/* * acpi_power.c - ACPI Bus Power Management ($Revision: 39 $) * * Copyright (C) 2001, 2002 Andy Grover * Copyright (C) 2001, 2002 Paul Diefenbaugh * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ /* * ACPI power-managed devices may be controlled in two ways: * 1. via "Device Specific (D-State) Control" * 2. via "Power Resource Control". * This module is used to manage devices relying on Power Resource Control. * * An ACPI "power resource object" describes a software controllable power * plane, clock plane, or other resource used by a power managed device. * A device may rely on multiple power resources, and a power resource * may be shared by multiple devices. */ #include #include #include #include #include #include #include #include #include "sleep.h" #include "internal.h" #define PREFIX "ACPI: " #define _COMPONENT ACPI_POWER_COMPONENT ACPI_MODULE_NAME("power"); #define ACPI_POWER_CLASS "power_resource" #define ACPI_POWER_DEVICE_NAME "Power Resource" #define ACPI_POWER_FILE_INFO "info" #define ACPI_POWER_FILE_STATUS "state" #define ACPI_POWER_RESOURCE_STATE_OFF 0x00 #define ACPI_POWER_RESOURCE_STATE_ON 0x01 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF struct acpi_power_dependent_device { struct list_head node; struct acpi_device *adev; struct work_struct work; }; struct acpi_power_resource { struct acpi_device device; struct list_head list_node; struct list_head dependent; char *name; u32 system_level; u32 order; unsigned int ref_count; struct mutex resource_lock; }; struct acpi_power_resource_entry { struct list_head node; struct acpi_power_resource *resource; }; static LIST_HEAD(acpi_power_resource_list); static DEFINE_MUTEX(power_resource_list_lock); /* -------------------------------------------------------------------------- Power Resource Management -------------------------------------------------------------------------- */ static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle) { struct acpi_device *device; if (acpi_bus_get_device(handle, &device)) return NULL; return container_of(device, struct acpi_power_resource, device); } void acpi_power_resources_list_add(acpi_handle handle, struct list_head *list) { struct acpi_power_resource *resource = acpi_power_get_context(handle); struct acpi_power_resource_entry *entry; if (!resource || !list) return; entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (!entry) return; entry->resource = resource; if (!list_empty(list)) { struct acpi_power_resource_entry *e; list_for_each_entry(e, list, node) if (e->resource->order > resource->order) { list_add_tail(&entry->node, &e->node); return; } } list_add_tail(&entry->node, list); } void acpi_power_resources_list_free(struct list_head *list) { struct acpi_power_resource_entry *entry, *e; list_for_each_entry_safe(entry, e, list, node) { list_del(&entry->node); kfree(entry); } } static int acpi_power_get_state(acpi_handle handle, int *state) { acpi_status status = AE_OK; unsigned long long sta = 0; char node_name[5]; struct acpi_buffer buffer = { sizeof(node_name), node_name }; if (!handle || !state) return -EINVAL; status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); if (ACPI_FAILURE(status)) return -ENODEV; *state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON: ACPI_POWER_RESOURCE_STATE_OFF; acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer); ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n", node_name, *state ? "on" : "off")); return 0; } static int acpi_power_get_list_state(struct list_head *list, int *state) { struct acpi_power_resource_entry *entry; int cur_state; if (!list || !state) return -EINVAL; /* The state of the list is 'on' IFF all resources are 'on'. */ list_for_each_entry(entry, list, node) { struct acpi_power_resource *resource = entry->resource; acpi_handle handle = resource->device.handle; int result; mutex_lock(&resource->resource_lock); result = acpi_power_get_state(handle, &cur_state); mutex_unlock(&resource->resource_lock); if (result) return result; if (cur_state != ACPI_POWER_RESOURCE_STATE_ON) break; } ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n", cur_state ? "on" : "off")); *state = cur_state; return 0; } static void acpi_power_resume_dependent(struct work_struct *work) { struct acpi_power_dependent_device *dep; struct acpi_device_physical_node *pn; struct acpi_device *adev; int state; dep = container_of(work, struct acpi_power_dependent_device, work); adev = dep->adev; if (acpi_power_get_inferred_state(adev, &state)) return; if (state > ACPI_STATE_D0) return; mutex_lock(&adev->physical_node_lock); list_for_each_entry(pn, &adev->physical_node_list, node) pm_request_resume(pn->dev); list_for_each_entry(pn, &adev->power_dependent, node) pm_request_resume(pn->dev); mutex_unlock(&adev->physical_node_lock); } static int __acpi_power_on(struct acpi_power_resource *resource) { acpi_status status = AE_OK; status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL); if (ACPI_FAILURE(status)) return -ENODEV; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n", resource->name)); return 0; } static int acpi_power_on(struct acpi_power_resource *resource) { int result = 0;; mutex_lock(&resource->resource_lock); if (resource->ref_count++) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] already on", resource->name)); } else { result = __acpi_power_on(resource); if (result) { resource->ref_count--; } else { struct acpi_power_dependent_device *dep; list_for_each_entry(dep, &resource->dependent, node) schedule_work(&dep->work); } } mutex_unlock(&resource->resource_lock); return result; } static int acpi_power_off(struct acpi_power_resource *resource) { acpi_status status = AE_OK; int result = 0; mutex_lock(&resource->resource_lock); if (!resource->ref_count) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] already off", resource->name)); goto unlock; } if (--resource->ref_count) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] still in use\n", resource->name)); goto unlock; } status = acpi_evaluate_object(resource->device.handle, "_OFF", NULL, NULL); if (ACPI_FAILURE(status)) result = -ENODEV; else ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned off\n", resource->name)); unlock: mutex_unlock(&resource->resource_lock); return result; } static int acpi_power_off_list(struct list_head *list) { struct acpi_power_resource_entry *entry; int result = 0; list_for_each_entry_reverse(entry, list, node) { result = acpi_power_off(entry->resource); if (result) goto err; } return 0; err: list_for_each_entry_continue(entry, list, node) acpi_power_on(entry->resource); return result; } static int acpi_power_on_list(struct list_head *list) { struct acpi_power_resource_entry *entry; int result = 0; list_for_each_entry(entry, list, node) { result = acpi_power_on(entry->resource); if (result) goto err; } return 0; err: list_for_each_entry_continue_reverse(entry, list, node) acpi_power_off(entry->resource); return result; } static void acpi_power_add_dependent(struct acpi_power_resource *resource, struct acpi_device *adev) { struct acpi_power_dependent_device *dep; mutex_lock(&resource->resource_lock); list_for_each_entry(dep, &resource->dependent, node) if (dep->adev == adev) goto out; dep = kzalloc(sizeof(*dep), GFP_KERNEL); if (!dep) goto out; dep->adev = adev; INIT_WORK(&dep->work, acpi_power_resume_dependent); list_add_tail(&dep->node, &resource->dependent); out: mutex_unlock(&resource->resource_lock); } static void acpi_power_remove_dependent(struct acpi_power_resource *resource, struct acpi_device *adev) { struct acpi_power_dependent_device *dep; struct work_struct *work = NULL; mutex_lock(&resource->resource_lock); list_for_each_entry(dep, &resource->dependent, node) if (dep->adev == adev) { list_del(&dep->node); work = &dep->work; break; } mutex_unlock(&resource->resource_lock); if (work) { cancel_work_sync(work); kfree(dep); } } void acpi_power_add_remove_device(struct acpi_device *adev, bool add) { if (adev->power.flags.power_resources) { struct acpi_device_power_state *ps; struct acpi_power_resource_entry *entry; ps = &adev->power.states[ACPI_STATE_D0]; list_for_each_entry(entry, &ps->resources, node) { struct acpi_power_resource *resource = entry->resource; if (add) acpi_power_add_dependent(resource, adev); else