/* * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family * of PCI-SCSI IO processors. * * Copyright (C) 1999-2001 Gerard Roudier * * This driver is derived from the Linux sym53c8xx driver. * Copyright (C) 1998-2000 Gerard Roudier * * The sym53c8xx driver is derived from the ncr53c8xx driver that had been * a port of the FreeBSD ncr driver to Linux-1.2.13. * * The original ncr driver has been written for 386bsd and FreeBSD by * Wolfgang Stanglmeier * Stefan Esser * Copyright (C) 1994 Wolfgang Stanglmeier * * Other major contributions: * * NVRAM detection and reading. * Copyright (C) 1997 Richard Waltham * *----------------------------------------------------------------------------- * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #ifndef SYM_HIPD_H #define SYM_HIPD_H /* * Generic driver options. * * They may be defined in platform specific headers, if they * are useful. * * SYM_OPT_HANDLE_DEVICE_QUEUEING * When this option is set, the driver will use a queue per * device and handle QUEUE FULL status requeuing internally. * * SYM_OPT_LIMIT_COMMAND_REORDERING * When this option is set, the driver tries to limit tagged * command reordering to some reasonnable value. * (set for Linux) */ #if 0 #define SYM_OPT_HANDLE_DEVICE_QUEUEING #define SYM_OPT_LIMIT_COMMAND_REORDERING #endif /* * Active debugging tags and verbosity. * Both DEBUG_FLAGS and sym_verbose can be redefined * by the platform specific code to something else. */ #define DEBUG_ALLOC (0x0001) #define DEBUG_PHASE (0x0002) #define DEBUG_POLL (0x0004) #define DEBUG_QUEUE (0x0008) #define DEBUG_RESULT (0x0010) #define DEBUG_SCATTER (0x0020) #define DEBUG_SCRIPT (0x0040) #define DEBUG_TINY (0x0080) #define DEBUG_TIMING (0x0100) #define DEBUG_NEGO (0x0200) #define DEBUG_TAGS (0x0400) #define DEBUG_POINTER (0x0800) #ifndef DEBUG_FLAGS #define DEBUG_FLAGS (0x0000) #endif #ifndef sym_verbose #define sym_verbose (np->verbose) #endif /* * These ones should have been already defined. */ #ifndef assert #define assert(expression) { \ if (!(expression)) { \ (void)panic( \ "assertion \"%s\" failed: file \"%s\", line %d\n", \ #expression, \ __FILE__, __LINE__); \ } \ } #endif /* * Number of tasks per device we want to handle. */ #if SYM_CONF_MAX_TAG_ORDER > 8 #error "more than 256 tags per logical unit not allowed." #endif #define SYM_CONF_MAX_TASK (1< SYM_CONF_MAX_TASK #undef SYM_CONF_MAX_TAG #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK #endif /* * This one means 'NO TAG for this job' */ #define NO_TAG (256) /* * Number of SCSI targets. */ #if SYM_CONF_MAX_TARGET > 16 #error "more than 16 targets not allowed." #endif /* * Number of logical units per target. */ #if SYM_CONF_MAX_LUN > 64 #error "more than 64 logical units per target not allowed." #endif /* * Asynchronous pre-scaler (ns). Shall be 40 for * the SCSI timings to be compliant. */ #define SYM_CONF_MIN_ASYNC (40) /* * MEMORY ALLOCATOR. */ #define SYM_MEM_WARN 1 /* Warn on failed operations */ #define SYM_MEM_PAGE_ORDER 0 /* 1 PAGE maximum */ #define SYM_MEM_CLUSTER_SHIFT (PAGE_SHIFT+SYM_MEM_PAGE_ORDER) #define SYM_MEM_FREE_UNUSED /* Free unused pages immediately */ /* * Shortest memory chunk is (1< SYM_MEM_CLUSTER_SIZE/8 #undef SYM_CONF_MAX_QUEUE #define SYM_CONF_MAX_QUEUE (SYM_MEM_CLUSTER_SIZE/8) #undef SYM_CONF_MAX_START #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) #endif /* * For this one, we want a short name :-) */ #define MAX_QUEUE SYM_CONF_MAX_QUEUE /* * Common definitions for both bus space based and legacy IO methods. */ #define INB_OFF(np, o) ioread8(np->s.ioaddr + (o)) #define