diff options
Diffstat (limited to 'drivers')
-rw-r--r-- | drivers/cpufreq/Kconfig | 20 | ||||
-rw-r--r-- | drivers/cpufreq/Makefile | 1 | ||||
-rw-r--r-- | drivers/cpufreq/cpufreq_conservative.c | 613 |
3 files changed, 634 insertions, 0 deletions
diff --git a/drivers/cpufreq/Kconfig b/drivers/cpufreq/Kconfig index 3617e15567cb..60c9be99c6d9 100644 --- a/drivers/cpufreq/Kconfig +++ b/drivers/cpufreq/Kconfig | |||
@@ -119,4 +119,24 @@ config CPU_FREQ_GOV_ONDEMAND | |||
119 | 119 | ||
120 | If in doubt, say N. | 120 | If in doubt, say N. |
121 | 121 | ||
122 | config CPU_FREQ_GOV_CONSERVATIVE | ||
123 | tristate "'conservative' cpufreq governor" | ||
124 | depends on CPU_FREQ | ||
125 | help | ||
126 | 'conservative' - this driver is rather similar to the 'ondemand' | ||
127 | governor both in its source code and its purpose, the difference is | ||
128 | its optimisation for better suitability in a battery powered | ||
129 | environment. The frequency is gracefully increased and decreased | ||
130 | rather than jumping to 100% when speed is required. | ||
131 | |||
132 | If you have a desktop machine then you should really be considering | ||
133 | the 'ondemand' governor instead, however if you are using a laptop, | ||
134 | PDA or even an AMD64 based computer (due to the unacceptable | ||
135 | step-by-step latency issues between the minimum and maximum frequency | ||
136 | transitions in the CPU) you will probably want to use this governor. | ||
137 | |||
138 | For details, take a look at linux/Documentation/cpu-freq. | ||
139 | |||
140 | If in doubt, say N. | ||
141 | |||
122 | endif # CPU_FREQ | 142 | endif # CPU_FREQ |
diff --git a/drivers/cpufreq/Makefile b/drivers/cpufreq/Makefile index 67b16e5a41a7..71fc3b4173f1 100644 --- a/drivers/cpufreq/Makefile +++ b/drivers/cpufreq/Makefile | |||
@@ -8,6 +8,7 @@ obj-$(CONFIG_CPU_FREQ_GOV_PERFORMANCE) += cpufreq_performance.o | |||
8 | obj-$(CONFIG_CPU_FREQ_GOV_POWERSAVE) += cpufreq_powersave.o | 8 | obj-$(CONFIG_CPU_FREQ_GOV_POWERSAVE) += cpufreq_powersave.o |
9 | obj-$(CONFIG_CPU_FREQ_GOV_USERSPACE) += cpufreq_userspace.o | 9 | obj-$(CONFIG_CPU_FREQ_GOV_USERSPACE) += cpufreq_userspace.o |
10 | obj-$(CONFIG_CPU_FREQ_GOV_ONDEMAND) += cpufreq_ondemand.o | 10 | obj-$(CONFIG_CPU_FREQ_GOV_ONDEMAND) += cpufreq_ondemand.o |
11 | obj-$(CONFIG_CPU_FREQ_GOV_CONSERVATIVE) += cpufreq_conservative.o | ||
11 | 12 | ||
12 | # CPUfreq cross-arch helpers | 13 | # CPUfreq cross-arch helpers |
13 | obj-$(CONFIG_CPU_FREQ_TABLE) += freq_table.o | 14 | obj-$(CONFIG_CPU_FREQ_TABLE) += freq_table.o |
diff --git a/drivers/cpufreq/cpufreq_conservative.c b/drivers/cpufreq/cpufreq_conservative.c new file mode 100644 index 000000000000..dd2f5b272a4d --- /dev/null +++ b/drivers/cpufreq/cpufreq_conservative.c | |||
@@ -0,0 +1,613 @@ | |||
1 | /* | ||
2 | * drivers/cpufreq/cpufreq_conservative.c | ||
3 | * | ||
4 | * Copyright (C) 2001 Russell King | ||
5 | * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. | ||
6 | * Jun Nakajima <jun.nakajima@intel.com> | ||
