diff options
Diffstat (limited to 'mm/memory.c')
-rw-r--r-- | mm/memory.c | 50 |
1 files changed, 50 insertions, 0 deletions
diff --git a/mm/memory.c b/mm/memory.c index 4126dd16778c..891bad0613f4 100644 --- a/mm/memory.c +++ b/mm/memory.c | |||
@@ -1360,6 +1360,56 @@ int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | |||
1360 | return i; | 1360 | return i; |
1361 | } | 1361 | } |
1362 | 1362 | ||
1363 | /** | ||
1364 | * get_user_pages() - pin user pages in memory | ||
1365 | * @tsk: task_struct of target task | ||
1366 | * @mm: mm_struct of target mm | ||
1367 | * @start: starting user address | ||
1368 | * @len: number of pages from start to pin | ||
1369 | * @write: whether pages will be written to by the caller | ||
1370 | * @force: whether to force write access even if user mapping is | ||
1371 | * readonly. This will result in the page being COWed even | ||
1372 | * in MAP_SHARED mappings. You do not want this. | ||
1373 | * @pages: array that receives pointers to the pages pinned. | ||
1374 | * Should be at least nr_pages long. Or NULL, if caller | ||
1375 | * only intends to ensure the pages are faulted in. | ||
1376 | * @vmas: array of pointers to vmas corresponding to each page. | ||
1377 | * Or NULL if the caller does not require them. | ||
1378 | * | ||
1379 | * Returns number of pages pinned. This may be fewer than the number | ||
1380 | * requested. If len is 0 or negative, returns 0. If no pages | ||
1381 | * were pinned, returns -errno. Each page returned must be released | ||
1382 | * with a put_page() call when it is finished with. vmas will only | ||
1383 | * remain valid while mmap_sem is held. | ||
1384 | * | ||
1385 | * Must be called with mmap_sem held for read or write. | ||
1386 | * | ||
1387 | * get_user_pages walks a process's page tables and takes a reference to | ||
1388 | * each struct page that each user address corresponds to at a given | ||
1389 | * instant. That is, it takes the page that would be accessed if a user | ||
1390 | * thread accesses the given user virtual address at that instant. | ||
1391 | * | ||
1392 | * This does not guarantee that the page exists in the user mappings when | ||
1393 | * get_user_pages returns, and there may even be a completely different | ||
1394 | * page there in some cases (eg. if mmapped pagecache has been invalidated | ||
1395 | * and subsequently re faulted). However it does guarantee that the page | ||
1396 | * won't be freed completely. And mostly callers simply care that the page | ||
1397 | * contains data that was valid *at some point in time*. Typically, an IO | ||
1398 | * or similar operation cannot guarantee anything stronger anyway because | ||
1399 | * locks can't be held over the syscall boundary. | ||
1400 | * | ||
1401 | * If write=0, the page must not be written to. If the page is written to, | ||
1402 | * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called | ||
1403 | * after the page is finished with, and before put_page is called. | ||
1404 | * | ||
1405 | * get_user_pages is typically used for fewer-copy IO operations, to get a | ||
1406 | * handle on the memory by some means other than accesses via the user virtual | ||
1407 | * addresses. The pages may be submitted for DMA to devices or accessed via | ||
1408 | * their kernel linear mapping (via the kmap APIs). Care should be taken to | ||
1409 | * use the correct cache flushing APIs. | ||
1410 | * | ||
1411 | * See also get_user_pages_fast, for performance critical applications. | ||
1412 | */ | ||
1363 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | 1413 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
1364 | unsigned long start, int len, int write, int force, | 1414 | unsigned long start, int len, int write, int force, |
1365 | struct page **pages, struct vm_area_struct **vmas) | 1415 | struct page **pages, struct vm_area_struct **vmas) |