diff options
-rw-r--r-- | crypto/Kconfig | 12 | ||||
-rw-r--r-- | crypto/Makefile | 1 | ||||
-rw-r--r-- | crypto/tcrypt.c | 4 | ||||
-rw-r--r-- | crypto/testmgr.c | 9 | ||||
-rw-r--r-- | crypto/testmgr.h | 16 | ||||
-rw-r--r-- | crypto/vmac.c | 678 | ||||
-rw-r--r-- | include/crypto/vmac.h | 61 |
7 files changed, 781 insertions, 0 deletions
diff --git a/crypto/Kconfig b/crypto/Kconfig index 76234420272..26b5dd0cb56 100644 --- a/crypto/Kconfig +++ b/crypto/Kconfig | |||
@@ -269,6 +269,18 @@ config CRYPTO_XCBC | |||
269 | http://csrc.nist.gov/encryption/modes/proposedmodes/ | 269 | http://csrc.nist.gov/encryption/modes/proposedmodes/ |
270 | xcbc-mac/xcbc-mac-spec.pdf | 270 | xcbc-mac/xcbc-mac-spec.pdf |
271 | 271 | ||
272 | config CRYPTO_VMAC | ||
273 | tristate "VMAC support" | ||
274 | depends on EXPERIMENTAL | ||
275 | select CRYPTO_HASH | ||
276 | select CRYPTO_MANAGER | ||
277 | help | ||
278 | VMAC is a message authentication algorithm designed for | ||
279 | very high speed on 64-bit architectures. | ||
280 | |||
281 | See also: | ||
282 | <http://fastcrypto.org/vmac> | ||
283 | |||
272 | comment "Digest" | 284 | comment "Digest" |
273 | 285 | ||
274 | config CRYPTO_CRC32C | 286 | config CRYPTO_CRC32C |
diff --git a/crypto/Makefile b/crypto/Makefile index c2ca721eea9..9e8f61908cb 100644 --- a/crypto/Makefile +++ b/crypto/Makefile | |||
@@ -32,6 +32,7 @@ cryptomgr-objs := algboss.o testmgr.o | |||
32 | 32 | ||
33 | obj-$(CONFIG_CRYPTO_MANAGER2) += cryptomgr.o | 33 | obj-$(CONFIG_CRYPTO_MANAGER2) += cryptomgr.o |
34 | obj-$(CONFIG_CRYPTO_HMAC) += hmac.o | 34 | obj-$(CONFIG_CRYPTO_HMAC) += hmac.o |
35 | obj-$(CONFIG_CRYPTO_VMAC) += vmac.o | ||
35 | obj-$(CONFIG_CRYPTO_XCBC) += xcbc.o | 36 | obj-$(CONFIG_CRYPTO_XCBC) += xcbc.o |
36 | obj-$(CONFIG_CRYPTO_NULL) += crypto_null.o | 37 | obj-$(CONFIG_CRYPTO_NULL) += crypto_null.o |
37 | obj-$(CONFIG_CRYPTO_MD4) += md4.o | 38 | obj-$(CONFIG_CRYPTO_MD4) += md4.o |
diff --git a/crypto/tcrypt.c b/crypto/tcrypt.c index 5a375e819d5..aa3f84ccc78 100644 --- a/crypto/tcrypt.c +++ b/crypto/tcrypt.c | |||
@@ -719,6 +719,10 @@ static int do_test(int m) | |||
719 | ret += tcrypt_test("hmac(rmd160)"); | 719 | ret += tcrypt_test("hmac(rmd160)"); |
720 | break; | 720 | break; |
721 | 721 | ||
722 | case 109: | ||
723 | ret += tcrypt_test("vmac(aes)"); | ||
724 | break; | ||
725 | |||
722 | case 150: | 726 | case 150: |
723 | ret += tcrypt_test("ansi_cprng"); | 727 | ret += tcrypt_test("ansi_cprng"); |
724 | break; | 728 | break; |
diff --git a/crypto/testmgr.c b/crypto/testmgr.c index 29b228d9b1a..6d5b746637b 100644 --- a/crypto/testmgr.c +++ b/crypto/testmgr.c | |||
@@ -2248,6 +2248,15 @@ static const struct alg_test_desc alg_test_descs[] = { | |||
2248 | } | 2248 | } |
2249 | } | 2249 | } |
2250 | }, { | 2250 | }, { |
2251 | .alg = "vmac(aes)", | ||
2252 | .test = alg_test_hash, | ||
2253 | .suite = { | ||
2254 | .hash = { | ||
2255 | .vecs = aes_vmac128_tv_template, | ||
2256 | .count = VMAC_AES_TEST_VECTORS | ||
2257 | } | ||
2258 | } | ||
2259 | }, { | ||
2251 | .alg = "wp256", | 2260 | .alg = "wp256", |
2252 | .test = alg_test_hash, | 2261 | .test = alg_test_hash, |
2253 | .suite = { | 2262 | .suite = { |
diff --git a/crypto/testmgr.h b/crypto/testmgr.h index 69316228fc1..9963b18983a 100644 --- a/crypto/testmgr.h +++ b/crypto/testmgr.h | |||
@@ -1654,6 +1654,22 @@ static struct hash_testvec aes_xcbc128_tv_template[] = { | |||
1654 | } | 1654 | } |
1655 | }; | 1655 | }; |
1656 | 1656 | ||
1657 | #define VMAC_AES_TEST_VECTORS 1 | ||
1658 | static char vmac_string[128] = {'\x01', '\x01', '\x01', '\x01', | ||
1659 | '\x02', '\x03', '\x02', '\x02', | ||
1660 | '\x02', '\x04', '\x01', '\x07', | ||
1661 | '\x04', '\x01', '\x04', '\x03',}; | ||
1662 | static struct hash_testvec aes_vmac128_tv_template[] = { | ||
1663 | { | ||
1664 | .key = "\x00\x01\x02\x03\x04\x05\x06\x07" | ||
1665 | "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", | ||