7 | * (C) 2004 Alexander Clouter <alex-kernel@digriz.org.uk> | ||
8 | * | ||
9 | * This program is free software; you can redistribute it and/or modify | ||
10 | * it under the terms of the GNU General Public License version 2 as | ||
11 | * published by the Free Software Foundation. | ||
12 | */ | ||
13 | |||
14 | #include <linux/kernel.h> | ||
15 | #include <linux/module.h> | ||
16 | #include <linux/smp.h> | ||
17 | #include <linux/init.h> | ||
18 | #include <linux/interrupt.h> | ||
19 | #include <linux/ctype.h> | ||
20 | #include <linux/cpufreq.h> | ||
21 | #include <linux/sysctl.h> | ||
22 | #include <linux/types.h> | ||
23 | #include <linux/fs.h> | ||
24 | #include <linux/sysfs.h> | ||
25 | #include <linux/sched.h> | ||
26 | #include <linux/kmod.h> | ||
27 | #include <linux/workqueue.h> | ||
28 | #include <linux/jiffies.h> | ||
29 | #include <linux/kernel_stat.h> | ||
30 | #include <linux/percpu.h> | ||
31 | |||
32 | /* | ||
33 | * dbs is used in this file as a shortform for demandbased switching | ||
34 | * It helps to keep variable names smaller, simpler | ||
35 | */ | ||
36 | |||
37 | #define DEF_FREQUENCY_UP_THRESHOLD (80) | ||
38 | #define MIN_FREQUENCY_UP_THRESHOLD (0) | ||
39 | #define MAX_FREQUENCY_UP_THRESHOLD (100) | ||
40 | |||
41 | #define DEF_FREQUENCY_DOWN_THRESHOLD (20) | ||
42 | #define MIN_FREQUENCY_DOWN_THRESHOLD (0) | ||
43 | #define MAX_FREQUENCY_DOWN_THRESHOLD (100) | ||
44 | |||
45 | /* | ||
46 | * The polling frequency of this governor depends on the capability of | ||
47 | * the processor. Default polling frequency is 1000 times the transition | ||
48 | * latency of the processor. The governor will work on any processor with | ||
49 | * transition latency <= 10mS, using appropriate sampling | ||
50 | * rate. | ||
51 | * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL) | ||
52 | * this governor will not work. | ||
53 | * All times here are in uS. | ||
54 | */ | ||
55 | static unsigned int def_sampling_rate; | ||
56 | #define MIN_SAMPLING_RATE (def_sampling_rate / 2) | ||
57 | #define MAX_SAMPLING_RATE (500 * def_sampling_rate) | ||
58 | #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (100000) | ||
59 | #define DEF_SAMPLING_DOWN_FACTOR (5) | ||
60 | #define TRANSITION_LATENCY_LIMIT (10 * 1000) | ||
61 | |||
62 | static void do_dbs_timer(void *data); | ||
63 | |||
64 | struct cpu_dbs_info_s { | ||
65 | struct cpufreq_policy *cur_policy; | ||
66 | unsigned int prev_cpu_idle_up; | ||
67 | unsigned int prev_cpu_idle_down; | ||
68 | unsigned int enable; | ||
69 | }; | ||
70 | static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info); | ||
71 | |||
72 | static unsigned int dbs_enable; /* number of CPUs using this policy */ | ||
73 | |||
74 | static DECLARE_MUTEX (dbs_sem); | ||
75 | static DECLARE_WORK (dbs_work, do_dbs_timer, NULL); | ||
76 | |||
77 | struct dbs_tuners { | ||
78 | unsigned int sampling_rate; | ||
79 | unsigned int sampling_down_factor; | ||
80 | unsigned int up_threshold; | ||
81 | unsigned int down_threshold; | ||
82 | unsigned int ignore_nice; | ||
