/* * Parallel SCSI (SPI) transport specific attributes exported to sysfs. * * Copyright (c) 2003 Silicon Graphics, Inc. All rights reserved. * Copyright (c) 2004, 2005 James Bottomley <James.Bottomley@SteelEye.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/ctype.h> #include <linux/init.h> #include <linux/module.h> #include <linux/workqueue.h> #include <linux/blkdev.h> #include <linux/mutex.h> #include <scsi/scsi.h> #include "scsi_priv.h" #include <scsi/scsi_device.h> #include <scsi/scsi_host.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_eh.h> #include <scsi/scsi_transport.h> #include <scsi/scsi_transport_spi.h> #define SPI_NUM_ATTRS 14 /* increase this if you add attributes */ #define SPI_OTHER_ATTRS 1 /* Increase this if you add "always * on" attributes */ #define SPI_HOST_ATTRS 1 #define SPI_MAX_ECHO_BUFFER_SIZE 4096 #define DV_LOOPS 3 #define DV_TIMEOUT (10*HZ) #define DV_RETRIES 3 /* should only need at most * two cc/ua clears */ /* Private data accessors (keep these out of the header file) */ #define spi_dv_in_progress(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_in_progress) #define spi_dv_mutex(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_mutex) struct spi_internal { struct scsi_transport_template t; struct spi_function_template *f; }; #define to_spi_internal(tmpl) container_of(tmpl, struct spi_internal, t) static const int ppr_to_ps[] = { /* The PPR values 0-6 are reserved, fill them in when * the committee defines them */ -1, /* 0x00 */ -1, /* 0x01 */ -1, /* 0x02 */ -1, /* 0x03 */ -1, /* 0x04 */ -1, /* 0x05 */ -1, /* 0x06 */ 3125, /* 0x07 */ 6250, /* 0x08 */ 12500, /* 0x09 */ 25000, /* 0x0a */ 30300, /* 0x0b */ 50000, /* 0x0c */ }; /* The PPR values at which you calculate the period in ns by multiplying * by 4 */ #define SPI_STATIC_PPR 0x0c static int sprint_frac(char *dest, int value, int denom) { int frac = value % denom; int result = sprintf(dest, "%d", value / denom); if (frac == 0) return result; dest[result++] = '.'; do { denom /= 10; sprintf(dest + result, "%d", frac / denom); result++; frac %= denom; } while (frac); dest[result++] = '\0'; return result; } static int spi_execute(struct scsi_device *sdev, const void *cmd, enum dma_data_direction dir, void *buffer, unsigned bufflen, struct scsi_sense_hdr *sshdr) { int i, result; unsigned char sense[SCSI_SENSE_BUFFERSIZE]; for(i = 0; i < DV_RETRIES; i++) { result = scsi_execute(sdev, cmd, dir, buffer, bufflen, sense, DV_TIMEOUT, /* retries */ 1, REQ_FAILFAST); if (result & DRIVER_SENSE) { struct scsi_sense_hdr sshdr_tmp; if (!sshdr) sshdr = &sshdr_tmp; if (scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr) && sshdr->sense_key == UNIT_ATTENTION) continue; } break; } return result; } static struct { enum spi_signal_type value; char *name; } signal_types[] = { { SPI_SIGNAL_UNKNOWN, "unknown" }, { SPI_SIGNAL_SE, "SE" }, { SPI_SIGNAL_LVD, "LVD" }, { SPI_SIGNAL_HVD, "HVD" }, }; static inline const char *spi_signal_to_string(enum spi_signal_type type) { int i; for (i = 0; i < ARRAY_SIZE(signal_types); i++) { if (type == signal_types[i].value) return signal_types[i].name; } return NULL; } static inline enum spi_signal_type spi_signal_to_value(const char *name) { int i, len; for (i = 0; i < ARRAY_SIZE(signal_types); i++) { len = strlen(signal_types[i].name); if (strncmp(name, signal_types[i].name, len) == 0 && (name[len] == '\n' || name[len] == '\0')) return signal_types[i].value; } return SPI_SIGNAL_UNKNOWN; } static int spi_host_setup(struct transport_container *tc, struct device *dev, struct device *cdev) { struct Scsi_Host *shost = dev_to_shost(dev); spi_signalling(shost) = SPI_SIGNAL_UNKNOWN; return 0; } static int spi_host_configure(struct transport_container *tc, struct device *dev, struct device *cdev); static DECLARE_TRANSPORT_CLASS(spi_host_class, "spi_host", spi_host_setup, NULL, spi_host_configure); static int spi_host_match(struct attribute_container *cont, struct device *dev) { struct Scsi_Host *shost; if (!scsi_is_host_device(dev)) return 0; shost = dev_to_shost(dev); if (!shost->transportt || shost->transportt->host_attrs.ac.class != &spi_host_class.class) return 0; return &shost->transportt->host_attrs.ac == cont; } static int spi_target_configure(struct transport_container *tc, struct device *dev, struct device *cdev); static int spi_device_configure(struct transport_container *tc, struct device *dev, struct device *cdev) { struct scsi_device *sdev = to_scsi_device(dev); struct scsi_target *starget = sdev->sdev_target; /* Populate the target capability fields with the values * gleaned from the device inquiry */ spi_support_sync(starget) = scsi_device_sync(sdev); spi_support_wide(starget) = scsi_device_wide(sdev); spi_support_dt(starget) = scsi_device_dt(sdev); spi_support_dt_only(starget) = scsi_device_dt_only(sdev); spi_support_ius(starget) = scsi_device_ius(sdev); spi_support_qas(starget) = scsi_device_qas(sdev); return 