1666 | .plaintext = vmac_string, | ||
1667 | .digest = "\xcb\xd7\x8a\xfd\xb7\x33\x79\xe7", | ||
1668 | .psize = 128, | ||
1669 | .ksize = 16, | ||
1670 | }, | ||
1671 | }; | ||
1672 | |||
1657 | /* | 1673 | /* |
1658 | * SHA384 HMAC test vectors from RFC4231 | 1674 | * SHA384 HMAC test vectors from RFC4231 |
1659 | */ | 1675 | */ |
diff --git a/crypto/vmac.c b/crypto/vmac.c new file mode 100644 index 00000000000..0a9468e575d --- /dev/null +++ b/crypto/vmac.c | |||
@@ -0,0 +1,678 @@ | |||
1 | /* | ||
2 | * Modified to interface to the Linux kernel | ||
3 | * Copyright (c) 2009, Intel Corporation. | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or modify it | ||
6 | * under the terms and conditions of the GNU General Public License, | ||
7 | * version 2, as published by the Free Software Foundation. | ||
8 | * | ||
9 | * This program is distributed in the hope it will be useful, but WITHOUT | ||
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
12 | * more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License along with | ||
15 | * this program; if not, write to the Free Software Foundation, Inc., 59 Temple | ||
16 | * Place - Suite 330, Boston, MA 02111-1307 USA. | ||
17 | */ | ||
18 | |||
19 | /* -------------------------------------------------------------------------- | ||
20 | * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai. | ||
21 | * This implementation is herby placed in the public domain. | ||
22 | * The authors offers no warranty. Use at your own risk. | ||
23 | * Please send bug reports to the authors. | ||
24 | * Last modified: 17 APR 08, 1700 PDT | ||
25 | * ----------------------------------------------------------------------- */ | ||
26 | |||
27 | #include <linux/init.h> | ||
28 | #include <linux/types.h> | ||
29 | #include <linux/crypto.h> | ||
30 | #include <linux/scatterlist.h> | ||
31 | #include <asm/byteorder.h> | ||
32 | #include <crypto/scatterwalk.h> | ||
33 | #include <crypto/vmac.h> | ||
34 | #include <crypto/internal/hash.h> | ||
35 | |||
36 | /* | ||
37 | * Constants and masks | ||
38 | */ | ||
39 | #define UINT64_C(x) x##ULL | ||
40 | const u64 p64 = UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */ | ||
41 | const u64 m62 = UINT64_C(0x3fffffffffffffff); /* 62-bit mask */ | ||
42 | const u64 m63 = UINT64_C(0x7fffffffffffffff); /* 63-bit mask */ | ||
43 | const u64 m64 = UINT64_C(0xffffffffffffffff); /* 64-bit mask */ | ||
44 | const u64 mpoly = UINT64_C(0x1fffffff1fffffff); /* Poly key mask */ | ||
45 | |||
46 | #ifdef __LITTLE_ENDIAN | ||
47 | #define INDEX_HIGH 1 | ||
48 | #define INDEX_LOW 0 | ||
49 | #else | ||
50 | #define INDEX_HIGH 0 | ||
51 | #define INDEX_LOW 1 | ||
52 | #endif | ||
53 | |||
54 | /* | ||
55 | * The following routines are used in this implementation. They are | ||
56 | * written via macros to simulate zero-overhead call-by-reference. | ||
57 | * | ||
58 | * MUL64: 64x64->128-bit multiplication | ||
59 | * PMUL64: assumes top bits cleared on inputs | ||
60 | * ADD128: 128x128->128-bit addition | ||
61 | */ | ||
62 | |||
63 | #define ADD128(rh, rl, ih, il) \ | ||
64 | do { \ | ||
65 | u64 _il = (il); \ | ||
66 | (rl) += (_il); \ | ||
67 | if ((rl) < (_il)) \ | ||
68 | (rh)++; \ | ||
69 | (rh) += (ih); \ | ||
70 | } while (0) | ||
71 | |||
72 | #define MUL32(i1, i2) ((u64)(u32)(i1)*(u32)(i2)) | ||
73 | |||
74 | #define PMUL64(rh, rl, i1, i2) /* Assumes m doesn't overflow */ \ | ||
75 | do { \ | ||
76 | u64 _i1 = (i1), _i2 = (i2); \ | ||
77 | u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2); \ | ||
78 | rh = MUL32(_i1>>32, _i2>>32); \ | ||
79 | rl = MUL32(_i1, _i2); \ | ||
80 | ADD128(rh, rl, (m >> 32), (m << 32)); \ | ||
81 | } while (0) | ||
82 | |||
83 | #define MUL64(rh, rl, i1, i2) \ | ||
84 | do { \ | ||
85 | u64 _i1 = (i1), _i2 = (i2); \ | ||
86 | u64 m1 = MUL32(_i1, _i2>>32); \ | ||
87 | u64 m2 = MUL32(_i1>>32, _i2); \ | ||
88 | rh = MUL32(_i1>>32, _i2>>32); \ | ||
