/* * linux/drivers/mmc/core/mmc.c * * Copyright (C) 2003-2004 Russell King, All Rights Reserved. * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include "core.h" #include "bus.h" #include "mmc_ops.h" static const unsigned int tran_exp[] = { 10000, 100000, 1000000, 10000000, 0, 0, 0, 0 }; static const unsigned char tran_mant[] = { 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, }; static const unsigned int tacc_exp[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, }; static const unsigned int tacc_mant[] = { 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, }; #define UNSTUFF_BITS(resp,start,size) \ ({ \ const int __size = size; \ const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ const int __off = 3 - ((start) / 32); \ const int __shft = (start) & 31; \ u32 __res; \ \ __res = resp[__off] >> __shft; \ if (__size + __shft > 32) \ __res |= resp[__off-1] << ((32 - __shft) % 32); \ __res & __mask; \ }) /* * Given the decoded CSD structure, decode the raw CID to our CID structure. */ static int mmc_decode_cid(struct mmc_card *card) { u32 *resp = card->raw_cid; /* * The selection of the format here is based upon published * specs from sandisk and from what people have reported. */ switch (card->csd.mmca_vsn) { case 0: /* MMC v1.0 - v1.2 */ case 1: /* MMC v1.4 */ card->cid.manfid = UNSTUFF_BITS(resp, 104, 24); card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8); card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4); card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4); card->cid.serial = UNSTUFF_BITS(resp, 16, 24); card->cid.month = UNSTUFF_BITS(resp, 12, 4); card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; break; case 2: /* MMC v2.0 - v2.2 */ case 3: /* MMC v3.1 - v3.3 */ case 4: /* MMC v4 */ card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); card->cid.serial = UNSTUFF_BITS(resp, 16, 32); card->cid.month = UNSTUFF_BITS(resp, 12, 4); card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; break; default: printk(KERN_ERR "%s: card has unknown MMCA version %d\n", mmc_hostname(card->host), card->csd.mmca_vsn); return -EINVAL; } return 0; } static void mmc_set_erase_size(struct mmc_card *card) { if (card->ext_csd.erase_group_def & 1) card->erase_size = card->ext_csd.hc_erase_size; else card->erase_size = card->csd.erase_size; mmc_init_erase(card); } /* * Given a 128-bit response, decode to our card CSD structure. */ static int mmc_decode_csd(struct mmc_card *card) { struct mmc_csd *csd = &card->csd; unsigned int e, m, a, b; u32 *resp = card->raw_csd; /* * We only understand CSD structure v1.1 and v1.2. * v1.2 has extra information in bits 15, 11 and 10. * We also support eMMC v4.4 & v4.41. */ csd->structure = UNSTUFF_BITS(resp, 126, 2); if (csd->structure == 0) { printk(KERN_ERR "%s: unrecognised CSD structure version %d\n", mmc_hostname(card->host), csd->structure); return -EINVAL; } csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4); m = UNSTUFF_BITS(resp, 115, 4); e = UNSTUFF_BITS(resp, 112, 3); csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10; csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100; m = UNSTUFF_BITS(resp, 99, 4); e = UNSTUFF_BITS(resp, 96, 3); csd->max_dtr = tran_exp[e] * tran_mant[m]; csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); e = UNSTUFF_BITS(resp, 47, 3); m = UNSTUFF_BITS(resp, 62, 12); csd->capacity = (1 + m) << (e + 2); csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); csd->read_partial = UNSTUFF_BITS(resp, 79, 1); csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); csd->write_partial = UNSTUFF_BITS(resp, 21, 1); if (csd->write_blkbits >= 9) { a = UNSTUFF_BITS(resp, 42, 5); b = UNSTUFF_BITS(resp, 37, 5); csd->erase_size = (a + 1) * (b + 1); csd->erase_size <<= csd->write_blkbits - 9; } return 0; } /* * Read and decode extended CSD. */ static int mmc_read_ext_csd(struct mmc_card *card) { int err; u8 *ext_csd; BUG_ON(!card); if (card->csd.mmca_vsn < CSD_SPEC_VER_4) return 0; /* * As the ext_csd is so large and mostly unused, we don't store the * raw block in mmc_card. */ ext_csd = kmalloc(512, GFP_KERNEL); if (!ext_csd) { printk(KERN_ERR "%s: could not allocate a buffer to " "receive the ext_csd.