/* * USB ATI Remote support * * Version 2.2.0 Copyright (c) 2004 Torrey Hoffman * Version 2.1.1 Copyright (c) 2002 Vladimir Dergachev * * This 2.2.0 version is a rewrite / cleanup of the 2.1.1 driver, including * porting to the 2.6 kernel interfaces, along with other modification * to better match the style of the existing usb/input drivers. However, the * protocol and hardware handling is essentially unchanged from 2.1.1. * * The 2.1.1 driver was derived from the usbati_remote and usbkbd drivers by * Vojtech Pavlik. * * Changes: * * Feb 2004: Torrey Hoffman * Version 2.2.0 * Jun 2004: Torrey Hoffman * Version 2.2.1 * Added key repeat support contributed by: * Vincent Vanackere * Added support for the "Lola" remote contributed by: * Seth Cohn * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Hardware & software notes * * These remote controls are distributed by ATI as part of their * "All-In-Wonder" video card packages. The receiver self-identifies as a * "USB Receiver" with manufacturer "X10 Wireless Technology Inc". * * The "Lola" remote is available from X10. See: * http://www.x10.com/products/lola_sg1.htm * The Lola is similar to the ATI remote but has no mouse support, and slightly * different keys. * * It is possible to use multiple receivers and remotes on multiple computers * simultaneously by configuring them to use specific channels. * * The RF protocol used by the remote supports 16 distinct channels, 1 to 16. * Actually, it may even support more, at least in some revisions of the * hardware. * * Each remote can be configured to transmit on one channel as follows: * - Press and hold the "hand icon" button. * - When the red LED starts to blink, let go of the "hand icon" button. * - When it stops blinking, input the channel code as two digits, from 01 * to 16, and press the hand icon again. * * The timing can be a little tricky. Try loading the module with debug=1 * to have the kernel print out messages about the remote control number * and mask. Note: debugging prints remote numbers as zero-based hexadecimal. * * The driver has a "channel_mask" parameter. This bitmask specifies which * channels will be ignored by the module. To mask out channels, just add * all the 2^channel_number values together. * * For instance, set channel_mask = 2^4 = 16 (binary 10000) to make ati_remote * ignore signals coming from remote controls transmitting on channel 4, but * accept all other channels. * * Or, set channel_mask = 65533, (0xFFFD), and all channels except 1 will be * ignored. * * The default is 0 (respond to all channels). Bit 0 and bits 17-32 of this * parameter are unused. * */ #include #include #include #include #include #include #include #include #include /* * Module and Version Information, Module Parameters */ #define ATI_REMOTE_VENDOR_ID 0x0bc7 #define ATI_REMOTE_PRODUCT_ID 0x004 #define LOLA_REMOTE_PRODUCT_ID 0x002 #define MEDION_REMOTE_PRODUCT_ID 0x006 #define DRIVER_VERSION "2.2.1" #define DRIVER_AUTHOR "Torrey Hoffman " #define DRIVER_DESC "ATI/X10 RF USB Remote Control" #define NAME_BUFSIZE 80 /* size of product name, path buffers */ #define DATA_BUFSIZE 63 /* size of URB data buffers */ /* * Duplicate event filtering time. * Sequential, identical KIND_FILTERED inputs with less than * FILTER_TIME milliseconds between them are considered as repeat * events. The hardware generates 5 events for the first keypress * and we have to take this into account for an accurate repeat * behaviour. */ #define FILTER_TIME 60 /* msec */ static unsigned long channel_mask; module_param(channel_mask, ulong, 0444); MODULE_PARM_DESC(channel_mask, "Bitmask of remote control channels to ignore"); static int debug; module_param(debug, int, 0444); MODULE_PARM_DESC(debug, "Enable extra debug messages and information"); static int repeat_filter = FILTER_TIME; module_param(repeat_filter, int, 0644); MODULE_PARM_DESC(repeat_filter, "Repeat filter time, default = 60 msec"); #define dbginfo(dev, format, arg...) do { if (debug) dev_info(dev , format , ## arg); } while (0) #undef err #define err(format, arg...) printk(KERN_ERR format , ## arg) static struct usb_device_id ati_remote_table[] = { { USB_DEVICE(ATI_REMOTE_VENDOR_ID, ATI_REMOTE_PRODUCT_ID) }, { USB_DEVICE(ATI_REMOTE_VENDOR_ID, LOLA_REMOTE_PRODUCT_ID) }, { USB_DEVICE(ATI_REMOTE_VENDOR_ID, MEDION_REMOTE_PRODUCT_ID) }, {} /* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, ati_remote_table); /* Get hi and low bytes of a 16-bits int */ #define HI(a) ((unsigned char)((a) >> 8)) #define LO(a) ((unsigned char)((a) & 0xff)) #define SEND_FLAG_IN_PROGRESS 1 #define SEND_FLAG_COMPLETE 2 /* Device initialization strings */ static char init1[] = { 0x01, 0x00, 0x20, 0x14 }; static char init2[] = { 0x01, 0x00, 0x20, 0x14, 0x20, 0x20, 0x20 }; /* Acceleration curve for directional control pad */ static const char accel[] = { 1, 2, 4, 6, 9, 13, 20 }; struct ati_remote { struct input_dev *idev; struct usb_device *udev; struct usb_interface *interface; struct urb *irq_urb; struct urb *out_urb; struct usb_endpoint_descriptor *endpoint_in; struct usb_endpoint_descriptor *endpoint_out; unsigned char *inbuf; unsigned char *outbuf; dma_addr_t inbuf_dma; dma_addr_t outbuf_dma; unsigned char old_data[2]; /* Detect duplicate events */ unsigned long old_jiffies; unsigned long acc_jiffies; /* handle acceleration */ unsigned int repeat_count; char name[NAME_BUFSIZE]; char phys[NAME_BUFSIZE]; wait_queue_head_t wait; int send_flags; }; /* "Kinds" of messages sent from the hardware to the driver. */ #define KIND_END 0 #define KIND_LITERAL 1 /* Simply pass to input system */ #define KIND_FILTERED 2 /* Add artificial key-up events, drop keyrepeats */ #define KIND_LU 3 /* Directional keypad diagonals - left up, */ #define KIND_RU 4 /* right up, */ #define KIND_LD 5 /* left down, */ #define KIND_RD 6 /* right down */ #define KIND_ACCEL 7 /* Directional keypad - left, right, up, down.