83 | unsigned int freq_step; | ||
84 | }; | ||
85 | |||
86 | static struct dbs_tuners dbs_tuners_ins = { | ||
87 | .up_threshold = DEF_FREQUENCY_UP_THRESHOLD, | ||
88 | .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD, | ||
89 | .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR, | ||
90 | }; | ||
91 | |||
92 | /************************** sysfs interface ************************/ | ||
93 | static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf) | ||
94 | { | ||
95 | return sprintf (buf, "%u\n", MAX_SAMPLING_RATE); | ||
96 | } | ||
97 | |||
98 | static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf) | ||
99 | { | ||
100 | return sprintf (buf, "%u\n", MIN_SAMPLING_RATE); | ||
101 | } | ||
102 | |||
103 | #define define_one_ro(_name) \ | ||
104 | static struct freq_attr _name = \ | ||
105 | __ATTR(_name, 0444, show_##_name, NULL) | ||
106 | |||
107 | define_one_ro(sampling_rate_max); | ||
108 | define_one_ro(sampling_rate_min); | ||
109 | |||
110 | /* cpufreq_conservative Governor Tunables */ | ||
111 | #define show_one(file_name, object) \ | ||
112 | static ssize_t show_##file_name \ | ||
113 | (struct cpufreq_policy *unused, char *buf) \ | ||
114 | { \ | ||
115 | return sprintf(buf, "%u\n", dbs_tuners_ins.object); \ | ||
116 | } | ||
117 | show_one(sampling_rate, sampling_rate); | ||
118 | show_one(sampling_down_factor, sampling_down_factor); | ||
119 | show_one(up_threshold, up_threshold); | ||
120 | show_one(down_threshold, down_threshold); | ||
121 | show_one(ignore_nice, ignore_nice); | ||
122 | show_one(freq_step, freq_step); | ||
123 | |||
124 | static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused, | ||
125 | const char *buf, size_t count) | ||
126 | { | ||
127 | unsigned int input; | ||
128 | int ret; | ||
129 | ret = sscanf (buf, "%u", &input); | ||
130 | if (ret != 1 ) | ||
131 | return -EINVAL; | ||
132 | |||
133 | down(&dbs_sem); | ||
134 | dbs_tuners_ins.sampling_down_factor = input; | ||
135 | up(&dbs_sem); | ||
136 | |||
137 | return count; | ||
138 | } | ||
139 | |||
140 | static ssize_t store_sampling_rate(struct cpufreq_policy *unused, | ||
141 | const char *buf, size_t count) | ||
142 | { | ||
143 | unsigned int input; | ||
144 | int ret; | ||
145 | ret = sscanf (buf, "%u", &input); | ||
146 | |||
147 | down(&dbs_sem); | ||
148 | if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) { | ||
149 | up(&dbs_sem); | ||
150 | return -EINVAL; | ||
151 | } | ||
152 | |||
153 | dbs_tuners_ins.sampling_rate = input; | ||
154 | up(&dbs_sem); | ||
155 | |||
156 | return count; | ||
157 | } | ||
158 | |||
159 | static ssize_t store_up_threshold(struct cpufreq_policy *unused, | ||
160 | const char *buf, size_t count) | ||
161 | { | ||
162 | unsigned int input; | ||
163 | int ret; | ||
164 | ret = sscanf (buf, "%u", &input); | ||
165 | |||
166 | down(&dbs_sem); | ||
167 | if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || | ||
168 | input < MIN_FREQUENCY_UP_THRESHOLD || | ||
169 | input <= dbs_tuners_ins.down_threshold) { | ||
170 | up(&dbs_sem); | ||