89 | rl = MUL32(_i1, _i2); \ | ||
90 | ADD128(rh, rl, (m1 >> 32), (m1 << 32)); \ | ||
91 | ADD128(rh, rl, (m2 >> 32), (m2 << 32)); \ | ||
92 | } while (0) | ||
93 | |||
94 | /* | ||
95 | * For highest performance the L1 NH and L2 polynomial hashes should be | ||
96 | * carefully implemented to take advantage of one's target architechture. | ||
97 | * Here these two hash functions are defined multiple time; once for | ||
98 | * 64-bit architectures, once for 32-bit SSE2 architectures, and once | ||
99 | * for the rest (32-bit) architectures. | ||
100 | * For each, nh_16 *must* be defined (works on multiples of 16 bytes). | ||
101 | * Optionally, nh_vmac_nhbytes can be defined (for multiples of | ||
102 | * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two | ||
103 | * NH computations at once). | ||
104 | */ | ||
105 | |||
106 | #ifdef CONFIG_64BIT | ||
107 | |||
108 | #define nh_16(mp, kp, nw, rh, rl) \ | ||
109 | do { \ | ||
110 | int i; u64 th, tl; \ | ||
111 | rh = rl = 0; \ | ||
112 | for (i = 0; i < nw; i += 2) { \ | ||
113 | MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i], \ | ||
114 | le64_to_cpup((mp)+i+1)+(kp)[i+1]); \ | ||
115 | ADD128(rh, rl, th, tl); \ | ||
116 | } \ | ||
117 | } while (0) | ||
118 | |||
119 | #define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \ | ||
120 | do { \ | ||
121 | int i; u64 th, tl; \ | ||
122 | rh1 = rl1 = rh = rl = 0; \ | ||
123 | for (i = 0; i < nw; i += 2) { \ | ||
124 | MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i], \ | ||
125 | le64_to_cpup((mp)+i+1)+(kp)[i+1]); \ | ||
126 | ADD128(rh, rl, th, tl); \ | ||
127 | MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i+2], \ | ||
128 | le64_to_cpup((mp)+i+1)+(kp)[i+3]); \ | ||
129 | ADD128(rh1, rl1, th, tl); \ | ||
130 | } \ | ||
131 | } while (0) | ||
132 | |||
133 | #if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */ | ||
134 | #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ | ||
135 | do { \ | ||
136 | int i; u64 th, tl; \ | ||
137 | rh = rl = 0; \ | ||
138 | for (i = 0; i < nw; i += 8) { \ | ||
139 | MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i], \ | ||
140 | le64_to_cpup((mp)+i+1)+(kp)[i+1]); \ | ||
141 | ADD128(rh, rl, th, tl); \ | ||
142 | MUL64(th, tl, le64_to_cpup((mp)+i+2)+(kp)[i+2], \ | ||
143 | le64_to_cpup((mp)+i+3)+(kp)[i+3]); \ | ||
144 | ADD128(rh, rl, th, tl); \ | ||
145 | MUL64(th, tl, le64_to_cpup((mp)+i+4)+(kp)[i+4], \ | ||
146 | le64_to_cpup((mp)+i+5)+(kp)[i+5]); \ | ||
147 | ADD128(rh, rl, th, tl); \ | ||
148 | MUL64(th, tl, le64_to_cpup((mp)+i+6)+(kp)[i+6], \ | ||
149 | le64_to_cpup((mp)+i+7)+(kp)[i+7]); \ | ||
150 | ADD128(rh, rl, th, tl); \ | ||
151 | } \ | ||
152 | } while (0) | ||
153 | |||
154 | #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \ | ||
155 | do { \ | ||
156 | int i; u64 th, tl; \ | ||
157 | rh1 = rl1 = rh = rl = 0; \ | ||
158 | for (i = 0; i < nw; i += 8) { \ | ||
159 | MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i], \ | ||
160 | le64_to_cpup((mp)+i+1)+(kp)[i+1]); \ | ||
161 | ADD128(rh, rl, th, tl); \ | ||
162 | MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i+2], \ | ||
163 | le64_to_cpup((mp)+i+1)+(kp)[i+3]); \ | ||
164 | ADD128(rh1, rl1, th, tl); \ | ||
165 | MUL64(th, tl, le64_to_cpup((mp)+i+2)+(kp)[i+2], \ | ||
166 | le64_to_cpup((mp)+i+3)+(kp)[i+3]); \ | ||
167 | ADD128(rh, rl, th, tl); \ | ||
168 | MUL64(th, tl, le64_to_cpup((mp)+i+2)+(kp)[i+4], \ | ||
169 | le64_to_cpup((mp)+i+3)+(kp)[i+5]); \ | ||
170 | ADD128(rh1, rl1, th, tl); \ | ||
171 | MUL64(th, tl, le64_to_cpup((mp)+i+4)+(kp)[i+4], \ | ||
172 | le64_to_cpup((mp)+i+5)+(kp)[i+5]); \ | ||
173 | ADD128(rh, rl, th, tl); \ | ||
174 | MUL64(th, tl, le64_to_cpup((mp)+i+4)+(kp)[i+6], \ | ||
175 | le64_to_cpup((mp)+i+5)+(kp)[i+7]); \ | ||
176 | ADD128(rh1, rl1, th, tl); \ | ||
177 | MUL64(th, tl, le64_to_cpup((mp)+i+6)+(kp)[i+6], \ | ||
178 | le64_to_cpup((mp)+i+7)+(kp)[i+7]); \ | ||