*/ /* Translation table from hardware messages to input events. */ static const struct { short kind; unsigned char data1, data2; int type; unsigned int code; int value; } ati_remote_tbl[] = { /* Directional control pad axes */ {KIND_ACCEL, 0x35, 0x70, EV_REL, REL_X, -1}, /* left */ {KIND_ACCEL, 0x36, 0x71, EV_REL, REL_X, 1}, /* right */ {KIND_ACCEL, 0x37, 0x72, EV_REL, REL_Y, -1}, /* up */ {KIND_ACCEL, 0x38, 0x73, EV_REL, REL_Y, 1}, /* down */ /* Directional control pad diagonals */ {KIND_LU, 0x39, 0x74, EV_REL, 0, 0}, /* left up */ {KIND_RU, 0x3a, 0x75, EV_REL, 0, 0}, /* right up */ {KIND_LD, 0x3c, 0x77, EV_REL, 0, 0}, /* left down */ {KIND_RD, 0x3b, 0x76, EV_REL, 0, 0}, /* right down */ /* "Mouse button" buttons */ {KIND_LITERAL, 0x3d, 0x78, EV_KEY, BTN_LEFT, 1}, /* left btn down */ {KIND_LITERAL, 0x3e, 0x79, EV_KEY, BTN_LEFT, 0}, /* left btn up */ {KIND_LITERAL, 0x41, 0x7c, EV_KEY, BTN_RIGHT, 1},/* right btn down */ {KIND_LITERAL, 0x42, 0x7d, EV_KEY, BTN_RIGHT, 0},/* right btn up */ /* Artificial "doubleclick" events are generated by the hardware. * They are mapped to the "side" and "extra" mouse buttons here. */ {KIND_FILTERED, 0x3f, 0x7a, EV_KEY, BTN_SIDE, 1}, /* left dblclick */ {KIND_FILTERED, 0x43, 0x7e, EV_KEY, BTN_EXTRA, 1},/* right dblclick */ /* keyboard. */ {KIND_FILTERED, 0xd2, 0x0d, EV_KEY, KEY_1, 1}, {KIND_FILTERED, 0xd3, 0x0e, EV_KEY, KEY_2, 1}, {KIND_FILTERED, 0xd4, 0x0f, EV_KEY, KEY_3, 1}, {KIND_FILTERED, 0xd5, 0x10, EV_KEY, KEY_4, 1}, {KIND_FILTERED, 0xd6, 0x11, EV_KEY, KEY_5, 1}, {KIND_FILTERED, 0xd7, 0x12, EV_KEY, KEY_6, 1}, {KIND_FILTERED, 0xd8, 0x13, EV_KEY, KEY_7, 1}, {KIND_FILTERED, 0xd9, 0x14, EV_KEY, KEY_8, 1}, {KIND_FILTERED, 0xda, 0x15, EV_KEY, KEY_9, 1}, {KIND_FILTERED, 0xdc, 0x17, EV_KEY, KEY_0, 1}, {KIND_FILTERED, 0xc5, 0x00, EV_KEY, KEY_A, 1}, {KIND_FILTERED, 0xc6, 0x01, EV_KEY, KEY_B, 1}, {KIND_FILTERED, 0xde, 0x19, EV_KEY, KEY_C, 1}, {KIND_FILTERED, 0xe0, 0x1b, EV_KEY, KEY_D, 1}, {KIND_FILTERED, 0xe6, 0x21, EV_KEY, KEY_E, 1}, {KIND_FILTERED, 0xe8, 0x23, EV_KEY, KEY_F, 1}, /* "special" keys */ {KIND_FILTERED, 0xdd, 0x18, EV_KEY, KEY_KPENTER, 1}, /* "check" */ {KIND_FILTERED, 0xdb, 0x16, EV_KEY, KEY_MENU, 1}, /* "menu" */ {KIND_FILTERED, 0xc7, 0x02, EV_KEY, KEY_POWER, 1}, /* Power */ {KIND_FILTERED, 0xc8, 0x03, EV_KEY, KEY_TV, 1}, /* TV */ {KIND_FILTERED, 0xc9, 0x04, EV_KEY, KEY_DVD, 1}, /* DVD */ {KIND_FILTERED, 0xca, 0x05, EV_KEY, KEY_WWW, 1}, /* WEB */ {KIND_FILTERED, 0xcb, 0x06, EV_KEY, KEY_BOOKMARKS, 1}, /* "book" */ {KIND_FILTERED, 0xcc, 0x07, EV_KEY, KEY_EDIT, 1}, /* "hand" */ {KIND_FILTERED, 0xe1, 0x1c, EV_KEY, KEY_COFFEE, 1}, /* "timer" */ {KIND_FILTERED, 0xe5, 0x20, EV_KEY, KEY_FRONT, 1}, /* "max" */ {KIND_FILTERED, 0xe2, 0x1d, EV_KEY, KEY_LEFT, 1}, /* left */ {KIND_FILTERED, 0xe4, 0x1f, EV_KEY, KEY_RIGHT, 1}, /* right */ {KIND_FILTERED, 0xe7, 0x22, EV_KEY, KEY_DOWN, 1}, /* down */ {KIND_FILTERED, 0xdf, 0x1a, EV_KEY, KEY_UP, 1}, /* up */ {KIND_FILTERED, 0xe3, 0x1e, EV_KEY, KEY_OK, 1}, /* "OK" */ {KIND_FILTERED, 0xce, 0x09, EV_KEY, KEY_VOLUMEDOWN, 1}, /* VOL + */ {KIND_FILTERED, 0xcd, 0x08, EV_KEY, KEY_VOLUMEUP, 1}, /* VOL - */ {KIND_FILTERED, 0xcf, 0x0a, EV_KEY, KEY_MUTE, 1}, /* MUTE */ {KIND_FILTERED, 0xd0, 0x0b, EV_KEY, KEY_CHANNELUP, 1}, /* CH + */ {KIND_FILTERED, 0xd1, 0x0c, EV_KEY, KEY_CHANNELDOWN, 1},/* CH - */ {KIND_FILTERED, 0xec, 0x27, EV_KEY, KEY_RECORD, 1}, /* ( o) red */ {KIND_FILTERED, 0xea, 