0; } static int spi_setup_transport_attrs(struct transport_container *tc, struct device *dev, struct device *cdev) { struct scsi_target *starget = to_scsi_target(dev); spi_period(starget) = -1; /* illegal value */ spi_min_period(starget) = 0; spi_offset(starget) = 0; /* async */ spi_max_offset(starget) = 255; spi_width(starget) = 0; /* narrow */ spi_max_width(starget) = 1; spi_iu(starget) = 0; /* no IU */ spi_dt(starget) = 0; /* ST */ spi_qas(starget) = 0; spi_wr_flow(starget) = 0; spi_rd_strm(starget) = 0; spi_rti(starget) = 0; spi_pcomp_en(starget) = 0; spi_hold_mcs(starget) = 0; spi_dv_pending(starget) = 0; spi_dv_in_progress(starget) = 0; spi_initial_dv(starget) = 0; mutex_init(&spi_dv_mutex(starget)); return 0; } #define spi_transport_show_simple(field, format_string) \ \ static ssize_t \ show_spi_transport_##field(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct scsi_target *starget = transport_class_to_starget(dev); \ struct spi_transport_attrs *tp; \ \ tp = (struct spi_transport_attrs *)&starget->starget_data; \ return snprintf(buf, 20, format_string, tp->field); \ } #define spi_transport_store_simple(field, format_string) \ \ static ssize_t \ store_spi_transport_##field(struct device *dev, \ struct device_attribute *attr, \ const char *buf, size_t count) \ { \ int val; \ struct scsi_target *starget = transport_class_to_starget(dev); \ struct spi_transport_attrs *tp; \ \ tp = (struct spi_transport_attrs *)&starget->starget_data; \ val = simple_strtoul(buf, NULL, 0); \ tp->field = val; \ return count; \ } #define spi_transport_show_function(field, format_string) \ \ static ssize_t \ show_spi_transport_##field(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct scsi_target *starget = transport_class_to_starget(dev); \ struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ struct spi_transport_attrs *tp; \ struct spi_internal *i = to_spi_internal(shost->transportt); \ tp = (struct spi_transport_attrs *)&starget->starget_data; \ if (i->f->get_##field) \ i->f->get_##field(starget); \ return snprintf(buf, 20, format_string, tp->field); \ } #define spi_transport_store_function(field, format_string) \ static ssize_t \ store_spi_transport_##field(struct device *dev, \ struct device_attribute *attr, \ const char *buf, size_t count) \ { \ int val; \ struct scsi_target *starget = transport_class_to_starget(dev); \ struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ struct spi_internal *i = to_spi_internal(shost->transportt); \ \ if (!i->f->set_##field) \ return -EINVAL; \ val = simple_strtoul(buf, NULL, 0); \ i->f->set_##field(starget, val); \ return count; \ } #define spi_transport_store_max(field, format_string) \ static ssize_t \ store_spi_transport_##field(struct device *dev, \ struct device_attribute *attr, \ const char *buf, size_t count) \ { \ int val; \ struct scsi_target *starget = transport_class_to_starget(dev); \ struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \ struct spi_internal *i = to_spi_internal(shost->transportt); \ struct spi_transport_attrs *tp \ = (struct spi_transport_attrs *)&starget->starget_data; \ \ if (i->f->set_##field) \ return -EINVAL; \ val = simple_strtoul(buf, NULL, 0); \ if (val > tp->max_##field) \ val = tp->max_##field; \ i->f->set_##field(starget, val); \ return count; \ } #define spi_transport_rd_attr(field, format_string) \ spi_transport_show_function(field, format_string) \ spi_transport_store_function(field, format_string) \ static DEVICE_ATTR(field, S_IRUGO, \ show_spi_transport_##field, \ store_spi_transport_##field); #define spi_transport_simple_attr(field, format_string) \ spi_transport_show_simple(field, format_string) \ spi_transport_store_simple(field, format_string) \ static DEVICE_ATTR(field, S_IRUGO, \ show_spi_transport_##field, \ store_spi_transport_##field); #define spi_transport_max_attr(field, format_string) \ spi_transport_show_function(field, format_string) \ spi_transport_store_max(field, format_string) \ spi_transport_simple_attr(max_##field, format_string) \ static DEVICE_ATTR(field, S_IRUGO, \ show_spi_transport_##field, \ store_spi_transport_##field); /* The Parallel SCSI Tranport Attributes: */ spi_transport_max_attr(offset, "%d\n"); spi_transport_max_attr(width, "%d\n"); spi_transport_rd_attr(iu, "%d\n"); spi_transport_rd_attr(dt, "%d\n"); spi_transport_rd_attr(qas, "%d\n"); spi_transport_rd_attr(wr_flow, "%d\n"); spi_transport_rd_attr(rd_strm, "%d\n"); spi_transport_rd_attr(rti, "%d\n"); spi_transport_rd_attr(pcomp_en, "%d\n"); spi_transport_rd_attr(hold_mcs, "%d\n"); /* we only care about the first child device so we return 1 */ static int child_iter(struct device *dev, void *data) { struct scsi_device *sdev = to_scsi_device(dev); spi_dv_device(sdev); return 1; } static ssize_t store_spi_revalidate(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_target *starget = transport_class_to_starget(dev); device_for_each_child(&starget->dev, NULL, child_iter); return count; } static DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate); /* Translate the period into ns according to the current spec * for SDTR/PPR messages */ static int period_to_str(char *buf, int period) { int len, picosec; if (period < 0 || period > 0xff) { picosec = -1; } else if (period <= SPI_STATIC_PPR) { picosec = ppr_to_ps[period]; } else { picosec = period * 4000; } if (picosec == -1) { len = sprintf(buf, "reserved"); } else { len = sprint_frac(buf, picosec, 1000); } return len; } static ssize_t show_spi_transport_period_helper(char *buf, int period) { int len = period_to_str(buf, period); buf[len++] = '\n'; buf[len] = '\0'; return len; } static ssize_t store_spi_transport_period_helper(struct device *dev, const char *buf, size_t count, int *periodp) { int j, picosec, period = -1; char *endp; picosec = simple_strtoul(buf, &endp, 10) * 1000; if (*endp == '.') { int mult = 100; do { endp++; if (!isdigit(*endp)) break; picosec += (*endp - '0') * mult; mult /= 10; } while (mult > 0); } for (j = 0; j <= SPI_STATIC_PPR; j++) { if (ppr_to_ps[j] < picosec) continue; period = j; break; } if (period == -1) period = picosec / 4000; if (period > 0xff) period = 0xff; *periodp = period; return count; } static ssize_t show_spi_transport_period(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_target *starget = transport_class_to_starget(dev); struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); struct spi_internal *i = to_spi_internal(shost->transportt); struct spi_transport_attrs *tp = (struct spi_transport_attrs *)&starget->starget_data; if (i->f->get_period) i->f->get_period(starget); return show_spi_transport_period_helper(buf, tp->period); } static ssize_t store_spi_transport_period(struct device *cdev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_target *starget = transport_class_to_starget(cdev); struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); struct spi_internal *i = to_spi_internal(shost->transportt); struct spi_transport_attrs *tp = (struct spi_transport_attrs *)&starget->starget_data; int period, retval; if (!i->f->set_period) return -EINVAL; retval = store_spi_transport_period_helper(cdev, buf, count, &period); if (period < tp->min_period) period = tp->min_period; i->f->set_period(starget, period); return retval; } static DEVICE_ATTR(period, S_IRUGO, show_spi_transport_period, store_spi_transport_period); static ssize_t show_spi_transport_min_period(struct device *cdev, struct device_attribute *attr, char *buf) { struct scsi_target *starget = transport_class_to_starget(cdev); struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); struct spi_internal *i = to_spi_internal(shost->transportt); struct spi_transport_attrs *tp = (struct spi_transport_attrs *)&starget->starget_data; if (!i->f->set_period) return -EINVAL; return show_spi_transport_period_helper(buf, tp->min_period); } static ssize_t store_spi_transport_min_period(struct device *cdev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_target *starget = transport_class_to_starget(cdev); struct spi_transport_attrs *tp = (struct spi_transport_attrs *)&starget->starget_data; return store_spi_transport_period_helper(cdev, buf, count, &tp->min_period); } static DEVICE_ATTR(min_period, S_IRUGO, show_spi_transport_min_period, store_spi_transport_min_period); static ssize_t show_spi_host_signalling(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = transport_class_to_shost(cdev); struct spi_internal *i = to_spi_internal(shost->transportt); if (i->f->get_signalling) i->f->get_signalling(shost); return sprintf(buf, "%s\n", spi_signal_to_string(spi_signalling(shost))); } static ssize_t store_spi_host_signalling(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = transport_class_to_shost(dev); struct spi_internal *i = to_spi_internal(shost->transportt); enum spi_signal_type type = spi_signal_to_value(buf); if (!i->f->set_signalling) return -EINVAL; if (type != SPI_SIGNAL_UNKNOWN) i->f->set_signalling(shost, type); return count; } static DEVICE_ATTR(signalling, S_IRUGO, show_spi_host_signalling, store_spi_host_signalling); #define DV_SET(x, y) \ if(i->f->set_##x) \ i->f->set_##x(sdev->sdev_target, y) enum spi_compare_returns { SPI_COMPARE_SUCCESS, SPI_COMPARE_FAILURE, SPI_COMPARE_SKIP_TEST, }; /* This is for read/write Domain Validation: If the device supports * an echo buffer, we do read/write tests to it */ static enum spi_compare_returns spi_dv_device_echo_buffer(struct scsi_device *sdev, u8 *buffer, u8 *ptr, const int retries) { int len = ptr - buffer; int j, k, r, result; unsigned int pattern = 0x0000ffff; struct scsi_sense_hdr sshdr; const char spi_write_buffer[] = { WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0 }; const char spi_read_buffer[] = { READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0 }; /* set up the pattern buffer. Doesn't matter if we spill * slightly beyond since that's where the read buffer is */ for (j = 0; j < len; ) { /* fill the buffer with counting (test a) */ for ( ; j < min(len, 32); j++) buffer[j] = j; k = j; /* fill the buffer with alternating words of 0x0 and * 0xffff (test b) */ for ( ; j < min(len, k + 32); j += 2) { u16 *word = (u16 *)&buffer[j]; *word = (j & 0x02) ? 