\n", mmc_hostname(card->host)); return -ENOMEM; } err = mmc_send_ext_csd(card, ext_csd); if (err) { /* If the host or the card can't do the switch, * fail more gracefully. */ if ((err != -EINVAL) && (err != -ENOSYS) && (err != -EFAULT)) goto out; /* * High capacity cards should have this "magic" size * stored in their CSD. */ if (card->csd.capacity == (4096 * 512)) { printk(KERN_ERR "%s: unable to read EXT_CSD " "on a possible high capacity card. " "Card will be ignored.\n", mmc_hostname(card->host)); } else { printk(KERN_WARNING "%s: unable to read " "EXT_CSD, performance might " "suffer.\n", mmc_hostname(card->host)); err = 0; } goto out; } /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */ if (card->csd.structure == 3) { int ext_csd_struct = ext_csd[EXT_CSD_STRUCTURE]; if (ext_csd_struct > 2) { printk(KERN_ERR "%s: unrecognised EXT_CSD structure " "version %d\n", mmc_hostname(card->host), ext_csd_struct); err = -EINVAL; goto out; } } card->ext_csd.rev = ext_csd[EXT_CSD_REV]; if (card->ext_csd.rev > 5) { printk(KERN_ERR "%s: unrecognised EXT_CSD revision %d\n", mmc_hostname(card->host), card->ext_csd.rev); err = -EINVAL; goto out; } if (card->ext_csd.rev >= 2) { card->ext_csd.sectors = ext_csd[EXT_CSD_SEC_CNT + 0] << 0 | ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | ext_csd[EXT_CSD_SEC_CNT + 3] << 24; /* Cards with density > 2GiB are sector addressed */ if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512) mmc_card_set_blockaddr(card); } switch (ext_csd[EXT_CSD_CARD_TYPE] & EXT_CSD_CARD_TYPE_MASK) { case EXT_CSD_CARD_TYPE_DDR_52 | EXT_CSD_CARD_TYPE_52 | EXT_CSD_CARD_TYPE_26: card->ext_csd.hs_max_dtr = 52000000; card->ext_csd.card_type = EXT_CSD_CARD_TYPE_DDR_52; break; case EXT_CSD_CARD_TYPE_DDR_1_2V | EXT_CSD_CARD_TYPE_52 | EXT_CSD_CARD_TYPE_26: card->ext_csd.hs_max_dtr = 52000000; card->ext_csd.card_type = EXT_CSD_CARD_TYPE_DDR_1_2V; break; case EXT_CSD_CARD_TYPE_DDR_1_8V | EXT_CSD_CARD_TYPE_52 | EXT_CSD_CARD_TYPE_26: card->ext_csd.hs_max_dtr = 52000000; card->ext_csd.card_type = EXT_CSD_CARD_TYPE_DDR_1_8V; break; case EXT_CSD_CARD_TYPE_52 | EXT_CSD_CARD_TYPE_26: card->ext_csd.hs_max_dtr = 52000000; break; case EXT_CSD_CARD_TYPE_26: card->ext_csd.hs_max_dtr = 26000000; break; default: /* MMC v4 spec says this cannot happen */ printk(KERN_WARNING "%s: card is mmc v4 but doesn't " "support any high-speed modes.\n", mmc_hostname(card->host)); } if (card->ext_csd.rev >= 3) { u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT]; /* Sleep / awake timeout in 100ns units */ if (sa_shift > 0 && sa_shift <= 0x17) card->ext_csd.sa_timeout = 1 << ext_csd[EXT_CSD_S_A_TIMEOUT]; card->ext_csd.erase_group_def = ext_csd[EXT_CSD_ERASE_GROUP_DEF]; card->ext_csd.hc_erase_timeout = 300 * ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; card->ext_csd.hc_erase_size = ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10; } if (card->ext_csd.rev >= 4) { card->ext_csd.sec_trim_mult = ext_csd[EXT_CSD_SEC_TRIM_MULT]; card->ext_csd.sec_erase_mult = ext_csd[EXT_CSD_SEC_ERASE_MULT]; card->ext_csd.sec_feature_support = ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; card->ext_csd.trim_timeout = 300 * ext_csd[EXT_CSD_TRIM_MULT]; } if (ext_csd[EXT_CSD_ERASED_MEM_CONT]) card->erased_byte = 0xFF; else card->erased_byte = 0x0; out: kfree(ext_csd); return err; } MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], card->raw_cid[2], card->raw_cid[3]); MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], card->raw_csd[2], card->raw_csd[3]); MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev); MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); static struct attribute *mmc_std_attrs[] = { &dev_attr_cid.attr, &dev_attr_csd.attr, &dev_attr_date.attr, &dev_attr_erase_size.attr, &dev_attr_preferred_erase_size.attr, &dev_attr_fwrev.attr, &dev_attr_hwrev.attr, &dev_attr_manfid.attr, &dev_attr_name.attr, &dev_attr_oemid.attr, &dev_attr_serial.attr, NULL, }; static