/* * SN Platform GRU Driver * * GRU DRIVER TABLES, MACROS, externs, etc * * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef __GRUTABLES_H__ #define __GRUTABLES_H__ /* * GRU Chiplet: * The GRU is a user addressible memory accelerator. It provides * several forms of load, store, memset, bcopy instructions. In addition, it * contains special instructions for AMOs, sending messages to message * queues, etc. * * The GRU is an integral part of the node controller. It connects * directly to the cpu socket. In its current implementation, there are 2 * GRU chiplets in the node controller on each blade (~node). * * The entire GRU memory space is fully coherent and cacheable by the cpus. * * Each GRU chiplet has a physical memory map that looks like the following: * * +-----------------+ * |/////////////////| * |/////////////////| * |/////////////////| * |/////////////////| * |/////////////////| * |/////////////////| * |/////////////////| * |/////////////////| * +-----------------+ * | system control | * +-----------------+ _______ +-------------+ * |/////////////////| / | | * |/////////////////| / | | * |/////////////////| / | instructions| * |/////////////////| / | | * |/////////////////| / | | * |/////////////////| / |-------------| * |/////////////////| / | | * +-----------------+ | | * | context 15 | | data | * +-----------------+ | | * | ...... | \ | | * +-----------------+ \____________ +-------------+ * | context 1 | * +-----------------+ * | context 0 | * +-----------------+ * * Each of the "contexts" is a chunk of memory that can be mmaped into user * space. The context consists of 2 parts: * * - an instruction space that can be directly accessed by the user * to issue GRU instructions and to check instruction status. * * - a data area that acts as normal RAM. * * User instructions contain virtual addresses of data to be accessed by the * GRU. The GRU contains a TLB that is used to convert these user virtual * addresses to physical addresses. * * The "system control" area of the GRU chiplet is used by the kernel driver * to manage user contexts and to perform functions such as TLB dropin and * purging. * * One context may be reserved for the kernel and used for cross-partition * communication. The GRU will also be used to asynchronously zero out * large blocks of memory (not currently implemented). * * * Tables: * * VDATA-VMA Data - Holds a few parameters. Head of linked list of * GTS tables for threads using the GSEG * GTS - Gru Thread State - contains info for managing a GSEG context. A * GTS is allocated for each thread accessing a * GSEG. * GTD - GRU Thread Data - contains shadow copy of GRU data when GSEG is * not loaded into a GRU * GMS - GRU Memory Struct - Used to manage TLB shootdowns. Tracks GRUs * where a GSEG has been loaded. Similar to * an mm_struct but for GRU. * * GS - GRU State - Used to manage the state of a GRU chiplet * BS - Blade State - Used to manage state of all GRU chiplets * on a blade * * * Normal task tables for task using GRU. * - 2 threads in process * - 2 GSEGs open in process * - GSEG1 is being used by both threads * - GSEG2 is used only by thread 2 * * task -->| * task ---+---> mm ->------ (notifier) -------+-> gms * | | * |--> vma -> vdata ---> gts--->| GSEG1 (thread1) * | | | * | +-> gts--->| GSEG1 (thread2) * | | * |--> vma -> vdata ---> gts--->| GSEG2 (thread2) * . * . * * GSEGs are marked DONTCOPY on fork * * At open * file.private_data -> NULL * * At mmap, * vma -> vdata * * After gseg reference * vma -> vdata ->gts * * After fork * parent * vma -> vdata -> gts * child * (vma is not copied) * */ #include #include #include #include #include #include "gru.h" #include "gruhandles.h" extern struct gru_stats_s gru_stats; extern struct gru_blade_state *gru_base[]; extern unsigned long