0x0000 : 0xffff; } k = j; /* fill with crosstalk (alternating 0x5555 0xaaa) * (test c) */ for ( ; j < min(len, k + 32); j += 2) { u16 *word = (u16 *)&buffer[j]; *word = (j & 0x02) ? 0x5555 : 0xaaaa; } k = j; /* fill with shifting bits (test d) */ for ( ; j < min(len, k + 32); j += 4) { u32 *word = (unsigned int *)&buffer[j]; u32 roll = (pattern & 0x80000000) ? 1 : 0; *word = pattern; pattern = (pattern << 1) | roll; } /* don't bother with random data (test e) */ } for (r = 0; r < retries; r++) { result = spi_execute(sdev, spi_write_buffer, DMA_TO_DEVICE, buffer, len, &sshdr); if(result || !scsi_device_online(sdev)) { scsi_device_set_state(sdev, SDEV_QUIESCE); if (scsi_sense_valid(&sshdr) && sshdr.sense_key == ILLEGAL_REQUEST /* INVALID FIELD IN CDB */ && sshdr.asc == 0x24 && sshdr.ascq == 0x00) /* This would mean that the drive lied * to us about supporting an echo * buffer (unfortunately some Western * Digital drives do precisely this) */ return SPI_COMPARE_SKIP_TEST; sdev_printk(KERN_ERR, sdev, "Write Buffer failure %x\n", result); return SPI_COMPARE_FAILURE; } memset(ptr, 0, len); spi_execute(sdev, spi_read_buffer, DMA_FROM_DEVICE, ptr, len, NULL); scsi_device_set_state(sdev, SDEV_QUIESCE); if (memcmp(buffer, ptr, len) != 0) return SPI_COMPARE_FAILURE; } return SPI_COMPARE_SUCCESS; } /* This is for the simplest form of Domain Validation: a read test * on the inquiry data from the device */ static enum spi_compare_returns spi_dv_device_compare_inquiry(struct scsi_device *sdev, u8 *buffer, u8 *ptr, const int retries) { int r, result; const int len = sdev->inquiry_len; const char spi_inquiry[] = { INQUIRY, 0, 0, 0, len, 0 }; for (r = 0; r < retries; r++) { memset(ptr, 0, len); result = spi_execute(sdev, spi_inquiry, DMA_FROM_DEVICE, ptr, len, NULL); if(result || !scsi_device_online(sdev)) { scsi_device_set_state(sdev, SDEV_QUIESCE); return SPI_COMPARE_FAILURE; } /* If we don't have the inquiry data already, the * first read gets it */ if (ptr == buffer) { ptr += len; --r; continue; } if (memcmp(buffer, ptr, len) != 0) /* failure */ return SPI_COMPARE_FAILURE; } return SPI_COMPARE_SUCCESS; } static enum spi_compare_returns spi_dv_retrain(struct scsi_device *sdev, u8 *buffer, u8 *ptr, enum spi_compare_returns (*compare_fn)(struct scsi_device *, u8 *, u8 *, int)) { struct spi_internal *i = to_spi_internal(sdev->host->transportt); struct scsi_target *starget = sdev->sdev_target; int period = 0, prevperiod = 0; enum spi_compare_returns retval; for (;;) { int newperiod; retval = compare_fn(sdev, buffer, ptr, DV_LOOPS); if (retval == SPI_COMPARE_SUCCESS || retval == SPI_COMPARE_SKIP_TEST) break; /* OK, retrain, fallback */ if (i->f->get_iu) i->f->get_iu(starget); if (i->f->get_qas) i->f->get_qas(starget); if (i->f->get_period) i->f->get_period(sdev->sdev_target); /* Here's the fallback sequence; first try turning off * IU, then QAS (if we can control them), then finally * fall down the periods */ if (i->f->set_iu && spi_iu(starget)) { starget_printk(KERN_ERR, starget, "Domain Validation Disabing Information Units\n"); DV_SET(iu, 0); } else if (i->f->set_qas && spi_qas(starget)) { starget_printk(KERN_ERR, starget, "Domain Validation Disabing Quick Arbitration and Selection\n"); DV_SET(qas, 0); } else { newperiod = spi_period(starget); period = newperiod > period ? newperiod : period; if (period < 0x0d) period++; else period += period >> 1; if (unlikely(period > 0xff || period == prevperiod)) { /* Total failure; set to async and return */ starget_printk(KERN_ERR, starget, "Domain Validation Failure, dropping back to Asynchronous\n"); DV_SET(offset, 0); return SPI_COMPARE_FAILURE; } starget_printk(KERN_ERR, starget, "Domain Validation detected failure, dropping back\n"); DV_SET(period, period); prevperiod = period; } } return retval; } static int spi_dv_device_get_echo_buffer(struct scsi_device *sdev, u8 *buffer) { int l, result; /* first off do a test unit ready. This can error out * because of reservations or some other reason. If it * fails, the device won't let us write to the echo buffer * so just return failure */ const char spi_test_unit_ready[] = { TEST_UNIT_READY, 0, 0, 0, 0, 0 }; const char spi_read_buffer_descriptor[] = { READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0 }; /* We send a set of three TURs to clear any outstanding * unit attention conditions if they exist (Otherwise the * buffer tests won't be happy). If the