179 | ADD128(rh, rl, th, tl); \ | ||
180 | MUL64(th, tl, le64_to_cpup((mp)+i+6)+(kp)[i+8], \ | ||
181 | le64_to_cpup((mp)+i+7)+(kp)[i+9]); \ | ||
182 | ADD128(rh1, rl1, th, tl); \ | ||
183 | } \ | ||
184 | } while (0) | ||
185 | #endif | ||
186 | |||
187 | #define poly_step(ah, al, kh, kl, mh, ml) \ | ||
188 | do { \ | ||
189 | u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0; \ | ||
190 | /* compute ab*cd, put bd into result registers */ \ | ||
191 | PMUL64(t3h, t3l, al, kh); \ | ||
192 | PMUL64(t2h, t2l, ah, kl); \ | ||
193 | PMUL64(t1h, t1l, ah, 2*kh); \ | ||
194 | PMUL64(ah, al, al, kl); \ | ||
195 | /* add 2 * ac to result */ \ | ||
196 | ADD128(ah, al, t1h, t1l); \ | ||
197 | /* add together ad + bc */ \ | ||
198 | ADD128(t2h, t2l, t3h, t3l); \ | ||
199 | /* now (ah,al), (t2l,2*t2h) need summing */ \ | ||
200 | /* first add the high registers, carrying into t2h */ \ | ||
201 | ADD128(t2h, ah, z, t2l); \ | ||
202 | /* double t2h and add top bit of ah */ \ | ||
203 | t2h = 2 * t2h + (ah >> 63); \ | ||
204 | ah &= m63; \ | ||
205 | /* now add the low registers */ \ | ||
206 | ADD128(ah, al, mh, ml); \ | ||
207 | ADD128(ah, al, z, t2h); \ | ||
208 | } while (0) | ||
209 | |||
210 | #else /* ! CONFIG_64BIT */ | ||
211 | |||
212 | #ifndef nh_16 | ||
213 | #define nh_16(mp, kp, nw, rh, rl) \ | ||
214 | do { \ | ||
215 | u64 t1, t2, m1, m2, t; \ | ||
216 | int i; \ | ||
217 | rh = rl = t = 0; \ | ||
218 | for (i = 0; i < nw; i += 2) { \ | ||
219 | t1 = le64_to_cpup(mp+i) + kp[i]; \ | ||
220 | t2 = le64_to_cpup(mp+i+1) + kp[i+1]; \ | ||
221 | m2 = MUL32(t1 >> 32, t2); \ | ||
222 | m1 = MUL32(t1, t2 >> 32); \ | ||
223 | ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32), \ | ||
224 | MUL32(t1, t2)); \ | ||
225 | rh += (u64)(u32)(m1 >> 32) \ | ||
226 | + (u32)(m2 >> 32); \ | ||
227 | t += (u64)(u32)m1 + (u32)m2; \ | ||
228 | } \ | ||
229 | ADD128(rh, rl, (t >> 32), (t << 32)); \ | ||
230 | } while (0) | ||
231 | #endif | ||
232 | |||
233 | static void poly_step_func(u64 *ahi, u64 *alo, | ||
234 | const u64 *kh, const u64 *kl, | ||
235 | const u64 *mh, const u64 *ml) | ||
236 | { | ||
237 | #define a0 (*(((u32 *)alo)+INDEX_LOW)) | ||
238 | #define a1 (*(((u32 *)alo)+INDEX_HIGH)) | ||
239 | #define a2 (*(((u32 *)ahi)+INDEX_LOW)) | ||
240 | #define a3 (*(((u32 *)ahi)+INDEX_HIGH)) | ||
241 | #define k0 (*(((u32 *)kl)+INDEX_LOW)) | ||
242 | #define k1 (*(((u32 *)kl)+INDEX_HIGH)) | ||
243 | #define k2 (*(((u32 *)kh)+INDEX_LOW)) | ||
244 | #define k3 (*(((u32 *)kh)+INDEX_HIGH)) | ||
245 | |||
246 | u64 p, q, t; | ||
247 | u32 t2; | ||
248 | |||
249 | p = MUL32(a3, k3); | ||
250 | p += p; | ||
251 | p += *(u64 *)mh; | ||
252 | p += MUL32(a0, k2); | ||
253 | p += MUL32(a1, k1); | ||
254 | p += MUL32(a2, k0); | ||
255 | t = (u32)(p); | ||
256 | p >>= 32; | ||
257 | p += MUL32(a0, k3); | ||
258 | p += MUL32(a1, k2); | ||
259 | p += MUL32(a2, k1); | ||
260 | p += MUL32(a3, k0); | ||
261 | t |= ((u64)((u32)p & 0x7fffffff)) << 32; | ||
262 | p >>= 31; | ||
263 | p += (u64)(((u32 *)ml)[INDEX_LOW]); | ||
264 | p += MUL32(a0, k0); | ||
265 | q = MUL32(a1, k3); | ||
266 | q += MUL32(a2, k2); | ||
267 | q += MUL32(a3, k1); | ||
268 | q += q; | ||
269 | p += q; | ||
270 | t2 = (u32)(p); | ||
271 | p >>= 32; | ||
272 | p += (u64)(((u32 *)ml)[INDEX_HIGH]); | ||
273 | p += MUL32(a0, k1); | ||
274 | p += MUL32(a1, k0); | ||
275 | q = MUL32(a2, k3); | ||
276 | q += MUL32(a3, k2); | ||
277 | q += q; | ||
278 | p += q; | ||
279 | *(u64 *)(alo) = (p << 32) | t2; | ||
280 | p >>= 32; | ||
281 | *(u64 *)(ahi) = p + t; | ||
282 | |||
283 | #undef a0 | ||
284 | #undef a1 | ||
285 | #undef a2 | ||
286 | #undef a3 | ||
287 | #undef k0 | ||
288 | #undef k1 | ||
289 | #undef k2 | ||
290 | #undef k3 | ||
291 | } | ||
292 | |||
293 | #define poly_step(ah, al, kh, kl, mh, ml) \ | ||
294 | poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml)) | ||
295 | |||