INW_OFF(np, o) ioread16(np->s.ioaddr + (o)) #define INL_OFF(np, o) ioread32(np->s.ioaddr + (o)) #define OUTB_OFF(np, o, val) iowrite8((val), np->s.ioaddr + (o)) #define OUTW_OFF(np, o, val) iowrite16((val), np->s.ioaddr + (o)) #define OUTL_OFF(np, o, val) iowrite32((val), np->s.ioaddr + (o)) #define INB(np, r) INB_OFF(np, offsetof(struct sym_reg, r)) #define INW(np, r) INW_OFF(np, offsetof(struct sym_reg, r)) #define INL(np, r) INL_OFF(np, offsetof(struct sym_reg, r)) #define OUTB(np, r, v) OUTB_OFF(np, offsetof(struct sym_reg, r), (v)) #define OUTW(np, r, v) OUTW_OFF(np, offsetof(struct sym_reg, r), (v)) #define OUTL(np, r, v) OUTL_OFF(np, offsetof(struct sym_reg, r), (v)) #define OUTONB(np, r, m) OUTB(np, r, INB(np, r) | (m)) #define OUTOFFB(np, r, m) OUTB(np, r, INB(np, r) & ~(m)) #define OUTONW(np, r, m) OUTW(np, r, INW(np, r) | (m)) #define OUTOFFW(np, r, m) OUTW(np, r, INW(np, r) & ~(m)) #define OUTONL(np, r, m) OUTL(np, r, INL(np, r) | (m)) #define OUTOFFL(np, r, m) OUTL(np, r, INL(np, r) & ~(m)) /* * We normally want the chip to have a consistent view * of driver internal data structures when we restart it. * Thus these macros. */ #define OUTL_DSP(np, v) \ do { \ MEMORY_WRITE_BARRIER(); \ OUTL(np, nc_dsp, (v)); \ } while (0) #define OUTONB_STD() \ do { \ MEMORY_WRITE_BARRIER(); \ OUTONB(np, nc_dcntl, (STD|NOCOM)); \ } while (0) /* * Command control block states. */ #define HS_IDLE (0) #define HS_BUSY (1) #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ #define HS_DISCONNECT (3) /* Disconnected by target */ #define HS_WAIT (4) /* waiting for resource */ #define HS_DONEMASK (0x80) #define HS_COMPLETE (4|HS_DONEMASK) #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ /* * Software Interrupt Codes */ #define SIR_BAD_SCSI_STATUS (1) #define SIR_SEL_ATN_NO_MSG_OUT (2) #define SIR_MSG_RECEIVED (3) #define SIR_MSG_WEIRD (4) #define SIR_NEGO_FAILED (5) #define SIR_NEGO_PROTO (6) #define SIR_SCRIPT_STOPPED (7) #define SIR_REJECT_TO_SEND (8) #define SIR_SWIDE_OVERRUN (9) #define SIR_SODL_UNDERRUN (10) #define SIR_RESEL_NO_MSG_IN (11) #define SIR_RESEL_NO_IDENTIFY (12) #define SIR_RESEL_BAD_LUN (13) #define SIR_TARGET_SELECTED (14) #define SIR_RESEL_BAD_I_T_L (15) #define SIR_RESEL_BAD_I_T_L_Q (16) #define SIR_ABORT_SENT (17) #define SIR_RESEL_ABORTED (18) #define SIR_MSG_OUT_DONE (19) #define SIR_COMPLETE_ERROR (20) #define SIR_DATA_OVERRUN (21) #define SIR_BAD_PHASE (22) #if SYM_CONF_DMA_ADDRESSING_MODE == 2 #define SIR_DMAP_DIRTY (23) #define SIR_MAX (23) #else #define SIR_MAX (22) #endif /* * Extended error bit codes. * xerr_status field of struct sym_ccb. */ #define XE_EXTRA_DATA (1) /* unexpected data phase */ #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ /* * Negotiation status. * nego_status field of struct sym_ccb. */ #define NS_SYNC (1) #define NS_WIDE (2) #define NS_PPR (3) /* * A CCB hashed table is used to retrieve CCB address * from DSA value. */ #define CCB_HASH_SHIFT 8 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) #define CCB_HASH_MASK (CCB_HASH_SIZE-1) #if 1 #define CCB_HASH_CODE(dsa) \ (((dsa) >> (_LGRU16_(sizeof(struct sym_ccb)))) & CCB_HASH_MASK) #else #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) #endif #if SYM_CONF_DMA_ADDRESSING_MODE == 2 /* * We may want to use segment registers for 64 bit DMA. * 16 segments registers -> up to 64 GB addressable. */ #define SYM_DMAP_SHIFT (4) #define SYM_DMAP_SIZE (1u< SCNTL4 register */ /*1*/ u_char sval; /* -> SXFER io register */ /*2*/ u_char filler1; /*3*/ u_char wval; /* -> SCNTL3 io register */ }; /* * Target Control Block */ struct sym_tcb { /* * TCB header. * Assumed at offset 0. */ /*0*/ struct sym_tcbh head; /* * LUN table used by the SCRIPTS processor. * An array of bus addresses is used on reselection. */ u32 *luntbl; /* LCBs bus address table */ /* * LUN table used by the C code. */ struct sym_lcb *lun0p; /* LCB of LUN #0 (usual case) */ #if SYM_CONF_MAX_LUN > 1 struct sym_lcb **lunmp; /* Other LCBs [1..MAX_LUN] */ #endif #ifdef SYM_HAVE_STCB /* * O/S specific data structure. */ struct sym_stcb s; #endif /* Transfer goal */ struct sym_trans tgoal; /* * Keep track of the CCB used for the negotiation in order * to ensure that only 1 negotiation is queued at a time. */ struct sym_ccb * nego_cp; /* CCB used for the nego */ /* * Set when we want to reset the device. */ u_char to_reset; /* * Other user settable limits and options. * These limits are read from the NVRAM if present. */ unsigned char usrflags; unsigned char usr_period; unsigned char usr_width; unsigned short usrtags; struct scsi_target *starget; }; /* * Global LCB HEADER. * * Due to lack of indirect addressing on earlier NCR chips, * this substructure is copied from the LCB to a global * address after selection. * For SYMBIOS chips that support LOAD/STORE this copy is * not needed and thus not performed. */ struct sym_lcbh { /* * SCRIPTS address jumped by SCRIPTS on reselection. * For not probed logical units, this address points to * SCRIPTS that deal with bad LU handling (must be at * offset zero of the LCB for that reason). */ /*0*/ u32 resel_sa; /* * Task (bus address of a CCB) read from SCRIPTS that points * to the unique ITL nexus allowed to be disconnected. */ u32 itl_task_sa; /* * Task table bus address (read from SCRIPTS). */ u32 itlq_tbl_sa; }; /* * Logical Unit Control Block */ struct sym_lcb { /* * TCB header. * Assumed at offset 0. */ /*0*/ struct sym_lcbh head; /* * Task table read from SCRIPTS that contains pointers to * ITLQ nexuses. The bus address read from SCRIPTS is * inside the header. */ u32 *itlq_tbl; /* Kernel virtual address */ /* * Busy CCBs management. */ u_short busy_itlq; /* Number of busy tagged CCBs */ u_short busy_itl; /* Number of busy untagged CCBs */ /* * Circular tag allocation buffer. */ u_short ia_tag; /* Tag allocation index */ u_short if_tag; /* Tag release index */ u_char *cb_tags; /* Circular tags buffer */ /* * O/S specific data structure. */ #ifdef SYM_HAVE_SLCB struct sym_slcb s; #endif #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING /* * Optionnaly the driver can handle device queueing, * and requeues internally command to redo. */ SYM_QUEHEAD waiting_ccbq; SYM_QUEHEAD started_ccbq; int num_sgood; u_short started_tags; u_short started_no_tag; u_short started_max; u_short started_limit; #endif #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING /* * Optionally the driver can try to prevent SCSI * IOs from being reordered too much. */ u_char tags_si; /* Current index to tags sum */ u_short tags_sum[2]; /* Tags sum counters */ u_short tags_since; /* # of tags since last switch */ #endif /* * Set when we want to clear all tasks. */ u_char to_clear; /* * Capabilities. */ u_char user_flags; u_char curr_flags; }; /* * Action from SCRIPTS on a task. * Is part of the CCB, but is also used separately to plug * error handling action to perform from SCRIPTS. */ struct sym_actscr { u32 start; /* Jumped by SCRIPTS after selection */ u32 restart; /* Jumped by SCRIPTS on relection */ }; /* * Phase mismatch context. * * It is part of the CCB and is used as parameters for the * DATA pointer. We need two contexts to handle correctly