TUR still fails * (reservation conflict, device not ready, etc) just * skip the write tests */ for (l = 0; ; l++) { result = spi_execute(sdev, spi_test_unit_ready, DMA_NONE, NULL, 0, NULL); if(result) { if(l >= 3) return 0; } else { /* TUR succeeded */ break; } } result = spi_execute(sdev, spi_read_buffer_descriptor, DMA_FROM_DEVICE, buffer, 4, NULL); if (result) /* Device has no echo buffer */ return 0; return buffer[3] + ((buffer[2] & 0x1f) << 8); } static void spi_dv_device_internal(struct scsi_device *sdev, u8 *buffer) { struct spi_internal *i = to_spi_internal(sdev->host->transportt); struct scsi_target *starget = sdev->sdev_target; struct Scsi_Host *shost = sdev->host; int len = sdev->inquiry_len; int min_period = spi_min_period(starget); int max_width = spi_max_width(starget); /* first set us up for narrow async */ DV_SET(offset, 0); DV_SET(width, 0); if (spi_dv_device_compare_inquiry(sdev, buffer, buffer, DV_LOOPS) != SPI_COMPARE_SUCCESS) { starget_printk(KERN_ERR, starget, "Domain Validation Initial Inquiry Failed\n"); /* FIXME: should probably offline the device here? */ return; } if (!scsi_device_wide(sdev)) { spi_max_width(starget) = 0; max_width = 0; } /* test width */ if (i->f->set_width && max_width) { i->f->set_width(starget, 1); if (spi_dv_device_compare_inquiry(sdev, buffer, buffer + len, DV_LOOPS) != SPI_COMPARE_SUCCESS) { starget_printk(KERN_ERR, starget, "Wide Transfers Fail\n"); i->f->set_width(starget, 0); /* Make sure we don't force wide back on by asking * for a transfer period that requires it */ max_width = 0; if (min_period < 10) min_period = 10; } } if (!i->f->set_period) return; /* device can't handle synchronous */ if (!scsi_device_sync(sdev) && !scsi_device_dt(sdev)) return; /* len == -1 is the signal that we need to ascertain the * presence of an echo buffer before trying to use it. len == * 0 means we don't have an echo buffer */ len = -1; retry: /* now set up to the maximum */ DV_SET(offset, spi_max_offset(starget)); DV_SET(period, min_period); /* try QAS requests; this should be harmless to set if the * target supports it */ if (scsi_device_qas(sdev)) { DV_SET(qas, 1); } else { DV_SET(qas, 0); } if (scsi_device_ius(sdev) && min_period < 9) { /* This u320 (or u640). Set IU transfers */ DV_SET(iu, 1); /* Then set the optional parameters */ DV_SET(rd_strm, 1); DV_SET(wr_flow, 1); DV_SET(rti, 1); if (min_period == 8) DV_SET(pcomp_en, 1); } else { DV_SET(iu, 0); } /* now that we've done all this, actually check the bus * signal type (if known). Some devices are stupid on * a SE bus and still claim they can try LVD only settings */ if (i->f->get_signalling) i->f->get_signalling(shost); if (spi_signalling(shost) == SPI_SIGNAL_SE || spi_signalling(shost) == SPI_SIGNAL_HVD || !scsi_device_dt(sdev)) { DV_SET(dt, 0); } else { DV_SET(dt, 1); } /* set width last because it will pull all the other * parameters down to required values */ DV_SET(width, max_width); /* Do the read only INQUIRY tests */ spi_dv_retrain(sdev, buffer, buffer + sdev->inquiry_len, spi_dv_device_compare_inquiry); /* See if we actually managed to negotiate and sustain DT */ if (i->f->get_dt) i->f->get_dt(starget); /* see if the device has an echo buffer. If it does we can do * the SPI pattern write tests. Because of some broken * devices, we *only* try this on a device that has actually * negotiated DT */ if (len == -1 && spi_dt(starget)) len = spi_dv_device_get_echo_buffer(sdev, buffer); if (len <= 0) { starget_printk(KERN_INFO, starget, "Domain Validation skipping write tests\n"); return; } if (len > SPI_MAX_ECHO_BUFFER_SIZE) { starget_printk(KERN_WARNING, starget, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE); len = SPI_MAX_ECHO_BUFFER_SIZE; } if (spi_dv_retrain(sdev, buffer, buffer + len, spi_dv_device_echo_buffer) == SPI_COMPARE_SKIP_TEST) { /* OK, the stupid drive can't do a write echo buffer * test after all, fall back to the read tests */ len = 0; goto retry; } } /** spi_dv_device - Do Domain Validation on the device * @sdev: scsi device to validate * * Performs the domain validation on the given device in the * current execution thread. Since DV operations may sleep, * the current thread must have user context. Also no SCSI * related locks that would deadlock I/O issued by the DV may * be held. */ void spi_dv_device(struct scsi_device *sdev) { struct scsi_target *starget = sdev->sdev_target; u8 *buffer; const int len = SPI_MAX_ECHO_BUFFER_SIZE*2; if (unlikely(scsi_device_get(sdev))) return; if (unlikely(spi_dv_in_progress(starget))) return; spi_dv_in_progress(starget) = 1; buffer = kzalloc(len, GFP_KERNEL); if (unlikely(!buffer)) goto out_put; /* We need to verify that the actual device will quiesce; the * later target quiesce is just a nice to have */ if (unlikely(scsi_device_quiesce(sdev))) goto out_free; scsi_target_quiesce(starget); spi_dv_pending(starget) = 