296 | #endif /* end of specialized NH and poly definitions */ | ||
297 | |||
298 | /* At least nh_16 is defined. Defined others as needed here */ | ||
299 | #ifndef nh_16_2 | ||
300 | #define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \ | ||
301 | do { \ | ||
302 | nh_16(mp, kp, nw, rh, rl); \ | ||
303 | nh_16(mp, ((kp)+2), nw, rh2, rl2); \ | ||
304 | } while (0) | ||
305 | #endif | ||
306 | #ifndef nh_vmac_nhbytes | ||
307 | #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ | ||
308 | nh_16(mp, kp, nw, rh, rl) | ||
309 | #endif | ||
310 | #ifndef nh_vmac_nhbytes_2 | ||
311 | #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \ | ||
312 | do { \ | ||
313 | nh_vmac_nhbytes(mp, kp, nw, rh, rl); \ | ||
314 | nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); \ | ||
315 | } while (0) | ||
316 | #endif | ||
317 | |||
318 | static void vhash_abort(struct vmac_ctx *ctx) | ||
319 | { | ||
320 | ctx->polytmp[0] = ctx->polykey[0] ; | ||
321 | ctx->polytmp[1] = ctx->polykey[1] ; | ||
322 | ctx->first_block_processed = 0; | ||
323 | } | ||
324 | |||
325 | static u64 l3hash(u64 p1, u64 p2, | ||
326 | u64 k1, u64 k2, u64 len) | ||
327 | { | ||
328 | u64 rh, rl, t, z = 0; | ||
329 | |||
330 | /* fully reduce (p1,p2)+(len,0) mod p127 */ | ||
331 | t = p1 >> 63; | ||
332 | p1 &= m63; | ||
333 | ADD128(p1, p2, len, t); | ||
334 | /* At this point, (p1,p2) is at most 2^127+(len<<64) */ | ||
335 | t = (p1 > m63) + ((p1 == m63) && (p2 == m64)); | ||
336 | ADD128(p1, p2, z, t); | ||
337 | p1 &= m63; | ||
338 | |||
339 | /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */ | ||
340 | t = p1 + (p2 >> 32); | ||
341 | t += (t >> 32); | ||
342 | t += (u32)t > 0xfffffffeu; | ||
343 | p1 += (t >> 32); | ||
344 | p2 += (p1 << 32); | ||
345 | |||
346 | /* compute (p1+k1)%p64 and (p2+k2)%p64 */ | ||
347 | p1 += k1; | ||
348 | p1 += (0 - (p1 < k1)) & 257; | ||
349 | p2 += k2; | ||
350 | p2 += (0 - (p2 < k2)) & 257; | ||
351 | |||
352 | /* compute (p1+k1)*(p2+k2)%p64 */ | ||
353 | MUL64(rh, rl, p1, p2); | ||
354 | t = rh >> 56; | ||
355 | ADD128(t, rl, z, rh); | ||
356 | rh <<= 8; | ||
357 | ADD128(t, rl, z, rh); | ||
358 | t += t << 8; | ||
359 | rl += t; | ||
360 | rl += (0 - (rl < t)) & 257; | ||
361 | rl += (0 - (rl > p64-1)) & 257; | ||
362 | return rl; | ||
363 | } | ||
364 | |||
365 | static void vhash_update(const unsigned char *m, | ||
366 | unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */ | ||
367 | struct vmac_ctx *ctx) | ||
368 | { | ||
369 | u64 rh, rl, *mptr; | ||
370 | const u64 *kptr = (u64 *)ctx->nhkey; | ||
371 | int i; | ||
372 | u64 ch, cl; | ||
373 | u64 pkh = ctx->polykey[0]; | ||
374 | u64 pkl = ctx->polykey[1]; | ||
375 | |||
376 | mptr = (u64 *)m; | ||
377 | i = mbytes / VMAC_NHBYTES; /* Must be non-zero */ | ||
378 | |||
379 | ch = ctx->polytmp[0]; | ||
380 | cl = ctx->polytmp[1]; | ||
381 | |||
382 | if (!ctx->first_block_processed) { | ||
383 | ctx->first_block_processed = 1; | ||
384 | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); | ||
385 | rh &= m62; | ||
386 | ADD128(ch, cl, rh, rl); | ||
387 | mptr += (VMAC_NHBYTES/sizeof(u64)); | ||
388 | i--; | ||
389 | } | ||
390 | |||
391 | while (i--) { | ||
392 | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); | ||
393 | rh &= m62; | ||
394 | poly_step(ch, cl, pkh, pkl, rh, rl); | ||
395 | mptr += (VMAC_NHBYTES/sizeof(u64)); | ||
396 | } | ||
397 | |||
398 | ctx->polytmp[0] = ch; | ||
399 | ctx->polytmp[1] = cl; | ||
400 | } | ||
401 | |||
402 | static u64 vhash(unsigned char m[], unsigned int mbytes, | ||
403 | u64 *tagl, struct vmac_ctx *ctx) | ||
404 | { | ||
405 | u64 rh, rl, *mptr; | ||
406 | const u64 *kptr = (u64 *)ctx->nhkey; | ||
407 | int i, remaining; | ||
408 | u64 ch, cl; | ||
409 | u64 pkh = ctx->polykey[0]; | ||
410 | u64 pkl = ctx->polykey[1]; | ||
411 | |||
412 | mptr = (u64 *)m; | ||
413 | i = mbytes / VMAC_NHBYTES; | ||
414 | remaining = mbytes % VMAC_NHBYTES; | ||
415 | |||