171 | return -EINVAL; | ||
172 | } | ||
173 | |||
174 | dbs_tuners_ins.up_threshold = input; | ||
175 | up(&dbs_sem); | ||
176 | |||
177 | return count; | ||
178 | } | ||
179 | |||
180 | static ssize_t store_down_threshold(struct cpufreq_policy *unused, | ||
181 | const char *buf, size_t count) | ||
182 | { | ||
183 | unsigned int input; | ||
184 | int ret; | ||
185 | ret = sscanf (buf, "%u", &input); | ||
186 | |||
187 | down(&dbs_sem); | ||
188 | if (ret != 1 || input > MAX_FREQUENCY_DOWN_THRESHOLD || | ||
189 | input < MIN_FREQUENCY_DOWN_THRESHOLD || | ||
190 | input >= dbs_tuners_ins.up_threshold) { | ||
191 | up(&dbs_sem); | ||
192 | return -EINVAL; | ||
193 | } | ||
194 | |||
195 | dbs_tuners_ins.down_threshold = input; | ||
196 | up(&dbs_sem); | ||
197 | |||
198 | return count; | ||
199 | } | ||
200 | |||
201 | static ssize_t store_ignore_nice(struct cpufreq_policy *policy, | ||
202 | const char *buf, size_t count) | ||
203 | { | ||
204 | unsigned int input; | ||
205 | int ret; | ||
206 | |||
207 | unsigned int j; | ||
208 | |||
209 | ret = sscanf (buf, "%u", &input); | ||
210 | if ( ret != 1 ) | ||
211 | return -EINVAL; | ||
212 | |||
213 | if ( input > 1 ) | ||
214 | input = 1; | ||
215 | |||
216 | down(&dbs_sem); | ||
217 | if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */ | ||
218 | up(&dbs_sem); | ||
219 | return count; | ||
220 | } | ||
221 | dbs_tuners_ins.ignore_nice = input; | ||
222 | |||
223 | /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */ | ||
224 | for_each_cpu_mask(j, policy->cpus) { | ||
225 | struct cpu_dbs_info_s *j_dbs_info; | ||
226 | j_dbs_info = &per_cpu(cpu_dbs_info, j); | ||
227 | j_dbs_info->cur_policy = policy; | ||
228 | |||
229 | j_dbs_info->prev_cpu_idle_up = | ||
230 | kstat_cpu(j).cpustat.idle + | ||
231 | kstat_cpu(j).cpustat.iowait + | ||
232 | ( !dbs_tuners_ins.ignore_nice | ||
233 | ? kstat_cpu(j).cpustat.nice : 0 ); | ||
234 | j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up; | ||
235 | } | ||
236 | up(&dbs_sem); | ||
237 | |||
238 | return count; | ||
239 | } | ||
240 | |||
241 | static ssize_t store_freq_step(struct cpufreq_policy *policy, | ||
242 | const char *buf, size_t count) | ||
243 | { | ||
244 | unsigned int input; | ||
245 | int ret; | ||
246 | |||
247 | ret = sscanf (buf, "%u", &input); | ||
248 | |||
249 | if ( ret != 1 ) | ||
250 | return -EINVAL; | ||
251 | |||
252 | if ( input > 100 ) | ||
253 | input = 100; | ||
254 | |||
255 | /* no need to test here if freq_step is zero as the user might actually | ||
256 | * want this, they would be crazy though :) */ | ||
257 | down(&dbs_sem); | ||
258 | dbs_tuners_ins.freq_step = input; | ||
259 | up(&dbs_sem); | ||
260 | |||
261 | return count; | ||
262 | } | ||
263 | |||
264 | #define define_one_rw(_name) \ | ||
265 | static struct freq_attr _name = \ | ||
266 | __ATTR(_name, 0644, show_##_name, store_##_name) | ||
267 | |||
268 | define_one_rw(sampling_rate); | ||
269 | define_one_rw(sampling_down_factor); | ||
270 | define_one_rw(up_threshold); | ||
271 | define_one_rw(down_threshold); | ||