1; mutex_lock(&spi_dv_mutex(starget)); starget_printk(KERN_INFO, starget, "Beginning Domain Validation\n"); spi_dv_device_internal(sdev, buffer); starget_printk(KERN_INFO, starget, "Ending Domain Validation\n"); mutex_unlock(&spi_dv_mutex(starget)); spi_dv_pending(starget) = 0; scsi_target_resume(starget); spi_initial_dv(starget) = 1; out_free: kfree(buffer); out_put: spi_dv_in_progress(starget) = 0; scsi_device_put(sdev); } EXPORT_SYMBOL(spi_dv_device); struct work_queue_wrapper { struct work_struct work; struct scsi_device *sdev; }; static void spi_dv_device_work_wrapper(struct work_struct *work) { struct work_queue_wrapper *wqw = container_of(work, struct work_queue_wrapper, work); struct scsi_device *sdev = wqw->sdev; kfree(wqw); spi_dv_device(sdev); spi_dv_pending(sdev->sdev_target) = 0; scsi_device_put(sdev); } /** * spi_schedule_dv_device - schedule domain validation to occur on the device * @sdev: The device to validate * * Identical to spi_dv_device() above, except that the DV will be * scheduled to occur in a workqueue later. All memory allocations * are atomic, so may be called from any context including those holding * SCSI locks. */ void spi_schedule_dv_device(struct scsi_device *sdev) { struct work_queue_wrapper *wqw = kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC); if (unlikely(!wqw)) return; if (unlikely(spi_dv_pending(sdev->sdev_target))) { kfree(wqw); return; } /* Set pending early (dv_device doesn't check it, only sets it) */ spi_dv_pending(sdev->sdev_target) = 1; if (unlikely(scsi_device_get(sdev))) { kfree(wqw); spi_dv_pending(sdev->sdev_target) = 0; return; } INIT_WORK(&wqw->work, spi_dv_device_work_wrapper); wqw->sdev = sdev; schedule_work(&wqw->work); } EXPORT_SYMBOL(spi_schedule_dv_device); /** * spi_display_xfer_agreement - Print the current target transfer agreement * @starget: The target for which to display the agreement * * Each SPI port is required to maintain a transfer agreement for each * other port on the bus. This function prints a one-line summary of * the current agreement; more detailed information is available in sysfs. */ void spi_display_xfer_agreement(struct scsi_target *starget) { struct spi_transport_attrs *tp; tp = (struct spi_transport_attrs *)&starget->starget_data; if (tp->offset > 0 && tp->period > 0) { unsigned int picosec, kb100; char *scsi = "FAST-?"; char tmp[8]; if (tp->period <= SPI_STATIC_PPR) { picosec = ppr_to_ps[tp->period]; switch (tp->period) { case 7: scsi = "FAST-320"; break; case 8: scsi = "FAST-160"; break; case 9: scsi = "FAST-80"; break; case 10: case 11: scsi = "FAST-40"; break; case 12: scsi = "FAST-20"; break; } } else { picosec = tp->period * 4000; if (tp->period < 25) scsi = "FAST-20"; else if (tp->period < 50) scsi = "FAST-10"; else scsi = "FAST-5"; } kb100 = (10000000 + picosec / 2) / picosec; if (tp->width) kb100 *= 2; sprint_frac(tmp, picosec, 1000); dev_info(&starget->dev, "%s %sSCSI %d.%d MB/s %s%s%s%s%s%s%s%s (%s ns, offset %d)\n", scsi, tp->width ? "WIDE " : "", kb100/10, kb100 % 10, tp->dt ? "DT" : "ST", tp->iu ? " IU" : "", tp->qas ? " QAS" : "", tp->rd_strm ? " RDSTRM" : "", tp->rti ? " RTI" : "", tp->wr_flow ? " WRFLOW" : "", tp->pcomp_en ? " PCOMP" : "", tp->hold_mcs ? " HMCS" : "", tmp, tp->offset); } else { dev_info(&starget->dev, "%sasynchronous\n", tp->width ? "wide " : ""); } } EXPORT_SYMBOL(spi_display_xfer_agreement); int spi_populate_width_msg(unsigned char *msg, int width) { msg[0] = EXTENDED_MESSAGE; msg[1] = 2; msg[2] = EXTENDED_WDTR; msg[3] = width; return 4; } EXPORT_SYMBOL_GPL(spi_populate_width_msg); int spi_populate_sync_msg(unsigned char *msg, int period, int offset) { msg[0] = EXTENDED_MESSAGE; msg[1] = 3; msg[2] = EXTENDED_SDTR; msg[3] = period; msg[4] = offset; return 5; } EXPORT_SYMBOL_GPL(spi_populate_sync_msg); int spi_populate_ppr_msg(unsigned char *msg, int period, int offset, int width, int options) { msg[0] = EXTENDED_MESSAGE; msg[1] = 6; msg[2] = EXTENDED_PPR; msg[3] = period; msg[4] = 0; msg[5] = offset; msg[6] = width; msg[7] = options; return 8; } EXPORT_SYMBOL_GPL(spi_populate_ppr_msg); #ifdef CONFIG_SCSI_CONSTANTS static const char * const one_byte_msgs[] = { /* 0x00 */ "Task Complete", NULL /* Extended Message */, "Save Pointers", /* 0x03 */ "Restore Pointers", "Disconnect", "Initiator Error", /* 0x06 */ "Abort Task Set", "Message Reject", "Nop", "Message Parity Error", /* 0x0a */ "Linked Command Complete", "Linked Command Complete w/flag", /* 0x0c */ "Target Reset", "Abort Task", "Clear Task Set", /* 0x0f */ "Initiate Recovery", "Release Recovery", /* 0x11 */ "Terminate Process", "Continue Task", "Target Transfer Disable", /* 0x14 */ NULL, NULL, "Clear ACA", "LUN Reset" }; static const char * const two_byte_msgs[] = { /* 0x20 */ "Simple Queue Tag", "Head of Queue Tag", "Ordered Queue Tag", /* 0x23 */ "Ignore Wide Residue", "ACA" }; static const char * const extended_msgs[] = { /* 