struct attribute_group mmc_std_attr_group = { .attrs = mmc_std_attrs, }; static const struct attribute_group *mmc_attr_groups[] = { &mmc_std_attr_group, NULL, }; static struct device_type mmc_type = { .groups = mmc_attr_groups, }; /* * Handle the detection and initialisation of a card. * * In the case of a resume, "oldcard" will contain the card * we're trying to reinitialise. */ static int mmc_init_card(struct mmc_host *host, u32 ocr, struct mmc_card *oldcard) { struct mmc_card *card; int err, ddr = 0; u32 cid[4]; unsigned int max_dtr; BUG_ON(!host); WARN_ON(!host->claimed); /* * Since we're changing the OCR value, we seem to * need to tell some cards to go back to the idle * state. We wait 1ms to give cards time to * respond. */ mmc_go_idle(host); /* The extra bit indicates that we support high capacity */ err = mmc_send_op_cond(host, ocr | (1 << 30), NULL); if (err) goto err; /* * For SPI, enable CRC as appropriate. */ if (mmc_host_is_spi(host)) { err = mmc_spi_set_crc(host, use_spi_crc); if (err) goto err; } /* * Fetch CID from card. */ if (mmc_host_is_spi(host)) err = mmc_send_cid(host, cid); else err = mmc_all_send_cid(host, cid); if (err) goto err; if (oldcard) { if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { err = -ENOENT; goto err; } card = oldcard; } else { /* * Allocate card structure. */ card = mmc_alloc_card(host, &mmc_type); if (IS_ERR(card)) { err = PTR_ERR(card); goto err; } card->type = MMC_TYPE_MMC; card->rca = 1; memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); } /* * For native busses: set card RCA and quit open drain mode. */ if (!mmc_host_is_spi(host)) { err = mmc_set_relative_addr(card); if (err) goto free_card; mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL); } if (!oldcard) { /* * Fetch CSD from card. */ err = mmc_send_csd(card, card->raw_csd); if (err) goto free_card; err = mmc_decode_csd(card); if (err) goto free_card; err = mmc_decode_cid(card); if (err) goto free_card; } /* * Select card, as all following commands rely on that. */ if (!mmc_host_is_spi(host)) { err = mmc_select_card(card); if (err) goto free_card; } if (!oldcard) { /* * Fetch and process extended CSD. */ err = mmc_read_ext_csd(card); if (err) goto free_card; /* Erase size depends on CSD and Extended CSD */ mmc_set_erase_size(card); } /* * Activate high speed (if supported) */ if ((card->ext_csd.hs_max_dtr != 0) && (host->caps & MMC_CAP_MMC_HIGHSPEED)) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1); if (err && err != -EBADMSG) goto free_card; if (err) { printk(KERN_WARNING "%s: switch to highspeed failed\n", mmc_hostname(card->host)); err = 0; } else { mmc_card_set_highspeed(card); mmc_set_timing(card->host, MMC_TIMING_MMC_HS); } } /* * Compute bus speed. */ max_dtr = (unsigned int)-1; if (mmc_card_highspeed(card)) { if (max_dtr > card->ext_csd.hs_max_dtr) max_dtr = card->ext_csd.hs_max_dtr; } else if (max_dtr > card->csd.max_dtr) { max_dtr = card->csd.max_dtr; } mmc_set_clock(host, max_dtr); /* * Indicate DDR mode (if supported). */ if (mmc_card_highspeed(card)) { if ((card->ext_csd.card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) && (host->caps & (MMC_CAP_1_8V_DDR))) ddr = MMC_1_8V_DDR_MODE; else if ((card->ext_csd.card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) && (host->caps & (MMC_CAP_1_2V_DDR))) ddr = MMC_1_2V_DDR_MODE; } /* * Activate wide bus and DDR (if supported). */ if ((card->csd.mmca_vsn >= CSD_SPEC_VER_4) && (host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) { unsigned ext_csd_bit, bus_width; if (host->caps & MMC_CAP_8_BIT_DATA) { if (ddr) ext_csd_bit = EXT_CSD_DDR_BUS_WIDTH_8; else ext_csd_bit = EXT_CSD_BUS_WIDTH_8; bus_width = MMC_BUS_WIDTH_8; } else { if (ddr) ext_csd_bit = EXT_CSD_DDR_BUS_WIDTH_4; else ext_csd_bit = EXT_CSD_BUS_WIDTH_4; bus_width = MMC_BUS_WIDTH_4; } err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, ext_csd_bit); if (err && err != -EBADMSG) goto free_card; if (err) { printk(KERN_WARNING "%s: switch to bus width %d ddr %d " "failed\n", mmc_hostname(card->host), 