gru_start_paddr, gru_end_paddr; extern unsigned int gru_max_gids; #define GRU_MAX_BLADES MAX_NUMNODES #define GRU_MAX_GRUS (GRU_MAX_BLADES * GRU_CHIPLETS_PER_BLADE) #define GRU_DRIVER_ID_STR "SGI GRU Device Driver" #define GRU_DRIVER_VERSION_STR "0.80" /* * GRU statistics. */ struct gru_stats_s { atomic_long_t vdata_alloc; atomic_long_t vdata_free; atomic_long_t gts_alloc; atomic_long_t gts_free; atomic_long_t vdata_double_alloc; atomic_long_t gts_double_allocate; atomic_long_t assign_context; atomic_long_t assign_context_failed; atomic_long_t free_context; atomic_long_t load_context; atomic_long_t unload_context; atomic_long_t steal_context; atomic_long_t steal_context_failed; atomic_long_t nopfn; atomic_long_t break_cow; atomic_long_t asid_new; atomic_long_t asid_next; atomic_long_t asid_wrap; atomic_long_t asid_reuse; atomic_long_t intr; atomic_long_t intr_mm_lock_failed; atomic_long_t call_os; atomic_long_t call_os_offnode_reference; atomic_long_t call_os_check_for_bug; atomic_long_t call_os_wait_queue; atomic_long_t user_flush_tlb; atomic_long_t user_unload_context; atomic_long_t user_exception; atomic_long_t set_task_slice; atomic_long_t migrate_check; atomic_long_t migrated_retarget; atomic_long_t migrated_unload; atomic_long_t migrated_unload_delay; atomic_long_t migrated_nopfn_retarget; atomic_long_t migrated_nopfn_unload; atomic_long_t tlb_dropin; atomic_long_t tlb_dropin_fail_no_asid; atomic_long_t tlb_dropin_fail_upm; atomic_long_t tlb_dropin_fail_invalid; atomic_long_t tlb_dropin_fail_range_active; atomic_long_t tlb_dropin_fail_idle; atomic_long_t tlb_dropin_fail_fmm; atomic_long_t tlb_dropin_fail_no_exception; atomic_long_t tlb_dropin_fail_no_exception_war; atomic_long_t mmu_invalidate_range; atomic_long_t mmu_invalidate_page; atomic_long_t mmu_clear_flush_young; atomic_long_t flush_tlb; atomic_long_t flush_tlb_gru; atomic_long_t flush_tlb_gru_tgh; atomic_long_t flush_tlb_gru_zero_asid; atomic_long_t copy_gpa; atomic_long_t mesq_receive; atomic_long_t mesq_receive_none; atomic_long_t mesq_send; atomic_long_t mesq_send_failed; atomic_long_t mesq_noop; atomic_long_t mesq_send_unexpected_error; atomic_long_t mesq_send_lb_overflow; atomic_long_t mesq_send_qlimit_reached; atomic_long_t mesq_send_amo_nacked; atomic_long_t mesq_send_put_nacked; atomic_long_t mesq_qf_not_full; atomic_long_t mesq_qf_locked; atomic_long_t mesq_qf_noop_not_full; atomic_long_t mesq_qf_switch_head_failed; atomic_long_t mesq_qf_unexpected_error; atomic_long_t mesq_noop_unexpected_error; atomic_long_t mesq_noop_lb_overflow; atomic_long_t mesq_noop_qlimit_reached; atomic_long_t mesq_noop_amo_nacked; atomic_long_t mesq_noop_put_nacked; }; enum mcs_op {cchop_allocate, cchop_start, cchop_interrupt, cchop_interrupt_sync, cchop_deallocate, tghop_invalidate, mcsop_last}; struct mcs_op_statistic { atomic_long_t count; atomic_long_t total; unsigned long max; }; extern struct mcs_op_statistic mcs_op_statistics[mcsop_last]; #define OPT_DPRINT 1 #define OPT_STATS 2 #define GRU_QUICKLOOK 4 #define IRQ_GRU 110 /* Starting IRQ number for interrupts */ /* Delay in jiffies between attempts to assign a GRU context */ #define GRU_ASSIGN_DELAY ((HZ * 20) / 1000) /* * If a process has it's context stolen, min delay in jiffies before trying to * steal a context from another process. */ #define GRU_STEAL_DELAY ((HZ * 200) / 1000) #define STAT(id) do { \ if (gru_options & OPT_STATS) \ atomic_long_inc(&gru_stats.id); \ } while (0) #ifdef CONFIG_SGI_GRU_DEBUG #define gru_dbg(dev, fmt, x...) \ do { \ if (gru_options & OPT_DPRINT) \ dev_dbg(dev, "%s: " fmt, __func__, x); \ } while (0) #else #define gru_dbg(x...) #endif /*----------------------------------------------------------------------------- * ASID management */ #define MAX_ASID 0xfffff0 #define MIN_ASID 8 #define ASID_INC 8 /* number of regions */ /* Generate a GRU asid value from a GRU base asid & a virtual address. */ #if defined CONFIG_IA64 #define VADDR_HI_BIT 64 #elif defined CONFIG_X86_64 #define VADDR_HI_BIT 48 #else #error "Unsupported architecture" #endif #define GRUREGION(addr) ((addr) >> (VADDR_HI_BIT - 3) & 3) #define GRUASID(asid, addr) ((asid) + GRUREGION(addr)) /*------------------------------------------------------------------------------ * File & VMS Tables */ struct gru_state; /* * This structure is pointed to from the mmstruct via the notifier pointer. * There is one of these per address space. */ struct gru_mm_tracker { /* pack to reduce size */ unsigned int mt_asid_gen:24; /* ASID wrap count */ unsigned int mt_asid:24; /* current base ASID for gru */ unsigned short mt_ctxbitmap:16;/* bitmap of contexts using asid */ } __attribute__ ((packed)); struct gru_mm_struct { struct mmu_notifier ms_notifier; atomic_t ms_refcnt; spinlock_t ms_asid_lock; /* protects ASID assignment */ atomic_t ms_range_active;/* num range_invals active */ char ms_released; wait_queue_head_t ms_wait_queue; DECLARE_BITMAP(ms_asidmap, GRU_MAX_GRUS); struct gru_mm_tracker ms_asids[GRU_MAX_GRUS]; }; /* * One of these structures is allocated when a GSEG is mmaped. The * structure is pointed to by the vma->vm_private_data field in the vma struct. */ struct gru_vma_data { spinlock_t vd_lock; /* Serialize access to vma */ struct list_head vd_head; /* head of linked list of gts */ long vd_user_options;/* misc user option flags */ int vd_cbr_au_count; int vd_dsr_au_count; }; /* * One of these is allocated for each thread accessing a mmaped GRU. A linked * list of these structure is hung off the struct gru_vma_data in the mm_struct. */ struct gru_thread_state { struct list_head ts_next; /* list - head at vma-private */ struct mutex ts_ctxlock; /* load/unload CTX lock */ struct mm_struct *ts_mm; /* mm currently mapped to context */ struct vm_area_struct *ts_vma; /* vma of GRU context */ struct gru_state *ts_gru; /* GRU where the context is loaded */ struct gru_mm_struct *ts_gms; /* asid & ioproc struct */ unsigned long ts_cbr_map; /* map of allocated CBRs */ unsigned long ts_dsr_map; /* map of allocated DATA resources */ unsigned long ts_steal_jiffies;/* jiffies when context last stolen */ long ts_user_options;/* misc user option flags */ pid_t ts_tgid_owner; /* task that is using the context - for migration */ unsigned short ts_sizeavail; /* Pagesizes in use */ int ts_tsid; /* thread that owns the structure */ int ts_tlb_int_select;/* target cpu if interrupts enabled */ int ts_ctxnum; /* context number where the context is loaded */ atomic_t ts_refcnt; /* reference count GTS */ unsigned char ts_dsr_au_count;/* Number of DSR resources required for contest */ unsigned char ts_cbr_au_count;/* Number of CBR resources required for contest */ char ts_blade; /* If >= 0, migrate context if ref from diferent blade */ char ts_force_cch_reload; char ts_force_unload;/* force context to be unloaded after migration */ char ts_cbr_idx[GRU_CBR_AU];/* CBR numbers of each allocated CB */ unsigned long ts_gdata[0]; /* save area for GRU data (CB, DS, CBE) */ }; /* * Threaded programs actually allocate an array of GSEGs when a context is * created. Each thread uses a separate GSEG. TSID is the index into the GSEG * array. */ #define TSID(a, v) (((a) - (v)->vm_start) / GRU_GSEG_PAGESIZE) #define UGRUADDR(gts) ((gts)->ts_vma->vm_start + \ (gts)->ts_tsid * GRU_GSEG_PAGESIZE) #define NULLCTX (-1) /* if context not loaded into GRU */ /*----------------------------------------------------------------------------- * GRU State Tables */ /* * One of these exists for each GRU chiplet. */ struct gru_state { struct gru_blade_state *gs_blade; /* GRU state for entire blade */ unsigned long gs_gru_base_paddr; /* Physical address