0x00 */ "Modify Data Pointer", "Synchronous Data Transfer Request", /* 0x02 */ "SCSI-I Extended Identify", "Wide Data Transfer Request", /* 0x04 */ "Parallel Protocol Request", "Modify Bidirectional Data Pointer" }; static void print_nego(const unsigned char *msg, int per, int off, int width) { if (per) { char buf[20]; period_to_str(buf, msg[per]); printk("period = %s ns ", buf); } if (off) printk("offset = %d ", msg[off]); if (width) printk("width = %d ", 8 << msg[width]); } static void print_ptr(const unsigned char *msg, int msb, const char *desc) { int ptr = (msg[msb] << 24) | (msg[msb+1] << 16) | (msg[msb+2] << 8) | msg[msb+3]; printk("%s = %d ", desc, ptr); } int spi_print_msg(const unsigned char *msg) { int len = 1, i; if (msg[0] == EXTENDED_MESSAGE) { len = 2 + msg[1]; if (len == 2) len += 256; if (msg[2] < ARRAY_SIZE(extended_msgs)) printk ("%s ", extended_msgs[msg[2]]); else printk ("Extended Message, reserved code (0x%02x) ", (int) msg[2]); switch (msg[2]) { case EXTENDED_MODIFY_DATA_POINTER: print_ptr(msg, 3, "pointer"); break; case EXTENDED_SDTR: print_nego(msg, 3, 4, 0); break; case EXTENDED_WDTR: print_nego(msg, 0, 0, 3); break; case EXTENDED_PPR: print_nego(msg, 3, 5, 6); break; case EXTENDED_MODIFY_BIDI_DATA_PTR: print_ptr(msg, 3, "out"); print_ptr(msg, 7, "in"); break; default: for (i = 2; i < len; ++i) printk("%02x ", msg[i]); } /* Identify */ } else if (msg[0] & 0x80) { printk("Identify disconnect %sallowed %s %d ", (msg[0] & 0x40) ? "" : "not ", (msg[0] & 0x20) ? "target routine" : "lun", msg[0] & 0x7); /* Normal One byte */ } else if (msg[0] < 0x1f) { if (msg[0] < ARRAY_SIZE(one_byte_msgs) && one_byte_msgs[msg[0]]) printk("%s ", one_byte_msgs[msg[0]]); else printk("reserved (%02x) ", msg[0]); } else if (msg[0] == 0x55) { printk("QAS Request "); /* Two byte */ } else if (msg[0] <= 0x2f) { if ((msg[0] - 0x20) < ARRAY_SIZE(two_byte_msgs)) printk("%s %02x ", two_byte_msgs[msg[0] - 0x20], msg[1]); else printk("reserved two byte (%02x %02x) ", msg[0], msg[1]); len = 2; } else printk("reserved "); return len; } EXPORT_SYMBOL(spi_print_msg); #else /* ifndef CONFIG_SCSI_CONSTANTS */ int spi_print_msg(const unsigned char *msg) { int len = 1, i; if (msg[0] == EXTENDED_MESSAGE) { len = 2 + msg[1]; if (len == 2) len += 256; for (i = 0; i < len; ++i) printk("%02x ", msg[i]); /* Identify */ } else if (msg[0] & 0x80) { printk("%02x ", msg[0]); /* Normal One byte */ } else if ((msg[0] < 0x1f) || (msg[0] == 0x55)) { printk("%02x ", msg[0]); /* Two byte */ } else if (msg[0] <= 0x2f) { printk("%02x %02x", msg[0], msg[1]); len = 2; } else printk("%02x ", msg[0]); return len; } EXPORT_SYMBOL(spi_print_msg); #endif /* ! CONFIG_SCSI_CONSTANTS */ static int spi_device_match(struct attribute_container *cont, struct device *dev) { struct scsi_device *sdev; struct Scsi_Host *shost; struct spi_internal *i; if (!scsi_is_sdev_device(dev)) return 0; sdev = to_scsi_device(dev); shost = sdev->host; if (!shost->transportt || shost->transportt->host_attrs.ac.class != &spi_host_class.class) return 0; /* Note: this class has no device attributes, so it has * no per-HBA allocation and thus we don't need to distinguish * the attribute containers for the device */ i = to_spi_internal(shost->transportt); if (i->f->deny_binding && i->f->deny_binding(sdev->sdev_target)) return 0; return 1; } static int spi_target_match(struct attribute_container *cont, struct device *dev) { struct Scsi_Host *shost; struct scsi_target *starget; struct spi_internal *i; if (!scsi_is_target_device(dev)) return 0; shost = dev_to_shost(dev->parent); if (!shost->transportt || shost->transportt->host_attrs.ac.class != &spi_host_class.class) return 0; i = to_spi_internal(shost->transportt); starget = to_scsi_target(dev); if (i->f->deny_binding && i->f->deny_binding(starget)) return 0; return &i->t.target_attrs.ac == cont; } static DECLARE_TRANSPORT_CLASS(spi_transport_class, "spi_transport", spi_setup_transport_attrs, NULL, spi_target_configure); static DECLARE_ANON_TRANSPORT_CLASS(spi_device_class, spi_device_match, spi_device_configure); static struct attribute *host_attributes[] = { &dev_attr_signalling.attr, NULL }; static struct attribute_group host_attribute_group = { .attrs = host_attributes, }; static int spi_host_configure(struct transport_container *tc, struct device *dev, struct device *cdev) { struct kobject *kobj = &cdev->kobj; struct Scsi_Host *shost = transport_class_to_shost(cdev); struct spi_internal *si = to_spi_internal(shost->transportt); struct attribute *attr = &dev_attr_signalling.attr; int rc = 0; if (si->f->set_signalling) rc = sysfs_chmod_file(kobj, attr, attr->mode | S_IWUSR); return rc; } /* returns true if we should be showing the variable. Also * overloads the return by setting 1<<1 if the attribute should * be writeable */ #define TARGET_ATTRIBUTE_HELPER(name) \ (si->f->show_##name ? 