416 | if (ctx->first_block_processed) { | ||
417 | ch = ctx->polytmp[0]; | ||
418 | cl = ctx->polytmp[1]; | ||
419 | } else if (i) { | ||
420 | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, ch, cl); | ||
421 | ch &= m62; | ||
422 | ADD128(ch, cl, pkh, pkl); | ||
423 | mptr += (VMAC_NHBYTES/sizeof(u64)); | ||
424 | i--; | ||
425 | } else if (remaining) { | ||
426 | nh_16(mptr, kptr, 2*((remaining+15)/16), ch, cl); | ||
427 | ch &= m62; | ||
428 | ADD128(ch, cl, pkh, pkl); | ||
429 | mptr += (VMAC_NHBYTES/sizeof(u64)); | ||
430 | goto do_l3; | ||
431 | } else {/* Empty String */ | ||
432 | ch = pkh; cl = pkl; | ||
433 | goto do_l3; | ||
434 | } | ||
435 | |||
436 | while (i--) { | ||
437 | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); | ||
438 | rh &= m62; | ||
439 | poly_step(ch, cl, pkh, pkl, rh, rl); | ||
440 | mptr += (VMAC_NHBYTES/sizeof(u64)); | ||
441 | } | ||
442 | if (remaining) { | ||
443 | nh_16(mptr, kptr, 2*((remaining+15)/16), rh, rl); | ||
444 | rh &= m62; | ||
445 | poly_step(ch, cl, pkh, pkl, rh, rl); | ||
446 | } | ||
447 | |||
448 | do_l3: | ||
449 | vhash_abort(ctx); | ||
450 | remaining *= 8; | ||
451 | return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1], remaining); | ||
452 | } | ||
453 | |||
454 | static u64 vmac(unsigned char m[], unsigned int mbytes, | ||
455 | unsigned char n[16], u64 *tagl, | ||
456 | struct vmac_ctx_t *ctx) | ||
457 | { | ||
458 | u64 *in_n, *out_p; | ||
459 | u64 p, h; | ||
460 | int i; | ||
461 | |||
462 | in_n = ctx->__vmac_ctx.cached_nonce; | ||
463 | out_p = ctx->__vmac_ctx.cached_aes; | ||
464 | |||
465 | i = n[15] & 1; | ||
466 | if ((*(u64 *)(n+8) != in_n[1]) || (*(u64 *)(n) != in_n[0])) { | ||
467 | in_n[0] = *(u64 *)(n); | ||
468 | in_n[1] = *(u64 *)(n+8); | ||
469 | ((unsigned char *)in_n)[15] &= 0xFE; | ||
470 | crypto_cipher_encrypt_one(ctx->child, | ||
471 | (unsigned char *)out_p, (unsigned char *)in_n); | ||
472 | |||
473 | ((unsigned char *)in_n)[15] |= (unsigned char)(1-i); | ||
474 | } | ||
475 | p = be64_to_cpup(out_p + i); | ||
476 | h = vhash(m, mbytes, (u64 *)0, &ctx->__vmac_ctx); | ||
477 | return p + h; | ||
478 | } | ||
479 | |||
480 | static int vmac_set_key(unsigned char user_key[], struct vmac_ctx_t *ctx) | ||
481 | { | ||
482 | u64 in[2] = {0}, out[2]; | ||
483 | unsigned i; | ||
484 | int err = 0; | ||
485 | |||
486 | err = crypto_cipher_setkey(ctx->child, user_key, VMAC_KEY_LEN); | ||
487 | if (err) | ||
488 | return err; | ||
489 | |||
490 | /* Fill nh key */ | ||
491 | ((unsigned char *)in)[0] = 0x80; | ||
492 | for (i = 0; i < sizeof(ctx->__vmac_ctx.nhkey)/8; i += 2) { | ||
493 | crypto_cipher_encrypt_one(ctx->child, | ||
494 | (unsigned char *)out, (unsigned char *)in); | ||
495 | ctx->__vmac_ctx.nhkey[i] = be64_to_cpup(out); | ||
496 | ctx->__vmac_ctx.nhkey[i+1] = be64_to_cpup(out+1); | ||
497 | ((unsigned char *)in)[15] += 1; | ||
498 | } | ||
499 | |||
500 | /* Fill poly key */ | ||
501 | ((unsigned char *)in)[0] = 0xC0; | ||
502 | in[1] = 0; | ||
503 | for (i = 0; i < sizeof(ctx->__vmac_ctx.polykey)/8; i += 2) { | ||
504 | crypto_cipher_encrypt_one(ctx->child, | ||
505 | (unsigned char *)out, (unsigned char *)in); | ||
506 | ctx->__vmac_ctx.polytmp[i] = | ||
507 | ctx->__vmac_ctx.polykey[i] = | ||
508 | be64_to_cpup(out) & mpoly; | ||
509 | ctx->__vmac_ctx.polytmp[i+1] = | ||
510 | ctx->__vmac_ctx.polykey[i+1] = | ||
511 | be64_to_cpup(out+1) & mpoly; | ||
512 | ((unsigned char *)in)[15] += 1; | ||
513 | } | ||
514 | |||
515 | /* Fill ip key */ | ||
516 | ((unsigned char *)in)[0] = 0xE0; | ||
517 | in[1] = 0; | ||
518 | for (i = 0; i < sizeof(ctx->__vmac_ctx.l3key)/8; i += 2) { | ||
519 | do { | ||
520 | crypto_cipher_encrypt_one(ctx->child, | ||
521 | (unsigned char *)out, (unsigned char *)in); | ||
522 | ctx->__vmac_ctx.l3key[i] = be64_to_cpup(out); | ||
523 | ctx->__vmac_ctx.l3key[i+1] = be64_to_cpup(out+1); | ||
524 | ((unsigned char *)in)[15] += 1; | ||