272 | define_one_rw(ignore_nice); | ||
273 | define_one_rw(freq_step); | ||
274 | |||
275 | static struct attribute * dbs_attributes[] = { | ||
276 | &sampling_rate_max.attr, | ||
277 | &sampling_rate_min.attr, | ||
278 | &sampling_rate.attr, | ||
279 | &sampling_down_factor.attr, | ||
280 | &up_threshold.attr, | ||
281 | &down_threshold.attr, | ||
282 | &ignore_nice.attr, | ||
283 | &freq_step.attr, | ||
284 | NULL | ||
285 | }; | ||
286 | |||
287 | static struct attribute_group dbs_attr_group = { | ||
288 | .attrs = dbs_attributes, | ||
289 | .name = "conservative", | ||
290 | }; | ||
291 | |||
292 | /************************** sysfs end ************************/ | ||
293 | |||
294 | static void dbs_check_cpu(int cpu) | ||
295 | { | ||
296 | unsigned int idle_ticks, up_idle_ticks, down_idle_ticks; | ||
297 | unsigned int total_idle_ticks; | ||
298 | unsigned int freq_step; | ||
299 | unsigned int freq_down_sampling_rate; | ||
300 | static int down_skip[NR_CPUS]; | ||
301 | static int requested_freq[NR_CPUS]; | ||
302 | static unsigned short init_flag = 0; | ||
303 | struct cpu_dbs_info_s *this_dbs_info; | ||
304 | struct cpu_dbs_info_s *dbs_info; | ||
305 | |||
306 | struct cpufreq_policy *policy; | ||
307 | unsigned int j; | ||
308 | |||
309 | this_dbs_info = &per_cpu(cpu_dbs_info, cpu); | ||
310 | if (!this_dbs_info->enable) | ||
311 | return; | ||
312 | |||
313 | policy = this_dbs_info->cur_policy; | ||
314 | |||
315 | if ( init_flag == 0 ) { | ||
316 | for ( /* NULL */; init_flag < NR_CPUS; init_flag++ ) { | ||
317 | dbs_info = &per_cpu(cpu_dbs_info, init_flag); | ||
318 | requested_freq[cpu] = dbs_info->cur_policy->cur; | ||
319 | } | ||
320 | init_flag = 1; | ||
321 | } | ||
322 | |||
323 | /* | ||
324 | * The default safe range is 20% to 80% | ||
325 | * Every sampling_rate, we check | ||
326 | * - If current idle time is less than 20%, then we try to | ||
327 | * increase frequency | ||
328 | * Every sampling_rate*sampling_down_factor, we check | ||
329 | * - If current idle time is more than 80%, then we try to | ||
330 | * decrease frequency | ||
331 | * | ||
332 | * Any frequency increase takes it to the maximum frequency. | ||
333 | * Frequency reduction happens at minimum steps of | ||
334 | * 5% (default) of max_frequency | ||
335 | */ | ||
336 | |||
337 | /* Check for frequency increase */ | ||
338 | total_idle_ticks = kstat_cpu(cpu).cpustat.idle + | ||
339 | kstat_cpu(cpu).cpustat.iowait; | ||
340 | /* consider 'nice' tasks as 'idle' time too if required */ | ||
341 | if (dbs_tuners_ins.ignore_nice == 0) | ||
342 | total_idle_ticks += kstat_cpu(cpu).cpustat.nice; | ||
343 | idle_ticks = total_idle_ticks - | ||
344 | this_dbs_info->prev_cpu_idle_up; | ||
345 | this_dbs_info->prev_cpu_idle_up = total_idle_ticks; | ||
346 | |||
347 | |||
348 | for_each_cpu_mask(j, policy->cpus) { | ||
349 | unsigned int tmp_idle_ticks; | ||
350 | struct cpu_dbs_info_s *j_dbs_info; | ||
351 | |||
352 | if (j == cpu) | ||
353 | continue; | ||
354 | |||
355 | j_dbs_info = &per_cpu(cpu_dbs_info, j); | ||