1 : 0) + \ (si->f->set_##name ? 2 : 0) static int target_attribute_is_visible(struct kobject *kobj, struct attribute *attr, int i) { struct device *cdev = container_of(kobj, struct device, kobj); struct scsi_target *starget = transport_class_to_starget(cdev); struct Scsi_Host *shost = transport_class_to_shost(cdev); struct spi_internal *si = to_spi_internal(shost->transportt); if (attr == &dev_attr_period.attr && spi_support_sync(starget)) return TARGET_ATTRIBUTE_HELPER(period); else if (attr == &dev_attr_min_period.attr && spi_support_sync(starget)) return TARGET_ATTRIBUTE_HELPER(period); else if (attr == &dev_attr_offset.attr && spi_support_sync(starget)) return TARGET_ATTRIBUTE_HELPER(offset); else if (attr == &dev_attr_max_offset.attr && spi_support_sync(starget)) return TARGET_ATTRIBUTE_HELPER(offset); else if (attr == &dev_attr_width.attr && spi_support_wide(starget)) return TARGET_ATTRIBUTE_HELPER(width); else if (attr == &dev_attr_max_width.attr && spi_support_wide(starget)) return TARGET_ATTRIBUTE_HELPER(width); else if (attr == &dev_attr_iu.attr && spi_support_ius(starget)) return TARGET_ATTRIBUTE_HELPER(iu); else if (attr == &dev_attr_dt.attr && spi_support_dt(starget)) return TARGET_ATTRIBUTE_HELPER(dt); else if (attr == &dev_attr_qas.attr && spi_support_qas(starget)) return TARGET_ATTRIBUTE_HELPER(qas); else if (attr == &dev_attr_wr_flow.attr && spi_support_ius(starget)) return TARGET_ATTRIBUTE_HELPER(wr_flow); else if (attr == &dev_attr_rd_strm.attr && spi_support_ius(starget)) return TARGET_ATTRIBUTE_HELPER(rd_strm); else if (attr == &dev_attr_rti.attr && spi_support_ius(starget)) return TARGET_ATTRIBUTE_HELPER(rti); else if (attr == &dev_attr_pcomp_en.attr && spi_support_ius(starget)) return TARGET_ATTRIBUTE_HELPER(pcomp_en); else if (attr == &dev_attr_hold_mcs.attr && spi_support_ius(starget)) return TARGET_ATTRIBUTE_HELPER(hold_mcs); else if (attr == &dev_attr_revalidate.attr) return 1; return 0; } static struct attribute *target_attributes[] = { &dev_attr_period.attr, &dev_attr_min_period.attr, &dev_attr_offset.attr, &dev_attr_max_offset.attr, &dev_attr_width.attr, &dev_attr_max_width.attr, &dev_attr_iu.attr, &dev_attr_dt.attr, &dev_attr_qas.attr, &dev_attr_wr_flow.attr, &dev_attr_rd_strm.attr, &dev_attr_rti.attr, &dev_attr_pcomp_en.attr, &dev_attr_hold_mcs.attr, &dev_attr_revalidate.attr, NULL }; static struct attribute_group target_attribute_group = { .attrs = target_attributes, .is_visible = target_attribute_is_visible, }; static int spi_target_configure(struct transport_container *tc, struct device *dev, struct device *cdev) { struct kobject *kobj = &cdev->kobj; int i; struct attribute *attr; int rc; for (i = 0; (attr = target_attributes[i]) != NULL; i++) { int j = target_attribute_group.is_visible(kobj, attr, i); /* FIXME: as well as returning -EEXIST, which we'd like * to ignore, sysfs also does a WARN_ON and dumps a trace, * which is bad, so temporarily, skip attributes that are * already visible (the revalidate one) */ if (j && attr != &dev_attr_revalidate.attr) rc = sysfs_add_file_to_group(kobj, attr, target_attribute_group.name); /* and make the attribute writeable if we have a set * function */ if ((j & 1)) rc = sysfs_chmod_file(kobj, attr, attr->mode | S_IWUSR); } return 0; } struct scsi_transport_template * spi_attach_transport(struct spi_function_template *ft) { struct spi_internal *i = kzalloc(sizeof(struct spi_internal), GFP_KERNEL); if (unlikely(!i)) return NULL; i->t.target_attrs.ac.class = &spi_transport_class.class; i->t.target_attrs.ac.grp = &target_attribute_group; i->t.target_attrs.ac.match = spi_target_match; transport_container_register(&i->t.target_attrs); i->t.target_size = sizeof(struct spi_transport_attrs); i->t.host_attrs.ac.class = &spi_host_class.class; i->t.host_attrs.ac.grp = &host_attribute_group; i->t.host_attrs.ac.match = spi_host_match; transport_container_register(&i->t.host_attrs); i->t.host_size = sizeof(struct spi_host_attrs); i->f = ft; return &i->t; } EXPORT_SYMBOL(spi_attach_transport); void spi_release_transport(struct scsi_transport_template *t) { struct spi_internal *i = to_spi_internal(t); transport_container_unregister(&i->t.target_attrs); transport_container_unregister(&i->t.host_attrs); kfree(i); } EXPORT_SYMBOL(spi_release_transport); static __init int spi_transport_init(void) { int error = transport_class_register(&spi_transport_class); if (error) return error; error = anon_transport_class_register(&spi_device_class); return transport_class_register(&spi_host_class); } static void __exit spi_transport_exit(void) { transport_class_unregister(&spi_transport_class); anon_transport_class_unregister(&spi_device_class); transport_class_unregister(&spi_host_class); } MODULE_AUTHOR("Martin Hicks"); MODULE_DESCRIPTION("SPI Transport Attributes"); MODULE_LICENSE("GPL"); module_init(spi_transport_init); module_exit(spi_transport_exit);