0x25, EV_KEY, KEY_PLAY, 1}, /* ( >) */ {KIND_FILTERED, 0xe9, 0x24, EV_KEY, KEY_REWIND, 1}, /* (<<) */ {KIND_FILTERED, 0xeb, 0x26, EV_KEY, KEY_FORWARD, 1}, /* (>>) */ {KIND_FILTERED, 0xed, 0x28, EV_KEY, KEY_STOP, 1}, /* ([]) */ {KIND_FILTERED, 0xee, 0x29, EV_KEY, KEY_PAUSE, 1}, /* ('') */ {KIND_FILTERED, 0xf0, 0x2b, EV_KEY, KEY_PREVIOUS, 1}, /* (<-) */ {KIND_FILTERED, 0xef, 0x2a, EV_KEY, KEY_NEXT, 1}, /* (>+) */ {KIND_FILTERED, 0xf2, 0x2D, EV_KEY, KEY_INFO, 1}, /* PLAYING */ {KIND_FILTERED, 0xf3, 0x2E, EV_KEY, KEY_HOME, 1}, /* TOP */ {KIND_FILTERED, 0xf4, 0x2F, EV_KEY, KEY_END, 1}, /* END */ {KIND_FILTERED, 0xf5, 0x30, EV_KEY, KEY_SELECT, 1}, /* SELECT */ {KIND_END, 0x00, 0x00, EV_MAX + 1, 0, 0} }; /* Local function prototypes */ static void ati_remote_dump (unsigned char *data, unsigned int actual_length); static int ati_remote_open (struct input_dev *inputdev); static void ati_remote_close (struct input_dev *inputdev); static int ati_remote_sendpacket (struct ati_remote *ati_remote, u16 cmd, unsigned char *data); static void ati_remote_irq_out (struct urb *urb, struct pt_regs *regs); static void ati_remote_irq_in (struct urb *urb, struct pt_regs *regs); static void ati_remote_input_report (struct urb *urb, struct pt_regs *regs); static int ati_remote_initialize (struct ati_remote *ati_remote); static int ati_remote_probe (struct usb_interface *interface, const struct usb_device_id *id); static void ati_remote_disconnect (struct usb_interface *interface); /* usb specific object to register with the usb subsystem */ static struct usb_driver ati_remote_driver = { .name = "ati_remote", .probe = ati_remote_probe, .disconnect = ati_remote_disconnect, .id_table = ati_remote_table, }; /* * ati_remote_dump_input */ static void ati_remote_dump(unsigned char *data, unsigned int len) { if ((len == 1) && (data[0] != (unsigned char)0xff) && (data[0] != 0x00)) warn("Weird byte 0x%02x", data[0]); else if (len == 4) warn("Weird key %02x %02x %02x %02x", data[0], data[1], data[2], data[3]); else warn("Weird data, len=%d %02x %02x %02x %02x %02x %02x ...", len, data[0], data[1], data[2], data[3], data[4], data[5]); } /* * ati_remote_open */ static int ati_remote_open(struct input_dev *inputdev) { struct ati_remote *ati_remote = inputdev->private; /* On first open, submit the read urb which was set up previously. */ ati_remote->irq_urb->dev = ati_remote->udev; if (usb_submit_urb(ati_remote->irq_urb, GFP_KERNEL)) { dev_err(&ati_remote->interface->dev, "%s: usb_submit_urb failed!\n", __FUNCTION__); return -EIO; } return 0; } /* * ati_remote_close */ static void ati_remote_close(struct input_dev *inputdev) { struct ati_remote *ati_remote = inputdev->private; usb_kill_urb(ati_remote->irq_urb); } /* * ati_remote_irq_out */ static void ati_remote_irq_out(struct urb *urb, struct pt_regs *regs) { struct ati_remote *ati_remote = urb->context; if (urb->status) { dev_dbg(&ati_remote->interface->dev, "%s: status %d\n", __FUNCTION__, urb->status); return; } ati_remote->send_flags |= SEND_FLAG_COMPLETE; wmb(); wake_up(&ati_remote->wait); } /* * ati_remote_sendpacket * * Used to send