acpi_power_remove_dependent(resource, adev); } } } /* -------------------------------------------------------------------------- Device Power Management -------------------------------------------------------------------------- */ /** * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in * ACPI 3.0) _PSW (Power State Wake) * @dev: Device to handle. * @enable: 0 - disable, 1 - enable the wake capabilities of the device. * @sleep_state: Target sleep state of the system. * @dev_state: Target power state of the device. * * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power * State Wake) for the device, if present. On failure reset the device's * wakeup.flags.valid flag. * * RETURN VALUE: * 0 if either _DSW or _PSW has been successfully executed * 0 if neither _DSW nor _PSW has been found * -ENODEV if the execution of either _DSW or _PSW has failed */ int acpi_device_sleep_wake(struct acpi_device *dev, int enable, int sleep_state, int dev_state) { union acpi_object in_arg[3]; struct acpi_object_list arg_list = { 3, in_arg }; acpi_status status = AE_OK; /* * Try to execute _DSW first. * * Three agruments are needed for the _DSW object: * Argument 0: enable/disable the wake capabilities * Argument 1: target system state * Argument 2: target device state * When _DSW object is called to disable the wake capabilities, maybe * the first argument is filled. The values of the other two agruments * are meaningless. */ in_arg[0].type = ACPI_TYPE_INTEGER; in_arg[0].integer.value = enable; in_arg[1].type = ACPI_TYPE_INTEGER; in_arg[1].integer.value = sleep_state; in_arg[2].type = ACPI_TYPE_INTEGER; in_arg[2].integer.value = dev_state; status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL); if (ACPI_SUCCESS(status)) { return 0; } else if (status != AE_NOT_FOUND) { printk(KERN_ERR PREFIX "_DSW execution failed\n"); dev->wakeup.flags.valid = 0; return -ENODEV; } /* Execute _PSW */ arg_list.count = 1; in_arg[0].integer.value = enable; status = acpi_evaluate_object(dev->handle, "_PSW", &arg_list, NULL); if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) { printk(KERN_ERR PREFIX "_PSW execution failed\n"); dev->wakeup.flags.valid = 0; return -ENODEV; } return 0; } /* * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229): * 1. Power on the power resources required for the wakeup device * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power * State Wake) for the device, if present */ int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state) { int err = 0; if (!dev || !dev->wakeup.flags.valid) return -EINVAL; mutex_lock(&acpi_device_lock); if (dev->wakeup.prepare_count++) goto out; err = acpi_power_on_list(&dev->wakeup.resources); if (err) { dev_err(&dev->dev, "Cannot turn wakeup power resources on\n"); dev->wakeup.flags.valid = 0; } else { /* * Passing 3 as the third argument below means the device may be * put into arbitrary power state afterward. */ err = acpi_device_sleep_wake(dev, 1, sleep_state, 3); } if (err) dev->wakeup.prepare_count = 0; out: mutex_unlock(&acpi_device_lock); return err; } /* * Shutdown a wakeup device, counterpart of above method * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power * State Wake) for the device, if present * 2. Shutdown down the power resources */ int acpi_disable_wakeup_device_power(struct acpi_device *dev) { int err = 0; if (!dev || !dev->wakeup.flags.valid) return -EINVAL; mutex_lock(&acpi_device_lock); if (--dev->wakeup.prepare_count > 0) goto out; /* * Executing the code below even if prepare_count is already zero when * the function is called may be useful, for example for initialisation. */ if (dev->wakeup.prepare_count < 0) dev->wakeup.prepare_count = 0; err = acpi_device_sleep_wake(dev, 0, 0, 0); if (err) goto out; err = acpi_power_off_list(&dev->wakeup.resources); if (err) { dev_err(&dev->dev, "Cannot turn wakeup power resources off\n"); dev->wakeup.flags.valid = 0; } out: mutex_unlock(&acpi_device_lock); return err; } int acpi_power_get_inferred_state(struct acpi_device *device, int *state) { int result = 0; int list_state = 0; int i = 0; if (!device || !state) return -EINVAL; /* * We know a device's inferred power state when all the resources * required for a given D-state are 'on'. */ for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { struct list_head *list = &device->power.states[i].resources; if (list_empty(list)) continue; result = acpi_power_get_list_state(list, &list_state); if (result) return result; if (list_state == ACPI_POWER_RESOURCE_STATE_ON) { *state = i; return 0; } } *state = ACPI_STATE_D3; return 0; } int acpi_power_on_resources(struct acpi_device *device, int state) { if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_COLD) return -EINVAL; if (state == ACPI_STATE_D3_COLD) return 0; return acpi_power_on_list(&device->power.states[state].resources); } int acpi_power_transition(struct acpi_device *device, int state) { int result = 0; if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD)) return -EINVAL; if (device->power.state == state || !device->flags.power_manageable) return 0; if ((device->power.state < ACPI_STATE_D0) || (device->power.state > ACPI_STATE_D3_COLD)) return -ENODEV; /* TBD: Resources must be ordered. */ /* * First we reference all power resources required in the target list * (e.g. so the device doesn't lose power while transitioning). Then, * we dereference all power resources used in the current list. */ if (state < ACPI_STATE_D3_COLD) result = acpi_power_on_list( &device->power.states[state].resources); if (!result && device->power.state < ACPI_STATE_D3_COLD) acpi_power_off_list( &device->power.states[device->power.state].resources); /* We shouldn't change the state unless the above operations succeed. */ device->power.state = result ? ACPI_STATE_UNKNOWN : state; return result; } static void acpi_release_power_resource(struct device *dev) { struct acpi_device *device = to_acpi_device(dev); struct acpi_power_resource *resource; resource = container_of(device, struct acpi_power_resource, device); mutex_lock(&power_resource_list_lock); list_del(&resource->list_node); mutex_unlock(&power_resource_list_lock); acpi_free_ids(device); kfree(resource); } void acpi_add_power_resource(acpi_handle handle) { struct acpi_power_resource *resource; struct acpi_device *device = NULL; union acpi_object acpi_object; struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object }; acpi_status status; int state, result = -ENODEV; acpi_bus_get_device(handle, &device); if (device) return; resource = kzalloc(sizeof(*resource), GFP_KERNEL); if (!resource) return; device = &resource->device; acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER, ACPI_STA_DEFAULT); mutex_init(&resource->resource_lock); INIT_LIST_HEAD(&resource->dependent); resource->name = device->pnp.bus_id; strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME); strcpy(acpi_device_class(device), ACPI_POWER_CLASS); device->power.state = ACPI_STATE_UNKNOWN; /* Evalute the object to get the system level and resource order. */ status = acpi_evaluate_object(handle, NULL, NULL, &buffer); if (ACPI_FAILURE(status)) goto err; resource->system_level = acpi_object.power_resource.system_level; resource->order = acpi_object.power_resource.resource_order; result = acpi_power_get_state(handle, &state); if (result) goto err; printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device), acpi_device_bid(device), state ? "on" : "off"); device->flags.match_driver = true; result = acpi_device_register(device, acpi_release_power_resource); if (result) goto err; mutex_lock(&power_resource_list_lock); list_add(&resource->list_node, &acpi_power_resource_list); mutex_unlock(&power_resource_list_lock); return; err: acpi_release_power_resource(&device->dev); } #ifdef CONFIG_ACPI_SLEEP void acpi_resume_power_resources(void) { struct acpi_power_resource *resource; mutex_lock(&power_resource_list_lock); list_for_each_entry(resource, &acpi_power_resource_list, list_node) { int result, state; mutex_lock(&resource->resource_lock); result = acpi_power_get_state(resource->device.handle, &state); if (!result && state == ACPI_POWER_RESOURCE_STATE_OFF && resource->ref_count) { dev_info(&resource->device.dev, "Turning ON\n"); __acpi_power_on(resource); } mutex_unlock(&resource->resource_lock); } mutex_unlock(&power_resource_list_lock); } #endif