of gru segments (64) */ void *gs_gru_base_vaddr; /* Virtual address of gru segments (64) */ unsigned short gs_gid; /* unique GRU number */ unsigned short gs_blade_id; /* blade of GRU */ unsigned char gs_tgh_local_shift; /* used to pick TGH for local flush */ unsigned char gs_tgh_first_remote; /* starting TGH# for remote flush */ spinlock_t gs_asid_lock; /* lock used for assigning asids */ spinlock_t gs_lock; /* lock used for assigning contexts */ /* -- the following are protected by the gs_asid_lock spinlock ---- */ unsigned int gs_asid; /* Next availe ASID */ unsigned int gs_asid_limit; /* Limit of available ASIDs */ unsigned int gs_asid_gen; /* asid generation. Inc on wrap */ /* --- the following fields are protected by the gs_lock spinlock --- */ unsigned long gs_context_map; /* bitmap to manage contexts in use */ unsigned long gs_cbr_map; /* bitmap to manage CB resources */ unsigned long gs_dsr_map; /* bitmap used to manage DATA resources */ unsigned int gs_reserved_cbrs; /* Number of kernel- reserved cbrs */ unsigned int gs_reserved_dsr_bytes; /* Bytes of kernel- reserved dsrs */ unsigned short gs_active_contexts; /* number of contexts in use */ struct gru_thread_state *gs_gts[GRU_NUM_CCH]; /* GTS currently using the context */ }; /* * This structure contains the GRU state for all the GRUs on a blade. */ struct gru_blade_state { void *kernel_cb; /* First kernel reserved cb */ void *kernel_dsr; /* First kernel reserved DSR */ /* ---- the following are protected by the bs_lock spinlock ---- */ spinlock_t bs_lock; /* lock used for stealing contexts */ int bs_lru_ctxnum; /* STEAL - last context stolen */ struct gru_state *bs_lru_gru; /* STEAL - last gru stolen */ struct gru_state bs_grus[GRU_CHIPLETS_PER_BLADE]; }; /*----------------------------------------------------------------------------- * Address Primitives */ #define get_tfm_for_cpu(g, c) \ ((struct gru_tlb_fault_map *)get_tfm((g)->gs_gru_base_vaddr, (c))) #define get_tfh_by_index(g, i) \ ((struct gru_tlb_fault_handle *)get_tfh((g)->gs_gru_base_vaddr, (i))) #define get_tgh_by_index(g, i) \ ((struct gru_tlb_global_handle *)get_tgh((g)->gs_gru_base_vaddr, (i))) #define get_cbe_by_index(g, i) \ ((struct gru_control_block_extended *)get_cbe((g)->gs_gru_base_vaddr,\ (i))) /*----------------------------------------------------------------------------- * Useful Macros */ /* Given a blade# & chiplet#, get a pointer to the GRU */ #define get_gru(b, c) (&gru_base[b]->bs_grus[c]) /* Number of bytes to save/restore when unloading/loading GRU contexts */ #define DSR_BYTES(dsr) ((dsr) * GRU_DSR_AU_BYTES) #define CBR_BYTES(cbr) ((cbr) * GRU_HANDLE_BYTES * GRU_CBR_AU_SIZE * 2) /* Convert a user CB number to the actual CBRNUM */ #define thread_cbr_number(gts, n) ((gts)->ts_cbr_idx[(n) / GRU_CBR_AU_SIZE] \ * GRU_CBR_AU_SIZE + (n) % GRU_CBR_AU_SIZE) /* Convert a gid to a pointer to the GRU */ #define GID_TO_GRU(gid) \ (gru_base[(gid) / GRU_CHIPLETS_PER_BLADE] ? \ (&gru_base[(gid) / GRU_CHIPLETS_PER_BLADE]-> \ bs_grus[(gid) % GRU_CHIPLETS_PER_BLADE]) : \ NULL) /* Scan all active GRUs in a GRU bitmap */ #define for_each_gru_in_bitmap(gid, map) \ for ((gid) = find_first_bit((map), GRU_MAX_GRUS); (gid) < GRU_MAX_GRUS;\ (gid)++, (gid) = find_next_bit((map), GRU_MAX_GRUS, (gid))) /* Scan all active GRUs on a specific blade */ #define for_each_gru_on_blade(gru, nid, i) \ for ((gru) = gru_base[nid]->bs_grus, (i) = 0; \ (i) < GRU_CHIPLETS_PER_BLADE; \ (i)++, (gru)++) /* Scan all GRUs */ #define foreach_gid(gid) \ for ((gid) = 0; (gid) < gru_max_gids; (gid)++) /* Scan all active GTSs on a gru. Note: must hold ss_lock to use this macro. */ #define for_each_gts_on_gru(gts, gru, ctxnum) \ for ((ctxnum) = 0; (ctxnum) < GRU_NUM_CCH; (ctxnum)++) \ if (((gts) = (gru)->gs_gts[ctxnum])) /* Scan each CBR whose bit is set