525 | } while (ctx->__vmac_ctx.l3key[i] >= p64 | ||
526 | || ctx->__vmac_ctx.l3key[i+1] >= p64); | ||
527 | } | ||
528 | |||
529 | /* Invalidate nonce/aes cache and reset other elements */ | ||
530 | ctx->__vmac_ctx.cached_nonce[0] = (u64)-1; /* Ensure illegal nonce */ | ||
531 | ctx->__vmac_ctx.cached_nonce[1] = (u64)0; /* Ensure illegal nonce */ | ||
532 | ctx->__vmac_ctx.first_block_processed = 0; | ||
533 | |||
534 | return err; | ||
535 | } | ||
536 | |||
537 | static int vmac_setkey(struct crypto_shash *parent, | ||
538 | const u8 *key, unsigned int keylen) | ||
539 | { | ||
540 | struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); | ||
541 | |||
542 | if (keylen != VMAC_KEY_LEN) { | ||
543 | crypto_shash_set_flags(parent, CRYPTO_TFM_RES_BAD_KEY_LEN); | ||
544 | return -EINVAL; | ||
545 | } | ||
546 | |||
547 | return vmac_set_key((u8 *)key, ctx); | ||
548 | } | ||
549 | |||
550 | static int vmac_init(struct shash_desc *pdesc) | ||
551 | { | ||
552 | struct crypto_shash *parent = pdesc->tfm; | ||
553 | struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); | ||
554 | |||
555 | memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx)); | ||
556 | return 0; | ||
557 | } | ||
558 | |||
559 | static int vmac_update(struct shash_desc *pdesc, const u8 *p, | ||
560 | unsigned int len) | ||
561 | { | ||
562 | struct crypto_shash *parent = pdesc->tfm; | ||
563 | struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); | ||
564 | |||
565 | vhash_update(p, len, &ctx->__vmac_ctx); | ||
566 | |||
567 | return 0; | ||
568 | } | ||
569 | |||
570 | static int vmac_final(struct shash_desc *pdesc, u8 *out) | ||
571 | { | ||
572 | struct crypto_shash *parent = pdesc->tfm; | ||
573 | struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); | ||
574 | vmac_t mac; | ||
575 | u8 nonce[16] = {}; | ||
576 | |||
577 | mac = vmac(NULL, 0, nonce, NULL, ctx); | ||
578 | memcpy(out, &mac, sizeof(vmac_t)); | ||
579 | memset(&mac, 0, sizeof(vmac_t)); | ||
580 | memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx)); | ||
581 | return 0; | ||
582 | } | ||
583 | |||
584 | static int vmac_init_tfm(struct crypto_tfm *tfm) | ||
585 | { | ||
586 | struct crypto_cipher *cipher; | ||
587 | struct crypto_instance *inst = (void *)tfm->__crt_alg; | ||
588 | struct crypto_spawn *spawn = crypto_instance_ctx(inst); | ||
589 | struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm); | ||
590 | |||
591 | cipher = crypto_spawn_cipher(spawn); | ||
592 | if (IS_ERR(cipher)) | ||
593 | return PTR_ERR(cipher); | ||
594 | |||
595 | ctx->child = cipher; | ||
596 | return 0; | ||
597 | } | ||
598 | |||
599 | static void vmac_exit_tfm(struct crypto_tfm *tfm) | ||
600 | { | ||
601 | struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm); | ||
602 | crypto_free_cipher(ctx->child); | ||
603 | } | ||
604 | |||
605 | static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb) | ||
606 | { | ||
607 | struct shash_instance *inst; | ||
608 | struct crypto_alg *alg; | ||
609 | int err; | ||
610 | |||
611 | err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH); | ||
612 | if (err) | ||
613 | return err; | ||
614 | |||
615 | alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, | ||
616 | CRYPTO_ALG_TYPE_MASK); | ||
617 | if (IS_ERR(alg)) | ||
618 | return PTR_ERR(alg); | ||
619 | |||
620 | inst = shash_alloc_instance("vmac", alg); | ||
621 | err = PTR_ERR(inst); | ||
622 | if (IS_ERR(inst)) | ||
623 | goto out_put_alg; | ||
624 | |||
625 | err = crypto_init_spawn(shash_instance_ctx(inst), alg, | ||
626 | shash_crypto_instance(inst), | ||
627 | CRYPTO_ALG_TYPE_MASK); | ||
628 | if (err) | ||
629 | goto out_free_inst; | ||
630 | |||
631 | inst->alg.base.cra_priority = alg->cra_priority; | ||
632 | inst->alg.base.cra_blocksize = alg->cra_blocksize; | ||
633 | inst->alg.base.cra_alignmask = alg->cra_alignmask; | ||
634 | |||
635 | inst->alg.digestsize = sizeof(vmac_t); | ||