356 | /* Check for frequency increase */ | ||
357 | total_idle_ticks = kstat_cpu(j).cpustat.idle + | ||
358 | kstat_cpu(j).cpustat.iowait; | ||
359 | /* consider 'nice' too? */ | ||
360 | if (dbs_tuners_ins.ignore_nice == 0) | ||
361 | total_idle_ticks += kstat_cpu(j).cpustat.nice; | ||
362 | tmp_idle_ticks = total_idle_ticks - | ||
363 | j_dbs_info->prev_cpu_idle_up; | ||
364 | j_dbs_info->prev_cpu_idle_up = total_idle_ticks; | ||
365 | |||
366 | if (tmp_idle_ticks < idle_ticks) | ||
367 | idle_ticks = tmp_idle_ticks; | ||
368 | } | ||
369 | |||
370 | /* Scale idle ticks by 100 and compare with up and down ticks */ | ||
371 | idle_ticks *= 100; | ||
372 | up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) * | ||
373 | usecs_to_jiffies(dbs_tuners_ins.sampling_rate); | ||
374 | |||
375 | if (idle_ticks < up_idle_ticks) { | ||
376 | /* if we are already at full speed then break out early */ | ||
377 | if (requested_freq[cpu] == policy->max) | ||
378 | return; | ||
379 | |||
380 | freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100; | ||
381 | |||
382 | /* max freq cannot be less than 100. But who knows.... */ | ||
383 | if (unlikely(freq_step == 0)) | ||
384 | freq_step = 5; | ||
385 | |||
386 | requested_freq[cpu] += freq_step; | ||
387 | if (requested_freq[cpu] > policy->max) | ||
388 | requested_freq[cpu] = policy->max; | ||
389 | |||
390 | __cpufreq_driver_target(policy, requested_freq[cpu], | ||
391 | CPUFREQ_RELATION_H); | ||
392 | down_skip[cpu] = 0; | ||
393 | this_dbs_info->prev_cpu_idle_down = total_idle_ticks; | ||
394 | return; | ||
395 | } | ||
396 | |||
397 | /* Check for frequency decrease */ | ||
398 | down_skip[cpu]++; | ||
399 | if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor) | ||
400 | return; | ||
401 | |||
402 | total_idle_ticks = kstat_cpu(cpu).cpustat.idle + | ||
403 | kstat_cpu(cpu).cpustat.iowait; | ||
404 | /* consider 'nice' too? */ | ||
405 | if (dbs_tuners_ins.ignore_nice == 0) | ||
406 | total_idle_ticks += kstat_cpu(cpu).cpustat.nice; | ||
407 | idle_ticks = total_idle_ticks - | ||
408 | this_dbs_info->prev_cpu_idle_down; | ||
409 | this_dbs_info->prev_cpu_idle_down = total_idle_ticks; | ||
410 | |||
411 | for_each_cpu_mask(j, policy->cpus) { | ||
412 | unsigned int tmp_idle_ticks; | ||
413 | struct cpu_dbs_info_s *j_dbs_info; | ||
414 | |||
415 | if (j == cpu) | ||
416 | continue; | ||
417 | |||
418 | j_dbs_info = &per_cpu(cpu_dbs_info, j); | ||
419 | /* Check for frequency increase */ | ||
420 | total_idle_ticks = kstat_cpu(j).cpustat.idle + | ||
421 | kstat_cpu(j).cpustat.iowait; | ||
422 | /* consider 'nice' too? */ | ||
423 | if (dbs_tuners_ins.ignore_nice == 0) | ||
424 | total_idle_ticks += kstat_cpu(j).cpustat.nice; | ||
425 | tmp_idle_ticks = total_idle_ticks - | ||
426 | j_dbs_info->prev_cpu_idle_down; | ||
427 | j_dbs_info->prev_cpu_idle_down = total_idle_ticks; | ||
428 | |||
429 | if (tmp_idle_ticks < idle_ticks) | ||
430 | idle_ticks = tmp_idle_ticks; | ||
431 | } | ||
432 | |||
