxge_hw_vpath_handle *vpath_handle,
2255 enum vxge_hw_rth_algoritms algorithm,
2256 struct vxge_hw_rth_hash_types *hash_type,
2257 u16 bucket_size);
2258
2259#endif