device initialization strings */ static int ati_remote_sendpacket(struct ati_remote *ati_remote, u16 cmd, unsigned char *data) { int retval = 0; /* Set up out_urb */ memcpy(ati_remote->out_urb->transfer_buffer + 1, data, LO(cmd)); ((char *) ati_remote->out_urb->transfer_buffer)[0] = HI(cmd); ati_remote->out_urb->transfer_buffer_length = LO(cmd) + 1; ati_remote->out_urb->dev = ati_remote->udev; ati_remote->send_flags = SEND_FLAG_IN_PROGRESS; retval = usb_submit_urb(ati_remote->out_urb, GFP_ATOMIC); if (retval) { dev_dbg(&ati_remote->interface->dev, "sendpacket: usb_submit_urb failed: %d\n", retval); return retval; } wait_event_timeout(ati_remote->wait, ((ati_remote->out_urb->status != -EINPROGRESS) || (ati_remote->send_flags & SEND_FLAG_COMPLETE)), HZ); usb_kill_urb(ati_remote->out_urb); return retval; } /* * ati_remote_event_lookup */ static int ati_remote_event_lookup(int rem, unsigned char d1, unsigned char d2) { int i; for (i = 0; ati_remote_tbl[i].kind != KIND_END; i++) { /* * Decide if the table entry matches the remote input. */ if ((((ati_remote_tbl[i].data1 & 0x0f) == (d1 & 0x0f))) && ((((ati_remote_tbl[i].data1 >> 4) - (d1 >> 4) + rem) & 0x0f) == 0x0f) && (ati_remote_tbl[i].data2 == d2)) return i; } return -1; } /* * ati_remote_report_input */ static void ati_remote_input_report(struct urb *urb, struct pt_regs *regs) { struct ati_remote *ati_remote = urb->context; unsigned char *data= ati_remote->inbuf; struct input_dev *dev = ati_remote->idev; int index, acc; int remote_num; /* Deal with strange looking inputs */ if ( (urb->actual_length != 4) || (data[0] != 0x14) || ((data[3] & 0x0f) != 0x00) ) { ati_remote_dump(data, urb->actual_length); return; } /* Mask unwanted remote channels. */ /* note: remote_num is 0-based, channel 1 on remote == 0 here */ remote_num = (data[3] >> 4) & 0x0f; if (channel_mask & (1 << (remote_num + 1))) { dbginfo(&ati_remote->interface->dev, "Masked input from channel 0x%02x: data %02x,%02x, mask= 0x%02lx\n", remote_num, data[1], data[2], channel_mask); return; } /* Look up event code index in translation table */ index = ati_remote_event_lookup(remote_num, data[1], data[2]); if (index < 0) { dev_warn(&ati_remote->interface->dev, "Unknown input from channel 0x%02x: data %02x,%02x\n", remote_num, data[1], data[2]); return; } dbginfo(&ati_remote->interface->dev, "channel 0x%02x; data %02x,%02x; index %d; keycode %d\n", remote_num, data[1], data[2], index, ati_remote_tbl[index].code); if (ati_remote_tbl[index].kind == KIND_LITERAL) { input_regs(dev, regs); input_event(dev, ati_remote_tbl[index].type, ati_remote_tbl[index].code, ati_remote_tbl[index].value); input_sync(dev); ati_remote->old_jiffies = jiffies; return; } if (ati_remote_tbl[index].kind == KIND_FILTERED) { /* Filter duplicate events which happen "too close" together. */ if (ati_remote->old_data[0] == data[1] && ati_remote->old_data[1] == data[2] && time_before(jiffies, ati_remote->old_jiffies + msecs_to_jiffies(repeat_filter))) { ati_remote->repeat_count++; } else { ati_remote->repeat_count = 0; } ati_remote->old_data[0] = data[1]; ati_remote->old_data[1] = data[2]; ati_remote->old_jiffies = jiffies; if (ati_remote->repeat_count > 0 && ati_remote->repeat_count < 5) return; input_regs(dev, regs); input_event(dev, ati_remote_tbl[index].type, ati_remote_tbl[index].code, 1); input_event(dev, ati_remote_tbl[index].type, ati_remote_tbl[index].code, 0); input_sync(dev); return; } /* * Other event kinds are from the directional control pad, and have an * acceleration factor applied to them. Without this acceleration, the * control pad is mostly unusable. * * If elapsed time since last event is > 1/4 second, user "stopped", * so reset acceleration. Otherwise, user is probably holding the control * pad down, so we increase acceleration, ramping up over two seconds to * a maximum speed. The acceleration curve is #defined above. */ if (time_after(jiffies, ati_remote->old_jiffies + (HZ >> 2))) { acc = 1; ati_remote->acc_jiffies = jiffies; } else if (time_before(jiffies, ati_remote->acc_jiffies + (HZ >> 3))) acc = accel[0]; else if (time_before(jiffies, ati_remote->acc_jiffies + (HZ >> 2))) acc = accel[1]; else if (time_before(jiffies, ati_remote->acc_jiffies + (HZ >> 1))) acc = accel[2]; else if (time_before(jiffies, ati_remote->acc_jiffies + HZ)) acc = accel[3]; else if (time_before(jiffies, ati_remote->acc_jiffies + HZ+(HZ>>1))) acc = accel[4]; else if (time_before(jiffies, ati_remote->acc_jiffies + (HZ << 1))) acc = accel[5]; else acc = accel[6]; input_regs(dev, regs); switch (ati_remote_tbl[index].kind) { case KIND_ACCEL: input_event(dev, ati_remote_tbl[index].type, ati_remote_tbl[index].code, ati_remote_tbl[index].value * acc); break; case KIND_LU: input_report_rel(dev, REL_X, -acc); input_report_rel(dev, REL_Y, -acc); break; case KIND_RU: input_report_rel(dev, REL_X, acc); input_report_rel(dev, REL_Y, -acc); break; case KIND_LD: input_report_rel(dev, REL_X, -acc); input_report_rel(dev, REL_Y, acc); break; case KIND_RD: input_report_rel(dev, REL_X, acc); input_report_rel(dev, REL_Y, acc); break; default: dev_dbg(&ati_remote->interface->dev, "ati_remote kind=%d\n", ati_remote_tbl[index].kind); } input_sync(dev); ati_remote->old_jiffies = jiffies; ati_remote->old_data[0] = data[1]; ati_remote->old_data[1] = data[2]; } /* * ati_remote_irq_in */ static void ati_remote_irq_in(struct urb *urb, struct pt_regs *regs) { struct ati_remote *ati_remote = urb->context; int retval; switch (urb->status) { case 0: /* success */ ati_remote_input_report(urb, regs); break; case -ECONNRESET: /* unlink */ case -ENOENT: case -ESHUTDOWN: dev_dbg(&ati_remote->interface->dev, "%s: urb error status, unlink? \n", __FUNCTION__); return; default: /* error */ dev_dbg(&ati_remote->interface->dev, "%s: Nonzero urb status %d\n", __FUNCTION__, urb->status); } retval = usb_submit_urb(urb, SLAB_ATOMIC); if (retval) dev_err(&ati_remote->interface->dev, "%s: usb_submit_urb()=%d\n", __FUNCTION__, retval); } /* * ati_remote_alloc_buffers */ static int ati_remote_alloc_buffers(struct usb_device *udev, struct ati_remote *ati_remote) { ati_remote->inbuf = usb_buffer_alloc(udev, DATA_BUFSIZE, SLAB_ATOMIC, &ati_remote->inbuf_dma); if (!ati_remote->inbuf) return -1; ati_remote->outbuf = usb_buffer_alloc(udev, DATA_BUFSIZE, SLAB_ATOMIC, &ati_remote->outbuf_dma); if (!ati_remote->outbuf) return -1; ati_remote->irq_urb = usb_alloc_urb(0, GFP_KERNEL); if (!ati_remote->irq_urb) return -1; ati_remote->out_urb = usb_alloc_urb(0, GFP_KERNEL); if (!ati_remote->out_urb) return -1; return 0; } /* * ati_remote_free_buffers */ static void ati_remote_free_buffers(struct ati_remote *ati_remote) { if (ati_remote->irq_urb) usb_free_urb(ati_remote->irq_urb); if (ati_remote->out_urb) usb_free_urb(ati_remote->out_urb); if (ati_remote->inbuf) usb_buffer_free(ati_remote->udev, DATA_BUFSIZE, ati_remote->inbuf, ati_remote->inbuf_dma); if (ati_remote->outbuf) usb_buffer_free(ati_remote->udev, DATA_BUFSIZE, ati_remote->inbuf, ati_remote->outbuf_dma); } static void ati_remote_input_init(struct ati_remote *ati_remote) { struct input_dev *idev = ati_remote->idev; int i; idev->evbit[0] = BIT(EV_KEY) | BIT(EV_REL); idev->keybit[LONG(BTN_MOUSE)] = ( BIT(BTN_LEFT) | BIT(BTN_RIGHT) | BIT(BTN_SIDE) | BIT(BTN_EXTRA) ); idev->relbit[0] = BIT(REL_X) | BIT(REL_Y); for (i = 0; ati_remote_tbl[i].kind != KIND_END; i++) if (ati_remote_tbl[i].type == EV_KEY) set_bit(ati_remote_tbl[i].code, idev->keybit); idev->private = ati_remote; idev->open = ati_remote_open; idev->close = ati_remote_close; idev->name = ati_remote->name; idev->phys = ati_remote->phys; usb_to_input_id(ati_remote->udev, &idev->id); idev->cdev.dev = &ati_remote->udev->dev; } static int ati_remote_initialize(struct ati_remote *ati_remote) { struct usb_device *udev = ati_remote->udev; int pipe, maxp; init_waitqueue_head(&ati_remote->wait); /* Set up irq_urb */ pipe = usb_rcvintpipe(udev, ati_remote->endpoint_in->bEndpointAddress); maxp = usb_maxpacket(udev, pipe, usb_pipeout(pipe)); maxp = (maxp > DATA_BUFSIZE) ? DATA_BUFSIZE : maxp; usb_fill_int_urb(ati_remote->irq_urb, udev, pipe, ati_remote->inbuf, maxp, ati_remote_irq_in, ati_remote, ati_remote->endpoint_in->bInterval); ati_remote->irq_urb->transfer_dma = ati_remote->inbuf_dma; ati_remote->irq_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; /* Set up out_urb */ pipe = usb_sndintpipe(udev, ati_remote->endpoint_out->bEndpointAddress); maxp = usb_maxpacket(udev, pipe, usb_pipeout(pipe)); maxp = (maxp > DATA_BUFSIZE) ? DATA_BUFSIZE : maxp; usb_fill_int_urb(ati_remote->out_urb, udev, pipe, ati_remote->outbuf, maxp, ati_remote_irq_out, ati_remote, ati_remote->endpoint_out->bInterval); ati_remote->out_urb->transfer_dma = ati_remote->outbuf_dma; ati_remote->out_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; /* send initialization strings */ if ((ati_remote_sendpacket(ati_remote, 0x8004, init1)) || (ati_remote_sendpacket(ati_remote, 0x8007, init2))) { dev_err(&ati_remote->interface->dev, "Initializing ati_remote hardware failed.\n"); return -EIO; } return 0; } /* * ati_remote_probe */ static int ati_remote_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(interface); struct usb_host_interface *iface_host = interface->cur_altsetting; struct usb_endpoint_descriptor *endpoint_in, *endpoint_out; struct ati_remote *ati_remote; struct input_dev *input_dev; int err = -ENOMEM; if (iface_host->desc.bNumEndpoints != 2) { err("%s: Unexpected desc.bNumEndpoints\n", __FUNCTION__); return -ENODEV; } endpoint_in = &iface_host->endpoint[0].desc; endpoint_out = &iface_host->endpoint[1].desc; if (!