the * SAVED DATA POINTER. */ struct sym_pmc { struct sym_tblmove sg; /* Updated interrupted SG block */ u32 ret; /* SCRIPT return address */ }; /* * LUN control block lookup. * We use a direct pointer for LUN #0, and a table of * pointers which is only allocated for devices that support * LUN(s) > 0. */ #if SYM_CONF_MAX_LUN <= 1 #define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : NULL #else #define sym_lp(tp, lun) \ (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : NULL #endif /* * Status are used by the host and the script processor. * * The last four bytes (status[4]) are copied to the * scratchb register (declared as scr0..scr3) just after the * select/reselect, and copied back just after disconnecting. * Inside the script the XX_REG are used. */ /* * Last four bytes (script) */ #define HX_REG scr0 #define HX_PRT nc_scr0 #define HS_REG scr1 #define HS_PRT nc_scr1 #define SS_REG scr2 #define SS_PRT nc_scr2 #define HF_REG scr3 #define HF_PRT nc_scr3 /* * Last four bytes (host) */ #define host_xflags phys.head.status[0] #define host_status phys.head.status[1] #define ssss_status phys.head.status[2] #define host_flags phys.head.status[3] /* * Host flags */ #define HF_IN_PM0 1u #define HF_IN_PM1 (1u<<1) #define HF_ACT_PM (1u<<2) #define HF_DP_SAVED (1u<<3) #define HF_SENSE (1u<<4) #define HF_EXT_ERR (1u<<5) #define HF_DATA_IN (1u<<6) #ifdef SYM_CONF_IARB_SUPPORT #define HF_HINT_IARB (1u<<7) #endif /* * More host flags */ #if SYM_CONF_DMA_ADDRESSING_MODE == 2 #define HX_DMAP_DIRTY (1u<<7) #endif /* * Global CCB HEADER. * * Due to lack of indirect addressing on earlier NCR chips, * this substructure is copied from the ccb to a global * address after selection (or reselection) and copied back * before disconnect. * For SYMBIOS chips that support LOAD/STORE this copy is * not needed and thus not performed. */ struct sym_ccbh { /* * Start and restart SCRIPTS addresses (must be at 0). */ /*0*/ struct sym_actscr go; /* * SCRIPTS jump address that deal with data pointers. * 'savep' points to the position in the script responsible * for the actual transfer of data. * It's written on reception of a SAVE_DATA_POINTER message. */ u32 savep; /* Jump address to saved data pointer */ u32 lastp; /* SCRIPTS address at end of data */ /* * Status fields. */ u8 status[4]; }; /* * GET/SET the value of the data pointer used by SCRIPTS. * * We must distinguish between the LOAD/STORE-based SCRIPTS * that use directly the header in the CCB, and the NCR-GENERIC * SCRIPTS that use the copy of the header in the HCB. */ #if SYM_CONF_GENERIC_SUPPORT #define sym_set_script_dp(np, cp, dp) \ do { \ if (np->features & FE_LDSTR) \ cp->phys.head.lastp = cpu_to_scr(dp); \ else \ np->ccb_head.lastp = cpu_to_scr(dp); \ } while (0) #define sym_get_script_dp(np, cp) \ scr_to_cpu((np->features & FE_LDSTR) ? \ cp->phys.head.lastp : np->ccb_head.lastp) #else #define sym_set_script_dp(np, cp, dp) \ do { \ cp->phys.head.lastp = cpu_to_scr(dp); \ } while (0) #define sym_get_script_dp(np, cp) (cp->phys.head.lastp) #endif /* * Data Structure Block * * During execution of a ccb by the script processor, the * DSA (data structure address) register points to this * substructure of the ccb. */ struct sym_dsb { /* * CCB header. * Also assumed at offset 0 of the sym_ccb structure. */ /*0*/ struct sym_ccbh head; /* * Phase mismatch contexts. * We need two to handle correctly the SAVED DATA POINTER. * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic * for address calculation from SCRIPTS. */ struct sym_pmc pm0; struct sym_pmc pm1; /* * Table data for Script */ struct sym_tblsel select; struct sym_tblmove smsg; struct sym_tblmove smsg_ext; struct sym_tblmove cmd; struct sym_tblmove sense; struct sym_tblmove wresid; struct sym_tblmove data [SYM_CONF_MAX_SG]; }; /* * Our Command Control Block */ struct sym_ccb { /* * This is the data structure which is pointed by the DSA * register when it is executed by the script processor. * It must be the first entry. */ struct sym_dsb phys; /* * Pointer to CAM ccb and related stuff. */ struct scsi_cmnd *cmd; /* CAM scsiio ccb */ u8 cdb_buf[16]; /* Copy of CDB */ #define SYM_SNS_BBUF_LEN 32 u8 sns_bbuf[SYM_SNS_BBUF_LEN]; /* Bounce buffer for sense data */ int data_len; /* Total data length */ int segments; /* Number of SG segments */ u8 order; /* Tag type (if tagged command) */ unsigned char odd_byte_adjustment; /* odd-sized req on wide bus */ u_char nego_status; /* Negotiation status */ u_char xerr_status; /* Extended error flags */ u32 extra_bytes; /* Extraneous bytes transferred */ /* * Message areas. * We prepare a message to be sent after selection. * We may use a second one if the command is rescheduled * due to CHECK_CONDITION or COMMAND TERMINATED. * Contents are IDENTIFY and SIMPLE_TAG. * While negotiating sync or wide transfer, * a SDTR or WDTR message is appended. */ u_char scsi_smsg [12]; u_char scsi_smsg2[12]; /* * Auto request sense related fields. */ u_char sensecmd[6]; /* Request Sense command */ u_char sv_scsi_status; /* Saved SCSI status */ u_char sv_xerr_status; /* Saved extended status */ int sv_resid; /* Saved residual */ /* * Other fields. */ u32 ccb_ba; /* BUS address of this CCB */ u_short tag; /* Tag for this transfer */ /* NO_TAG means no tag */ u_char target; u_char lun; struct sym_ccb *link_ccbh; /* Host adapter CCB hash chain */ SYM_QUEHEAD link_ccbq; /* Link to free/busy CCB queue */ u32 startp; /* Initial data pointer */ u32 goalp; /* Expected last data pointer */ int ext_sg; /* Extreme data pointer, used */ int ext_ofs; /* to calculate the residual. */ #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING SYM_QUEHEAD link2_ccbq; /* Link for device queueing */ u_char started; /* CCB queued to the squeue */ #endif u_char to_abort; /* Want this IO to be aborted */ #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING u_char tags_si; /* Lun tags sum index (0,1) */ #endif }; #define CCB_BA(cp,lbl) cpu_to_scr(cp->ccb_ba + offsetof(struct sym_ccb, lbl)) typedef struct device *m_pool_ident_t; /* * Host Control Block */ struct sym_hcb { /* * Global headers. * Due to poorness of addressing capabilities, earlier * chips (810, 815, 825) copy part of the data structures * (CCB, TCB and LCB) in fixed areas. */ #if SYM_CONF_GENERIC_SUPPORT struct sym_ccbh ccb_head; struct sym_tcbh tcb_head; struct sym_lcbh lcb_head; #endif /* * Idle task and invalid task actions and * their bus addresses. */ struct sym_actscr idletask, notask, bad_itl, bad_itlq; u32 idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; /* * Dummy lun table to protect us against target * returning bad lun number on reselection. */ u32 *badluntbl; /* Table physical address */ u32 badlun_sa; /* SCRIPT handler BUS address */ /* * Bus address of this host control block. */ u32 hcb_ba; /* * Bit 32-63 of the on-chip RAM bus address in LE format. * The START_RAM64 script loads the MMRS and MMWS from this * field. */ u32 scr_ram_seg; /* * Initial value of some IO register bits. * These values are assumed to have been set by BIOS, and may * be used to probe adapter implementation differences. */ u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, sv_stest1; /* * Actual