433 | /* Scale idle ticks by 100 and compare with up and down ticks */ | ||
434 | idle_ticks *= 100; | ||
435 | down_skip[cpu] = 0; | ||
436 | |||
437 | freq_down_sampling_rate = dbs_tuners_ins.sampling_rate * | ||
438 | dbs_tuners_ins.sampling_down_factor; | ||
439 | down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) * | ||
440 | usecs_to_jiffies(freq_down_sampling_rate); | ||
441 | |||
442 | if (idle_ticks > down_idle_ticks ) { | ||
443 | /* if we are already at the lowest speed then break out early | ||
444 | * or if we 'cannot' reduce the speed as the user might want | ||
445 | * freq_step to be zero */ | ||
446 | if (requested_freq[cpu] == policy->min | ||
447 | || dbs_tuners_ins.freq_step == 0) | ||
448 | return; | ||
449 | |||
450 | freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100; | ||
451 | |||
452 | /* max freq cannot be less than 100. But who knows.... */ | ||
453 | if (unlikely(freq_step == 0)) | ||
454 | freq_step = 5; | ||
455 | |||
456 | requested_freq[cpu] -= freq_step; | ||
457 | if (requested_freq[cpu] < policy->min) | ||
458 | requested_freq[cpu] = policy->min; | ||
459 | |||
460 | __cpufreq_driver_target(policy, | ||
461 | requested_freq[cpu], | ||
462 | CPUFREQ_RELATION_H); | ||
463 | return; | ||
464 | } | ||
465 | } | ||
466 | |||
467 | static void do_dbs_timer(void *data) | ||
468 | { | ||
469 | int i; | ||
470 | down(&dbs_sem); | ||
471 | for_each_online_cpu(i) | ||
472 | dbs_check_cpu(i); | ||
473 | schedule_delayed_work(&dbs_work, | ||
474 | usecs_to_jiffies(dbs_tuners_ins.sampling_rate)); | ||
475 | up(&dbs_sem); | ||
476 | } | ||
477 | |||
478 | static inline void dbs_timer_init(void) | ||
479 | { | ||
480 | INIT_WORK(&dbs_work, do_dbs_timer, NULL); | ||
481 | schedule_delayed_work(&dbs_work, | ||
482 | usecs_to_jiffies(dbs_tuners_ins.sampling_rate)); | ||
483 | return; | ||
484 | } | ||
485 | |||
486 | static inline void dbs_timer_exit(void) | ||
487 | { | ||
488 | cancel_delayed_work(&dbs_work); | ||
489 | return; | ||
490 | } | ||
491 | |||
492 | static int cpufreq_governor_dbs(struct cpufreq_policy *policy, | ||
493 | unsigned int event) | ||
494 | { | ||
495 | unsigned int cpu = policy->cpu; | ||
496 | struct cpu_dbs_info_s *this_dbs_info; | ||
497 | unsigned int j; | ||
498 | |||
499 | this_dbs_info = &per_cpu(cpu_dbs_info, cpu); | ||
500 | |||
501 | switch (event) { | ||
502 | case CPUFREQ_GOV_START: | ||
503 | if ((!cpu_online(cpu)) || | ||
504 | (!policy->cur)) | ||
505 | return -EINVAL; | ||
506 | |||
507 | if (policy->cpuinfo.transition_latency > | ||
508 | (TRANSITION_LATENCY_LIMIT * 1000)) | ||
509 | return -EINVAL; | ||
510 | if (this_dbs_info->enable) /* Already enabled */ | ||
511 | break; | ||
512 | |||
513 | down(&dbs_sem); | ||
514 | for_each_cpu_mask(j, policy->cpus) { | ||
515 | struct cpu_dbs_info_s *j_dbs_info; | ||
516 | j_dbs_info = &per_cpu(cpu_dbs_info, j); | ||
517 | j_dbs_info->cur_policy = policy; | ||
518 | |||
519 | j_dbs_info->prev_cpu_idle_up = | ||
520 | kstat_cpu(j).cpustat.idle + | ||
521 | kstat_cpu(j).cpustat.iowait + | ||