636 | inst->alg.base.cra_ctxsize = sizeof(struct vmac_ctx_t); | ||
637 | inst->alg.base.cra_init = vmac_init_tfm; | ||
638 | inst->alg.base.cra_exit = vmac_exit_tfm; | ||
639 | |||
640 | inst->alg.init = vmac_init; | ||
641 | inst->alg.update = vmac_update; | ||
642 | inst->alg.final = vmac_final; | ||
643 | inst->alg.setkey = vmac_setkey; | ||
644 | |||
645 | err = shash_register_instance(tmpl, inst); | ||
646 | if (err) { | ||
647 | out_free_inst: | ||
648 | shash_free_instance(shash_crypto_instance(inst)); | ||
649 | } | ||
650 | |||
651 | out_put_alg: | ||
652 | crypto_mod_put(alg); | ||
653 | return err; | ||
654 | } | ||
655 | |||
656 | static struct crypto_template vmac_tmpl = { | ||
657 | .name = "vmac", | ||
658 | .create = vmac_create, | ||
659 | .free = shash_free_instance, | ||
660 | .module = THIS_MODULE, | ||
661 | }; | ||
662 | |||
663 | static int __init vmac_module_init(void) | ||
664 | { | ||
665 | return crypto_register_template(&vmac_tmpl); | ||
666 | } | ||
667 | |||
668 | static void __exit vmac_module_exit(void) | ||
669 | { | ||
670 | crypto_unregister_template(&vmac_tmpl); | ||
671 | } | ||
672 | |||
673 | module_init(vmac_module_init); | ||
674 | module_exit(vmac_module_exit); | ||
675 | |||
676 | MODULE_LICENSE("GPL"); | ||
677 | MODULE_DESCRIPTION("VMAC hash algorithm"); | ||
678 | |||
diff --git a/include/crypto/vmac.h b/include/crypto/vmac.h new file mode 100644 index 00000000000..c4467c55df1 --- /dev/null +++ b/include/crypto/vmac.h | |||
@@ -0,0 +1,61 @@ | |||
1 | /* | ||
2 | * Modified to interface to the Linux kernel | ||
3 | * Copyright (c) 2009, Intel Corporation. | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or modify it | ||
6 | * under the terms and conditions of the GNU General Public License, | ||
7 | * version 2, as published by the Free Software Foundation. | ||
8 | * | ||
9 | * This program is distributed in the hope it will be useful, but WITHOUT | ||
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
12 | * more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License along with | ||
15 | * this program; if not, write to the Free Software Foundation, Inc., 59 Temple | ||
16 | * Place - Suite 330, Boston, MA 02111-1307 USA. | ||
17 | */ | ||
18 | |||
19 | #ifndef __CRYPTO_VMAC_H | ||
20 | #define __CRYPTO_VMAC_H | ||
21 | |||
22 | /* -------------------------------------------------------------------------- | ||
23 | * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai. | ||
24 | * This implementation is herby placed in the public domain. | ||
25 | * The authors offers no warranty. Use at your own risk. | ||
26 | * Please send bug reports to the authors. | ||
27 | * Last modified: 17 APR 08, 1700 PDT | ||
28 | * ----------------------------------------------------------------------- */ | ||
29 | |||
30 | /* | ||
31 | * User definable settings. | ||
32 | */ | ||
33 | #define VMAC_TAG_LEN 64 | ||
34 | #define VMAC_KEY_SIZE 128/* Must be 128, 192 or 256 */ | ||
35 | #define VMAC_KEY_LEN (VMAC_KEY_SIZE/8) | ||
36 | #define VMAC_NHBYTES 128/* Must 2^i for any 3 < i < 13 Standard = 128*/ | ||
37 | |||
38 | /* | ||
39 | * This implementation uses u32 and u64 as names for unsigned 32- | ||
40 | * and 64-bit integer types. These are defined in C99 stdint.h. The | ||
41 | * following may need adaptation if you are not running a C99 or | ||
42 | * Microsoft C environment. | ||
43 | */ | ||
44 | struct vmac_ctx { | ||
45 | u64 nhkey[(VMAC_NHBYTES/8)+2*(VMAC_TAG_LEN/64-1)]; | ||
46 | u64 polykey[2*VMAC_TAG_LEN/64]; | ||
47 | u64 l3key[2*VMAC_TAG_LEN/64]; | ||
48 | u64 polytmp[2*VMAC_TAG_LEN/64]; | ||
49 | u64 cached_nonce[2]; | ||
50 | u64 cached_aes[2]; | ||
51 | int first_block_processed; | ||
52 | }; | ||
53 | |||
54 | typedef u64 vmac_t; | ||
55 | |||
56 | struct vmac_ctx_t { | ||
57 | struct crypto_cipher *child; | ||
58 | struct vmac_ctx __vmac_ctx; | ||
59 | }; | ||
60 | |||
61 | #endif /* __CRYPTO_VMAC_H */ | ||