in a TFM (or copy of) */ #define for_each_cbr_in_tfm(i, map) \ for ((i) = find_first_bit(map, GRU_NUM_CBE); \ (i) < GRU_NUM_CBE; \ (i)++, (i) = find_next_bit(map, GRU_NUM_CBE, i)) /* Scan each CBR in a CBR bitmap. Note: multiple CBRs in an allocation unit */ #define for_each_cbr_in_allocation_map(i, map, k) \ for ((k) = find_first_bit(map, GRU_CBR_AU); (k) < GRU_CBR_AU; \ (k) = find_next_bit(map, GRU_CBR_AU, (k) + 1)) \ for ((i) = (k)*GRU_CBR_AU_SIZE; \ (i) < ((k) + 1) * GRU_CBR_AU_SIZE; (i)++) /* Scan each DSR in a DSR bitmap. Note: multiple DSRs in an allocation unit */ #define for_each_dsr_in_allocation_map(i, map, k) \ for ((k) = find_first_bit((const unsigned long *)map, GRU_DSR_AU);\ (k) < GRU_DSR_AU; \ (k) = find_next_bit((const unsigned long *)map, \ GRU_DSR_AU, (k) + 1)) \ for ((i) = (k) * GRU_DSR_AU_CL; \ (i) < ((k) + 1) * GRU_DSR_AU_CL; (i)++) #define gseg_physical_address(gru, ctxnum) \ ((gru)->gs_gru_base_paddr + ctxnum * GRU_GSEG_STRIDE) #define gseg_virtual_address(gru, ctxnum) \ ((gru)->gs_gru_base_vaddr + ctxnum * GRU_GSEG_STRIDE) /*----------------------------------------------------------------------------- * Lock / Unlock GRU handles * Use the "delresp" bit in the handle as a "lock" bit. */ /* Lock hierarchy checking enabled only in emulator */ static inline void __lock_handle(void *h) { while (test_and_set_bit(1, h)) cpu_relax(); } static inline void __unlock_handle(void *h) { clear_bit(1, h); } static inline void lock_cch_handle(struct gru_context_configuration_handle *cch) { __lock_handle(cch); } static inline void unlock_cch_handle(struct gru_context_configuration_handle *cch) { __unlock_handle(cch); } static inline void lock_tgh_handle(struct gru_tlb_global_handle *tgh) { __lock_handle(tgh); } static inline void unlock_tgh_handle(struct gru_tlb_global_handle *tgh) { __unlock_handle(tgh); } /*----------------------------------------------------------------------------- * Function prototypes & externs */ struct gru_unload_context_req; extern struct vm_operations_struct gru_vm_ops; extern struct device *grudev; extern struct gru_vma_data *gru_alloc_vma_data(struct vm_area_struct *vma, int tsid); extern struct gru_thread_state *gru_find_thread_state(struct vm_area_struct *vma, int tsid); extern struct gru_thread_state *gru_alloc_thread_state(struct vm_area_struct *vma, int tsid); extern void gru_unload_context(struct gru_thread_state *gts, int savestate); extern int gru_update_cch(struct gru_thread_state *gts, int force_unload); extern void gts_drop(struct gru_thread_state *gts); extern void gru_tgh_flush_init(struct gru_state *gru); extern int gru_kservices_init(struct gru_state *gru); extern void gru_kservices_exit(struct gru_state *gru); extern irqreturn_t gru_intr(int irq, void *dev_id); extern int gru_handle_user_call_os(unsigned long address); extern int gru_user_flush_tlb(unsigned long arg); extern int gru_user_unload_context(unsigned long arg); extern int gru_get_exception_detail(unsigned long arg); extern int gru_set_task_slice(long address); extern int gru_cpu_fault_map_id(void); extern struct vm_area_struct *gru_find_vma(unsigned long vaddr); extern void gru_flush_all_tlb(struct gru_state *gru); extern int gru_proc_init(void); extern void gru_proc_exit(void); extern unsigned long gru_reserve_cb_resources(struct gru_state *gru, int cbr_au_count, char *cbmap); extern unsigned long gru_reserve_ds_resources(struct gru_state *gru, int dsr_au_count, char *dsmap); extern int gru_fault(struct vm_area_struct *, struct vm_fault *vmf); extern struct gru_mm_struct *gru_register_mmu_notifier(void); extern void gru_drop_mmu_notifier(struct gru_mm_struct *gms); extern void gru_flush_tlb_range(struct gru_mm_struct *gms, unsigned long start, unsigned long len); extern unsigned long gru_options; #endif /* __GRUTABLES_H__ */