522 | ( !dbs_tuners_ins.ignore_nice | ||
523 | ? kstat_cpu(j).cpustat.nice : 0 ); | ||
524 | j_dbs_info->prev_cpu_idle_down | ||
525 | = j_dbs_info->prev_cpu_idle_up; | ||
526 | } | ||
527 | this_dbs_info->enable = 1; | ||
528 | sysfs_create_group(&policy->kobj, &dbs_attr_group); | ||
529 | dbs_enable++; | ||
530 | /* | ||
531 | * Start the timerschedule work, when this governor | ||
532 | * is used for first time | ||
533 | */ | ||
534 | if (dbs_enable == 1) { | ||
535 | unsigned int latency; | ||
536 | /* policy latency is in nS. Convert it to uS first */ | ||
537 | |||
538 | latency = policy->cpuinfo.transition_latency; | ||
539 | if (latency < 1000) | ||
540 | latency = 1000; | ||
541 | |||
542 | def_sampling_rate = (latency / 1000) * | ||
543 | DEF_SAMPLING_RATE_LATENCY_MULTIPLIER; | ||
544 | dbs_tuners_ins.sampling_rate = def_sampling_rate; | ||
545 | dbs_tuners_ins.ignore_nice = 0; | ||
546 | dbs_tuners_ins.freq_step = 5; | ||
547 | |||
548 | dbs_timer_init(); | ||
549 | } | ||
550 | |||
551 | up(&dbs_sem); | ||
552 | break; | ||
553 | |||
554 | case CPUFREQ_GOV_STOP: | ||
555 | down(&dbs_sem); | ||
556 | this_dbs_info->enable = 0; | ||
557 | sysfs_remove_group(&policy->kobj, &dbs_attr_group); | ||
558 | dbs_enable--; | ||
559 | /* | ||
560 | * Stop the timerschedule work, when this governor | ||
561 | * is used for first time | ||
562 | */ | ||
563 | if (dbs_enable == 0) | ||
564 | dbs_timer_exit(); | ||
565 | |||
566 | up(&dbs_sem); | ||
567 | |||
568 | break; | ||
569 | |||
570 | case CPUFREQ_GOV_LIMITS: | ||
571 | down(&dbs_sem); | ||
572 | if (policy->max < this_dbs_info->cur_policy->cur) | ||
573 | __cpufreq_driver_target( | ||
574 | this_dbs_info->cur_policy, | ||
575 | policy->max, CPUFREQ_RELATION_H); | ||
576 | else if (policy->min > this_dbs_info->cur_policy->cur) | ||
577 | __cpufreq_driver_target( | ||
578 | this_dbs_info->cur_policy, | ||
579 | policy->min, CPUFREQ_RELATION_L); | ||
580 | up(&dbs_sem); | ||
581 | break; | ||
582 | } | ||
583 | return 0; | ||
584 | } | ||
585 | |||
586 | static struct cpufreq_governor cpufreq_gov_dbs = { | ||
587 | .name = "conservative", | ||
588 | .governor = cpufreq_governor_dbs, | ||
589 | .owner = THIS_MODULE, | ||
590 | }; | ||
591 | |||
592 | static int __init cpufreq_gov_dbs_init(void) | ||
593 | { | ||
594 | return cpufreq_register_governor(&cpufreq_gov_dbs); | ||
595 | } | ||
596 | |||
597 | static void __exit cpufreq_gov_dbs_exit(void) | ||
598 | { | ||
599 | /* Make sure that the scheduled work is indeed not running */ | ||
600 | flush_scheduled_work(); | ||
601 | |||
602 | cpufreq_unregister_governor(&cpufreq_gov_dbs); | ||
603 | } | ||
604 | |||
605 | |||
606 | MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>"); | ||
607 | MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for " | ||
608 | "Low Latency Frequency Transition capable processors " | ||
609 | "optimised for use in a battery environment"); | ||
610 | MODULE_LICENSE ("GPL"); | ||
611 | |||
612 | module_init(cpufreq_gov_dbs_init); | ||
613 | module_exit(cpufreq_gov_dbs_exit); | ||