1 << bus_width, ddr); err = 0; } else { if (ddr) mmc_card_set_ddr_mode(card); else ddr = MMC_SDR_MODE; mmc_set_bus_width_ddr(card->host, bus_width, ddr); } } if (!oldcard) host->card = card; return 0; free_card: if (!oldcard) mmc_remove_card(card); err: return err; } /* * Host is being removed. Free up the current card. */ static void mmc_remove(struct mmc_host *host) { BUG_ON(!host); BUG_ON(!host->card); mmc_remove_card(host->card); host->card = NULL; } /* * Card detection callback from host. */ static void mmc_detect(struct mmc_host *host) { int err; BUG_ON(!host); BUG_ON(!host->card); mmc_claim_host(host); /* * Just check if our card has been removed. */ err = mmc_send_status(host->card, NULL); mmc_release_host(host); if (err) { mmc_remove(host); mmc_claim_host(host); mmc_detach_bus(host); mmc_release_host(host); } } /* * Suspend callback from host. */ static int mmc_suspend(struct mmc_host *host) { BUG_ON(!host); BUG_ON(!host->card); mmc_claim_host(host); if (!mmc_host_is_spi(host)) mmc_deselect_cards(host); host->card->state &= ~MMC_STATE_HIGHSPEED; mmc_release_host(host); return 0; } /* * Resume callback from host. * * This function tries to determine if the same card is still present * and, if so, restore all state to it. */ static int mmc_resume(struct mmc_host *host) { int err; BUG_ON(!host); BUG_ON(!host->card); mmc_claim_host(host); err = mmc_init_card(host, host->ocr, host->card); mmc_release_host(host); return err; } static int mmc_power_restore(struct mmc_host *host) { int ret; host->card->state &= ~MMC_STATE_HIGHSPEED; mmc_claim_host(host); ret = mmc_init_card(host, host->ocr, host->card); mmc_release_host(host); return ret; } static int mmc_sleep(struct mmc_host *host) { struct mmc_card *card = host->card; int err = -ENOSYS; if (card && card->ext_csd.rev >= 3) { err = mmc_card_sleepawake(host, 1); if (err < 0) pr_debug("%s: Error %d while putting card into sleep", mmc_hostname(host), err); } return err; } static int mmc_awake(struct mmc_host *host) { struct mmc_card *card = host->card; int err = -ENOSYS; if (card && card->ext_csd.rev >= 3) { err = mmc_card_sleepawake(host, 0); if (err < 0) pr_debug("%s: Error %d while awaking sleeping card", mmc_hostname(host), err); } return err; } static const struct mmc_bus_ops mmc_ops = { .awake = mmc_awake, .sleep = mmc_sleep, .remove = mmc_remove, .detect = mmc_detect, .suspend = NULL, .resume = NULL, .power_restore = mmc_power_restore, }; static const struct mmc_bus_ops mmc_ops_unsafe = { .awake = mmc_awake, .sleep = mmc_sleep, .remove = mmc_remove, .detect = mmc_detect, .suspend = mmc_suspend, .resume = mmc_resume, .power_restore = mmc_power_restore, }; static void mmc_attach_bus_ops(struct mmc_host *host) { const struct mmc_bus_ops *bus_ops; if (!mmc_card_is_removable(host)) bus_ops = &mmc_ops_unsafe; else bus_ops = &mmc_ops; mmc_attach_bus(host, bus_ops); } /* * Starting point for MMC card init. */ int mmc_attach_mmc(struct mmc_host *host, u32 ocr) { int err; BUG_ON(!host); WARN_ON(!host->claimed); mmc_attach_bus_ops(host); if (host->ocr_avail_mmc) host->ocr_avail = host->ocr_avail_mmc; /* * We need to get OCR a different way for SPI. */ if (mmc_host_is_spi(host)) { err = mmc_spi_read_ocr(host, 1, &ocr); if (err) goto err; } /* * Sanity check the voltages that the card claims to * support. */ if (ocr & 0x7F) { printk(KERN_WARNING "%s: card claims to support voltages " "below the defined range. These will be ignored.\n", mmc_hostname(host)); ocr &= ~0x7F; } host->ocr = mmc_select_voltage(host, ocr); /* * Can we support the voltage of the card? */ if (!host->ocr) { err = -EINVAL; goto err; } /* * Detect and init the card. */ err = mmc_init_card(host, host->ocr, NULL); if (err) goto err; mmc_release_host(host); err = mmc_add_card(host->card); if (err) goto remove_card; return 0; remove_card: mmc_remove_card(host->card); host->card = NULL; mmc_claim_host(host); err: mmc_detach_bus(host); mmc_release_host(host); printk(KERN_ERR "%s: error %d whilst initialising MMC card\n", mmc_hostname(host), err); return err; }