initial value of IO register bits used by the * driver. They are loaded at initialisation according to * features that are to be enabled/disabled. */ u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; /* * Target data. */ struct sym_tcb target[SYM_CONF_MAX_TARGET]; /* * Target control block bus address array used by the SCRIPT * on reselection. */ u32 *targtbl; u32 targtbl_ba; /* * DMA pool handle for this HBA. */ m_pool_ident_t bus_dmat; /* * O/S specific data structure */ struct sym_shcb s; /* * Physical bus addresses of the chip. */ u32 mmio_ba; /* MMIO 32 bit BUS address */ u32 ram_ba; /* RAM 32 bit BUS address */ /* * SCRIPTS virtual and physical bus addresses. * 'script' is loaded in the on-chip RAM if present. * 'scripth' stays in main memory for all chips except the * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. */ u_char *scripta0; /* Copy of scripts A, B, Z */ u_char *scriptb0; u_char *scriptz0; u32 scripta_ba; /* Actual scripts A, B, Z */ u32 scriptb_ba; /* 32 bit bus addresses. */ u32 scriptz_ba; u_short scripta_sz; /* Actual size of script A, B, Z*/ u_short scriptb_sz; u_short scriptz_sz; /* * Bus addresses, setup and patch methods for * the selected firmware. */ struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */ struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */ struct sym_fwz_ba fwz_bas; /* Useful SCRIPTZ bus addresses */ void (*fw_setup)(struct sym_hcb *np, struct sym_fw *fw); void (*fw_patch)(struct sym_hcb *np); char *fw_name; /* * General controller parameters and configuration. */ u_int features; /* Chip features map */ u_char myaddr; /* SCSI id of the adapter */ u_char maxburst; /* log base 2 of dwords burst */ u_char maxwide; /* Maximum transfer width */ u_char minsync; /* Min sync period factor (ST) */ u_char maxsync; /* Max sync period factor (ST) */ u_char maxoffs; /* Max scsi offset (ST) */ u_char minsync_dt; /* Min sync period factor (DT) */ u_char maxsync_dt; /* Max sync period factor (DT) */ u_char maxoffs_dt; /* Max scsi offset (DT) */ u_char multiplier; /* Clock multiplier (1,2,4) */ u_char clock_divn; /* Number of clock divisors */ u32 clock_khz; /* SCSI clock frequency in KHz */ u32 pciclk_khz; /* Estimated PCI clock in KHz */ /* * Start queue management. * It is filled up by the host processor and accessed by the * SCRIPTS processor in order to start SCSI commands. */ volatile /* Prevent code optimizations */ u32 *squeue; /* Start queue virtual address */ u32 squeue_ba; /* Start queue BUS address */ u_short squeueput; /* Next free slot of the queue */ u_short actccbs; /* Number of allocated CCBs */ /* * Command completion queue. * It is the same size as the start queue to avoid overflow. */ u_short dqueueget; /* Next position to scan */ volatile /* Prevent code optimizations */ u32 *dqueue; /* Completion (done) queue */ u32 dqueue_ba; /* Done queue BUS address */ /* * Miscellaneous buffers accessed by the scripts-processor. * They shall be DWORD aligned, because they may be read or * written with a script command. */ u_char msgout[8]; /* Buffer for MESSAGE OUT */ u_char msgin [8]; /* Buffer for MESSAGE IN */ u32 lastmsg; /* Last SCSI message sent */ u32 scratch; /* Scratch for SCSI receive */ /* Also used for cache test */ /* * Miscellaneous configuration and status parameters. */ u_char usrflags; /* Miscellaneous user flags */ u_char scsi_mode; /* Current SCSI BUS mode */ u_char verbose; /* Verbosity for this controller*/ /* * CCB lists and queue. */ struct sym_ccb **ccbh; /* CCBs hashed by DSA value */ /* CCB_HASH_SIZE lists of CCBs */ SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ /* * During error handling and/or recovery, * active CCBs that are to be completed with * error or requeued are moved from the busy_ccbq * to the comp_ccbq prior to completion. */ SYM_QUEHEAD comp_ccbq; #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING SYM_QUEHEAD dummy_ccbq; #endif /* * IMMEDIATE ARBITRATION (IARB) control. * * We keep track in 'last_cp' of the last CCB that has been * queued to the SCRIPTS processor and clear 'last_cp' when * this CCB completes. If last_cp is not zero at the moment * we queue a new CCB, we set a flag in 'last_cp' that is * used by the SCRIPTS as a hint for setting IARB. * We donnot set more than 'iarb_max' consecutive hints for * IARB in order to leave devices a chance to reselect. * By the way, any non zero value of 'iarb_max' is unfair. :) */ #ifdef SYM_CONF_IARB_SUPPORT u_short iarb_max; /* Max. # consecutive IARB hints*/ u_short iarb_count; /* Actual # of these hints */ struct sym_ccb * last_cp; #endif /* * Command abort handling. * We need to synchronize tightly with the SCRIPTS * processor in order to handle things correctly. */ u_char abrt_msg[4]; /* Message to send buffer */ struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ struct sym_tblsel abrt_sel; /* Sync params for selection */ u_char istat_sem; /* Tells the chip to stop (SEM) */ /* * 64 bit DMA handling. */ #if SYM_CONF_DMA_ADDRESSING_MODE != 0 u_char use_dac; /* Use PCI DAC cycles */ #if SYM_CONF_DMA_ADDRESSING_MODE == 2 u_char dmap_dirty; /* Dma segments registers dirty */ u32 dmap_bah[SYM_DMAP_SIZE];/* Segment registers map */ #endif #endif }; #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl)) /* * FIRMWARES (sym_fw.c) */ struct sym_fw * sym_find_firmware(struct sym_chip *chip); void sym_fw_bind_script(struct sym_hcb *np, u32 *start, int len); /* * Driver methods called from O/S specific code. */ char *sym_driver_name(void); void sym_print_xerr(struct scsi_cmnd *cmd, int x_status); int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int); struct sym_chip *sym_lookup_chip_table(u_short device_id, u_char revision); #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn); #else void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp); #endif void sym_start_up(struct sym_hcb *np, int reason); void sym_interrupt(struct sym_hcb *np); int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task); struct sym_ccb *sym_get_ccb(struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order); void sym_free_ccb(struct sym_hcb *np, struct sym_ccb *cp); struct sym_lcb *sym_alloc_lcb(struct sym_hcb *np, u_char tn, u_char ln); int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp); int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *ccb, int timed_out); int sym_reset_scsi_target(struct sym_hcb *np, int target); void sym_hcb_free(struct sym_hcb *np); int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram); /* * Build a scatter/gather entry. * * For 64 bit systems, we use the 8 upper bits of the size field * to provide bus address bits 32-39 to the SCRIPTS processor. * This allows the 895A, 896, 1010 to address up to 1 TB of memory. */ #if SYM_CONF_DMA_ADDRESSING_MODE == 0 #define sym_build_sge(np, data, badd, len) \ do { \ (data)->addr = cpu_to_scr(badd); \ (data)->size = cpu_to_scr(len); \ } while (0) #elif SYM_CONF_DMA_ADDRESSING_MODE == 1 #define sym_build_sge(np, data, badd, len) \ do { \ (data)->addr = cpu_to_scr(badd); \ (data)->size = cpu_to_scr((((badd) >> 8) & 0xff000000) + len); \ } while (0) #elif SYM_CONF_DMA_ADDRESSING_MODE == 2 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s); static __inline void sym_build_sge(struct sym_hcb *np, struct sym_tblmove *data, u64 badd, int len) { u32 h = (badd>>32); int s = (h&SYM_DMAP_MASK); if (h != np->dmap_bah[s]) goto bad; good: (data)->addr = cpu_to_scr(badd); (data)->size = cpu_to_scr((s<<24) + len); return; bad: s = sym_lookup_dmap(np, h, s); goto good; } #else #error "Unsupported DMA addressing mode" #endif /* * MEMORY ALLOCATOR. */ #define sym_get_mem_cluster() \ (void *) __get_free_pages(GFP_ATOMIC, SYM_MEM_PAGE_ORDER) #define sym_free_mem_cluster(p) \ free_pages((unsigned long)p, SYM_MEM_PAGE_ORDER) /* * Link between free memory chunks of a given size. */ typedef struct sym_m_link { struct sym_m_link *next; } *m_link_p; /* * Virtual to bus physical translation for a given cluster. * Such a structure is only useful with DMA abstraction. */ typedef struct sym_m_vtob { /* Virtual to Bus address translation */ struct sym_m_vtob *next; void *vaddr; /* Virtual address */ dma_addr_t baddr; /* Bus physical address */ } *m_vtob_p; /* Hash this stuff a bit to speed up translations */ #define VTOB_HASH_SHIFT 5 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) #define VTOB_HASH_CODE(m) \ ((((unsigned long)(m)) >> SYM_MEM_CLUSTER_SHIFT) & VTOB_HASH_MASK) /* * Memory pool of a given kind. * Ideally, we want to use: * 1) 1 pool for memory we donnot need to involve in DMA. * 2) The same pool for controllers that require same DMA * constraints and features. * The OS specific m_pool_id_t thing and the sym_m_pool_match() * method are expected to tell the driver about. */ typedef struct sym_m_pool { m_pool_ident_t dev_dmat; /* Identifies the pool (see above) */ void * (*get_mem_cluster)(struct sym_m_pool *); #ifdef SYM_MEM_FREE_UNUSED void (*free_mem_cluster)(struct sym_m_pool *, void *); #endif #define M_GET_MEM_CLUSTER() mp->get_mem_cluster(mp) #define M_FREE_MEM_CLUSTER(p) mp->free_mem_cluster(mp, p) int nump; m_vtob_p vtob[VTOB_HASH_SIZE]; struct sym_m_pool *next; struct sym_m_link h[SYM_MEM_CLUSTER_SHIFT - SYM_MEM_SHIFT + 1]; } *m_pool_p; /* * Alloc, free and translate addresses to bus physical * for DMAable memory. */ void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name); void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name); dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m); /* * Verbs used by the driver code for DMAable memory handling. * The _uvptv_ macro avoids a nasty warning about pointer to volatile * being discarded. */ #define _uvptv_(p) ((void *)((u_long)(p))) #define _sym_calloc_dma(np, l, n) __sym_calloc_dma(np->bus_dmat, l, n) #define _sym_mfree_dma(np, p, l, n) \ __sym_mfree_dma(np->bus_dmat, _uvptv_(p), l, n) #define sym_calloc_dma(l, n) _sym_calloc_dma(np, l, n) #define sym_mfree_dma(p, l, n) _sym_mfree_dma(np, p, l, n) #define vtobus(p) __vtobus(np->bus_dmat, _uvptv_(p)) /* * We have to provide the driver memory allocator with methods for * it to maintain virtual to bus physical address translations. */ #define sym_m_pool_match(mp_id1, mp_id2) (mp_id1 == mp_id2) static __inline void *sym_m_get_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp) { void *vaddr = NULL; dma_addr_t baddr = 0; vaddr = dma_alloc_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, &baddr, GFP_ATOMIC); if (vaddr) { vbp->vaddr = vaddr; vbp->baddr = baddr; } return vaddr; } static __inline void sym_m_free_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp) { dma_free_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, vbp->vaddr, vbp->baddr); } #endif /* SYM_HIPD_H */