(endpoint_in->bEndpointAddress & USB_DIR_IN)) { err("%s: Unexpected endpoint_in->bEndpointAddress\n", __FUNCTION__); return -ENODEV; } if ((endpoint_in->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT) { err("%s: Unexpected endpoint_in->bmAttributes\n", __FUNCTION__); return -ENODEV; } if (le16_to_cpu(endpoint_in->wMaxPacketSize) == 0) { err("%s: endpoint_in message size==0? \n", __FUNCTION__); return -ENODEV; } ati_remote = kzalloc(sizeof (struct ati_remote), GFP_KERNEL); input_dev = input_allocate_device(); if (!ati_remote || !input_dev) goto fail1; /* Allocate URB buffers, URBs */ if (ati_remote_alloc_buffers(udev, ati_remote)) goto fail2; ati_remote->endpoint_in = endpoint_in; ati_remote->endpoint_out = endpoint_out; ati_remote->udev = udev; ati_remote->idev = input_dev; ati_remote->interface = interface; usb_make_path(udev, ati_remote->phys, sizeof(ati_remote->phys)); strlcpy(ati_remote->phys, "/input0", sizeof(ati_remote->phys)); if (udev->manufacturer) strlcpy(ati_remote->name, udev->manufacturer, sizeof(ati_remote->name)); if (udev->product) snprintf(ati_remote->name, sizeof(ati_remote->name), "%s %s", ati_remote->name, udev->product); if (!strlen(ati_remote->name)) snprintf(ati_remote->name, sizeof(ati_remote->name), DRIVER_DESC "(%04x,%04x)", le16_to_cpu(ati_remote->udev->descriptor.idVendor), le16_to_cpu(ati_remote->udev->descriptor.idProduct)); ati_remote_input_init(ati_remote); /* Device Hardware Initialization - fills in ati_remote->idev from udev. */ err = ati_remote_initialize(ati_remote); if (err) goto fail3; /* Set up and register input device */ input_register_device(ati_remote->idev); usb_set_intfdata(interface, ati_remote); return 0; fail3: usb_kill_urb(ati_remote->irq_urb); usb_kill_urb(ati_remote->out_urb); fail2: ati_remote_free_buffers(ati_remote); fail1: input_free_device(input_dev); kfree(ati_remote); return err; } /* * ati_remote_disconnect */ static void ati_remote_disconnect(struct usb_interface *interface) { struct ati_remote *ati_remote; ati_remote = usb_get_intfdata(interface); usb_set_intfdata(interface, NULL); if (!ati_remote) { warn("%s - null device?\n", __FUNCTION__); return; } usb_kill_urb(ati_remote->irq_urb); usb_kill_urb(ati_remote->out_urb); input_unregister_device(ati_remote->idev); ati_remote_free_buffers(ati_remote); kfree(ati_remote); } /* * ati_remote_init */ static int __init ati_remote_init(void) { int result; result = usb_register(&ati_remote_driver); if (result) err("usb_register error #%d\n", result); else info("Registered USB driver " DRIVER_DESC " v. " DRIVER_VERSION); return result; } /* * ati_remote_exit */ static void __exit ati_remote_exit(void) { usb_deregister(&ati_remote_driver); } /* * module specification */ module_init(ati_remote_init); module_exit(ati_remote_exit); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL");