aboutsummaryrefslogtreecommitdiffstats
path: root/drivers
diff options
context:
space:
mode:
Diffstat (limited to 'drivers')
-rw-r--r--drivers/net/8139cp.c14
-rw-r--r--drivers/net/8139too.c14
-rw-r--r--drivers/net/Kconfig33
-rw-r--r--drivers/net/Makefile2
-rw-r--r--drivers/net/au1000_eth.c206
-rw-r--r--drivers/net/cassini.c9
-rw-r--r--drivers/net/e1000/Makefile3
-rw-r--r--drivers/net/e1000/e1000.h6
-rw-r--r--drivers/net/e1000/e1000_ethtool.c47
-rw-r--r--drivers/net/e1000/e1000_hw.c115
-rw-r--r--drivers/net/e1000/e1000_hw.h7
-rw-r--r--drivers/net/e1000/e1000_main.c265
-rw-r--r--drivers/net/e1000/e1000_osdep.h3
-rw-r--r--drivers/net/e1000/e1000_param.c3
-rw-r--r--drivers/net/epic100.c56
-rw-r--r--drivers/net/forcedeth.c173
-rw-r--r--drivers/net/ibmlana.c20
-rw-r--r--drivers/net/ibmlana.h6
-rw-r--r--drivers/net/ibmveth.c291
-rw-r--r--drivers/net/ibmveth.h11
-rw-r--r--drivers/net/ixgb/Makefile2
-rw-r--r--drivers/net/ixgb/ixgb.h12
-rw-r--r--drivers/net/ixgb/ixgb_ee.c2
-rw-r--r--drivers/net/ixgb/ixgb_ee.h2
-rw-r--r--drivers/net/ixgb/ixgb_ethtool.c57
-rw-r--r--drivers/net/ixgb/ixgb_hw.c2
-rw-r--r--drivers/net/ixgb/ixgb_hw.h3
-rw-r--r--drivers/net/ixgb/ixgb_ids.h6
-rw-r--r--drivers/net/ixgb/ixgb_main.c304
-rw-r--r--drivers/net/ixgb/ixgb_osdep.h2
-rw-r--r--drivers/net/ixgb/ixgb_param.c26
-rw-r--r--drivers/net/myri10ge/Makefile5
-rw-r--r--drivers/net/myri10ge/myri10ge.c2851
-rw-r--r--drivers/net/myri10ge/myri10ge_mcp.h205
-rw-r--r--drivers/net/myri10ge/myri10ge_mcp_gen_header.h58
-rw-r--r--drivers/net/pcmcia/pcnet_cs.c42
-rw-r--r--drivers/net/phy/Kconfig6
-rw-r--r--drivers/net/phy/Makefile1
-rw-r--r--drivers/net/phy/smsc.c101
-rw-r--r--drivers/net/r8169.c1
-rw-r--r--drivers/net/s2io-regs.h32
-rw-r--r--drivers/net/s2io.c1476
-rw-r--r--drivers/net/s2io.h59
-rw-r--r--drivers/net/sis900.c26
-rw-r--r--drivers/net/sis900.h10
-rw-r--r--drivers/net/smc911x.c2307
-rw-r--r--drivers/net/smc911x.h835
-rw-r--r--drivers/net/smc91x.h18
-rw-r--r--drivers/net/sungem_phy.c6
-rw-r--r--drivers/net/tulip/de2104x.c58
-rw-r--r--drivers/net/tulip/de4x5.c716
-rw-r--r--drivers/net/tulip/de4x5.h14
-rw-r--r--drivers/net/tulip/dmfe.c2
-rw-r--r--drivers/net/tulip/eeprom.c8
-rw-r--r--drivers/net/tulip/interrupt.c126
-rw-r--r--drivers/net/tulip/media.c2
-rw-r--r--drivers/net/tulip/tulip.h2
-rw-r--r--drivers/net/tulip/tulip_core.c6
-rw-r--r--drivers/net/tulip/uli526x.c80
-rw-r--r--drivers/net/tulip/winbond-840.c26
-rw-r--r--drivers/net/tulip/xircom_cb.c208
-rw-r--r--drivers/net/wan/pci200syn.c27
-rw-r--r--drivers/net/wireless/Kconfig30
-rw-r--r--drivers/net/wireless/airo.c271
-rw-r--r--drivers/net/wireless/bcm43xx/bcm43xx.h1
-rw-r--r--drivers/net/wireless/bcm43xx/bcm43xx_debugfs.c2
-rw-r--r--drivers/net/wireless/bcm43xx/bcm43xx_main.c35
-rw-r--r--drivers/net/wireless/hermes.c66
-rw-r--r--drivers/net/wireless/hermes.h43
-rw-r--r--drivers/net/wireless/hostap/hostap_80211_tx.c1
-rw-r--r--drivers/net/wireless/hostap/hostap_ap.c11
-rw-r--r--drivers/net/wireless/hostap/hostap_cs.c6
-rw-r--r--drivers/net/wireless/hostap/hostap_main.c2
-rw-r--r--drivers/net/wireless/ipw2200.c849
-rw-r--r--drivers/net/wireless/ipw2200.h83
-rw-r--r--drivers/net/wireless/orinoco.c251
-rw-r--r--drivers/net/wireless/orinoco.h19
-rw-r--r--drivers/net/wireless/orinoco_cs.c42
-rw-r--r--drivers/net/wireless/orinoco_nortel.c171
-rw-r--r--drivers/net/wireless/orinoco_pci.c210
-rw-r--r--drivers/net/wireless/orinoco_pci.h104
-rw-r--r--drivers/net/wireless/orinoco_plx.c223
-rw-r--r--drivers/net/wireless/orinoco_tmd.c99
-rw-r--r--drivers/net/wireless/spectrum_cs.c81
-rw-r--r--drivers/pci/pci.c3
-rw-r--r--drivers/s390/net/Makefile3
-rw-r--r--drivers/s390/net/ctcmain.c45
-rw-r--r--drivers/s390/net/ctcmain.h12
-rw-r--r--drivers/s390/net/ctctty.c1259
-rw-r--r--drivers/s390/net/ctctty.h35
90 files changed, 10801 insertions, 4172 deletions
diff --git a/drivers/net/8139cp.c b/drivers/net/8139cp.c
index 066e22b01a94..46d8c01437e9 100644
--- a/drivers/net/8139cp.c
+++ b/drivers/net/8139cp.c
@@ -19,11 +19,11 @@
19 See the file COPYING in this distribution for more information. 19 See the file COPYING in this distribution for more information.
20 20
21 Contributors: 21 Contributors:
22 22
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br> 23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br> 24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br> 25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
26 26
27 TODO: 27 TODO:
28 * Test Tx checksumming thoroughly 28 * Test Tx checksumming thoroughly
29 * Implement dev->tx_timeout 29 * Implement dev->tx_timeout
@@ -461,7 +461,7 @@ static void cp_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
461static inline void cp_set_rxbufsize (struct cp_private *cp) 461static inline void cp_set_rxbufsize (struct cp_private *cp)
462{ 462{
463 unsigned int mtu = cp->dev->mtu; 463 unsigned int mtu = cp->dev->mtu;
464 464
465 if (mtu > ETH_DATA_LEN) 465 if (mtu > ETH_DATA_LEN)
466 /* MTU + ethernet header + FCS + optional VLAN tag */ 466 /* MTU + ethernet header + FCS + optional VLAN tag */
467 cp->rx_buf_sz = mtu + ETH_HLEN + 8; 467 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
@@ -510,7 +510,7 @@ static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
510static inline unsigned int cp_rx_csum_ok (u32 status) 510static inline unsigned int cp_rx_csum_ok (u32 status)
511{ 511{
512 unsigned int protocol = (status >> 16) & 0x3; 512 unsigned int protocol = (status >> 16) & 0x3;
513 513
514 if (likely((protocol == RxProtoTCP) && (!(status & TCPFail)))) 514 if (likely((protocol == RxProtoTCP) && (!(status & TCPFail))))
515 return 1; 515 return 1;
516 else if ((protocol == RxProtoUDP) && (!(status & UDPFail))) 516 else if ((protocol == RxProtoUDP) && (!(status & UDPFail)))
@@ -1061,7 +1061,7 @@ static void cp_init_hw (struct cp_private *cp)
1061 cpw8(Config3, PARMEnable); 1061 cpw8(Config3, PARMEnable);
1062 cp->wol_enabled = 0; 1062 cp->wol_enabled = 0;
1063 1063
1064 cpw8(Config5, cpr8(Config5) & PMEStatus); 1064 cpw8(Config5, cpr8(Config5) & PMEStatus);
1065 1065
1066 cpw32_f(HiTxRingAddr, 0); 1066 cpw32_f(HiTxRingAddr, 0);
1067 cpw32_f(HiTxRingAddr + 4, 0); 1067 cpw32_f(HiTxRingAddr + 4, 0);
@@ -1351,7 +1351,7 @@ static void netdev_get_wol (struct cp_private *cp,
1351 WAKE_MCAST | WAKE_UCAST; 1351 WAKE_MCAST | WAKE_UCAST;
1352 /* We don't need to go on if WOL is disabled */ 1352 /* We don't need to go on if WOL is disabled */
1353 if (!cp->wol_enabled) return; 1353 if (!cp->wol_enabled) return;
1354 1354
1355 options = cpr8 (Config3); 1355 options = cpr8 (Config3);
1356 if (options & LinkUp) wol->wolopts |= WAKE_PHY; 1356 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1357 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC; 1357 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
@@ -1919,7 +1919,7 @@ static int cp_resume (struct pci_dev *pdev)
1919 mii_check_media(&cp->mii_if, netif_msg_link(cp), FALSE); 1919 mii_check_media(&cp->mii_if, netif_msg_link(cp), FALSE);
1920 1920
1921 spin_unlock_irqrestore (&cp->lock, flags); 1921 spin_unlock_irqrestore (&cp->lock, flags);
1922 1922
1923 return 0; 1923 return 0;
1924} 1924}
1925#endif /* CONFIG_PM */ 1925#endif /* CONFIG_PM */
diff --git a/drivers/net/8139too.c b/drivers/net/8139too.c
index feae7832fc84..abd6261465f1 100644
--- a/drivers/net/8139too.c
+++ b/drivers/net/8139too.c
@@ -165,7 +165,7 @@ static int multicast_filter_limit = 32;
165static int debug = -1; 165static int debug = -1;
166 166
167/* 167/*
168 * Receive ring size 168 * Receive ring size
169 * Warning: 64K ring has hardware issues and may lock up. 169 * Warning: 64K ring has hardware issues and may lock up.
170 */ 170 */
171#if defined(CONFIG_SH_DREAMCAST) 171#if defined(CONFIG_SH_DREAMCAST)
@@ -257,7 +257,7 @@ static struct pci_device_id rtl8139_pci_tbl[] = {
257 {0x018a, 0x0106, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 }, 257 {0x018a, 0x0106, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 },
258 {0x126c, 0x1211, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 }, 258 {0x126c, 0x1211, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 },
259 {0x1743, 0x8139, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 }, 259 {0x1743, 0x8139, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 },
260 {0x021b, 0x8139, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 }, 260 {0x021b, 0x8139, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 },
261 261
262#ifdef CONFIG_SH_SECUREEDGE5410 262#ifdef CONFIG_SH_SECUREEDGE5410
263 /* Bogus 8139 silicon reports 8129 without external PROM :-( */ 263 /* Bogus 8139 silicon reports 8129 without external PROM :-( */
@@ -1824,7 +1824,7 @@ static void rtl8139_rx_err (u32 rx_status, struct net_device *dev,
1824 int tmp_work; 1824 int tmp_work;
1825#endif 1825#endif
1826 1826
1827 if (netif_msg_rx_err (tp)) 1827 if (netif_msg_rx_err (tp))
1828 printk(KERN_DEBUG "%s: Ethernet frame had errors, status %8.8x.\n", 1828 printk(KERN_DEBUG "%s: Ethernet frame had errors, status %8.8x.\n",
1829 dev->name, rx_status); 1829 dev->name, rx_status);
1830 tp->stats.rx_errors++; 1830 tp->stats.rx_errors++;
@@ -1944,7 +1944,7 @@ static int rtl8139_rx(struct net_device *dev, struct rtl8139_private *tp,
1944 RTL_R16 (RxBufAddr), 1944 RTL_R16 (RxBufAddr),
1945 RTL_R16 (RxBufPtr), RTL_R8 (ChipCmd)); 1945 RTL_R16 (RxBufPtr), RTL_R8 (ChipCmd));
1946 1946
1947 while (netif_running(dev) && received < budget 1947 while (netif_running(dev) && received < budget
1948 && (RTL_R8 (ChipCmd) & RxBufEmpty) == 0) { 1948 && (RTL_R8 (ChipCmd) & RxBufEmpty) == 0) {
1949 u32 ring_offset = cur_rx % RX_BUF_LEN; 1949 u32 ring_offset = cur_rx % RX_BUF_LEN;
1950 u32 rx_status; 1950 u32 rx_status;
@@ -2031,7 +2031,7 @@ no_early_rx:
2031 2031
2032 netif_receive_skb (skb); 2032 netif_receive_skb (skb);
2033 } else { 2033 } else {
2034 if (net_ratelimit()) 2034 if (net_ratelimit())
2035 printk (KERN_WARNING 2035 printk (KERN_WARNING
2036 "%s: Memory squeeze, dropping packet.\n", 2036 "%s: Memory squeeze, dropping packet.\n",
2037 dev->name); 2037 dev->name);
@@ -2158,13 +2158,13 @@ static irqreturn_t rtl8139_interrupt (int irq, void *dev_instance,
2158 status = RTL_R16 (IntrStatus); 2158 status = RTL_R16 (IntrStatus);
2159 2159
2160 /* shared irq? */ 2160 /* shared irq? */
2161 if (unlikely((status & rtl8139_intr_mask) == 0)) 2161 if (unlikely((status & rtl8139_intr_mask) == 0))
2162 goto out; 2162 goto out;
2163 2163
2164 handled = 1; 2164 handled = 1;
2165 2165
2166 /* h/w no longer present (hotplug?) or major error, bail */ 2166 /* h/w no longer present (hotplug?) or major error, bail */
2167 if (unlikely(status == 0xFFFF)) 2167 if (unlikely(status == 0xFFFF))
2168 goto out; 2168 goto out;
2169 2169
2170 /* close possible race's with dev_close */ 2170 /* close possible race's with dev_close */
diff --git a/drivers/net/Kconfig b/drivers/net/Kconfig
index bdaaad8f2123..f499a3bc629f 100644
--- a/drivers/net/Kconfig
+++ b/drivers/net/Kconfig
@@ -865,6 +865,22 @@ config DM9000
865 <file:Documentation/networking/net-modules.txt>. The module will be 865 <file:Documentation/networking/net-modules.txt>. The module will be
866 called dm9000. 866 called dm9000.
867 867
868config SMC911X
869 tristate "SMSC LAN911[5678] support"
870 select CRC32
871 select MII
872 depends on NET_ETHERNET
873 help
874 This is a driver for SMSC's LAN911x series of Ethernet chipsets
875 including the new LAN9115, LAN9116, LAN9117, and LAN9118.
876 Say Y if you want it compiled into the kernel,
877 and read the Ethernet-HOWTO, available from
878 <http://www.linuxdoc.org/docs.html#howto>.
879
880 This driver is also available as a module. The module will be
881 called smc911x. If you want to compile it as a module, say M
882 here and read <file:Documentation/modules.txt>
883
868config NET_VENDOR_RACAL 884config NET_VENDOR_RACAL
869 bool "Racal-Interlan (Micom) NI cards" 885 bool "Racal-Interlan (Micom) NI cards"
870 depends on NET_ETHERNET && ISA 886 depends on NET_ETHERNET && ISA
@@ -2311,6 +2327,23 @@ config S2IO_NAPI
2311 2327
2312 If in doubt, say N. 2328 If in doubt, say N.
2313 2329
2330config MYRI10GE
2331 tristate "Myricom Myri-10G Ethernet support"
2332 depends on PCI
2333 select FW_LOADER
2334 select CRC32
2335 ---help---
2336 This driver supports Myricom Myri-10G Dual Protocol interface in
2337 Ethernet mode. If the eeprom on your board is not recent enough,
2338 you will need a newer firmware image.
2339 You may get this image or more information, at:
2340
2341 <http://www.myri.com/Myri-10G/>
2342
2343 To compile this driver as a module, choose M here and read
2344 <file:Documentation/networking/net-modules.txt>. The module
2345 will be called myri10ge.
2346
2314endmenu 2347endmenu
2315 2348
2316source "drivers/net/tokenring/Kconfig" 2349source "drivers/net/tokenring/Kconfig"
diff --git a/drivers/net/Makefile b/drivers/net/Makefile
index b90468aea077..1eced3287507 100644
--- a/drivers/net/Makefile
+++ b/drivers/net/Makefile
@@ -192,7 +192,9 @@ obj-$(CONFIG_R8169) += r8169.o
192obj-$(CONFIG_AMD8111_ETH) += amd8111e.o 192obj-$(CONFIG_AMD8111_ETH) += amd8111e.o
193obj-$(CONFIG_IBMVETH) += ibmveth.o 193obj-$(CONFIG_IBMVETH) += ibmveth.o
194obj-$(CONFIG_S2IO) += s2io.o 194obj-$(CONFIG_S2IO) += s2io.o
195obj-$(CONFIG_MYRI10GE) += myri10ge/
195obj-$(CONFIG_SMC91X) += smc91x.o 196obj-$(CONFIG_SMC91X) += smc91x.o
197obj-$(CONFIG_SMC911X) += smc911x.o
196obj-$(CONFIG_DM9000) += dm9000.o 198obj-$(CONFIG_DM9000) += dm9000.o
197obj-$(CONFIG_FEC_8XX) += fec_8xx/ 199obj-$(CONFIG_FEC_8XX) += fec_8xx/
198 200
diff --git a/drivers/net/au1000_eth.c b/drivers/net/au1000_eth.c
index 14dbad14afb6..e1fe960d71b3 100644
--- a/drivers/net/au1000_eth.c
+++ b/drivers/net/au1000_eth.c
@@ -2,7 +2,7 @@
2 * 2 *
3 * Alchemy Au1x00 ethernet driver 3 * Alchemy Au1x00 ethernet driver
4 * 4 *
5 * Copyright 2001,2002,2003 MontaVista Software Inc. 5 * Copyright 2001-2003, 2006 MontaVista Software Inc.
6 * Copyright 2002 TimeSys Corp. 6 * Copyright 2002 TimeSys Corp.
7 * Added ethtool/mii-tool support, 7 * Added ethtool/mii-tool support,
8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org> 8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
@@ -68,7 +68,7 @@ static int au1000_debug = 5;
68static int au1000_debug = 3; 68static int au1000_debug = 3;
69#endif 69#endif
70 70
71#define DRV_NAME "au1000eth" 71#define DRV_NAME "au1000_eth"
72#define DRV_VERSION "1.5" 72#define DRV_VERSION "1.5"
73#define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>" 73#define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>"
74#define DRV_DESC "Au1xxx on-chip Ethernet driver" 74#define DRV_DESC "Au1xxx on-chip Ethernet driver"
@@ -80,7 +80,7 @@ MODULE_LICENSE("GPL");
80// prototypes 80// prototypes
81static void hard_stop(struct net_device *); 81static void hard_stop(struct net_device *);
82static void enable_rx_tx(struct net_device *dev); 82static void enable_rx_tx(struct net_device *dev);
83static struct net_device * au1000_probe(u32 ioaddr, int irq, int port_num); 83static struct net_device * au1000_probe(int port_num);
84static int au1000_init(struct net_device *); 84static int au1000_init(struct net_device *);
85static int au1000_open(struct net_device *); 85static int au1000_open(struct net_device *);
86static int au1000_close(struct net_device *); 86static int au1000_close(struct net_device *);
@@ -1160,12 +1160,27 @@ setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base)
1160} 1160}
1161 1161
1162static struct { 1162static struct {
1163 int port;
1164 u32 base_addr; 1163 u32 base_addr;
1165 u32 macen_addr; 1164 u32 macen_addr;
1166 int irq; 1165 int irq;
1167 struct net_device *dev; 1166 struct net_device *dev;
1168} iflist[2]; 1167} iflist[2] = {
1168#ifdef CONFIG_SOC_AU1000
1169 {AU1000_ETH0_BASE, AU1000_MAC0_ENABLE, AU1000_MAC0_DMA_INT},
1170 {AU1000_ETH1_BASE, AU1000_MAC1_ENABLE, AU1000_MAC1_DMA_INT}
1171#endif
1172#ifdef CONFIG_SOC_AU1100
1173 {AU1100_ETH0_BASE, AU1100_MAC0_ENABLE, AU1100_MAC0_DMA_INT}
1174#endif
1175#ifdef CONFIG_SOC_AU1500
1176 {AU1500_ETH0_BASE, AU1500_MAC0_ENABLE, AU1500_MAC0_DMA_INT},
1177 {AU1500_ETH1_BASE, AU1500_MAC1_ENABLE, AU1500_MAC1_DMA_INT}
1178#endif
1179#ifdef CONFIG_SOC_AU1550
1180 {AU1550_ETH0_BASE, AU1550_MAC0_ENABLE, AU1550_MAC0_DMA_INT},
1181 {AU1550_ETH1_BASE, AU1550_MAC1_ENABLE, AU1550_MAC1_DMA_INT}
1182#endif
1183};
1169 1184
1170static int num_ifs; 1185static int num_ifs;
1171 1186
@@ -1176,58 +1191,14 @@ static int num_ifs;
1176 */ 1191 */
1177static int __init au1000_init_module(void) 1192static int __init au1000_init_module(void)
1178{ 1193{
1179 struct cpuinfo_mips *c = &current_cpu_data;
1180 int ni = (int)((au_readl(SYS_PINFUNC) & (u32)(SYS_PF_NI2)) >> 4); 1194 int ni = (int)((au_readl(SYS_PINFUNC) & (u32)(SYS_PF_NI2)) >> 4);
1181 struct net_device *dev; 1195 struct net_device *dev;
1182 int i, found_one = 0; 1196 int i, found_one = 0;
1183 1197
1184 switch (c->cputype) { 1198 num_ifs = NUM_ETH_INTERFACES - ni;
1185#ifdef CONFIG_SOC_AU1000 1199
1186 case CPU_AU1000:
1187 num_ifs = 2 - ni;
1188 iflist[0].base_addr = AU1000_ETH0_BASE;
1189 iflist[1].base_addr = AU1000_ETH1_BASE;
1190 iflist[0].macen_addr = AU1000_MAC0_ENABLE;
1191 iflist[1].macen_addr = AU1000_MAC1_ENABLE;
1192 iflist[0].irq = AU1000_MAC0_DMA_INT;
1193 iflist[1].irq = AU1000_MAC1_DMA_INT;
1194 break;
1195#endif
1196#ifdef CONFIG_SOC_AU1100
1197 case CPU_AU1100:
1198 num_ifs = 1 - ni;
1199 iflist[0].base_addr = AU1100_ETH0_BASE;
1200 iflist[0].macen_addr = AU1100_MAC0_ENABLE;
1201 iflist[0].irq = AU1100_MAC0_DMA_INT;
1202 break;
1203#endif
1204#ifdef CONFIG_SOC_AU1500
1205 case CPU_AU1500:
1206 num_ifs = 2 - ni;
1207 iflist[0].base_addr = AU1500_ETH0_BASE;
1208 iflist[1].base_addr = AU1500_ETH1_BASE;
1209 iflist[0].macen_addr = AU1500_MAC0_ENABLE;
1210 iflist[1].macen_addr = AU1500_MAC1_ENABLE;
1211 iflist[0].irq = AU1500_MAC0_DMA_INT;
1212 iflist[1].irq = AU1500_MAC1_DMA_INT;
1213 break;
1214#endif
1215#ifdef CONFIG_SOC_AU1550
1216 case CPU_AU1550:
1217 num_ifs = 2 - ni;
1218 iflist[0].base_addr = AU1550_ETH0_BASE;
1219 iflist[1].base_addr = AU1550_ETH1_BASE;
1220 iflist[0].macen_addr = AU1550_MAC0_ENABLE;
1221 iflist[1].macen_addr = AU1550_MAC1_ENABLE;
1222 iflist[0].irq = AU1550_MAC0_DMA_INT;
1223 iflist[1].irq = AU1550_MAC1_DMA_INT;
1224 break;
1225#endif
1226 default:
1227 num_ifs = 0;
1228 }
1229 for(i = 0; i < num_ifs; i++) { 1200 for(i = 0; i < num_ifs; i++) {
1230 dev = au1000_probe(iflist[i].base_addr, iflist[i].irq, i); 1201 dev = au1000_probe(i);
1231 iflist[i].dev = dev; 1202 iflist[i].dev = dev;
1232 if (dev) 1203 if (dev)
1233 found_one++; 1204 found_one++;
@@ -1436,8 +1407,7 @@ static struct ethtool_ops au1000_ethtool_ops = {
1436 .get_link = au1000_get_link 1407 .get_link = au1000_get_link
1437}; 1408};
1438 1409
1439static struct net_device * 1410static struct net_device * au1000_probe(int port_num)
1440au1000_probe(u32 ioaddr, int irq, int port_num)
1441{ 1411{
1442 static unsigned version_printed = 0; 1412 static unsigned version_printed = 0;
1443 struct au1000_private *aup = NULL; 1413 struct au1000_private *aup = NULL;
@@ -1445,94 +1415,95 @@ au1000_probe(u32 ioaddr, int irq, int port_num)
1445 db_dest_t *pDB, *pDBfree; 1415 db_dest_t *pDB, *pDBfree;
1446 char *pmac, *argptr; 1416 char *pmac, *argptr;
1447 char ethaddr[6]; 1417 char ethaddr[6];
1448 int i, err; 1418 int irq, i, err;
1419 u32 base, macen;
1420
1421 if (port_num >= NUM_ETH_INTERFACES)
1422 return NULL;
1449 1423
1450 if (!request_mem_region(CPHYSADDR(ioaddr), MAC_IOSIZE, "Au1x00 ENET")) 1424 base = CPHYSADDR(iflist[port_num].base_addr );
1425 macen = CPHYSADDR(iflist[port_num].macen_addr);
1426 irq = iflist[port_num].irq;
1427
1428 if (!request_mem_region( base, MAC_IOSIZE, "Au1x00 ENET") ||
1429 !request_mem_region(macen, 4, "Au1x00 ENET"))
1451 return NULL; 1430 return NULL;
1452 1431
1453 if (version_printed++ == 0) 1432 if (version_printed++ == 0)
1454 printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR); 1433 printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
1455 1434
1456 dev = alloc_etherdev(sizeof(struct au1000_private)); 1435 dev = alloc_etherdev(sizeof(struct au1000_private));
1457 if (!dev) { 1436 if (!dev) {
1458 printk (KERN_ERR "au1000 eth: alloc_etherdev failed\n"); 1437 printk(KERN_ERR "%s: alloc_etherdev failed\n", DRV_NAME);
1459 return NULL; 1438 return NULL;
1460 } 1439 }
1461 1440
1462 if ((err = register_netdev(dev))) { 1441 if ((err = register_netdev(dev)) != 0) {
1463 printk(KERN_ERR "Au1x_eth Cannot register net device err %d\n", 1442 printk(KERN_ERR "%s: Cannot register net device, error %d\n",
1464 err); 1443 DRV_NAME, err);
1465 free_netdev(dev); 1444 free_netdev(dev);
1466 return NULL; 1445 return NULL;
1467 } 1446 }
1468 1447
1469 printk("%s: Au1x Ethernet found at 0x%x, irq %d\n", 1448 printk("%s: Au1xx0 Ethernet found at 0x%x, irq %d\n",
1470 dev->name, ioaddr, irq); 1449 dev->name, base, irq);
1471 1450
1472 aup = dev->priv; 1451 aup = dev->priv;
1473 1452
1474 /* Allocate the data buffers */ 1453 /* Allocate the data buffers */
1475 /* Snooping works fine with eth on all au1xxx */ 1454 /* Snooping works fine with eth on all au1xxx */
1476 aup->vaddr = (u32)dma_alloc_noncoherent(NULL, 1455 aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE *
1477 MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS), 1456 (NUM_TX_BUFFS + NUM_RX_BUFFS),
1478 &aup->dma_addr, 1457 &aup->dma_addr, 0);
1479 0);
1480 if (!aup->vaddr) { 1458 if (!aup->vaddr) {
1481 free_netdev(dev); 1459 free_netdev(dev);
1482 release_mem_region(CPHYSADDR(ioaddr), MAC_IOSIZE); 1460 release_mem_region( base, MAC_IOSIZE);
1461 release_mem_region(macen, 4);
1483 return NULL; 1462 return NULL;
1484 } 1463 }
1485 1464
1486 /* aup->mac is the base address of the MAC's registers */ 1465 /* aup->mac is the base address of the MAC's registers */
1487 aup->mac = (volatile mac_reg_t *)((unsigned long)ioaddr); 1466 aup->mac = (volatile mac_reg_t *)iflist[port_num].base_addr;
1467
1488 /* Setup some variables for quick register address access */ 1468 /* Setup some variables for quick register address access */
1489 if (ioaddr == iflist[0].base_addr) 1469 aup->enable = (volatile u32 *)iflist[port_num].macen_addr;
1490 { 1470 aup->mac_id = port_num;
1491 /* check env variables first */ 1471 au_macs[port_num] = aup;
1492 if (!get_ethernet_addr(ethaddr)) { 1472
1473 if (port_num == 0) {
1474 /* Check the environment variables first */
1475 if (get_ethernet_addr(ethaddr) == 0)
1493 memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr)); 1476 memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr));
1494 } else { 1477 else {
1495 /* Check command line */ 1478 /* Check command line */
1496 argptr = prom_getcmdline(); 1479 argptr = prom_getcmdline();
1497 if ((pmac = strstr(argptr, "ethaddr=")) == NULL) { 1480 if ((pmac = strstr(argptr, "ethaddr=")) == NULL)
1498 printk(KERN_INFO "%s: No mac address found\n", 1481 printk(KERN_INFO "%s: No MAC address found\n",
1499 dev->name); 1482 dev->name);
1500 /* use the hard coded mac addresses */ 1483 /* Use the hard coded MAC addresses */
1501 } else { 1484 else {
1502 str2eaddr(ethaddr, pmac + strlen("ethaddr=")); 1485 str2eaddr(ethaddr, pmac + strlen("ethaddr="));
1503 memcpy(au1000_mac_addr, ethaddr, 1486 memcpy(au1000_mac_addr, ethaddr,
1504 sizeof(au1000_mac_addr)); 1487 sizeof(au1000_mac_addr));
1505 } 1488 }
1506 } 1489 }
1507 aup->enable = (volatile u32 *) 1490
1508 ((unsigned long)iflist[0].macen_addr);
1509 memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr));
1510 setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR); 1491 setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR);
1511 aup->mac_id = 0; 1492 } else if (port_num == 1)
1512 au_macs[0] = aup;
1513 }
1514 else
1515 if (ioaddr == iflist[1].base_addr)
1516 {
1517 aup->enable = (volatile u32 *)
1518 ((unsigned long)iflist[1].macen_addr);
1519 memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr));
1520 dev->dev_addr[4] += 0x10;
1521 setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR); 1493 setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR);
1522 aup->mac_id = 1;
1523 au_macs[1] = aup;
1524 }
1525 else
1526 {
1527 printk(KERN_ERR "%s: bad ioaddr\n", dev->name);
1528 }
1529 1494
1530 /* bring the device out of reset, otherwise probing the mii 1495 /*
1531 * will hang */ 1496 * Assign to the Ethernet ports two consecutive MAC addresses
1497 * to match those that are printed on their stickers
1498 */
1499 memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr));
1500 dev->dev_addr[5] += port_num;
1501
1502 /* Bring the device out of reset, otherwise probing the MII will hang */
1532 *aup->enable = MAC_EN_CLOCK_ENABLE; 1503 *aup->enable = MAC_EN_CLOCK_ENABLE;
1533 au_sync_delay(2); 1504 au_sync_delay(2);
1534 *aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 | 1505 *aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2 |
1535 MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE; 1506 MAC_EN_CLOCK_ENABLE;
1536 au_sync_delay(2); 1507 au_sync_delay(2);
1537 1508
1538 aup->mii = kmalloc(sizeof(struct mii_phy), GFP_KERNEL); 1509 aup->mii = kmalloc(sizeof(struct mii_phy), GFP_KERNEL);
@@ -1581,7 +1552,7 @@ au1000_probe(u32 ioaddr, int irq, int port_num)
1581 } 1552 }
1582 1553
1583 spin_lock_init(&aup->lock); 1554 spin_lock_init(&aup->lock);
1584 dev->base_addr = ioaddr; 1555 dev->base_addr = base;
1585 dev->irq = irq; 1556 dev->irq = irq;
1586 dev->open = au1000_open; 1557 dev->open = au1000_open;
1587 dev->hard_start_xmit = au1000_tx; 1558 dev->hard_start_xmit = au1000_tx;
@@ -1615,13 +1586,12 @@ err_out:
1615 if (aup->tx_db_inuse[i]) 1586 if (aup->tx_db_inuse[i])
1616 ReleaseDB(aup, aup->tx_db_inuse[i]); 1587 ReleaseDB(aup, aup->tx_db_inuse[i]);
1617 } 1588 }
1618 dma_free_noncoherent(NULL, 1589 dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1619 MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS), 1590 (void *)aup->vaddr, aup->dma_addr);
1620 (void *)aup->vaddr,
1621 aup->dma_addr);
1622 unregister_netdev(dev); 1591 unregister_netdev(dev);
1623 free_netdev(dev); 1592 free_netdev(dev);
1624 release_mem_region(CPHYSADDR(ioaddr), MAC_IOSIZE); 1593 release_mem_region( base, MAC_IOSIZE);
1594 release_mem_region(macen, 4);
1625 return NULL; 1595 return NULL;
1626} 1596}
1627 1597
@@ -1806,20 +1776,18 @@ static void __exit au1000_cleanup_module(void)
1806 aup = (struct au1000_private *) dev->priv; 1776 aup = (struct au1000_private *) dev->priv;
1807 unregister_netdev(dev); 1777 unregister_netdev(dev);
1808 kfree(aup->mii); 1778 kfree(aup->mii);
1809 for (j = 0; j < NUM_RX_DMA; j++) { 1779 for (j = 0; j < NUM_RX_DMA; j++)
1810 if (aup->rx_db_inuse[j]) 1780 if (aup->rx_db_inuse[j])
1811 ReleaseDB(aup, aup->rx_db_inuse[j]); 1781 ReleaseDB(aup, aup->rx_db_inuse[j]);
1812 } 1782 for (j = 0; j < NUM_TX_DMA; j++)
1813 for (j = 0; j < NUM_TX_DMA; j++) {
1814 if (aup->tx_db_inuse[j]) 1783 if (aup->tx_db_inuse[j])
1815 ReleaseDB(aup, aup->tx_db_inuse[j]); 1784 ReleaseDB(aup, aup->tx_db_inuse[j]);
1816 } 1785 dma_free_noncoherent(NULL, MAX_BUF_SIZE *
1817 dma_free_noncoherent(NULL, 1786 (NUM_TX_BUFFS + NUM_RX_BUFFS),
1818 MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS), 1787 (void *)aup->vaddr, aup->dma_addr);
1819 (void *)aup->vaddr, 1788 release_mem_region(dev->base_addr, MAC_IOSIZE);
1820 aup->dma_addr); 1789 release_mem_region(CPHYSADDR(iflist[i].macen_addr), 4);
1821 free_netdev(dev); 1790 free_netdev(dev);
1822 release_mem_region(CPHYSADDR(iflist[i].base_addr), MAC_IOSIZE);
1823 } 1791 }
1824 } 1792 }
1825} 1793}
diff --git a/drivers/net/cassini.c b/drivers/net/cassini.c
index ac48f7543500..39f36aa05aa8 100644
--- a/drivers/net/cassini.c
+++ b/drivers/net/cassini.c
@@ -4877,7 +4877,7 @@ static int __devinit cas_init_one(struct pci_dev *pdev,
4877 const struct pci_device_id *ent) 4877 const struct pci_device_id *ent)
4878{ 4878{
4879 static int cas_version_printed = 0; 4879 static int cas_version_printed = 0;
4880 unsigned long casreg_base, casreg_len; 4880 unsigned long casreg_len;
4881 struct net_device *dev; 4881 struct net_device *dev;
4882 struct cas *cp; 4882 struct cas *cp;
4883 int i, err, pci_using_dac; 4883 int i, err, pci_using_dac;
@@ -4972,7 +4972,6 @@ static int __devinit cas_init_one(struct pci_dev *pdev,
4972 pci_using_dac = 0; 4972 pci_using_dac = 0;
4973 } 4973 }
4974 4974
4975 casreg_base = pci_resource_start(pdev, 0);
4976 casreg_len = pci_resource_len(pdev, 0); 4975 casreg_len = pci_resource_len(pdev, 0);
4977 4976
4978 cp = netdev_priv(dev); 4977 cp = netdev_priv(dev);
@@ -5024,7 +5023,7 @@ static int __devinit cas_init_one(struct pci_dev *pdev,
5024 cp->timer_ticks = 0; 5023 cp->timer_ticks = 0;
5025 5024
5026 /* give us access to cassini registers */ 5025 /* give us access to cassini registers */
5027 cp->regs = ioremap(casreg_base, casreg_len); 5026 cp->regs = pci_iomap(pdev, 0, casreg_len);
5028 if (cp->regs == 0UL) { 5027 if (cp->regs == 0UL) {
5029 printk(KERN_ERR PFX "Cannot map device registers, " 5028 printk(KERN_ERR PFX "Cannot map device registers, "
5030 "aborting.\n"); 5029 "aborting.\n");
@@ -5123,7 +5122,7 @@ err_out_iounmap:
5123 cas_shutdown(cp); 5122 cas_shutdown(cp);
5124 mutex_unlock(&cp->pm_mutex); 5123 mutex_unlock(&cp->pm_mutex);
5125 5124
5126 iounmap(cp->regs); 5125 pci_iounmap(pdev, cp->regs);
5127 5126
5128 5127
5129err_out_free_res: 5128err_out_free_res:
@@ -5171,7 +5170,7 @@ static void __devexit cas_remove_one(struct pci_dev *pdev)
5171#endif 5170#endif
5172 pci_free_consistent(pdev, sizeof(struct cas_init_block), 5171 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5173 cp->init_block, cp->block_dvma); 5172 cp->init_block, cp->block_dvma);
5174 iounmap(cp->regs); 5173 pci_iounmap(pdev, cp->regs);
5175 free_netdev(dev); 5174 free_netdev(dev);
5176 pci_release_regions(pdev); 5175 pci_release_regions(pdev);
5177 pci_disable_device(pdev); 5176 pci_disable_device(pdev);
diff --git a/drivers/net/e1000/Makefile b/drivers/net/e1000/Makefile
index ca9f89552da3..5dea2b7dea4d 100644
--- a/drivers/net/e1000/Makefile
+++ b/drivers/net/e1000/Makefile
@@ -1,7 +1,7 @@
1################################################################################ 1################################################################################
2# 2#
3# 3#
4# Copyright(c) 1999 - 2003 Intel Corporation. All rights reserved. 4# Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5# 5#
6# This program is free software; you can redistribute it and/or modify it 6# This program is free software; you can redistribute it and/or modify it
7# under the terms of the GNU General Public License as published by the Free 7# under the terms of the GNU General Public License as published by the Free
@@ -22,6 +22,7 @@
22# 22#
23# Contact Information: 23# Contact Information:
24# Linux NICS <linux.nics@intel.com> 24# Linux NICS <linux.nics@intel.com>
25# e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25# Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26# Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26# 27#
27################################################################################ 28################################################################################
diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h
index 281de41d030a..2bc34fbfa69c 100644
--- a/drivers/net/e1000/e1000.h
+++ b/drivers/net/e1000/e1000.h
@@ -1,7 +1,7 @@
1/******************************************************************************* 1/*******************************************************************************
2 2
3 3
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5 5
6 This program is free software; you can redistribute it and/or modify it 6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free 7 under the terms of the GNU General Public License as published by the Free
@@ -22,6 +22,7 @@
22 22
23 Contact Information: 23 Contact Information:
24 Linux NICS <linux.nics@intel.com> 24 Linux NICS <linux.nics@intel.com>
25 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 27
27*******************************************************************************/ 28*******************************************************************************/
@@ -114,6 +115,8 @@ struct e1000_adapter;
114/* Supported Rx Buffer Sizes */ 115/* Supported Rx Buffer Sizes */
115#define E1000_RXBUFFER_128 128 /* Used for packet split */ 116#define E1000_RXBUFFER_128 128 /* Used for packet split */
116#define E1000_RXBUFFER_256 256 /* Used for packet split */ 117#define E1000_RXBUFFER_256 256 /* Used for packet split */
118#define E1000_RXBUFFER_512 512
119#define E1000_RXBUFFER_1024 1024
117#define E1000_RXBUFFER_2048 2048 120#define E1000_RXBUFFER_2048 2048
118#define E1000_RXBUFFER_4096 4096 121#define E1000_RXBUFFER_4096 4096
119#define E1000_RXBUFFER_8192 8192 122#define E1000_RXBUFFER_8192 8192
@@ -334,7 +337,6 @@ struct e1000_adapter {
334 boolean_t have_msi; 337 boolean_t have_msi;
335#endif 338#endif
336 /* to not mess up cache alignment, always add to the bottom */ 339 /* to not mess up cache alignment, always add to the bottom */
337 boolean_t txb2b;
338#ifdef NETIF_F_TSO 340#ifdef NETIF_F_TSO
339 boolean_t tso_force; 341 boolean_t tso_force;
340#endif 342#endif
diff --git a/drivers/net/e1000/e1000_ethtool.c b/drivers/net/e1000/e1000_ethtool.c
index ecccca35c6f4..cfdf0b24ffc1 100644
--- a/drivers/net/e1000/e1000_ethtool.c
+++ b/drivers/net/e1000/e1000_ethtool.c
@@ -1,7 +1,7 @@
1/******************************************************************************* 1/*******************************************************************************
2 2
3 3
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5 5
6 This program is free software; you can redistribute it and/or modify it 6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free 7 under the terms of the GNU General Public License as published by the Free
@@ -22,6 +22,7 @@
22 22
23 Contact Information: 23 Contact Information:
24 Linux NICS <linux.nics@intel.com> 24 Linux NICS <linux.nics@intel.com>
25 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 27
27*******************************************************************************/ 28*******************************************************************************/
@@ -864,15 +865,15 @@ static int
864e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data) 865e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
865{ 866{
866 struct net_device *netdev = adapter->netdev; 867 struct net_device *netdev = adapter->netdev;
867 uint32_t mask, i=0, shared_int = TRUE; 868 uint32_t mask, i=0, shared_int = TRUE;
868 uint32_t irq = adapter->pdev->irq; 869 uint32_t irq = adapter->pdev->irq;
869 870
870 *data = 0; 871 *data = 0;
871 872
872 /* Hook up test interrupt handler just for this test */ 873 /* Hook up test interrupt handler just for this test */
873 if (!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) { 874 if (!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
874 shared_int = FALSE; 875 shared_int = FALSE;
875 } else if (request_irq(irq, &e1000_test_intr, SA_SHIRQ, 876 } else if (request_irq(irq, &e1000_test_intr, SA_SHIRQ,
876 netdev->name, netdev)){ 877 netdev->name, netdev)){
877 *data = 1; 878 *data = 1;
878 return -1; 879 return -1;
@@ -888,22 +889,22 @@ e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
888 /* Interrupt to test */ 889 /* Interrupt to test */
889 mask = 1 << i; 890 mask = 1 << i;
890 891
891 if (!shared_int) { 892 if (!shared_int) {
892 /* Disable the interrupt to be reported in 893 /* Disable the interrupt to be reported in
893 * the cause register and then force the same 894 * the cause register and then force the same
894 * interrupt and see if one gets posted. If 895 * interrupt and see if one gets posted. If
895 * an interrupt was posted to the bus, the 896 * an interrupt was posted to the bus, the
896 * test failed. 897 * test failed.
897 */ 898 */
898 adapter->test_icr = 0; 899 adapter->test_icr = 0;
899 E1000_WRITE_REG(&adapter->hw, IMC, mask); 900 E1000_WRITE_REG(&adapter->hw, IMC, mask);
900 E1000_WRITE_REG(&adapter->hw, ICS, mask); 901 E1000_WRITE_REG(&adapter->hw, ICS, mask);
901 msec_delay(10); 902 msec_delay(10);
902 903
903 if (adapter->test_icr & mask) { 904 if (adapter->test_icr & mask) {
904 *data = 3; 905 *data = 3;
905 break; 906 break;
906 } 907 }
907 } 908 }
908 909
909 /* Enable the interrupt to be reported in 910 /* Enable the interrupt to be reported in
@@ -922,7 +923,7 @@ e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
922 break; 923 break;
923 } 924 }
924 925
925 if (!shared_int) { 926 if (!shared_int) {
926 /* Disable the other interrupts to be reported in 927 /* Disable the other interrupts to be reported in
927 * the cause register and then force the other 928 * the cause register and then force the other
928 * interrupts and see if any get posted. If 929 * interrupts and see if any get posted. If
diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c
index 523c2c9fc0ac..3959039b16ec 100644
--- a/drivers/net/e1000/e1000_hw.c
+++ b/drivers/net/e1000/e1000_hw.c
@@ -1,7 +1,7 @@
1/******************************************************************************* 1/*******************************************************************************
2 2
3 3
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5 5
6 This program is free software; you can redistribute it and/or modify it 6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free 7 under the terms of the GNU General Public License as published by the Free
@@ -22,6 +22,7 @@
22 22
23 Contact Information: 23 Contact Information:
24 Linux NICS <linux.nics@intel.com> 24 Linux NICS <linux.nics@intel.com>
25 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 27
27*******************************************************************************/ 28*******************************************************************************/
@@ -764,7 +765,7 @@ e1000_init_hw(struct e1000_hw *hw)
764 } 765 }
765 766
766 if (hw->mac_type == e1000_82573) { 767 if (hw->mac_type == e1000_82573) {
767 e1000_enable_tx_pkt_filtering(hw); 768 e1000_enable_tx_pkt_filtering(hw);
768 } 769 }
769 770
770 switch (hw->mac_type) { 771 switch (hw->mac_type) {
@@ -860,7 +861,7 @@ e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
860 861
861 if(eeprom_data != EEPROM_RESERVED_WORD) { 862 if(eeprom_data != EEPROM_RESERVED_WORD) {
862 /* Adjust SERDES output amplitude only. */ 863 /* Adjust SERDES output amplitude only. */
863 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; 864 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
864 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); 865 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
865 if(ret_val) 866 if(ret_val)
866 return ret_val; 867 return ret_val;
@@ -1227,7 +1228,7 @@ e1000_copper_link_igp_setup(struct e1000_hw *hw)
1227 1228
1228 if (hw->phy_reset_disable) 1229 if (hw->phy_reset_disable)
1229 return E1000_SUCCESS; 1230 return E1000_SUCCESS;
1230 1231
1231 ret_val = e1000_phy_reset(hw); 1232 ret_val = e1000_phy_reset(hw);
1232 if (ret_val) { 1233 if (ret_val) {
1233 DEBUGOUT("Error Resetting the PHY\n"); 1234 DEBUGOUT("Error Resetting the PHY\n");
@@ -1369,7 +1370,7 @@ e1000_copper_link_ggp_setup(struct e1000_hw *hw)
1369 DEBUGFUNC("e1000_copper_link_ggp_setup"); 1370 DEBUGFUNC("e1000_copper_link_ggp_setup");
1370 1371
1371 if(!hw->phy_reset_disable) { 1372 if(!hw->phy_reset_disable) {
1372 1373
1373 /* Enable CRS on TX for half-duplex operation. */ 1374 /* Enable CRS on TX for half-duplex operation. */
1374 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, 1375 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1375 &phy_data); 1376 &phy_data);
@@ -1518,7 +1519,7 @@ e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1518 1519
1519 if(hw->phy_reset_disable) 1520 if(hw->phy_reset_disable)
1520 return E1000_SUCCESS; 1521 return E1000_SUCCESS;
1521 1522
1522 /* Enable CRS on TX. This must be set for half-duplex operation. */ 1523 /* Enable CRS on TX. This must be set for half-duplex operation. */
1523 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1524 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1524 if(ret_val) 1525 if(ret_val)
@@ -1664,7 +1665,7 @@ e1000_copper_link_autoneg(struct e1000_hw *hw)
1664* collision distance in the Transmit Control Register. 1665* collision distance in the Transmit Control Register.
1665* 2) Set up flow control on the MAC to that established with 1666* 2) Set up flow control on the MAC to that established with
1666* the link partner. 1667* the link partner.
1667* 3) Config DSP to improve Gigabit link quality for some PHY revisions. 1668* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
1668* 1669*
1669* hw - Struct containing variables accessed by shared code 1670* hw - Struct containing variables accessed by shared code
1670******************************************************************************/ 1671******************************************************************************/
@@ -1673,7 +1674,7 @@ e1000_copper_link_postconfig(struct e1000_hw *hw)
1673{ 1674{
1674 int32_t ret_val; 1675 int32_t ret_val;
1675 DEBUGFUNC("e1000_copper_link_postconfig"); 1676 DEBUGFUNC("e1000_copper_link_postconfig");
1676 1677
1677 if(hw->mac_type >= e1000_82544) { 1678 if(hw->mac_type >= e1000_82544) {
1678 e1000_config_collision_dist(hw); 1679 e1000_config_collision_dist(hw);
1679 } else { 1680 } else {
@@ -1697,7 +1698,7 @@ e1000_copper_link_postconfig(struct e1000_hw *hw)
1697 return ret_val; 1698 return ret_val;
1698 } 1699 }
1699 } 1700 }
1700 1701
1701 return E1000_SUCCESS; 1702 return E1000_SUCCESS;
1702} 1703}
1703 1704
@@ -1753,11 +1754,11 @@ e1000_setup_copper_link(struct e1000_hw *hw)
1753 } 1754 }
1754 1755
1755 if(hw->autoneg) { 1756 if(hw->autoneg) {
1756 /* Setup autoneg and flow control advertisement 1757 /* Setup autoneg and flow control advertisement
1757 * and perform autonegotiation */ 1758 * and perform autonegotiation */
1758 ret_val = e1000_copper_link_autoneg(hw); 1759 ret_val = e1000_copper_link_autoneg(hw);
1759 if(ret_val) 1760 if(ret_val)
1760 return ret_val; 1761 return ret_val;
1761 } else { 1762 } else {
1762 /* PHY will be set to 10H, 10F, 100H,or 100F 1763 /* PHY will be set to 10H, 10F, 100H,or 100F
1763 * depending on value from forced_speed_duplex. */ 1764 * depending on value from forced_speed_duplex. */
@@ -1785,7 +1786,7 @@ e1000_setup_copper_link(struct e1000_hw *hw)
1785 ret_val = e1000_copper_link_postconfig(hw); 1786 ret_val = e1000_copper_link_postconfig(hw);
1786 if(ret_val) 1787 if(ret_val)
1787 return ret_val; 1788 return ret_val;
1788 1789
1789 DEBUGOUT("Valid link established!!!\n"); 1790 DEBUGOUT("Valid link established!!!\n");
1790 return E1000_SUCCESS; 1791 return E1000_SUCCESS;
1791 } 1792 }
@@ -1983,7 +1984,7 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
1983 1984
1984 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); 1985 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1985 1986
1986 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); 1987 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1987 if(ret_val) 1988 if(ret_val)
1988 return ret_val; 1989 return ret_val;
1989 1990
@@ -2272,7 +2273,7 @@ e1000_config_mac_to_phy(struct e1000_hw *hw)
2272 2273
2273 DEBUGFUNC("e1000_config_mac_to_phy"); 2274 DEBUGFUNC("e1000_config_mac_to_phy");
2274 2275
2275 /* 82544 or newer MAC, Auto Speed Detection takes care of 2276 /* 82544 or newer MAC, Auto Speed Detection takes care of
2276 * MAC speed/duplex configuration.*/ 2277 * MAC speed/duplex configuration.*/
2277 if (hw->mac_type >= e1000_82544) 2278 if (hw->mac_type >= e1000_82544)
2278 return E1000_SUCCESS; 2279 return E1000_SUCCESS;
@@ -2291,9 +2292,9 @@ e1000_config_mac_to_phy(struct e1000_hw *hw)
2291 if(ret_val) 2292 if(ret_val)
2292 return ret_val; 2293 return ret_val;
2293 2294
2294 if(phy_data & M88E1000_PSSR_DPLX) 2295 if(phy_data & M88E1000_PSSR_DPLX)
2295 ctrl |= E1000_CTRL_FD; 2296 ctrl |= E1000_CTRL_FD;
2296 else 2297 else
2297 ctrl &= ~E1000_CTRL_FD; 2298 ctrl &= ~E1000_CTRL_FD;
2298 2299
2299 e1000_config_collision_dist(hw); 2300 e1000_config_collision_dist(hw);
@@ -2492,10 +2493,10 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw)
2492 */ 2493 */
2493 if(hw->original_fc == e1000_fc_full) { 2494 if(hw->original_fc == e1000_fc_full) {
2494 hw->fc = e1000_fc_full; 2495 hw->fc = e1000_fc_full;
2495 DEBUGOUT("Flow Control = FULL.\r\n"); 2496 DEBUGOUT("Flow Control = FULL.\n");
2496 } else { 2497 } else {
2497 hw->fc = e1000_fc_rx_pause; 2498 hw->fc = e1000_fc_rx_pause;
2498 DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); 2499 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2499 } 2500 }
2500 } 2501 }
2501 /* For receiving PAUSE frames ONLY. 2502 /* For receiving PAUSE frames ONLY.
@@ -2511,7 +2512,7 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw)
2511 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && 2512 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2512 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { 2513 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2513 hw->fc = e1000_fc_tx_pause; 2514 hw->fc = e1000_fc_tx_pause;
2514 DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n"); 2515 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2515 } 2516 }
2516 /* For transmitting PAUSE frames ONLY. 2517 /* For transmitting PAUSE frames ONLY.
2517 * 2518 *
@@ -2526,7 +2527,7 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw)
2526 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && 2527 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2527 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { 2528 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2528 hw->fc = e1000_fc_rx_pause; 2529 hw->fc = e1000_fc_rx_pause;
2529 DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); 2530 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2530 } 2531 }
2531 /* Per the IEEE spec, at this point flow control should be 2532 /* Per the IEEE spec, at this point flow control should be
2532 * disabled. However, we want to consider that we could 2533 * disabled. However, we want to consider that we could
@@ -2552,10 +2553,10 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw)
2552 hw->original_fc == e1000_fc_tx_pause) || 2553 hw->original_fc == e1000_fc_tx_pause) ||
2553 hw->fc_strict_ieee) { 2554 hw->fc_strict_ieee) {
2554 hw->fc = e1000_fc_none; 2555 hw->fc = e1000_fc_none;
2555 DEBUGOUT("Flow Control = NONE.\r\n"); 2556 DEBUGOUT("Flow Control = NONE.\n");
2556 } else { 2557 } else {
2557 hw->fc = e1000_fc_rx_pause; 2558 hw->fc = e1000_fc_rx_pause;
2558 DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); 2559 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2559 } 2560 }
2560 2561
2561 /* Now we need to do one last check... If we auto- 2562 /* Now we need to do one last check... If we auto-
@@ -2580,7 +2581,7 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw)
2580 return ret_val; 2581 return ret_val;
2581 } 2582 }
2582 } else { 2583 } else {
2583 DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n"); 2584 DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
2584 } 2585 }
2585 } 2586 }
2586 return E1000_SUCCESS; 2587 return E1000_SUCCESS;
@@ -2763,7 +2764,7 @@ e1000_check_for_link(struct e1000_hw *hw)
2763 hw->autoneg_failed = 1; 2764 hw->autoneg_failed = 1;
2764 return 0; 2765 return 0;
2765 } 2766 }
2766 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n"); 2767 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
2767 2768
2768 /* Disable auto-negotiation in the TXCW register */ 2769 /* Disable auto-negotiation in the TXCW register */
2769 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); 2770 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
@@ -2788,7 +2789,7 @@ e1000_check_for_link(struct e1000_hw *hw)
2788 else if(((hw->media_type == e1000_media_type_fiber) || 2789 else if(((hw->media_type == e1000_media_type_fiber) ||
2789 (hw->media_type == e1000_media_type_internal_serdes)) && 2790 (hw->media_type == e1000_media_type_internal_serdes)) &&
2790 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { 2791 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2791 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n"); 2792 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
2792 E1000_WRITE_REG(hw, TXCW, hw->txcw); 2793 E1000_WRITE_REG(hw, TXCW, hw->txcw);
2793 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); 2794 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
2794 2795
@@ -2851,13 +2852,13 @@ e1000_get_speed_and_duplex(struct e1000_hw *hw,
2851 2852
2852 if(status & E1000_STATUS_FD) { 2853 if(status & E1000_STATUS_FD) {
2853 *duplex = FULL_DUPLEX; 2854 *duplex = FULL_DUPLEX;
2854 DEBUGOUT("Full Duplex\r\n"); 2855 DEBUGOUT("Full Duplex\n");
2855 } else { 2856 } else {
2856 *duplex = HALF_DUPLEX; 2857 *duplex = HALF_DUPLEX;
2857 DEBUGOUT(" Half Duplex\r\n"); 2858 DEBUGOUT(" Half Duplex\n");
2858 } 2859 }
2859 } else { 2860 } else {
2860 DEBUGOUT("1000 Mbs, Full Duplex\r\n"); 2861 DEBUGOUT("1000 Mbs, Full Duplex\n");
2861 *speed = SPEED_1000; 2862 *speed = SPEED_1000;
2862 *duplex = FULL_DUPLEX; 2863 *duplex = FULL_DUPLEX;
2863 } 2864 }
@@ -2883,7 +2884,7 @@ e1000_get_speed_and_duplex(struct e1000_hw *hw,
2883 } 2884 }
2884 } 2885 }
2885 2886
2886 if ((hw->mac_type == e1000_80003es2lan) && 2887 if ((hw->mac_type == e1000_80003es2lan) &&
2887 (hw->media_type == e1000_media_type_copper)) { 2888 (hw->media_type == e1000_media_type_copper)) {
2888 if (*speed == SPEED_1000) 2889 if (*speed == SPEED_1000)
2889 ret_val = e1000_configure_kmrn_for_1000(hw); 2890 ret_val = e1000_configure_kmrn_for_1000(hw);
@@ -3159,7 +3160,7 @@ e1000_read_phy_reg(struct e1000_hw *hw,
3159 if (e1000_swfw_sync_acquire(hw, swfw)) 3160 if (e1000_swfw_sync_acquire(hw, swfw))
3160 return -E1000_ERR_SWFW_SYNC; 3161 return -E1000_ERR_SWFW_SYNC;
3161 3162
3162 if((hw->phy_type == e1000_phy_igp || 3163 if((hw->phy_type == e1000_phy_igp ||
3163 hw->phy_type == e1000_phy_igp_2) && 3164 hw->phy_type == e1000_phy_igp_2) &&
3164 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { 3165 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3165 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, 3166 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
@@ -3298,7 +3299,7 @@ e1000_write_phy_reg(struct e1000_hw *hw,
3298 if (e1000_swfw_sync_acquire(hw, swfw)) 3299 if (e1000_swfw_sync_acquire(hw, swfw))
3299 return -E1000_ERR_SWFW_SYNC; 3300 return -E1000_ERR_SWFW_SYNC;
3300 3301
3301 if((hw->phy_type == e1000_phy_igp || 3302 if((hw->phy_type == e1000_phy_igp ||
3302 hw->phy_type == e1000_phy_igp_2) && 3303 hw->phy_type == e1000_phy_igp_2) &&
3303 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { 3304 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3304 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, 3305 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
@@ -3496,22 +3497,22 @@ e1000_phy_hw_reset(struct e1000_hw *hw)
3496 } 3497 }
3497 /* Read the device control register and assert the E1000_CTRL_PHY_RST 3498 /* Read the device control register and assert the E1000_CTRL_PHY_RST
3498 * bit. Then, take it out of reset. 3499 * bit. Then, take it out of reset.
3499 * For pre-e1000_82571 hardware, we delay for 10ms between the assert 3500 * For pre-e1000_82571 hardware, we delay for 10ms between the assert
3500 * and deassert. For e1000_82571 hardware and later, we instead delay 3501 * and deassert. For e1000_82571 hardware and later, we instead delay
3501 * for 50us between and 10ms after the deassertion. 3502 * for 50us between and 10ms after the deassertion.
3502 */ 3503 */
3503 ctrl = E1000_READ_REG(hw, CTRL); 3504 ctrl = E1000_READ_REG(hw, CTRL);
3504 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); 3505 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
3505 E1000_WRITE_FLUSH(hw); 3506 E1000_WRITE_FLUSH(hw);
3506 3507
3507 if (hw->mac_type < e1000_82571) 3508 if (hw->mac_type < e1000_82571)
3508 msec_delay(10); 3509 msec_delay(10);
3509 else 3510 else
3510 udelay(100); 3511 udelay(100);
3511 3512
3512 E1000_WRITE_REG(hw, CTRL, ctrl); 3513 E1000_WRITE_REG(hw, CTRL, ctrl);
3513 E1000_WRITE_FLUSH(hw); 3514 E1000_WRITE_FLUSH(hw);
3514 3515
3515 if (hw->mac_type >= e1000_82571) 3516 if (hw->mac_type >= e1000_82571)
3516 msec_delay(10); 3517 msec_delay(10);
3517 e1000_swfw_sync_release(hw, swfw); 3518 e1000_swfw_sync_release(hw, swfw);
@@ -3815,7 +3816,7 @@ e1000_phy_m88_get_info(struct e1000_hw *hw,
3815 /* Check polarity status */ 3816 /* Check polarity status */
3816 ret_val = e1000_check_polarity(hw, &polarity); 3817 ret_val = e1000_check_polarity(hw, &polarity);
3817 if(ret_val) 3818 if(ret_val)
3818 return ret_val; 3819 return ret_val;
3819 phy_info->cable_polarity = polarity; 3820 phy_info->cable_polarity = polarity;
3820 3821
3821 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 3822 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
@@ -4540,14 +4541,14 @@ e1000_read_eeprom_eerd(struct e1000_hw *hw,
4540 4541
4541 E1000_WRITE_REG(hw, EERD, eerd); 4542 E1000_WRITE_REG(hw, EERD, eerd);
4542 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); 4543 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
4543 4544
4544 if(error) { 4545 if(error) {
4545 break; 4546 break;
4546 } 4547 }
4547 data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA); 4548 data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
4548 4549
4549 } 4550 }
4550 4551
4551 return error; 4552 return error;
4552} 4553}
4553 4554
@@ -4573,24 +4574,24 @@ e1000_write_eeprom_eewr(struct e1000_hw *hw,
4573 return -E1000_ERR_SWFW_SYNC; 4574 return -E1000_ERR_SWFW_SYNC;
4574 4575
4575 for (i = 0; i < words; i++) { 4576 for (i = 0; i < words; i++) {
4576 register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) | 4577 register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
4577 ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) | 4578 ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
4578 E1000_EEPROM_RW_REG_START; 4579 E1000_EEPROM_RW_REG_START;
4579 4580
4580 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); 4581 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
4581 if(error) { 4582 if(error) {
4582 break; 4583 break;
4583 } 4584 }
4584 4585
4585 E1000_WRITE_REG(hw, EEWR, register_value); 4586 E1000_WRITE_REG(hw, EEWR, register_value);
4586 4587
4587 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); 4588 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
4588 4589
4589 if(error) { 4590 if(error) {
4590 break; 4591 break;
4591 } 4592 }
4592 } 4593 }
4593 4594
4594 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM); 4595 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
4595 return error; 4596 return error;
4596} 4597}
@@ -4610,7 +4611,7 @@ e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
4610 for(i = 0; i < attempts; i++) { 4611 for(i = 0; i < attempts; i++) {
4611 if(eerd == E1000_EEPROM_POLL_READ) 4612 if(eerd == E1000_EEPROM_POLL_READ)
4612 reg = E1000_READ_REG(hw, EERD); 4613 reg = E1000_READ_REG(hw, EERD);
4613 else 4614 else
4614 reg = E1000_READ_REG(hw, EEWR); 4615 reg = E1000_READ_REG(hw, EEWR);
4615 4616
4616 if(reg & E1000_EEPROM_RW_REG_DONE) { 4617 if(reg & E1000_EEPROM_RW_REG_DONE) {
@@ -5135,7 +5136,7 @@ e1000_mc_addr_list_update(struct e1000_hw *hw,
5135 uint32_t i; 5136 uint32_t i;
5136 uint32_t num_rar_entry; 5137 uint32_t num_rar_entry;
5137 uint32_t num_mta_entry; 5138 uint32_t num_mta_entry;
5138 5139
5139 DEBUGFUNC("e1000_mc_addr_list_update"); 5140 DEBUGFUNC("e1000_mc_addr_list_update");
5140 5141
5141 /* Set the new number of MC addresses that we are being requested to use. */ 5142 /* Set the new number of MC addresses that we are being requested to use. */
@@ -6240,7 +6241,7 @@ e1000_check_polarity(struct e1000_hw *hw,
6240 * 1 - Downshift ocured. 6241 * 1 - Downshift ocured.
6241 * 6242 *
6242 * returns: - E1000_ERR_XXX 6243 * returns: - E1000_ERR_XXX
6243 * E1000_SUCCESS 6244 * E1000_SUCCESS
6244 * 6245 *
6245 * For phy's older then IGP, this function reads the Downshift bit in the Phy 6246 * For phy's older then IGP, this function reads the Downshift bit in the Phy
6246 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the 6247 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
@@ -6255,7 +6256,7 @@ e1000_check_downshift(struct e1000_hw *hw)
6255 6256
6256 DEBUGFUNC("e1000_check_downshift"); 6257 DEBUGFUNC("e1000_check_downshift");
6257 6258
6258 if(hw->phy_type == e1000_phy_igp || 6259 if(hw->phy_type == e1000_phy_igp ||
6259 hw->phy_type == e1000_phy_igp_2) { 6260 hw->phy_type == e1000_phy_igp_2) {
6260 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, 6261 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
6261 &phy_data); 6262 &phy_data);
@@ -6684,8 +6685,8 @@ e1000_set_d0_lplu_state(struct e1000_hw *hw,
6684 6685
6685 6686
6686 } else { 6687 } else {
6687 6688
6688 phy_data |= IGP02E1000_PM_D0_LPLU; 6689 phy_data |= IGP02E1000_PM_D0_LPLU;
6689 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); 6690 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
6690 if (ret_val) 6691 if (ret_val)
6691 return ret_val; 6692 return ret_val;
@@ -6777,7 +6778,7 @@ int32_t
6777e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer) 6778e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer)
6778{ 6779{
6779 uint8_t i; 6780 uint8_t i;
6780 uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET; 6781 uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
6781 uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH; 6782 uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
6782 6783
6783 length = (length >> 2); 6784 length = (length >> 2);
@@ -6796,7 +6797,7 @@ e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer)
6796 * and also checks whether the previous command is completed. 6797 * and also checks whether the previous command is completed.
6797 * It busy waits in case of previous command is not completed. 6798 * It busy waits in case of previous command is not completed.
6798 * 6799 *
6799 * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or 6800 * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
6800 * timeout 6801 * timeout
6801 * - E1000_SUCCESS for success. 6802 * - E1000_SUCCESS for success.
6802 ****************************************************************************/ 6803 ****************************************************************************/
@@ -6820,7 +6821,7 @@ e1000_mng_enable_host_if(struct e1000_hw * hw)
6820 msec_delay_irq(1); 6821 msec_delay_irq(1);
6821 } 6822 }
6822 6823
6823 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { 6824 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
6824 DEBUGOUT("Previous command timeout failed .\n"); 6825 DEBUGOUT("Previous command timeout failed .\n");
6825 return -E1000_ERR_HOST_INTERFACE_COMMAND; 6826 return -E1000_ERR_HOST_INTERFACE_COMMAND;
6826 } 6827 }
diff --git a/drivers/net/e1000/e1000_hw.h b/drivers/net/e1000/e1000_hw.h
index 150e45e30f87..467c9ed944f8 100644
--- a/drivers/net/e1000/e1000_hw.h
+++ b/drivers/net/e1000/e1000_hw.h
@@ -1,7 +1,7 @@
1/******************************************************************************* 1/*******************************************************************************
2 2
3 3
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5 5
6 This program is free software; you can redistribute it and/or modify it 6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free 7 under the terms of the GNU General Public License as published by the Free
@@ -22,6 +22,7 @@
22 22
23 Contact Information: 23 Contact Information:
24 Linux NICS <linux.nics@intel.com> 24 Linux NICS <linux.nics@intel.com>
25 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 27
27*******************************************************************************/ 28*******************************************************************************/
@@ -374,7 +375,7 @@ struct e1000_host_mng_dhcp_cookie{
374}; 375};
375#endif 376#endif
376 377
377int32_t e1000_mng_write_dhcp_info(struct e1000_hw *hw, uint8_t *buffer, 378int32_t e1000_mng_write_dhcp_info(struct e1000_hw *hw, uint8_t *buffer,
378 uint16_t length); 379 uint16_t length);
379boolean_t e1000_check_mng_mode(struct e1000_hw *hw); 380boolean_t e1000_check_mng_mode(struct e1000_hw *hw);
380boolean_t e1000_enable_tx_pkt_filtering(struct e1000_hw *hw); 381boolean_t e1000_enable_tx_pkt_filtering(struct e1000_hw *hw);
@@ -1801,7 +1802,7 @@ struct e1000_hw {
1801 * value2 = [0..64512], default=4096 1802 * value2 = [0..64512], default=4096
1802 * value3 = [0..64512], default=0 1803 * value3 = [0..64512], default=0
1803 */ 1804 */
1804 1805
1805#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F 1806#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F
1806#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00 1807#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00
1807#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000 1808#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000
diff --git a/drivers/net/e1000/e1000_main.c b/drivers/net/e1000/e1000_main.c
index ed15fcaedaf9..bd709e562778 100644
--- a/drivers/net/e1000/e1000_main.c
+++ b/drivers/net/e1000/e1000_main.c
@@ -1,7 +1,7 @@
1/******************************************************************************* 1/*******************************************************************************
2 2
3 3
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5 5
6 This program is free software; you can redistribute it and/or modify it 6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free 7 under the terms of the GNU General Public License as published by the Free
@@ -22,51 +22,13 @@
22 22
23 Contact Information: 23 Contact Information:
24 Linux NICS <linux.nics@intel.com> 24 Linux NICS <linux.nics@intel.com>
25 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 27
27*******************************************************************************/ 28*******************************************************************************/
28 29
29#include "e1000.h" 30#include "e1000.h"
30 31
31/* Change Log
32 * 7.0.33 3-Feb-2006
33 * o Added another fix for the pass false carrier bit
34 * 7.0.32 24-Jan-2006
35 * o Need to rebuild with noew version number for the pass false carrier
36 * fix in e1000_hw.c
37 * 7.0.30 18-Jan-2006
38 * o fixup for tso workaround to disable it for pci-x
39 * o fix mem leak on 82542
40 * o fixes for 10 Mb/s connections and incorrect stats
41 * 7.0.28 01/06/2006
42 * o hardware workaround to only set "speed mode" bit for 1G link.
43 * 7.0.26 12/23/2005
44 * o wake on lan support modified for device ID 10B5
45 * o fix dhcp + vlan issue not making it to the iAMT firmware
46 * 7.0.24 12/9/2005
47 * o New hardware support for the Gigabit NIC embedded in the south bridge
48 * o Fixes to the recycling logic (skb->tail) from IBM LTC
49 * 6.3.9 12/16/2005
50 * o incorporate fix for recycled skbs from IBM LTC
51 * 6.3.7 11/18/2005
52 * o Honor eeprom setting for enabling/disabling Wake On Lan
53 * 6.3.5 11/17/2005
54 * o Fix memory leak in rx ring handling for PCI Express adapters
55 * 6.3.4 11/8/05
56 * o Patch from Jesper Juhl to remove redundant NULL checks for kfree
57 * 6.3.2 9/20/05
58 * o Render logic that sets/resets DRV_LOAD as inline functions to
59 * avoid code replication. If f/w is AMT then set DRV_LOAD only when
60 * network interface is open.
61 * o Handle DRV_LOAD set/reset in cases where AMT uses VLANs.
62 * o Adjust PBA partioning for Jumbo frames using MTU size and not
63 * rx_buffer_len
64 * 6.3.1 9/19/05
65 * o Use adapter->tx_timeout_factor in Tx Hung Detect logic
66 * (e1000_clean_tx_irq)
67 * o Support for 8086:10B5 device (Quad Port)
68 */
69
70char e1000_driver_name[] = "e1000"; 32char e1000_driver_name[] = "e1000";
71static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; 33static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
72#ifndef CONFIG_E1000_NAPI 34#ifndef CONFIG_E1000_NAPI
@@ -74,9 +36,9 @@ static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
74#else 36#else
75#define DRIVERNAPI "-NAPI" 37#define DRIVERNAPI "-NAPI"
76#endif 38#endif
77#define DRV_VERSION "7.0.33-k2"DRIVERNAPI 39#define DRV_VERSION "7.0.38-k4"DRIVERNAPI
78char e1000_driver_version[] = DRV_VERSION; 40char e1000_driver_version[] = DRV_VERSION;
79static char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation."; 41static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
80 42
81/* e1000_pci_tbl - PCI Device ID Table 43/* e1000_pci_tbl - PCI Device ID Table
82 * 44 *
@@ -208,8 +170,8 @@ static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
208static void e1000_tx_timeout(struct net_device *dev); 170static void e1000_tx_timeout(struct net_device *dev);
209static void e1000_reset_task(struct net_device *dev); 171static void e1000_reset_task(struct net_device *dev);
210static void e1000_smartspeed(struct e1000_adapter *adapter); 172static void e1000_smartspeed(struct e1000_adapter *adapter);
211static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 173static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
212 struct sk_buff *skb); 174 struct sk_buff *skb);
213 175
214static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp); 176static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
215static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid); 177static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
@@ -293,7 +255,7 @@ module_exit(e1000_exit_module);
293 * @adapter: board private structure 255 * @adapter: board private structure
294 **/ 256 **/
295 257
296static inline void 258static void
297e1000_irq_disable(struct e1000_adapter *adapter) 259e1000_irq_disable(struct e1000_adapter *adapter)
298{ 260{
299 atomic_inc(&adapter->irq_sem); 261 atomic_inc(&adapter->irq_sem);
@@ -307,7 +269,7 @@ e1000_irq_disable(struct e1000_adapter *adapter)
307 * @adapter: board private structure 269 * @adapter: board private structure
308 **/ 270 **/
309 271
310static inline void 272static void
311e1000_irq_enable(struct e1000_adapter *adapter) 273e1000_irq_enable(struct e1000_adapter *adapter)
312{ 274{
313 if (likely(atomic_dec_and_test(&adapter->irq_sem))) { 275 if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
@@ -348,10 +310,10 @@ e1000_update_mng_vlan(struct e1000_adapter *adapter)
348 * For ASF and Pass Through versions of f/w this means that the 310 * For ASF and Pass Through versions of f/w this means that the
349 * driver is no longer loaded. For AMT version (only with 82573) i 311 * driver is no longer loaded. For AMT version (only with 82573) i
350 * of the f/w this means that the netowrk i/f is closed. 312 * of the f/w this means that the netowrk i/f is closed.
351 * 313 *
352 **/ 314 **/
353 315
354static inline void 316static void
355e1000_release_hw_control(struct e1000_adapter *adapter) 317e1000_release_hw_control(struct e1000_adapter *adapter)
356{ 318{
357 uint32_t ctrl_ext; 319 uint32_t ctrl_ext;
@@ -361,6 +323,7 @@ e1000_release_hw_control(struct e1000_adapter *adapter)
361 switch (adapter->hw.mac_type) { 323 switch (adapter->hw.mac_type) {
362 case e1000_82571: 324 case e1000_82571:
363 case e1000_82572: 325 case e1000_82572:
326 case e1000_80003es2lan:
364 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT); 327 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
365 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, 328 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
366 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 329 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
@@ -379,13 +342,13 @@ e1000_release_hw_control(struct e1000_adapter *adapter)
379 * @adapter: address of board private structure 342 * @adapter: address of board private structure
380 * 343 *
381 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit. 344 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
382 * For ASF and Pass Through versions of f/w this means that 345 * For ASF and Pass Through versions of f/w this means that
383 * the driver is loaded. For AMT version (only with 82573) 346 * the driver is loaded. For AMT version (only with 82573)
384 * of the f/w this means that the netowrk i/f is open. 347 * of the f/w this means that the netowrk i/f is open.
385 * 348 *
386 **/ 349 **/
387 350
388static inline void 351static void
389e1000_get_hw_control(struct e1000_adapter *adapter) 352e1000_get_hw_control(struct e1000_adapter *adapter)
390{ 353{
391 uint32_t ctrl_ext; 354 uint32_t ctrl_ext;
@@ -394,6 +357,7 @@ e1000_get_hw_control(struct e1000_adapter *adapter)
394 switch (adapter->hw.mac_type) { 357 switch (adapter->hw.mac_type) {
395 case e1000_82571: 358 case e1000_82571:
396 case e1000_82572: 359 case e1000_82572:
360 case e1000_80003es2lan:
397 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT); 361 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
398 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, 362 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
399 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 363 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
@@ -421,7 +385,7 @@ e1000_up(struct e1000_adapter *adapter)
421 uint16_t mii_reg; 385 uint16_t mii_reg;
422 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); 386 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
423 if (mii_reg & MII_CR_POWER_DOWN) 387 if (mii_reg & MII_CR_POWER_DOWN)
424 e1000_phy_reset(&adapter->hw); 388 e1000_phy_hw_reset(&adapter->hw);
425 } 389 }
426 390
427 e1000_set_multi(netdev); 391 e1000_set_multi(netdev);
@@ -711,8 +675,8 @@ e1000_probe(struct pci_dev *pdev,
711 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n"); 675 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
712 676
713 /* if ksp3, indicate if it's port a being setup */ 677 /* if ksp3, indicate if it's port a being setup */
714 if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 && 678 if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 &&
715 e1000_ksp3_port_a == 0) 679 e1000_ksp3_port_a == 0)
716 adapter->ksp3_port_a = 1; 680 adapter->ksp3_port_a = 1;
717 e1000_ksp3_port_a++; 681 e1000_ksp3_port_a++;
718 /* Reset for multiple KP3 adapters */ 682 /* Reset for multiple KP3 adapters */
@@ -740,9 +704,9 @@ e1000_probe(struct pci_dev *pdev,
740 if (pci_using_dac) 704 if (pci_using_dac)
741 netdev->features |= NETIF_F_HIGHDMA; 705 netdev->features |= NETIF_F_HIGHDMA;
742 706
743 /* hard_start_xmit is safe against parallel locking */ 707 /* hard_start_xmit is safe against parallel locking */
744 netdev->features |= NETIF_F_LLTX; 708 netdev->features |= NETIF_F_LLTX;
745 709
746 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw); 710 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
747 711
748 /* before reading the EEPROM, reset the controller to 712 /* before reading the EEPROM, reset the controller to
@@ -972,8 +936,8 @@ e1000_sw_init(struct e1000_adapter *adapter)
972 936
973 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); 937 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
974 938
975 adapter->rx_buffer_len = E1000_RXBUFFER_2048; 939 adapter->rx_buffer_len = MAXIMUM_ETHERNET_FRAME_SIZE;
976 adapter->rx_ps_bsize0 = E1000_RXBUFFER_256; 940 adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
977 hw->max_frame_size = netdev->mtu + 941 hw->max_frame_size = netdev->mtu +
978 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; 942 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
979 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; 943 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
@@ -1181,7 +1145,7 @@ e1000_close(struct net_device *netdev)
1181 * @start: address of beginning of memory 1145 * @start: address of beginning of memory
1182 * @len: length of memory 1146 * @len: length of memory
1183 **/ 1147 **/
1184static inline boolean_t 1148static boolean_t
1185e1000_check_64k_bound(struct e1000_adapter *adapter, 1149e1000_check_64k_bound(struct e1000_adapter *adapter,
1186 void *start, unsigned long len) 1150 void *start, unsigned long len)
1187{ 1151{
@@ -1599,14 +1563,21 @@ e1000_setup_rctl(struct e1000_adapter *adapter)
1599 rctl |= E1000_RCTL_LPE; 1563 rctl |= E1000_RCTL_LPE;
1600 1564
1601 /* Setup buffer sizes */ 1565 /* Setup buffer sizes */
1602 if (adapter->hw.mac_type >= e1000_82571) { 1566 rctl &= ~E1000_RCTL_SZ_4096;
1603 /* We can now specify buffers in 1K increments. 1567 rctl |= E1000_RCTL_BSEX;
1604 * BSIZE and BSEX are ignored in this case. */ 1568 switch (adapter->rx_buffer_len) {
1605 rctl |= adapter->rx_buffer_len << 0x11; 1569 case E1000_RXBUFFER_256:
1606 } else { 1570 rctl |= E1000_RCTL_SZ_256;
1607 rctl &= ~E1000_RCTL_SZ_4096; 1571 rctl &= ~E1000_RCTL_BSEX;
1608 rctl |= E1000_RCTL_BSEX; 1572 break;
1609 switch (adapter->rx_buffer_len) { 1573 case E1000_RXBUFFER_512:
1574 rctl |= E1000_RCTL_SZ_512;
1575 rctl &= ~E1000_RCTL_BSEX;
1576 break;
1577 case E1000_RXBUFFER_1024:
1578 rctl |= E1000_RCTL_SZ_1024;
1579 rctl &= ~E1000_RCTL_BSEX;
1580 break;
1610 case E1000_RXBUFFER_2048: 1581 case E1000_RXBUFFER_2048:
1611 default: 1582 default:
1612 rctl |= E1000_RCTL_SZ_2048; 1583 rctl |= E1000_RCTL_SZ_2048;
@@ -1621,7 +1592,6 @@ e1000_setup_rctl(struct e1000_adapter *adapter)
1621 case E1000_RXBUFFER_16384: 1592 case E1000_RXBUFFER_16384:
1622 rctl |= E1000_RCTL_SZ_16384; 1593 rctl |= E1000_RCTL_SZ_16384;
1623 break; 1594 break;
1624 }
1625 } 1595 }
1626 1596
1627#ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT 1597#ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
@@ -1715,7 +1685,7 @@ e1000_configure_rx(struct e1000_adapter *adapter)
1715 if (hw->mac_type >= e1000_82571) { 1685 if (hw->mac_type >= e1000_82571) {
1716 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); 1686 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1717 /* Reset delay timers after every interrupt */ 1687 /* Reset delay timers after every interrupt */
1718 ctrl_ext |= E1000_CTRL_EXT_CANC; 1688 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1719#ifdef CONFIG_E1000_NAPI 1689#ifdef CONFIG_E1000_NAPI
1720 /* Auto-Mask interrupts upon ICR read. */ 1690 /* Auto-Mask interrupts upon ICR read. */
1721 ctrl_ext |= E1000_CTRL_EXT_IAME; 1691 ctrl_ext |= E1000_CTRL_EXT_IAME;
@@ -1807,7 +1777,7 @@ e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1807 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); 1777 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1808} 1778}
1809 1779
1810static inline void 1780static void
1811e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, 1781e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1812 struct e1000_buffer *buffer_info) 1782 struct e1000_buffer *buffer_info)
1813{ 1783{
@@ -2247,6 +2217,7 @@ e1000_watchdog_task(struct e1000_adapter *adapter)
2247 2217
2248 if (link) { 2218 if (link) {
2249 if (!netif_carrier_ok(netdev)) { 2219 if (!netif_carrier_ok(netdev)) {
2220 boolean_t txb2b = 1;
2250 e1000_get_speed_and_duplex(&adapter->hw, 2221 e1000_get_speed_and_duplex(&adapter->hw,
2251 &adapter->link_speed, 2222 &adapter->link_speed,
2252 &adapter->link_duplex); 2223 &adapter->link_duplex);
@@ -2260,23 +2231,22 @@ e1000_watchdog_task(struct e1000_adapter *adapter)
2260 * and adjust the timeout factor */ 2231 * and adjust the timeout factor */
2261 netdev->tx_queue_len = adapter->tx_queue_len; 2232 netdev->tx_queue_len = adapter->tx_queue_len;
2262 adapter->tx_timeout_factor = 1; 2233 adapter->tx_timeout_factor = 1;
2263 adapter->txb2b = 1;
2264 switch (adapter->link_speed) { 2234 switch (adapter->link_speed) {
2265 case SPEED_10: 2235 case SPEED_10:
2266 adapter->txb2b = 0; 2236 txb2b = 0;
2267 netdev->tx_queue_len = 10; 2237 netdev->tx_queue_len = 10;
2268 adapter->tx_timeout_factor = 8; 2238 adapter->tx_timeout_factor = 8;
2269 break; 2239 break;
2270 case SPEED_100: 2240 case SPEED_100:
2271 adapter->txb2b = 0; 2241 txb2b = 0;
2272 netdev->tx_queue_len = 100; 2242 netdev->tx_queue_len = 100;
2273 /* maybe add some timeout factor ? */ 2243 /* maybe add some timeout factor ? */
2274 break; 2244 break;
2275 } 2245 }
2276 2246
2277 if ((adapter->hw.mac_type == e1000_82571 || 2247 if ((adapter->hw.mac_type == e1000_82571 ||
2278 adapter->hw.mac_type == e1000_82572) && 2248 adapter->hw.mac_type == e1000_82572) &&
2279 adapter->txb2b == 0) { 2249 txb2b == 0) {
2280#define SPEED_MODE_BIT (1 << 21) 2250#define SPEED_MODE_BIT (1 << 21)
2281 uint32_t tarc0; 2251 uint32_t tarc0;
2282 tarc0 = E1000_READ_REG(&adapter->hw, TARC0); 2252 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
@@ -2400,7 +2370,7 @@ e1000_watchdog_task(struct e1000_adapter *adapter)
2400#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 2370#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2401#define E1000_TX_FLAGS_VLAN_SHIFT 16 2371#define E1000_TX_FLAGS_VLAN_SHIFT 16
2402 2372
2403static inline int 2373static int
2404e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring, 2374e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2405 struct sk_buff *skb) 2375 struct sk_buff *skb)
2406{ 2376{
@@ -2422,7 +2392,7 @@ e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2422 2392
2423 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2)); 2393 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2424 mss = skb_shinfo(skb)->tso_size; 2394 mss = skb_shinfo(skb)->tso_size;
2425 if (skb->protocol == ntohs(ETH_P_IP)) { 2395 if (skb->protocol == htons(ETH_P_IP)) {
2426 skb->nh.iph->tot_len = 0; 2396 skb->nh.iph->tot_len = 0;
2427 skb->nh.iph->check = 0; 2397 skb->nh.iph->check = 0;
2428 skb->h.th->check = 2398 skb->h.th->check =
@@ -2480,7 +2450,7 @@ e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2480 return FALSE; 2450 return FALSE;
2481} 2451}
2482 2452
2483static inline boolean_t 2453static boolean_t
2484e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring, 2454e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2485 struct sk_buff *skb) 2455 struct sk_buff *skb)
2486{ 2456{
@@ -2516,7 +2486,7 @@ e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2516#define E1000_MAX_TXD_PWR 12 2486#define E1000_MAX_TXD_PWR 12
2517#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) 2487#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2518 2488
2519static inline int 2489static int
2520e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring, 2490e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2521 struct sk_buff *skb, unsigned int first, unsigned int max_per_txd, 2491 struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2522 unsigned int nr_frags, unsigned int mss) 2492 unsigned int nr_frags, unsigned int mss)
@@ -2625,7 +2595,7 @@ e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2625 return count; 2595 return count;
2626} 2596}
2627 2597
2628static inline void 2598static void
2629e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring, 2599e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2630 int tx_flags, int count) 2600 int tx_flags, int count)
2631{ 2601{
@@ -2689,7 +2659,7 @@ e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2689#define E1000_FIFO_HDR 0x10 2659#define E1000_FIFO_HDR 0x10
2690#define E1000_82547_PAD_LEN 0x3E0 2660#define E1000_82547_PAD_LEN 0x3E0
2691 2661
2692static inline int 2662static int
2693e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb) 2663e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2694{ 2664{
2695 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; 2665 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
@@ -2716,7 +2686,7 @@ no_fifo_stall_required:
2716} 2686}
2717 2687
2718#define MINIMUM_DHCP_PACKET_SIZE 282 2688#define MINIMUM_DHCP_PACKET_SIZE 282
2719static inline int 2689static int
2720e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb) 2690e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2721{ 2691{
2722 struct e1000_hw *hw = &adapter->hw; 2692 struct e1000_hw *hw = &adapter->hw;
@@ -2764,7 +2734,7 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2764 unsigned int nr_frags = 0; 2734 unsigned int nr_frags = 0;
2765 unsigned int mss = 0; 2735 unsigned int mss = 0;
2766 int count = 0; 2736 int count = 0;
2767 int tso; 2737 int tso;
2768 unsigned int f; 2738 unsigned int f;
2769 len -= skb->data_len; 2739 len -= skb->data_len;
2770 2740
@@ -2777,7 +2747,7 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2777 2747
2778#ifdef NETIF_F_TSO 2748#ifdef NETIF_F_TSO
2779 mss = skb_shinfo(skb)->tso_size; 2749 mss = skb_shinfo(skb)->tso_size;
2780 /* The controller does a simple calculation to 2750 /* The controller does a simple calculation to
2781 * make sure there is enough room in the FIFO before 2751 * make sure there is enough room in the FIFO before
2782 * initiating the DMA for each buffer. The calc is: 2752 * initiating the DMA for each buffer. The calc is:
2783 * 4 = ceil(buffer len/mss). To make sure we don't 2753 * 4 = ceil(buffer len/mss). To make sure we don't
@@ -2800,7 +2770,7 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2800 case e1000_82573: 2770 case e1000_82573:
2801 pull_size = min((unsigned int)4, skb->data_len); 2771 pull_size = min((unsigned int)4, skb->data_len);
2802 if (!__pskb_pull_tail(skb, pull_size)) { 2772 if (!__pskb_pull_tail(skb, pull_size)) {
2803 printk(KERN_ERR 2773 printk(KERN_ERR
2804 "__pskb_pull_tail failed.\n"); 2774 "__pskb_pull_tail failed.\n");
2805 dev_kfree_skb_any(skb); 2775 dev_kfree_skb_any(skb);
2806 return NETDEV_TX_OK; 2776 return NETDEV_TX_OK;
@@ -2901,7 +2871,7 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2901 /* Old method was to assume IPv4 packet by default if TSO was enabled. 2871 /* Old method was to assume IPv4 packet by default if TSO was enabled.
2902 * 82571 hardware supports TSO capabilities for IPv6 as well... 2872 * 82571 hardware supports TSO capabilities for IPv6 as well...
2903 * no longer assume, we must. */ 2873 * no longer assume, we must. */
2904 if (likely(skb->protocol == ntohs(ETH_P_IP))) 2874 if (likely(skb->protocol == htons(ETH_P_IP)))
2905 tx_flags |= E1000_TX_FLAGS_IPV4; 2875 tx_flags |= E1000_TX_FLAGS_IPV4;
2906 2876
2907 e1000_tx_queue(adapter, tx_ring, tx_flags, 2877 e1000_tx_queue(adapter, tx_ring, tx_flags,
@@ -2982,8 +2952,7 @@ e1000_change_mtu(struct net_device *netdev, int new_mtu)
2982 2952
2983 /* Adapter-specific max frame size limits. */ 2953 /* Adapter-specific max frame size limits. */
2984 switch (adapter->hw.mac_type) { 2954 switch (adapter->hw.mac_type) {
2985 case e1000_82542_rev2_0: 2955 case e1000_undefined ... e1000_82542_rev2_1:
2986 case e1000_82542_rev2_1:
2987 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { 2956 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2988 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n"); 2957 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
2989 return -EINVAL; 2958 return -EINVAL;
@@ -3017,27 +2986,32 @@ e1000_change_mtu(struct net_device *netdev, int new_mtu)
3017 break; 2986 break;
3018 } 2987 }
3019 2988
3020 2989 /* NOTE: dev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3021 if (adapter->hw.mac_type > e1000_82547_rev_2) { 2990 * means we reserve 2 more, this pushes us to allocate from the next
3022 adapter->rx_buffer_len = max_frame; 2991 * larger slab size
3023 E1000_ROUNDUP(adapter->rx_buffer_len, 1024); 2992 * i.e. RXBUFFER_2048 --> size-4096 slab */
3024 } else { 2993
3025 if(unlikely((adapter->hw.mac_type < e1000_82543) && 2994 if (max_frame <= E1000_RXBUFFER_256)
3026 (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) { 2995 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3027 DPRINTK(PROBE, ERR, "Jumbo Frames not supported " 2996 else if (max_frame <= E1000_RXBUFFER_512)
3028 "on 82542\n"); 2997 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3029 return -EINVAL; 2998 else if (max_frame <= E1000_RXBUFFER_1024)
3030 } else { 2999 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3031 if(max_frame <= E1000_RXBUFFER_2048) 3000 else if (max_frame <= E1000_RXBUFFER_2048)
3032 adapter->rx_buffer_len = E1000_RXBUFFER_2048; 3001 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3033 else if(max_frame <= E1000_RXBUFFER_4096) 3002 else if (max_frame <= E1000_RXBUFFER_4096)
3034 adapter->rx_buffer_len = E1000_RXBUFFER_4096; 3003 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3035 else if(max_frame <= E1000_RXBUFFER_8192) 3004 else if (max_frame <= E1000_RXBUFFER_8192)
3036 adapter->rx_buffer_len = E1000_RXBUFFER_8192; 3005 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3037 else if(max_frame <= E1000_RXBUFFER_16384) 3006 else if (max_frame <= E1000_RXBUFFER_16384)
3038 adapter->rx_buffer_len = E1000_RXBUFFER_16384; 3007 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3039 } 3008
3040 } 3009 /* adjust allocation if LPE protects us, and we aren't using SBP */
3010#define MAXIMUM_ETHERNET_VLAN_SIZE 1522
3011 if (!adapter->hw.tbi_compatibility_on &&
3012 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3013 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3014 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3041 3015
3042 netdev->mtu = new_mtu; 3016 netdev->mtu = new_mtu;
3043 3017
@@ -3165,7 +3139,6 @@ e1000_update_stats(struct e1000_adapter *adapter)
3165 adapter->stats.crcerrs + adapter->stats.algnerrc + 3139 adapter->stats.crcerrs + adapter->stats.algnerrc +
3166 adapter->stats.ruc + adapter->stats.roc + 3140 adapter->stats.ruc + adapter->stats.roc +
3167 adapter->stats.cexterr; 3141 adapter->stats.cexterr;
3168 adapter->net_stats.rx_dropped = 0;
3169 adapter->net_stats.rx_length_errors = adapter->stats.ruc + 3142 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3170 adapter->stats.roc; 3143 adapter->stats.roc;
3171 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; 3144 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
@@ -3391,13 +3364,15 @@ e1000_clean_tx_irq(struct e1000_adapter *adapter,
3391 3364
3392 tx_ring->next_to_clean = i; 3365 tx_ring->next_to_clean = i;
3393 3366
3394 spin_lock(&tx_ring->tx_lock); 3367#define TX_WAKE_THRESHOLD 32
3395
3396 if (unlikely(cleaned && netif_queue_stopped(netdev) && 3368 if (unlikely(cleaned && netif_queue_stopped(netdev) &&
3397 netif_carrier_ok(netdev))) 3369 netif_carrier_ok(netdev))) {
3398 netif_wake_queue(netdev); 3370 spin_lock(&tx_ring->tx_lock);
3399 3371 if (netif_queue_stopped(netdev) &&
3400 spin_unlock(&tx_ring->tx_lock); 3372 (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
3373 netif_wake_queue(netdev);
3374 spin_unlock(&tx_ring->tx_lock);
3375 }
3401 3376
3402 if (adapter->detect_tx_hung) { 3377 if (adapter->detect_tx_hung) {
3403 /* Detect a transmit hang in hardware, this serializes the 3378 /* Detect a transmit hang in hardware, this serializes the
@@ -3445,7 +3420,7 @@ e1000_clean_tx_irq(struct e1000_adapter *adapter,
3445 * @sk_buff: socket buffer with received data 3420 * @sk_buff: socket buffer with received data
3446 **/ 3421 **/
3447 3422
3448static inline void 3423static void
3449e1000_rx_checksum(struct e1000_adapter *adapter, 3424e1000_rx_checksum(struct e1000_adapter *adapter,
3450 uint32_t status_err, uint32_t csum, 3425 uint32_t status_err, uint32_t csum,
3451 struct sk_buff *skb) 3426 struct sk_buff *skb)
@@ -3569,7 +3544,8 @@ e1000_clean_rx_irq(struct e1000_adapter *adapter,
3569 flags); 3544 flags);
3570 length--; 3545 length--;
3571 } else { 3546 } else {
3572 dev_kfree_skb_irq(skb); 3547 /* recycle */
3548 buffer_info->skb = skb;
3573 goto next_desc; 3549 goto next_desc;
3574 } 3550 }
3575 } 3551 }
@@ -3677,6 +3653,7 @@ e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3677 i = rx_ring->next_to_clean; 3653 i = rx_ring->next_to_clean;
3678 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 3654 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3679 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 3655 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3656 buffer_info = &rx_ring->buffer_info[i];
3680 3657
3681 while (staterr & E1000_RXD_STAT_DD) { 3658 while (staterr & E1000_RXD_STAT_DD) {
3682 buffer_info = &rx_ring->buffer_info[i]; 3659 buffer_info = &rx_ring->buffer_info[i];
@@ -3737,9 +3714,9 @@ e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3737 3714
3738 /* page alloc/put takes too long and effects small packet 3715 /* page alloc/put takes too long and effects small packet
3739 * throughput, so unsplit small packets and save the alloc/put*/ 3716 * throughput, so unsplit small packets and save the alloc/put*/
3740 if (l1 && ((length + l1) < E1000_CB_LENGTH)) { 3717 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3741 u8 *vaddr; 3718 u8 *vaddr;
3742 /* there is no documentation about how to call 3719 /* there is no documentation about how to call
3743 * kmap_atomic, so we can't hold the mapping 3720 * kmap_atomic, so we can't hold the mapping
3744 * very long */ 3721 * very long */
3745 pci_dma_sync_single_for_cpu(pdev, 3722 pci_dma_sync_single_for_cpu(pdev,
@@ -4159,7 +4136,7 @@ e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4159 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4136 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4160 return -EIO; 4137 return -EIO;
4161 } 4138 }
4162 if (adapter->hw.phy_type == e1000_media_type_copper) { 4139 if (adapter->hw.media_type == e1000_media_type_copper) {
4163 switch (data->reg_num) { 4140 switch (data->reg_num) {
4164 case PHY_CTRL: 4141 case PHY_CTRL:
4165 if (mii_reg & MII_CR_POWER_DOWN) 4142 if (mii_reg & MII_CR_POWER_DOWN)
@@ -4518,21 +4495,13 @@ e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4518 4495
4519 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN); 4496 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4520 E1000_WRITE_REG(&adapter->hw, WUFC, wufc); 4497 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4521 retval = pci_enable_wake(pdev, PCI_D3hot, 1); 4498 pci_enable_wake(pdev, PCI_D3hot, 1);
4522 if (retval) 4499 pci_enable_wake(pdev, PCI_D3cold, 1);
4523 DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
4524 retval = pci_enable_wake(pdev, PCI_D3cold, 1);
4525 if (retval)
4526 DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
4527 } else { 4500 } else {
4528 E1000_WRITE_REG(&adapter->hw, WUC, 0); 4501 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4529 E1000_WRITE_REG(&adapter->hw, WUFC, 0); 4502 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4530 retval = pci_enable_wake(pdev, PCI_D3hot, 0); 4503 pci_enable_wake(pdev, PCI_D3hot, 0);
4531 if (retval) 4504 pci_enable_wake(pdev, PCI_D3cold, 0);
4532 DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
4533 retval = pci_enable_wake(pdev, PCI_D3cold, 0);
4534 if (retval)
4535 DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
4536 } 4505 }
4537 4506
4538 if (adapter->hw.mac_type >= e1000_82540 && 4507 if (adapter->hw.mac_type >= e1000_82540 &&
@@ -4541,13 +4510,8 @@ e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4541 if (manc & E1000_MANC_SMBUS_EN) { 4510 if (manc & E1000_MANC_SMBUS_EN) {
4542 manc |= E1000_MANC_ARP_EN; 4511 manc |= E1000_MANC_ARP_EN;
4543 E1000_WRITE_REG(&adapter->hw, MANC, manc); 4512 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4544 retval = pci_enable_wake(pdev, PCI_D3hot, 1); 4513 pci_enable_wake(pdev, PCI_D3hot, 1);
4545 if (retval) 4514 pci_enable_wake(pdev, PCI_D3cold, 1);
4546 DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
4547 retval = pci_enable_wake(pdev, PCI_D3cold, 1);
4548 if (retval)
4549 DPRINTK(PROBE, ERR,
4550 "Error enabling D3 cold wake\n");
4551 } 4515 }
4552 } 4516 }
4553 4517
@@ -4557,9 +4521,7 @@ e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4557 4521
4558 pci_disable_device(pdev); 4522 pci_disable_device(pdev);
4559 4523
4560 retval = pci_set_power_state(pdev, pci_choose_state(pdev, state)); 4524 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4561 if (retval)
4562 DPRINTK(PROBE, ERR, "Error in setting power state\n");
4563 4525
4564 return 0; 4526 return 0;
4565} 4527}
@@ -4570,22 +4532,15 @@ e1000_resume(struct pci_dev *pdev)
4570{ 4532{
4571 struct net_device *netdev = pci_get_drvdata(pdev); 4533 struct net_device *netdev = pci_get_drvdata(pdev);
4572 struct e1000_adapter *adapter = netdev_priv(netdev); 4534 struct e1000_adapter *adapter = netdev_priv(netdev);
4573 int retval;
4574 uint32_t manc, ret_val; 4535 uint32_t manc, ret_val;
4575 4536
4576 retval = pci_set_power_state(pdev, PCI_D0); 4537 pci_set_power_state(pdev, PCI_D0);
4577 if (retval)
4578 DPRINTK(PROBE, ERR, "Error in setting power state\n");
4579 e1000_pci_restore_state(adapter); 4538 e1000_pci_restore_state(adapter);
4580 ret_val = pci_enable_device(pdev); 4539 ret_val = pci_enable_device(pdev);
4581 pci_set_master(pdev); 4540 pci_set_master(pdev);
4582 4541
4583 retval = pci_enable_wake(pdev, PCI_D3hot, 0); 4542 pci_enable_wake(pdev, PCI_D3hot, 0);
4584 if (retval) 4543 pci_enable_wake(pdev, PCI_D3cold, 0);
4585 DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
4586 retval = pci_enable_wake(pdev, PCI_D3cold, 0);
4587 if (retval)
4588 DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
4589 4544
4590 e1000_reset(adapter); 4545 e1000_reset(adapter);
4591 E1000_WRITE_REG(&adapter->hw, WUS, ~0); 4546 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
diff --git a/drivers/net/e1000/e1000_osdep.h b/drivers/net/e1000/e1000_osdep.h
index 9790db974dc1..048d052be29d 100644
--- a/drivers/net/e1000/e1000_osdep.h
+++ b/drivers/net/e1000/e1000_osdep.h
@@ -1,7 +1,7 @@
1/******************************************************************************* 1/*******************************************************************************
2 2
3 3
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5 5
6 This program is free software; you can redistribute it and/or modify it 6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free 7 under the terms of the GNU General Public License as published by the Free
@@ -22,6 +22,7 @@
22 22
23 Contact Information: 23 Contact Information:
24 Linux NICS <linux.nics@intel.com> 24 Linux NICS <linux.nics@intel.com>
25 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 27
27*******************************************************************************/ 28*******************************************************************************/
diff --git a/drivers/net/e1000/e1000_param.c b/drivers/net/e1000/e1000_param.c
index e0a4d37d1b85..e55f8969a0fb 100644
--- a/drivers/net/e1000/e1000_param.c
+++ b/drivers/net/e1000/e1000_param.c
@@ -1,7 +1,7 @@
1/******************************************************************************* 1/*******************************************************************************
2 2
3 3
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5 5
6 This program is free software; you can redistribute it and/or modify it 6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free 7 under the terms of the GNU General Public License as published by the Free
@@ -22,6 +22,7 @@
22 22
23 Contact Information: 23 Contact Information:
24 Linux NICS <linux.nics@intel.com> 24 Linux NICS <linux.nics@intel.com>
25 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 27
27*******************************************************************************/ 28*******************************************************************************/
diff --git a/drivers/net/epic100.c b/drivers/net/epic100.c
index 2f7b86837fe8..8d680ce600d7 100644
--- a/drivers/net/epic100.c
+++ b/drivers/net/epic100.c
@@ -21,15 +21,15 @@
21 http://www.scyld.com/network/epic100.html 21 http://www.scyld.com/network/epic100.html
22 22
23 --------------------------------------------------------------------- 23 ---------------------------------------------------------------------
24 24
25 Linux kernel-specific changes: 25 Linux kernel-specific changes:
26 26
27 LK1.1.2 (jgarzik): 27 LK1.1.2 (jgarzik):
28 * Merge becker version 1.09 (4/08/2000) 28 * Merge becker version 1.09 (4/08/2000)
29 29
30 LK1.1.3: 30 LK1.1.3:
31 * Major bugfix to 1.09 driver (Francis Romieu) 31 * Major bugfix to 1.09 driver (Francis Romieu)
32 32
33 LK1.1.4 (jgarzik): 33 LK1.1.4 (jgarzik):
34 * Merge becker test version 1.09 (5/29/2000) 34 * Merge becker test version 1.09 (5/29/2000)
35 35
@@ -66,7 +66,7 @@
66 LK1.1.14 (Kryzsztof Halasa): 66 LK1.1.14 (Kryzsztof Halasa):
67 * fix spurious bad initializations 67 * fix spurious bad initializations
68 * pound phy a la SMSC's app note on the subject 68 * pound phy a la SMSC's app note on the subject
69 69
70 AC1.1.14ac 70 AC1.1.14ac
71 * fix power up/down for ethtool that broke in 1.11 71 * fix power up/down for ethtool that broke in 1.11
72 72
@@ -244,7 +244,7 @@ static struct pci_device_id epic_pci_tbl[] = {
244}; 244};
245MODULE_DEVICE_TABLE (pci, epic_pci_tbl); 245MODULE_DEVICE_TABLE (pci, epic_pci_tbl);
246 246
247 247
248#ifndef USE_IO_OPS 248#ifndef USE_IO_OPS
249#undef inb 249#undef inb
250#undef inw 250#undef inw
@@ -370,7 +370,7 @@ static int epic_close(struct net_device *dev);
370static struct net_device_stats *epic_get_stats(struct net_device *dev); 370static struct net_device_stats *epic_get_stats(struct net_device *dev);
371static void set_rx_mode(struct net_device *dev); 371static void set_rx_mode(struct net_device *dev);
372 372
373 373
374 374
375static int __devinit epic_init_one (struct pci_dev *pdev, 375static int __devinit epic_init_one (struct pci_dev *pdev,
376 const struct pci_device_id *ent) 376 const struct pci_device_id *ent)
@@ -392,9 +392,9 @@ static int __devinit epic_init_one (struct pci_dev *pdev,
392 printk (KERN_INFO "%s" KERN_INFO "%s" KERN_INFO "%s", 392 printk (KERN_INFO "%s" KERN_INFO "%s" KERN_INFO "%s",
393 version, version2, version3); 393 version, version2, version3);
394#endif 394#endif
395 395
396 card_idx++; 396 card_idx++;
397 397
398 ret = pci_enable_device(pdev); 398 ret = pci_enable_device(pdev);
399 if (ret) 399 if (ret)
400 goto out; 400 goto out;
@@ -405,7 +405,7 @@ static int __devinit epic_init_one (struct pci_dev *pdev,
405 ret = -ENODEV; 405 ret = -ENODEV;
406 goto err_out_disable; 406 goto err_out_disable;
407 } 407 }
408 408
409 pci_set_master(pdev); 409 pci_set_master(pdev);
410 410
411 ret = pci_request_regions(pdev, DRV_NAME); 411 ret = pci_request_regions(pdev, DRV_NAME);
@@ -498,7 +498,7 @@ static int __devinit epic_init_one (struct pci_dev *pdev,
498 ep->pci_dev = pdev; 498 ep->pci_dev = pdev;
499 ep->chip_id = chip_idx; 499 ep->chip_id = chip_idx;
500 ep->chip_flags = pci_id_tbl[chip_idx].drv_flags; 500 ep->chip_flags = pci_id_tbl[chip_idx].drv_flags;
501 ep->irq_mask = 501 ep->irq_mask =
502 (ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170) 502 (ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170)
503 | CntFull | TxUnderrun | EpicNapiEvent; 503 | CntFull | TxUnderrun | EpicNapiEvent;
504 504
@@ -587,7 +587,7 @@ err_out_disable:
587 pci_disable_device(pdev); 587 pci_disable_device(pdev);
588 goto out; 588 goto out;
589} 589}
590 590
591/* Serial EEPROM section. */ 591/* Serial EEPROM section. */
592 592
593/* EEPROM_Ctrl bits. */ 593/* EEPROM_Ctrl bits. */
@@ -709,7 +709,7 @@ static void mdio_write(struct net_device *dev, int phy_id, int loc, int value)
709 709
710 outw(value, ioaddr + MIIData); 710 outw(value, ioaddr + MIIData);
711 outl((phy_id << 9) | (loc << 4) | MII_WRITEOP, ioaddr + MIICtrl); 711 outl((phy_id << 9) | (loc << 4) | MII_WRITEOP, ioaddr + MIICtrl);
712 for (i = 10000; i > 0; i--) { 712 for (i = 10000; i > 0; i--) {
713 barrier(); 713 barrier();
714 if ((inl(ioaddr + MIICtrl) & MII_WRITEOP) == 0) 714 if ((inl(ioaddr + MIICtrl) & MII_WRITEOP) == 0)
715 break; 715 break;
@@ -717,7 +717,7 @@ static void mdio_write(struct net_device *dev, int phy_id, int loc, int value)
717 return; 717 return;
718} 718}
719 719
720 720
721static int epic_open(struct net_device *dev) 721static int epic_open(struct net_device *dev)
722{ 722{
723 struct epic_private *ep = dev->priv; 723 struct epic_private *ep = dev->priv;
@@ -760,7 +760,7 @@ static int epic_open(struct net_device *dev)
760#endif 760#endif
761 761
762 udelay(20); /* Looks like EPII needs that if you want reliable RX init. FIXME: pci posting bug? */ 762 udelay(20); /* Looks like EPII needs that if you want reliable RX init. FIXME: pci posting bug? */
763 763
764 for (i = 0; i < 3; i++) 764 for (i = 0; i < 3; i++)
765 outl(cpu_to_le16(((u16*)dev->dev_addr)[i]), ioaddr + LAN0 + i*4); 765 outl(cpu_to_le16(((u16*)dev->dev_addr)[i]), ioaddr + LAN0 + i*4);
766 766
@@ -803,7 +803,7 @@ static int epic_open(struct net_device *dev)
803 803
804 /* Enable interrupts by setting the interrupt mask. */ 804 /* Enable interrupts by setting the interrupt mask. */
805 outl((ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170) 805 outl((ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170)
806 | CntFull | TxUnderrun 806 | CntFull | TxUnderrun
807 | RxError | RxHeader | EpicNapiEvent, ioaddr + INTMASK); 807 | RxError | RxHeader | EpicNapiEvent, ioaddr + INTMASK);
808 808
809 if (debug > 1) 809 if (debug > 1)
@@ -831,7 +831,7 @@ static void epic_pause(struct net_device *dev)
831 struct epic_private *ep = dev->priv; 831 struct epic_private *ep = dev->priv;
832 832
833 netif_stop_queue (dev); 833 netif_stop_queue (dev);
834 834
835 /* Disable interrupts by clearing the interrupt mask. */ 835 /* Disable interrupts by clearing the interrupt mask. */
836 outl(0x00000000, ioaddr + INTMASK); 836 outl(0x00000000, ioaddr + INTMASK);
837 /* Stop the chip's Tx and Rx DMA processes. */ 837 /* Stop the chip's Tx and Rx DMA processes. */
@@ -987,7 +987,7 @@ static void epic_init_ring(struct net_device *dev)
987 for (i = 0; i < RX_RING_SIZE; i++) { 987 for (i = 0; i < RX_RING_SIZE; i++) {
988 ep->rx_ring[i].rxstatus = 0; 988 ep->rx_ring[i].rxstatus = 0;
989 ep->rx_ring[i].buflength = cpu_to_le32(ep->rx_buf_sz); 989 ep->rx_ring[i].buflength = cpu_to_le32(ep->rx_buf_sz);
990 ep->rx_ring[i].next = ep->rx_ring_dma + 990 ep->rx_ring[i].next = ep->rx_ring_dma +
991 (i+1)*sizeof(struct epic_rx_desc); 991 (i+1)*sizeof(struct epic_rx_desc);
992 ep->rx_skbuff[i] = NULL; 992 ep->rx_skbuff[i] = NULL;
993 } 993 }
@@ -1002,7 +1002,7 @@ static void epic_init_ring(struct net_device *dev)
1002 break; 1002 break;
1003 skb->dev = dev; /* Mark as being used by this device. */ 1003 skb->dev = dev; /* Mark as being used by this device. */
1004 skb_reserve(skb, 2); /* 16 byte align the IP header. */ 1004 skb_reserve(skb, 2); /* 16 byte align the IP header. */
1005 ep->rx_ring[i].bufaddr = pci_map_single(ep->pci_dev, 1005 ep->rx_ring[i].bufaddr = pci_map_single(ep->pci_dev,
1006 skb->data, ep->rx_buf_sz, PCI_DMA_FROMDEVICE); 1006 skb->data, ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1007 ep->rx_ring[i].rxstatus = cpu_to_le32(DescOwn); 1007 ep->rx_ring[i].rxstatus = cpu_to_le32(DescOwn);
1008 } 1008 }
@@ -1013,7 +1013,7 @@ static void epic_init_ring(struct net_device *dev)
1013 for (i = 0; i < TX_RING_SIZE; i++) { 1013 for (i = 0; i < TX_RING_SIZE; i++) {
1014 ep->tx_skbuff[i] = NULL; 1014 ep->tx_skbuff[i] = NULL;
1015 ep->tx_ring[i].txstatus = 0x0000; 1015 ep->tx_ring[i].txstatus = 0x0000;
1016 ep->tx_ring[i].next = ep->tx_ring_dma + 1016 ep->tx_ring[i].next = ep->tx_ring_dma +
1017 (i+1)*sizeof(struct epic_tx_desc); 1017 (i+1)*sizeof(struct epic_tx_desc);
1018 } 1018 }
1019 ep->tx_ring[i-1].next = ep->tx_ring_dma; 1019 ep->tx_ring[i-1].next = ep->tx_ring_dma;
@@ -1026,7 +1026,7 @@ static int epic_start_xmit(struct sk_buff *skb, struct net_device *dev)
1026 int entry, free_count; 1026 int entry, free_count;
1027 u32 ctrl_word; 1027 u32 ctrl_word;
1028 unsigned long flags; 1028 unsigned long flags;
1029 1029
1030 if (skb->len < ETH_ZLEN) { 1030 if (skb->len < ETH_ZLEN) {
1031 skb = skb_padto(skb, ETH_ZLEN); 1031 skb = skb_padto(skb, ETH_ZLEN);
1032 if (skb == NULL) 1032 if (skb == NULL)
@@ -1042,7 +1042,7 @@ static int epic_start_xmit(struct sk_buff *skb, struct net_device *dev)
1042 entry = ep->cur_tx % TX_RING_SIZE; 1042 entry = ep->cur_tx % TX_RING_SIZE;
1043 1043
1044 ep->tx_skbuff[entry] = skb; 1044 ep->tx_skbuff[entry] = skb;
1045 ep->tx_ring[entry].bufaddr = pci_map_single(ep->pci_dev, skb->data, 1045 ep->tx_ring[entry].bufaddr = pci_map_single(ep->pci_dev, skb->data,
1046 skb->len, PCI_DMA_TODEVICE); 1046 skb->len, PCI_DMA_TODEVICE);
1047 if (free_count < TX_QUEUE_LEN/2) {/* Typical path */ 1047 if (free_count < TX_QUEUE_LEN/2) {/* Typical path */
1048 ctrl_word = cpu_to_le32(0x100000); /* No interrupt */ 1048 ctrl_word = cpu_to_le32(0x100000); /* No interrupt */
@@ -1126,7 +1126,7 @@ static void epic_tx(struct net_device *dev, struct epic_private *ep)
1126 1126
1127 /* Free the original skb. */ 1127 /* Free the original skb. */
1128 skb = ep->tx_skbuff[entry]; 1128 skb = ep->tx_skbuff[entry];
1129 pci_unmap_single(ep->pci_dev, ep->tx_ring[entry].bufaddr, 1129 pci_unmap_single(ep->pci_dev, ep->tx_ring[entry].bufaddr,
1130 skb->len, PCI_DMA_TODEVICE); 1130 skb->len, PCI_DMA_TODEVICE);
1131 dev_kfree_skb_irq(skb); 1131 dev_kfree_skb_irq(skb);
1132 ep->tx_skbuff[entry] = NULL; 1132 ep->tx_skbuff[entry] = NULL;
@@ -1281,8 +1281,8 @@ static int epic_rx(struct net_device *dev, int budget)
1281 ep->rx_buf_sz, 1281 ep->rx_buf_sz,
1282 PCI_DMA_FROMDEVICE); 1282 PCI_DMA_FROMDEVICE);
1283 } else { 1283 } else {
1284 pci_unmap_single(ep->pci_dev, 1284 pci_unmap_single(ep->pci_dev,
1285 ep->rx_ring[entry].bufaddr, 1285 ep->rx_ring[entry].bufaddr,
1286 ep->rx_buf_sz, PCI_DMA_FROMDEVICE); 1286 ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1287 skb_put(skb = ep->rx_skbuff[entry], pkt_len); 1287 skb_put(skb = ep->rx_skbuff[entry], pkt_len);
1288 ep->rx_skbuff[entry] = NULL; 1288 ep->rx_skbuff[entry] = NULL;
@@ -1307,7 +1307,7 @@ static int epic_rx(struct net_device *dev, int budget)
1307 break; 1307 break;
1308 skb->dev = dev; /* Mark as being used by this device. */ 1308 skb->dev = dev; /* Mark as being used by this device. */
1309 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ 1309 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1310 ep->rx_ring[entry].bufaddr = pci_map_single(ep->pci_dev, 1310 ep->rx_ring[entry].bufaddr = pci_map_single(ep->pci_dev,
1311 skb->data, ep->rx_buf_sz, PCI_DMA_FROMDEVICE); 1311 skb->data, ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1312 work_done++; 1312 work_done++;
1313 } 1313 }
@@ -1403,7 +1403,7 @@ static int epic_close(struct net_device *dev)
1403 ep->rx_ring[i].rxstatus = 0; /* Not owned by Epic chip. */ 1403 ep->rx_ring[i].rxstatus = 0; /* Not owned by Epic chip. */
1404 ep->rx_ring[i].buflength = 0; 1404 ep->rx_ring[i].buflength = 0;
1405 if (skb) { 1405 if (skb) {
1406 pci_unmap_single(ep->pci_dev, ep->rx_ring[i].bufaddr, 1406 pci_unmap_single(ep->pci_dev, ep->rx_ring[i].bufaddr,
1407 ep->rx_buf_sz, PCI_DMA_FROMDEVICE); 1407 ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1408 dev_kfree_skb(skb); 1408 dev_kfree_skb(skb);
1409 } 1409 }
@@ -1414,7 +1414,7 @@ static int epic_close(struct net_device *dev)
1414 ep->tx_skbuff[i] = NULL; 1414 ep->tx_skbuff[i] = NULL;
1415 if (!skb) 1415 if (!skb)
1416 continue; 1416 continue;
1417 pci_unmap_single(ep->pci_dev, ep->tx_ring[i].bufaddr, 1417 pci_unmap_single(ep->pci_dev, ep->tx_ring[i].bufaddr,
1418 skb->len, PCI_DMA_TODEVICE); 1418 skb->len, PCI_DMA_TODEVICE);
1419 dev_kfree_skb(skb); 1419 dev_kfree_skb(skb);
1420 } 1420 }
@@ -1607,7 +1607,7 @@ static void __devexit epic_remove_one (struct pci_dev *pdev)
1607{ 1607{
1608 struct net_device *dev = pci_get_drvdata(pdev); 1608 struct net_device *dev = pci_get_drvdata(pdev);
1609 struct epic_private *ep = dev->priv; 1609 struct epic_private *ep = dev->priv;
1610 1610
1611 pci_free_consistent(pdev, TX_TOTAL_SIZE, ep->tx_ring, ep->tx_ring_dma); 1611 pci_free_consistent(pdev, TX_TOTAL_SIZE, ep->tx_ring, ep->tx_ring_dma);
1612 pci_free_consistent(pdev, RX_TOTAL_SIZE, ep->rx_ring, ep->rx_ring_dma); 1612 pci_free_consistent(pdev, RX_TOTAL_SIZE, ep->rx_ring, ep->rx_ring_dma);
1613 unregister_netdev(dev); 1613 unregister_netdev(dev);
diff --git a/drivers/net/forcedeth.c b/drivers/net/forcedeth.c
index 705e1229d89d..66ea5fc5c2e2 100644
--- a/drivers/net/forcedeth.c
+++ b/drivers/net/forcedeth.c
@@ -107,6 +107,7 @@
107 * 0.52: 20 Jan 2006: Add MSI/MSIX support. 107 * 0.52: 20 Jan 2006: Add MSI/MSIX support.
108 * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset. 108 * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
109 * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup. 109 * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
110 * 0.55: 22 Mar 2006: Add flow control (pause frame).
110 * 111 *
111 * Known bugs: 112 * Known bugs:
112 * We suspect that on some hardware no TX done interrupts are generated. 113 * We suspect that on some hardware no TX done interrupts are generated.
@@ -118,7 +119,7 @@
118 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few 119 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
119 * superfluous timer interrupts from the nic. 120 * superfluous timer interrupts from the nic.
120 */ 121 */
121#define FORCEDETH_VERSION "0.54" 122#define FORCEDETH_VERSION "0.55"
122#define DRV_NAME "forcedeth" 123#define DRV_NAME "forcedeth"
123 124
124#include <linux/module.h> 125#include <linux/module.h>
@@ -163,6 +164,7 @@
163#define DEV_HAS_MSI 0x0040 /* device supports MSI */ 164#define DEV_HAS_MSI 0x0040 /* device supports MSI */
164#define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */ 165#define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
165#define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */ 166#define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
167#define DEV_HAS_PAUSEFRAME_TX 0x0200 /* device supports tx pause frames */
166 168
167enum { 169enum {
168 NvRegIrqStatus = 0x000, 170 NvRegIrqStatus = 0x000,
@@ -203,6 +205,7 @@ enum {
203 NvRegMSIIrqMask = 0x030, 205 NvRegMSIIrqMask = 0x030,
204#define NVREG_MSI_VECTOR_0_ENABLED 0x01 206#define NVREG_MSI_VECTOR_0_ENABLED 0x01
205 NvRegMisc1 = 0x080, 207 NvRegMisc1 = 0x080,
208#define NVREG_MISC1_PAUSE_TX 0x01
206#define NVREG_MISC1_HD 0x02 209#define NVREG_MISC1_HD 0x02
207#define NVREG_MISC1_FORCE 0x3b0f3c 210#define NVREG_MISC1_FORCE 0x3b0f3c
208 211
@@ -214,7 +217,8 @@ enum {
214#define NVREG_XMITSTAT_BUSY 0x01 217#define NVREG_XMITSTAT_BUSY 0x01
215 218
216 NvRegPacketFilterFlags = 0x8c, 219 NvRegPacketFilterFlags = 0x8c,
217#define NVREG_PFF_ALWAYS 0x7F0008 220#define NVREG_PFF_PAUSE_RX 0x08
221#define NVREG_PFF_ALWAYS 0x7F0000
218#define NVREG_PFF_PROMISC 0x80 222#define NVREG_PFF_PROMISC 0x80
219#define NVREG_PFF_MYADDR 0x20 223#define NVREG_PFF_MYADDR 0x20
220 224
@@ -277,6 +281,9 @@ enum {
277#define NVREG_TXRXCTL_VLANINS 0x00080 281#define NVREG_TXRXCTL_VLANINS 0x00080
278 NvRegTxRingPhysAddrHigh = 0x148, 282 NvRegTxRingPhysAddrHigh = 0x148,
279 NvRegRxRingPhysAddrHigh = 0x14C, 283 NvRegRxRingPhysAddrHigh = 0x14C,
284 NvRegTxPauseFrame = 0x170,
285#define NVREG_TX_PAUSEFRAME_DISABLE 0x1ff0080
286#define NVREG_TX_PAUSEFRAME_ENABLE 0x0c00030
280 NvRegMIIStatus = 0x180, 287 NvRegMIIStatus = 0x180,
281#define NVREG_MIISTAT_ERROR 0x0001 288#define NVREG_MIISTAT_ERROR 0x0001
282#define NVREG_MIISTAT_LINKCHANGE 0x0008 289#define NVREG_MIISTAT_LINKCHANGE 0x0008
@@ -451,7 +458,7 @@ typedef union _ring_type {
451 458
452#define RX_RING 128 459#define RX_RING 128
453#define TX_RING 256 460#define TX_RING 256
454/* 461/*
455 * If your nic mysteriously hangs then try to reduce the limits 462 * If your nic mysteriously hangs then try to reduce the limits
456 * to 1/0: It might be required to set NV_TX_LASTPACKET in the 463 * to 1/0: It might be required to set NV_TX_LASTPACKET in the
457 * last valid ring entry. But this would be impossible to 464 * last valid ring entry. But this would be impossible to
@@ -473,7 +480,7 @@ typedef union _ring_type {
473#define POLL_WAIT (1+HZ/100) 480#define POLL_WAIT (1+HZ/100)
474#define LINK_TIMEOUT (3*HZ) 481#define LINK_TIMEOUT (3*HZ)
475 482
476/* 483/*
477 * desc_ver values: 484 * desc_ver values:
478 * The nic supports three different descriptor types: 485 * The nic supports three different descriptor types:
479 * - DESC_VER_1: Original 486 * - DESC_VER_1: Original
@@ -506,13 +513,10 @@ typedef union _ring_type {
506#define PHY_1000 0x2 513#define PHY_1000 0x2
507#define PHY_HALF 0x100 514#define PHY_HALF 0x100
508 515
509/* FIXME: MII defines that should be added to <linux/mii.h> */ 516#define NV_PAUSEFRAME_RX_CAPABLE 0x0001
510#define MII_1000BT_CR 0x09 517#define NV_PAUSEFRAME_TX_CAPABLE 0x0002
511#define MII_1000BT_SR 0x0a 518#define NV_PAUSEFRAME_RX_ENABLE 0x0004
512#define ADVERTISE_1000FULL 0x0200 519#define NV_PAUSEFRAME_TX_ENABLE 0x0008
513#define ADVERTISE_1000HALF 0x0100
514#define LPA_1000FULL 0x0800
515#define LPA_1000HALF 0x0400
516 520
517/* MSI/MSI-X defines */ 521/* MSI/MSI-X defines */
518#define NV_MSI_X_MAX_VECTORS 8 522#define NV_MSI_X_MAX_VECTORS 8
@@ -602,6 +606,9 @@ struct fe_priv {
602 /* msi/msi-x fields */ 606 /* msi/msi-x fields */
603 u32 msi_flags; 607 u32 msi_flags;
604 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS]; 608 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
609
610 /* flow control */
611 u32 pause_flags;
605}; 612};
606 613
607/* 614/*
@@ -612,7 +619,7 @@ static int max_interrupt_work = 5;
612 619
613/* 620/*
614 * Optimization can be either throuput mode or cpu mode 621 * Optimization can be either throuput mode or cpu mode
615 * 622 *
616 * Throughput Mode: Every tx and rx packet will generate an interrupt. 623 * Throughput Mode: Every tx and rx packet will generate an interrupt.
617 * CPU Mode: Interrupts are controlled by a timer. 624 * CPU Mode: Interrupts are controlled by a timer.
618 */ 625 */
@@ -860,7 +867,7 @@ static int phy_init(struct net_device *dev)
860 867
861 /* set advertise register */ 868 /* set advertise register */
862 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 869 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
863 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|0x800|0x400); 870 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
864 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) { 871 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
865 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev)); 872 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
866 return PHY_ERROR; 873 return PHY_ERROR;
@@ -873,14 +880,14 @@ static int phy_init(struct net_device *dev)
873 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 880 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
874 if (mii_status & PHY_GIGABIT) { 881 if (mii_status & PHY_GIGABIT) {
875 np->gigabit = PHY_GIGABIT; 882 np->gigabit = PHY_GIGABIT;
876 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ); 883 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
877 mii_control_1000 &= ~ADVERTISE_1000HALF; 884 mii_control_1000 &= ~ADVERTISE_1000HALF;
878 if (phyinterface & PHY_RGMII) 885 if (phyinterface & PHY_RGMII)
879 mii_control_1000 |= ADVERTISE_1000FULL; 886 mii_control_1000 |= ADVERTISE_1000FULL;
880 else 887 else
881 mii_control_1000 &= ~ADVERTISE_1000FULL; 888 mii_control_1000 &= ~ADVERTISE_1000FULL;
882 889
883 if (mii_rw(dev, np->phyaddr, MII_1000BT_CR, mii_control_1000)) { 890 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
884 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); 891 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
885 return PHY_ERROR; 892 return PHY_ERROR;
886 } 893 }
@@ -918,6 +925,8 @@ static int phy_init(struct net_device *dev)
918 return PHY_ERROR; 925 return PHY_ERROR;
919 } 926 }
920 } 927 }
928 /* some phys clear out pause advertisment on reset, set it back */
929 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
921 930
922 /* restart auto negotiation */ 931 /* restart auto negotiation */
923 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 932 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
@@ -1110,7 +1119,7 @@ static void nv_do_rx_refill(unsigned long data)
1110 } 1119 }
1111} 1120}
1112 1121
1113static void nv_init_rx(struct net_device *dev) 1122static void nv_init_rx(struct net_device *dev)
1114{ 1123{
1115 struct fe_priv *np = netdev_priv(dev); 1124 struct fe_priv *np = netdev_priv(dev);
1116 int i; 1125 int i;
@@ -1174,7 +1183,7 @@ static void nv_drain_tx(struct net_device *dev)
1174{ 1183{
1175 struct fe_priv *np = netdev_priv(dev); 1184 struct fe_priv *np = netdev_priv(dev);
1176 unsigned int i; 1185 unsigned int i;
1177 1186
1178 for (i = 0; i < TX_RING; i++) { 1187 for (i = 0; i < TX_RING; i++) {
1179 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 1188 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1180 np->tx_ring.orig[i].FlagLen = 0; 1189 np->tx_ring.orig[i].FlagLen = 0;
@@ -1320,7 +1329,7 @@ static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1320 } else { 1329 } else {
1321 np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan); 1330 np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
1322 np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra); 1331 np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1323 } 1332 }
1324 1333
1325 dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n", 1334 dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
1326 dev->name, np->next_tx, entries, tx_flags_extra); 1335 dev->name, np->next_tx, entries, tx_flags_extra);
@@ -1395,7 +1404,7 @@ static void nv_tx_done(struct net_device *dev)
1395 } else { 1404 } else {
1396 np->stats.tx_packets++; 1405 np->stats.tx_packets++;
1397 np->stats.tx_bytes += skb->len; 1406 np->stats.tx_bytes += skb->len;
1398 } 1407 }
1399 } 1408 }
1400 } 1409 }
1401 nv_release_txskb(dev, i); 1410 nv_release_txskb(dev, i);
@@ -1441,7 +1450,7 @@ static void nv_tx_timeout(struct net_device *dev)
1441 for (i=0;i<TX_RING;i+= 4) { 1450 for (i=0;i<TX_RING;i+= 4) {
1442 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) { 1451 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1443 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n", 1452 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1444 i, 1453 i,
1445 le32_to_cpu(np->tx_ring.orig[i].PacketBuffer), 1454 le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
1446 le32_to_cpu(np->tx_ring.orig[i].FlagLen), 1455 le32_to_cpu(np->tx_ring.orig[i].FlagLen),
1447 le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer), 1456 le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
@@ -1452,7 +1461,7 @@ static void nv_tx_timeout(struct net_device *dev)
1452 le32_to_cpu(np->tx_ring.orig[i+3].FlagLen)); 1461 le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
1453 } else { 1462 } else {
1454 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n", 1463 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1455 i, 1464 i,
1456 le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh), 1465 le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
1457 le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow), 1466 le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
1458 le32_to_cpu(np->tx_ring.ex[i].FlagLen), 1467 le32_to_cpu(np->tx_ring.ex[i].FlagLen),
@@ -1550,7 +1559,6 @@ static void nv_rx_process(struct net_device *dev)
1550 u32 Flags; 1559 u32 Flags;
1551 u32 vlanflags = 0; 1560 u32 vlanflags = 0;
1552 1561
1553
1554 for (;;) { 1562 for (;;) {
1555 struct sk_buff *skb; 1563 struct sk_buff *skb;
1556 int len; 1564 int len;
@@ -1901,7 +1909,9 @@ static int nv_update_linkspeed(struct net_device *dev)
1901{ 1909{
1902 struct fe_priv *np = netdev_priv(dev); 1910 struct fe_priv *np = netdev_priv(dev);
1903 u8 __iomem *base = get_hwbase(dev); 1911 u8 __iomem *base = get_hwbase(dev);
1904 int adv, lpa; 1912 int adv = 0;
1913 int lpa = 0;
1914 int adv_lpa, adv_pause, lpa_pause;
1905 int newls = np->linkspeed; 1915 int newls = np->linkspeed;
1906 int newdup = np->duplex; 1916 int newdup = np->duplex;
1907 int mii_status; 1917 int mii_status;
@@ -1954,8 +1964,8 @@ static int nv_update_linkspeed(struct net_device *dev)
1954 1964
1955 retval = 1; 1965 retval = 1;
1956 if (np->gigabit == PHY_GIGABIT) { 1966 if (np->gigabit == PHY_GIGABIT) {
1957 control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ); 1967 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1958 status_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_SR, MII_READ); 1968 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
1959 1969
1960 if ((control_1000 & ADVERTISE_1000FULL) && 1970 if ((control_1000 & ADVERTISE_1000FULL) &&
1961 (status_1000 & LPA_1000FULL)) { 1971 (status_1000 & LPA_1000FULL)) {
@@ -1973,21 +1983,21 @@ static int nv_update_linkspeed(struct net_device *dev)
1973 dev->name, adv, lpa); 1983 dev->name, adv, lpa);
1974 1984
1975 /* FIXME: handle parallel detection properly */ 1985 /* FIXME: handle parallel detection properly */
1976 lpa = lpa & adv; 1986 adv_lpa = lpa & adv;
1977 if (lpa & LPA_100FULL) { 1987 if (adv_lpa & LPA_100FULL) {
1978 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 1988 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1979 newdup = 1; 1989 newdup = 1;
1980 } else if (lpa & LPA_100HALF) { 1990 } else if (adv_lpa & LPA_100HALF) {
1981 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 1991 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1982 newdup = 0; 1992 newdup = 0;
1983 } else if (lpa & LPA_10FULL) { 1993 } else if (adv_lpa & LPA_10FULL) {
1984 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 1994 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1985 newdup = 1; 1995 newdup = 1;
1986 } else if (lpa & LPA_10HALF) { 1996 } else if (adv_lpa & LPA_10HALF) {
1987 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 1997 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1988 newdup = 0; 1998 newdup = 0;
1989 } else { 1999 } else {
1990 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa); 2000 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
1991 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 2001 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1992 newdup = 0; 2002 newdup = 0;
1993 } 2003 }
@@ -2030,6 +2040,56 @@ set_speed:
2030 writel(np->linkspeed, base + NvRegLinkSpeed); 2040 writel(np->linkspeed, base + NvRegLinkSpeed);
2031 pci_push(base); 2041 pci_push(base);
2032 2042
2043 /* setup pause frame based on advertisement and link partner */
2044 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
2045
2046 if (np->duplex != 0) {
2047 adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
2048 lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
2049
2050 switch (adv_pause) {
2051 case (ADVERTISE_PAUSE_CAP):
2052 if (lpa_pause & LPA_PAUSE_CAP) {
2053 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE;
2054 }
2055 break;
2056 case (ADVERTISE_PAUSE_ASYM):
2057 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
2058 {
2059 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2060 }
2061 break;
2062 case (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM):
2063 if (lpa_pause & LPA_PAUSE_CAP)
2064 {
2065 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE;
2066 }
2067 if (lpa_pause == LPA_PAUSE_ASYM)
2068 {
2069 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2070 }
2071 break;
2072 }
2073 }
2074
2075 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
2076 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
2077 if (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE)
2078 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
2079 else
2080 writel(pff, base + NvRegPacketFilterFlags);
2081 }
2082 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
2083 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
2084 if (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
2085 writel(NVREG_TX_PAUSEFRAME_ENABLE, base + NvRegTxPauseFrame);
2086 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
2087 } else {
2088 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
2089 writel(regmisc, base + NvRegMisc1);
2090 }
2091 }
2092
2033 return retval; 2093 return retval;
2034} 2094}
2035 2095
@@ -2090,7 +2150,7 @@ static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
2090 spin_lock(&np->lock); 2150 spin_lock(&np->lock);
2091 nv_tx_done(dev); 2151 nv_tx_done(dev);
2092 spin_unlock(&np->lock); 2152 spin_unlock(&np->lock);
2093 2153
2094 nv_rx_process(dev); 2154 nv_rx_process(dev);
2095 if (nv_alloc_rx(dev)) { 2155 if (nv_alloc_rx(dev)) {
2096 spin_lock(&np->lock); 2156 spin_lock(&np->lock);
@@ -2098,7 +2158,7 @@ static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
2098 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 2158 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2099 spin_unlock(&np->lock); 2159 spin_unlock(&np->lock);
2100 } 2160 }
2101 2161
2102 if (events & NVREG_IRQ_LINK) { 2162 if (events & NVREG_IRQ_LINK) {
2103 spin_lock(&np->lock); 2163 spin_lock(&np->lock);
2104 nv_link_irq(dev); 2164 nv_link_irq(dev);
@@ -2163,7 +2223,7 @@ static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
2163 spin_lock_irq(&np->lock); 2223 spin_lock_irq(&np->lock);
2164 nv_tx_done(dev); 2224 nv_tx_done(dev);
2165 spin_unlock_irq(&np->lock); 2225 spin_unlock_irq(&np->lock);
2166 2226
2167 if (events & (NVREG_IRQ_TX_ERR)) { 2227 if (events & (NVREG_IRQ_TX_ERR)) {
2168 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n", 2228 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2169 dev->name, events); 2229 dev->name, events);
@@ -2206,7 +2266,7 @@ static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
2206 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events); 2266 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
2207 if (!(events & np->irqmask)) 2267 if (!(events & np->irqmask))
2208 break; 2268 break;
2209 2269
2210 nv_rx_process(dev); 2270 nv_rx_process(dev);
2211 if (nv_alloc_rx(dev)) { 2271 if (nv_alloc_rx(dev)) {
2212 spin_lock_irq(&np->lock); 2272 spin_lock_irq(&np->lock);
@@ -2214,7 +2274,7 @@ static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
2214 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 2274 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2215 spin_unlock_irq(&np->lock); 2275 spin_unlock_irq(&np->lock);
2216 } 2276 }
2217 2277
2218 if (i > max_interrupt_work) { 2278 if (i > max_interrupt_work) {
2219 spin_lock_irq(&np->lock); 2279 spin_lock_irq(&np->lock);
2220 /* disable interrupts on the nic */ 2280 /* disable interrupts on the nic */
@@ -2253,7 +2313,7 @@ static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
2253 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events); 2313 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2254 if (!(events & np->irqmask)) 2314 if (!(events & np->irqmask))
2255 break; 2315 break;
2256 2316
2257 if (events & NVREG_IRQ_LINK) { 2317 if (events & NVREG_IRQ_LINK) {
2258 spin_lock_irq(&np->lock); 2318 spin_lock_irq(&np->lock);
2259 nv_link_irq(dev); 2319 nv_link_irq(dev);
@@ -2326,7 +2386,7 @@ static void nv_do_nic_poll(unsigned long data)
2326 np->nic_poll_irq = 0; 2386 np->nic_poll_irq = 0;
2327 2387
2328 /* FIXME: Do we need synchronize_irq(dev->irq) here? */ 2388 /* FIXME: Do we need synchronize_irq(dev->irq) here? */
2329 2389
2330 writel(mask, base + NvRegIrqMask); 2390 writel(mask, base + NvRegIrqMask);
2331 pci_push(base); 2391 pci_push(base);
2332 2392
@@ -2441,7 +2501,7 @@ static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2441 if (adv & ADVERTISE_100FULL) 2501 if (adv & ADVERTISE_100FULL)
2442 ecmd->advertising |= ADVERTISED_100baseT_Full; 2502 ecmd->advertising |= ADVERTISED_100baseT_Full;
2443 if (np->autoneg && np->gigabit == PHY_GIGABIT) { 2503 if (np->autoneg && np->gigabit == PHY_GIGABIT) {
2444 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ); 2504 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2445 if (adv & ADVERTISE_1000FULL) 2505 if (adv & ADVERTISE_1000FULL)
2446 ecmd->advertising |= ADVERTISED_1000baseT_Full; 2506 ecmd->advertising |= ADVERTISED_1000baseT_Full;
2447 } 2507 }
@@ -2505,23 +2565,23 @@ static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2505 2565
2506 /* advertise only what has been requested */ 2566 /* advertise only what has been requested */
2507 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 2567 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2508 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4); 2568 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
2509 if (ecmd->advertising & ADVERTISED_10baseT_Half) 2569 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2510 adv |= ADVERTISE_10HALF; 2570 adv |= ADVERTISE_10HALF;
2511 if (ecmd->advertising & ADVERTISED_10baseT_Full) 2571 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2512 adv |= ADVERTISE_10FULL; 2572 adv |= ADVERTISE_10FULL | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
2513 if (ecmd->advertising & ADVERTISED_100baseT_Half) 2573 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2514 adv |= ADVERTISE_100HALF; 2574 adv |= ADVERTISE_100HALF;
2515 if (ecmd->advertising & ADVERTISED_100baseT_Full) 2575 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2516 adv |= ADVERTISE_100FULL; 2576 adv |= ADVERTISE_100FULL | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
2517 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); 2577 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2518 2578
2519 if (np->gigabit == PHY_GIGABIT) { 2579 if (np->gigabit == PHY_GIGABIT) {
2520 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ); 2580 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2521 adv &= ~ADVERTISE_1000FULL; 2581 adv &= ~ADVERTISE_1000FULL;
2522 if (ecmd->advertising & ADVERTISED_1000baseT_Full) 2582 if (ecmd->advertising & ADVERTISED_1000baseT_Full)
2523 adv |= ADVERTISE_1000FULL; 2583 adv |= ADVERTISE_1000FULL;
2524 mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv); 2584 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
2525 } 2585 }
2526 2586
2527 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 2587 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
@@ -2534,22 +2594,22 @@ static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2534 np->autoneg = 0; 2594 np->autoneg = 0;
2535 2595
2536 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 2596 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2537 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4); 2597 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
2538 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF) 2598 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
2539 adv |= ADVERTISE_10HALF; 2599 adv |= ADVERTISE_10HALF;
2540 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL) 2600 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
2541 adv |= ADVERTISE_10FULL; 2601 adv |= ADVERTISE_10FULL | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
2542 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF) 2602 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
2543 adv |= ADVERTISE_100HALF; 2603 adv |= ADVERTISE_100HALF;
2544 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL) 2604 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
2545 adv |= ADVERTISE_100FULL; 2605 adv |= ADVERTISE_100FULL | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
2546 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); 2606 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2547 np->fixed_mode = adv; 2607 np->fixed_mode = adv;
2548 2608
2549 if (np->gigabit == PHY_GIGABIT) { 2609 if (np->gigabit == PHY_GIGABIT) {
2550 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ); 2610 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2551 adv &= ~ADVERTISE_1000FULL; 2611 adv &= ~ADVERTISE_1000FULL;
2552 mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv); 2612 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
2553 } 2613 }
2554 2614
2555 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 2615 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
@@ -2813,6 +2873,9 @@ static int nv_open(struct net_device *dev)
2813 2873
2814 writel(0, base + NvRegAdapterControl); 2874 writel(0, base + NvRegAdapterControl);
2815 2875
2876 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
2877 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
2878
2816 /* 2) initialize descriptor rings */ 2879 /* 2) initialize descriptor rings */
2817 set_bufsize(dev); 2880 set_bufsize(dev);
2818 oom = nv_init_ring(dev); 2881 oom = nv_init_ring(dev);
@@ -3098,6 +3161,12 @@ static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_i
3098 np->msi_flags |= NV_MSI_X_CAPABLE; 3161 np->msi_flags |= NV_MSI_X_CAPABLE;
3099 } 3162 }
3100 3163
3164 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE;
3165 if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
3166 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE;
3167 }
3168
3169
3101 err = -ENOMEM; 3170 err = -ENOMEM;
3102 np->base = ioremap(addr, np->register_size); 3171 np->base = ioremap(addr, np->register_size);
3103 if (!np->base) 3172 if (!np->base)
@@ -3244,7 +3313,7 @@ static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_i
3244 pci_name(pci_dev)); 3313 pci_name(pci_dev));
3245 goto out_freering; 3314 goto out_freering;
3246 } 3315 }
3247 3316
3248 /* reset it */ 3317 /* reset it */
3249 phy_init(dev); 3318 phy_init(dev);
3250 3319
@@ -3358,11 +3427,11 @@ static struct pci_device_id pci_tbl[] = {
3358 }, 3427 },
3359 { /* MCP55 Ethernet Controller */ 3428 { /* MCP55 Ethernet Controller */
3360 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14), 3429 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
3361 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL, 3430 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX,
3362 }, 3431 },
3363 { /* MCP55 Ethernet Controller */ 3432 { /* MCP55 Ethernet Controller */
3364 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15), 3433 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
3365 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL, 3434 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX,
3366 }, 3435 },
3367 {0,}, 3436 {0,},
3368}; 3437};
diff --git a/drivers/net/ibmlana.c b/drivers/net/ibmlana.c
index 01ad904215a1..51fd51609ea9 100644
--- a/drivers/net/ibmlana.c
+++ b/drivers/net/ibmlana.c
@@ -1,4 +1,4 @@
1/* 1/*
2net-3-driver for the IBM LAN Adapter/A 2net-3-driver for the IBM LAN Adapter/A
3 3
4This is an extension to the Linux operating system, and is covered by the 4This is an extension to the Linux operating system, and is covered by the
@@ -11,9 +11,9 @@ This driver is based both on the SK_MCA driver, which is itself based on the
11SK_G16 and 3C523 driver. 11SK_G16 and 3C523 driver.
12 12
13paper sources: 13paper sources:
14 'PC Hardware: Aufbau, Funktionsweise, Programmierung' by 14 'PC Hardware: Aufbau, Funktionsweise, Programmierung' by
15 Hans-Peter Messmer for the basic Microchannel stuff 15 Hans-Peter Messmer for the basic Microchannel stuff
16 16
17 'Linux Geraetetreiber' by Allesandro Rubini, Kalle Dalheimer 17 'Linux Geraetetreiber' by Allesandro Rubini, Kalle Dalheimer
18 for help on Ethernet driver programming 18 for help on Ethernet driver programming
19 19
@@ -27,14 +27,14 @@ paper sources:
27 27
28special acknowledgements to: 28special acknowledgements to:
29 - Bob Eager for helping me out with documentation from IBM 29 - Bob Eager for helping me out with documentation from IBM
30 - Jim Shorney for his endless patience with me while I was using 30 - Jim Shorney for his endless patience with me while I was using
31 him as a beta tester to trace down the address filter bug ;-) 31 him as a beta tester to trace down the address filter bug ;-)
32 32
33 Missing things: 33 Missing things:
34 34
35 -> set debug level via ioctl instead of compile-time switches 35 -> set debug level via ioctl instead of compile-time switches
36 -> I didn't follow the development of the 2.1.x kernels, so my 36 -> I didn't follow the development of the 2.1.x kernels, so my
37 assumptions about which things changed with which kernel version 37 assumptions about which things changed with which kernel version
38 are probably nonsense 38 are probably nonsense
39 39
40History: 40History:
@@ -275,7 +275,7 @@ static void InitDscrs(struct net_device *dev)
275 priv->rrastart = raddr = priv->txbufstart + (TXBUFCNT * PKTSIZE); 275 priv->rrastart = raddr = priv->txbufstart + (TXBUFCNT * PKTSIZE);
276 priv->rdastart = addr = priv->rrastart + (priv->rxbufcnt * sizeof(rra_t)); 276 priv->rdastart = addr = priv->rrastart + (priv->rxbufcnt * sizeof(rra_t));
277 priv->rxbufstart = baddr = priv->rdastart + (priv->rxbufcnt * sizeof(rda_t)); 277 priv->rxbufstart = baddr = priv->rdastart + (priv->rxbufcnt * sizeof(rda_t));
278 278
279 for (z = 0; z < priv->rxbufcnt; z++) { 279 for (z = 0; z < priv->rxbufcnt; z++) {
280 rra.startlo = baddr; 280 rra.startlo = baddr;
281 rra.starthi = 0; 281 rra.starthi = 0;
@@ -570,7 +570,7 @@ static void irqrx_handler(struct net_device *dev)
570 lrdaaddr = priv->rdastart + (priv->lastrxdescr * sizeof(rda_t)); 570 lrdaaddr = priv->rdastart + (priv->lastrxdescr * sizeof(rda_t));
571 memcpy_fromio(&rda, priv->base + rdaaddr, sizeof(rda_t)); 571 memcpy_fromio(&rda, priv->base + rdaaddr, sizeof(rda_t));
572 572
573 /* iron out upper word halves of fields we use - SONIC will duplicate 573 /* iron out upper word halves of fields we use - SONIC will duplicate
574 bits 0..15 to 16..31 */ 574 bits 0..15 to 16..31 */
575 575
576 rda.status &= 0xffff; 576 rda.status &= 0xffff;
@@ -836,9 +836,9 @@ static int ibmlana_tx(struct sk_buff *skb, struct net_device *dev)
836 baddr = priv->txbufstart + (priv->nexttxdescr * PKTSIZE); 836 baddr = priv->txbufstart + (priv->nexttxdescr * PKTSIZE);
837 memcpy_toio(priv->base + baddr, skb->data, skb->len); 837 memcpy_toio(priv->base + baddr, skb->data, skb->len);
838 838
839 /* copy filler into RAM - in case we're filling up... 839 /* copy filler into RAM - in case we're filling up...
840 we're filling a bit more than necessary, but that doesn't harm 840 we're filling a bit more than necessary, but that doesn't harm
841 since the buffer is far larger... 841 since the buffer is far larger...
842 Sorry Linus for the filler string but I couldn't resist ;-) */ 842 Sorry Linus for the filler string but I couldn't resist ;-) */
843 843
844 if (tmplen > skb->len) { 844 if (tmplen > skb->len) {
@@ -952,7 +952,7 @@ static int ibmlana_probe(struct net_device *dev)
952 priv->realirq = irq; 952 priv->realirq = irq;
953 priv->medium = medium; 953 priv->medium = medium;
954 spin_lock_init(&priv->lock); 954 spin_lock_init(&priv->lock);
955 955
956 956
957 /* set base + irq for this device (irq not allocated so far) */ 957 /* set base + irq for this device (irq not allocated so far) */
958 958
diff --git a/drivers/net/ibmlana.h b/drivers/net/ibmlana.h
index 458ee226e537..6b58bab9e308 100644
--- a/drivers/net/ibmlana.h
+++ b/drivers/net/ibmlana.h
@@ -17,7 +17,7 @@
17/* media enumeration - defined in a way that it fits onto the LAN/A's 17/* media enumeration - defined in a way that it fits onto the LAN/A's
18 POS registers... */ 18 POS registers... */
19 19
20typedef enum { 20typedef enum {
21 Media_10BaseT, Media_10Base5, 21 Media_10BaseT, Media_10Base5,
22 Media_Unknown, Media_10Base2, Media_Count 22 Media_Unknown, Media_10Base2, Media_Count
23} ibmlana_medium; 23} ibmlana_medium;
@@ -27,7 +27,7 @@ typedef enum {
27typedef struct { 27typedef struct {
28 unsigned int slot; /* MCA-Slot-# */ 28 unsigned int slot; /* MCA-Slot-# */
29 struct net_device_stats stat; /* packet statistics */ 29 struct net_device_stats stat; /* packet statistics */
30 int realirq; /* memorizes actual IRQ, even when 30 int realirq; /* memorizes actual IRQ, even when
31 currently not allocated */ 31 currently not allocated */
32 ibmlana_medium medium; /* physical cannector */ 32 ibmlana_medium medium; /* physical cannector */
33 u32 tdastart, txbufstart, /* addresses */ 33 u32 tdastart, txbufstart, /* addresses */
@@ -41,7 +41,7 @@ typedef struct {
41 spinlock_t lock; 41 spinlock_t lock;
42} ibmlana_priv; 42} ibmlana_priv;
43 43
44/* this card uses quite a lot of I/O ports...luckily the MCA bus decodes 44/* this card uses quite a lot of I/O ports...luckily the MCA bus decodes
45 a full 64K I/O range... */ 45 a full 64K I/O range... */
46 46
47#define IBM_LANA_IORANGE 0xa0 47#define IBM_LANA_IORANGE 0xa0
diff --git a/drivers/net/ibmveth.c b/drivers/net/ibmveth.c
index 52d01027d9e7..666346f6469e 100644
--- a/drivers/net/ibmveth.c
+++ b/drivers/net/ibmveth.c
@@ -24,7 +24,7 @@
24/* for use with IBM i/pSeries LPAR Linux. It utilizes the logical LAN */ 24/* for use with IBM i/pSeries LPAR Linux. It utilizes the logical LAN */
25/* option of the RS/6000 Platform Architechture to interface with virtual */ 25/* option of the RS/6000 Platform Architechture to interface with virtual */
26/* ethernet NICs that are presented to the partition by the hypervisor. */ 26/* ethernet NICs that are presented to the partition by the hypervisor. */
27/* */ 27/* */
28/**************************************************************************/ 28/**************************************************************************/
29/* 29/*
30 TODO: 30 TODO:
@@ -79,7 +79,7 @@
79#else 79#else
80#define ibmveth_debug_printk_no_adapter(fmt, args...) 80#define ibmveth_debug_printk_no_adapter(fmt, args...)
81#define ibmveth_debug_printk(fmt, args...) 81#define ibmveth_debug_printk(fmt, args...)
82#define ibmveth_assert(expr) 82#define ibmveth_assert(expr)
83#endif 83#endif
84 84
85static int ibmveth_open(struct net_device *dev); 85static int ibmveth_open(struct net_device *dev);
@@ -96,6 +96,7 @@ static void ibmveth_proc_register_adapter(struct ibmveth_adapter *adapter);
96static void ibmveth_proc_unregister_adapter(struct ibmveth_adapter *adapter); 96static void ibmveth_proc_unregister_adapter(struct ibmveth_adapter *adapter);
97static irqreturn_t ibmveth_interrupt(int irq, void *dev_instance, struct pt_regs *regs); 97static irqreturn_t ibmveth_interrupt(int irq, void *dev_instance, struct pt_regs *regs);
98static inline void ibmveth_rxq_harvest_buffer(struct ibmveth_adapter *adapter); 98static inline void ibmveth_rxq_harvest_buffer(struct ibmveth_adapter *adapter);
99static struct kobj_type ktype_veth_pool;
99 100
100#ifdef CONFIG_PROC_FS 101#ifdef CONFIG_PROC_FS
101#define IBMVETH_PROC_DIR "net/ibmveth" 102#define IBMVETH_PROC_DIR "net/ibmveth"
@@ -133,12 +134,13 @@ static inline int ibmveth_rxq_frame_length(struct ibmveth_adapter *adapter)
133} 134}
134 135
135/* setup the initial settings for a buffer pool */ 136/* setup the initial settings for a buffer pool */
136static void ibmveth_init_buffer_pool(struct ibmveth_buff_pool *pool, u32 pool_index, u32 pool_size, u32 buff_size) 137static void ibmveth_init_buffer_pool(struct ibmveth_buff_pool *pool, u32 pool_index, u32 pool_size, u32 buff_size, u32 pool_active)
137{ 138{
138 pool->size = pool_size; 139 pool->size = pool_size;
139 pool->index = pool_index; 140 pool->index = pool_index;
140 pool->buff_size = buff_size; 141 pool->buff_size = buff_size;
141 pool->threshold = pool_size / 2; 142 pool->threshold = pool_size / 2;
143 pool->active = pool_active;
142} 144}
143 145
144/* allocate and setup an buffer pool - called during open */ 146/* allocate and setup an buffer pool - called during open */
@@ -146,13 +148,13 @@ static int ibmveth_alloc_buffer_pool(struct ibmveth_buff_pool *pool)
146{ 148{
147 int i; 149 int i;
148 150
149 pool->free_map = kmalloc(sizeof(u16) * pool->size, GFP_KERNEL); 151 pool->free_map = kmalloc(sizeof(u16) * pool->size, GFP_KERNEL);
150 152
151 if(!pool->free_map) { 153 if(!pool->free_map) {
152 return -1; 154 return -1;
153 } 155 }
154 156
155 pool->dma_addr = kmalloc(sizeof(dma_addr_t) * pool->size, GFP_KERNEL); 157 pool->dma_addr = kmalloc(sizeof(dma_addr_t) * pool->size, GFP_KERNEL);
156 if(!pool->dma_addr) { 158 if(!pool->dma_addr) {
157 kfree(pool->free_map); 159 kfree(pool->free_map);
158 pool->free_map = NULL; 160 pool->free_map = NULL;
@@ -180,7 +182,6 @@ static int ibmveth_alloc_buffer_pool(struct ibmveth_buff_pool *pool)
180 atomic_set(&pool->available, 0); 182 atomic_set(&pool->available, 0);
181 pool->producer_index = 0; 183 pool->producer_index = 0;
182 pool->consumer_index = 0; 184 pool->consumer_index = 0;
183 pool->active = 0;
184 185
185 return 0; 186 return 0;
186} 187}
@@ -214,7 +215,7 @@ static void ibmveth_replenish_buffer_pool(struct ibmveth_adapter *adapter, struc
214 215
215 free_index = pool->consumer_index++ % pool->size; 216 free_index = pool->consumer_index++ % pool->size;
216 index = pool->free_map[free_index]; 217 index = pool->free_map[free_index];
217 218
218 ibmveth_assert(index != IBM_VETH_INVALID_MAP); 219 ibmveth_assert(index != IBM_VETH_INVALID_MAP);
219 ibmveth_assert(pool->skbuff[index] == NULL); 220 ibmveth_assert(pool->skbuff[index] == NULL);
220 221
@@ -231,10 +232,10 @@ static void ibmveth_replenish_buffer_pool(struct ibmveth_adapter *adapter, struc
231 desc.desc = 0; 232 desc.desc = 0;
232 desc.fields.valid = 1; 233 desc.fields.valid = 1;
233 desc.fields.length = pool->buff_size; 234 desc.fields.length = pool->buff_size;
234 desc.fields.address = dma_addr; 235 desc.fields.address = dma_addr;
235 236
236 lpar_rc = h_add_logical_lan_buffer(adapter->vdev->unit_address, desc.desc); 237 lpar_rc = h_add_logical_lan_buffer(adapter->vdev->unit_address, desc.desc);
237 238
238 if(lpar_rc != H_SUCCESS) { 239 if(lpar_rc != H_SUCCESS) {
239 pool->free_map[free_index] = index; 240 pool->free_map[free_index] = index;
240 pool->skbuff[index] = NULL; 241 pool->skbuff[index] = NULL;
@@ -250,13 +251,13 @@ static void ibmveth_replenish_buffer_pool(struct ibmveth_adapter *adapter, struc
250 adapter->replenish_add_buff_success++; 251 adapter->replenish_add_buff_success++;
251 } 252 }
252 } 253 }
253 254
254 mb(); 255 mb();
255 atomic_add(buffers_added, &(pool->available)); 256 atomic_add(buffers_added, &(pool->available));
256} 257}
257 258
258/* replenish routine */ 259/* replenish routine */
259static void ibmveth_replenish_task(struct ibmveth_adapter *adapter) 260static void ibmveth_replenish_task(struct ibmveth_adapter *adapter)
260{ 261{
261 int i; 262 int i;
262 263
@@ -264,7 +265,7 @@ static void ibmveth_replenish_task(struct ibmveth_adapter *adapter)
264 265
265 for(i = 0; i < IbmVethNumBufferPools; i++) 266 for(i = 0; i < IbmVethNumBufferPools; i++)
266 if(adapter->rx_buff_pool[i].active) 267 if(adapter->rx_buff_pool[i].active)
267 ibmveth_replenish_buffer_pool(adapter, 268 ibmveth_replenish_buffer_pool(adapter,
268 &adapter->rx_buff_pool[i]); 269 &adapter->rx_buff_pool[i]);
269 270
270 adapter->rx_no_buffer = *(u64*)(((char*)adapter->buffer_list_addr) + 4096 - 8); 271 adapter->rx_no_buffer = *(u64*)(((char*)adapter->buffer_list_addr) + 4096 - 8);
@@ -301,7 +302,6 @@ static void ibmveth_free_buffer_pool(struct ibmveth_adapter *adapter, struct ibm
301 kfree(pool->skbuff); 302 kfree(pool->skbuff);
302 pool->skbuff = NULL; 303 pool->skbuff = NULL;
303 } 304 }
304 pool->active = 0;
305} 305}
306 306
307/* remove a buffer from a pool */ 307/* remove a buffer from a pool */
@@ -372,7 +372,7 @@ static void ibmveth_rxq_recycle_buffer(struct ibmveth_adapter *adapter)
372 desc.fields.address = adapter->rx_buff_pool[pool].dma_addr[index]; 372 desc.fields.address = adapter->rx_buff_pool[pool].dma_addr[index];
373 373
374 lpar_rc = h_add_logical_lan_buffer(adapter->vdev->unit_address, desc.desc); 374 lpar_rc = h_add_logical_lan_buffer(adapter->vdev->unit_address, desc.desc);
375 375
376 if(lpar_rc != H_SUCCESS) { 376 if(lpar_rc != H_SUCCESS) {
377 ibmveth_debug_printk("h_add_logical_lan_buffer failed during recycle rc=%ld", lpar_rc); 377 ibmveth_debug_printk("h_add_logical_lan_buffer failed during recycle rc=%ld", lpar_rc);
378 ibmveth_remove_buffer_from_pool(adapter, adapter->rx_queue.queue_addr[adapter->rx_queue.index].correlator); 378 ibmveth_remove_buffer_from_pool(adapter, adapter->rx_queue.queue_addr[adapter->rx_queue.index].correlator);
@@ -407,7 +407,7 @@ static void ibmveth_cleanup(struct ibmveth_adapter *adapter)
407 } 407 }
408 free_page((unsigned long)adapter->buffer_list_addr); 408 free_page((unsigned long)adapter->buffer_list_addr);
409 adapter->buffer_list_addr = NULL; 409 adapter->buffer_list_addr = NULL;
410 } 410 }
411 411
412 if(adapter->filter_list_addr != NULL) { 412 if(adapter->filter_list_addr != NULL) {
413 if(!dma_mapping_error(adapter->filter_list_dma)) { 413 if(!dma_mapping_error(adapter->filter_list_dma)) {
@@ -433,7 +433,9 @@ static void ibmveth_cleanup(struct ibmveth_adapter *adapter)
433 } 433 }
434 434
435 for(i = 0; i<IbmVethNumBufferPools; i++) 435 for(i = 0; i<IbmVethNumBufferPools; i++)
436 ibmveth_free_buffer_pool(adapter, &adapter->rx_buff_pool[i]); 436 if (adapter->rx_buff_pool[i].active)
437 ibmveth_free_buffer_pool(adapter,
438 &adapter->rx_buff_pool[i]);
437} 439}
438 440
439static int ibmveth_open(struct net_device *netdev) 441static int ibmveth_open(struct net_device *netdev)
@@ -450,10 +452,10 @@ static int ibmveth_open(struct net_device *netdev)
450 452
451 for(i = 0; i<IbmVethNumBufferPools; i++) 453 for(i = 0; i<IbmVethNumBufferPools; i++)
452 rxq_entries += adapter->rx_buff_pool[i].size; 454 rxq_entries += adapter->rx_buff_pool[i].size;
453 455
454 adapter->buffer_list_addr = (void*) get_zeroed_page(GFP_KERNEL); 456 adapter->buffer_list_addr = (void*) get_zeroed_page(GFP_KERNEL);
455 adapter->filter_list_addr = (void*) get_zeroed_page(GFP_KERNEL); 457 adapter->filter_list_addr = (void*) get_zeroed_page(GFP_KERNEL);
456 458
457 if(!adapter->buffer_list_addr || !adapter->filter_list_addr) { 459 if(!adapter->buffer_list_addr || !adapter->filter_list_addr) {
458 ibmveth_error_printk("unable to allocate filter or buffer list pages\n"); 460 ibmveth_error_printk("unable to allocate filter or buffer list pages\n");
459 ibmveth_cleanup(adapter); 461 ibmveth_cleanup(adapter);
@@ -489,9 +491,6 @@ static int ibmveth_open(struct net_device *netdev)
489 adapter->rx_queue.num_slots = rxq_entries; 491 adapter->rx_queue.num_slots = rxq_entries;
490 adapter->rx_queue.toggle = 1; 492 adapter->rx_queue.toggle = 1;
491 493
492 /* call change_mtu to init the buffer pools based in initial mtu */
493 ibmveth_change_mtu(netdev, netdev->mtu);
494
495 memcpy(&mac_address, netdev->dev_addr, netdev->addr_len); 494 memcpy(&mac_address, netdev->dev_addr, netdev->addr_len);
496 mac_address = mac_address >> 16; 495 mac_address = mac_address >> 16;
497 496
@@ -504,7 +503,7 @@ static int ibmveth_open(struct net_device *netdev)
504 ibmveth_debug_printk("filter list @ 0x%p\n", adapter->filter_list_addr); 503 ibmveth_debug_printk("filter list @ 0x%p\n", adapter->filter_list_addr);
505 ibmveth_debug_printk("receive q @ 0x%p\n", adapter->rx_queue.queue_addr); 504 ibmveth_debug_printk("receive q @ 0x%p\n", adapter->rx_queue.queue_addr);
506 505
507 506
508 lpar_rc = h_register_logical_lan(adapter->vdev->unit_address, 507 lpar_rc = h_register_logical_lan(adapter->vdev->unit_address,
509 adapter->buffer_list_dma, 508 adapter->buffer_list_dma,
510 rxq_desc.desc, 509 rxq_desc.desc,
@@ -519,7 +518,18 @@ static int ibmveth_open(struct net_device *netdev)
519 rxq_desc.desc, 518 rxq_desc.desc,
520 mac_address); 519 mac_address);
521 ibmveth_cleanup(adapter); 520 ibmveth_cleanup(adapter);
522 return -ENONET; 521 return -ENONET;
522 }
523
524 for(i = 0; i<IbmVethNumBufferPools; i++) {
525 if(!adapter->rx_buff_pool[i].active)
526 continue;
527 if (ibmveth_alloc_buffer_pool(&adapter->rx_buff_pool[i])) {
528 ibmveth_error_printk("unable to alloc pool\n");
529 adapter->rx_buff_pool[i].active = 0;
530 ibmveth_cleanup(adapter);
531 return -ENOMEM ;
532 }
523 } 533 }
524 534
525 ibmveth_debug_printk("registering irq 0x%x\n", netdev->irq); 535 ibmveth_debug_printk("registering irq 0x%x\n", netdev->irq);
@@ -547,10 +557,11 @@ static int ibmveth_close(struct net_device *netdev)
547{ 557{
548 struct ibmveth_adapter *adapter = netdev->priv; 558 struct ibmveth_adapter *adapter = netdev->priv;
549 long lpar_rc; 559 long lpar_rc;
550 560
551 ibmveth_debug_printk("close starting\n"); 561 ibmveth_debug_printk("close starting\n");
552 562
553 netif_stop_queue(netdev); 563 if (!adapter->pool_config)
564 netif_stop_queue(netdev);
554 565
555 free_irq(netdev->irq, netdev); 566 free_irq(netdev->irq, netdev);
556 567
@@ -694,7 +705,7 @@ static int ibmveth_start_xmit(struct sk_buff *skb, struct net_device *netdev)
694 desc[5].desc, 705 desc[5].desc,
695 correlator); 706 correlator);
696 } while ((lpar_rc == H_BUSY) && (retry_count--)); 707 } while ((lpar_rc == H_BUSY) && (retry_count--));
697 708
698 if(lpar_rc != H_SUCCESS && lpar_rc != H_DROPPED) { 709 if(lpar_rc != H_SUCCESS && lpar_rc != H_DROPPED) {
699 int i; 710 int i;
700 ibmveth_error_printk("tx: h_send_logical_lan failed with rc=%ld\n", lpar_rc); 711 ibmveth_error_printk("tx: h_send_logical_lan failed with rc=%ld\n", lpar_rc);
@@ -780,7 +791,7 @@ static int ibmveth_poll(struct net_device *netdev, int *budget)
780 /* more work to do - return that we are not done yet */ 791 /* more work to do - return that we are not done yet */
781 netdev->quota -= frames_processed; 792 netdev->quota -= frames_processed;
782 *budget -= frames_processed; 793 *budget -= frames_processed;
783 return 1; 794 return 1;
784 } 795 }
785 796
786 /* we think we are done - reenable interrupts, then check once more to make sure we are done */ 797 /* we think we are done - reenable interrupts, then check once more to make sure we are done */
@@ -806,7 +817,7 @@ static int ibmveth_poll(struct net_device *netdev, int *budget)
806} 817}
807 818
808static irqreturn_t ibmveth_interrupt(int irq, void *dev_instance, struct pt_regs *regs) 819static irqreturn_t ibmveth_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
809{ 820{
810 struct net_device *netdev = dev_instance; 821 struct net_device *netdev = dev_instance;
811 struct ibmveth_adapter *adapter = netdev->priv; 822 struct ibmveth_adapter *adapter = netdev->priv;
812 unsigned long lpar_rc; 823 unsigned long lpar_rc;
@@ -862,7 +873,7 @@ static void ibmveth_set_multicast_list(struct net_device *netdev)
862 ibmveth_error_printk("h_multicast_ctrl rc=%ld when adding an entry to the filter table\n", lpar_rc); 873 ibmveth_error_printk("h_multicast_ctrl rc=%ld when adding an entry to the filter table\n", lpar_rc);
863 } 874 }
864 } 875 }
865 876
866 /* re-enable filtering */ 877 /* re-enable filtering */
867 lpar_rc = h_multicast_ctrl(adapter->vdev->unit_address, 878 lpar_rc = h_multicast_ctrl(adapter->vdev->unit_address,
868 IbmVethMcastEnableFiltering, 879 IbmVethMcastEnableFiltering,
@@ -876,46 +887,22 @@ static void ibmveth_set_multicast_list(struct net_device *netdev)
876static int ibmveth_change_mtu(struct net_device *dev, int new_mtu) 887static int ibmveth_change_mtu(struct net_device *dev, int new_mtu)
877{ 888{
878 struct ibmveth_adapter *adapter = dev->priv; 889 struct ibmveth_adapter *adapter = dev->priv;
890 int new_mtu_oh = new_mtu + IBMVETH_BUFF_OH;
879 int i; 891 int i;
880 int prev_smaller = 1;
881 892
882 if ((new_mtu < 68) || 893 if (new_mtu < IBMVETH_MAX_MTU)
883 (new_mtu > (pool_size[IbmVethNumBufferPools-1]) - IBMVETH_BUFF_OH))
884 return -EINVAL; 894 return -EINVAL;
885 895
896 /* Look for an active buffer pool that can hold the new MTU */
886 for(i = 0; i<IbmVethNumBufferPools; i++) { 897 for(i = 0; i<IbmVethNumBufferPools; i++) {
887 int activate = 0; 898 if (!adapter->rx_buff_pool[i].active)
888 if (new_mtu > (pool_size[i] - IBMVETH_BUFF_OH)) { 899 continue;
889 activate = 1; 900 if (new_mtu_oh < adapter->rx_buff_pool[i].buff_size) {
890 prev_smaller= 1; 901 dev->mtu = new_mtu;
891 } else { 902 return 0;
892 if (prev_smaller)
893 activate = 1;
894 prev_smaller= 0;
895 } 903 }
896
897 if (activate && !adapter->rx_buff_pool[i].active) {
898 struct ibmveth_buff_pool *pool =
899 &adapter->rx_buff_pool[i];
900 if(ibmveth_alloc_buffer_pool(pool)) {
901 ibmveth_error_printk("unable to alloc pool\n");
902 return -ENOMEM;
903 }
904 adapter->rx_buff_pool[i].active = 1;
905 } else if (!activate && adapter->rx_buff_pool[i].active) {
906 adapter->rx_buff_pool[i].active = 0;
907 h_free_logical_lan_buffer(adapter->vdev->unit_address,
908 (u64)pool_size[i]);
909 }
910
911 } 904 }
912 905 return -EINVAL;
913 /* kick the interrupt handler so that the new buffer pools get
914 replenished or deallocated */
915 ibmveth_interrupt(dev->irq, dev, NULL);
916
917 dev->mtu = new_mtu;
918 return 0;
919} 906}
920 907
921static int __devinit ibmveth_probe(struct vio_dev *dev, const struct vio_device_id *id) 908static int __devinit ibmveth_probe(struct vio_dev *dev, const struct vio_device_id *id)
@@ -928,7 +915,7 @@ static int __devinit ibmveth_probe(struct vio_dev *dev, const struct vio_device_
928 unsigned int *mcastFilterSize_p; 915 unsigned int *mcastFilterSize_p;
929 916
930 917
931 ibmveth_debug_printk_no_adapter("entering ibmveth_probe for UA 0x%x\n", 918 ibmveth_debug_printk_no_adapter("entering ibmveth_probe for UA 0x%x\n",
932 dev->unit_address); 919 dev->unit_address);
933 920
934 mac_addr_p = (unsigned char *) vio_get_attribute(dev, VETH_MAC_ADDR, 0); 921 mac_addr_p = (unsigned char *) vio_get_attribute(dev, VETH_MAC_ADDR, 0);
@@ -937,7 +924,7 @@ static int __devinit ibmveth_probe(struct vio_dev *dev, const struct vio_device_
937 "attribute\n", __FILE__, __LINE__); 924 "attribute\n", __FILE__, __LINE__);
938 return 0; 925 return 0;
939 } 926 }
940 927
941 mcastFilterSize_p= (unsigned int *) vio_get_attribute(dev, VETH_MCAST_FILTER_SIZE, 0); 928 mcastFilterSize_p= (unsigned int *) vio_get_attribute(dev, VETH_MCAST_FILTER_SIZE, 0);
942 if(!mcastFilterSize_p) { 929 if(!mcastFilterSize_p) {
943 printk(KERN_ERR "(%s:%3.3d) ERROR: Can't find " 930 printk(KERN_ERR "(%s:%3.3d) ERROR: Can't find "
@@ -945,7 +932,7 @@ static int __devinit ibmveth_probe(struct vio_dev *dev, const struct vio_device_
945 __FILE__, __LINE__); 932 __FILE__, __LINE__);
946 return 0; 933 return 0;
947 } 934 }
948 935
949 netdev = alloc_etherdev(sizeof(struct ibmveth_adapter)); 936 netdev = alloc_etherdev(sizeof(struct ibmveth_adapter));
950 937
951 if(!netdev) 938 if(!netdev)
@@ -960,13 +947,14 @@ static int __devinit ibmveth_probe(struct vio_dev *dev, const struct vio_device_
960 adapter->vdev = dev; 947 adapter->vdev = dev;
961 adapter->netdev = netdev; 948 adapter->netdev = netdev;
962 adapter->mcastFilterSize= *mcastFilterSize_p; 949 adapter->mcastFilterSize= *mcastFilterSize_p;
963 950 adapter->pool_config = 0;
951
964 /* Some older boxes running PHYP non-natively have an OF that 952 /* Some older boxes running PHYP non-natively have an OF that
965 returns a 8-byte local-mac-address field (and the first 953 returns a 8-byte local-mac-address field (and the first
966 2 bytes have to be ignored) while newer boxes' OF return 954 2 bytes have to be ignored) while newer boxes' OF return
967 a 6-byte field. Note that IEEE 1275 specifies that 955 a 6-byte field. Note that IEEE 1275 specifies that
968 local-mac-address must be a 6-byte field. 956 local-mac-address must be a 6-byte field.
969 The RPA doc specifies that the first byte must be 10b, so 957 The RPA doc specifies that the first byte must be 10b, so
970 we'll just look for it to solve this 8 vs. 6 byte field issue */ 958 we'll just look for it to solve this 8 vs. 6 byte field issue */
971 959
972 if ((*mac_addr_p & 0x3) != 0x02) 960 if ((*mac_addr_p & 0x3) != 0x02)
@@ -976,7 +964,7 @@ static int __devinit ibmveth_probe(struct vio_dev *dev, const struct vio_device_
976 memcpy(&adapter->mac_addr, mac_addr_p, 6); 964 memcpy(&adapter->mac_addr, mac_addr_p, 6);
977 965
978 adapter->liobn = dev->iommu_table->it_index; 966 adapter->liobn = dev->iommu_table->it_index;
979 967
980 netdev->irq = dev->irq; 968 netdev->irq = dev->irq;
981 netdev->open = ibmveth_open; 969 netdev->open = ibmveth_open;
982 netdev->poll = ibmveth_poll; 970 netdev->poll = ibmveth_poll;
@@ -989,14 +977,21 @@ static int __devinit ibmveth_probe(struct vio_dev *dev, const struct vio_device_
989 netdev->ethtool_ops = &netdev_ethtool_ops; 977 netdev->ethtool_ops = &netdev_ethtool_ops;
990 netdev->change_mtu = ibmveth_change_mtu; 978 netdev->change_mtu = ibmveth_change_mtu;
991 SET_NETDEV_DEV(netdev, &dev->dev); 979 SET_NETDEV_DEV(netdev, &dev->dev);
992 netdev->features |= NETIF_F_LLTX; 980 netdev->features |= NETIF_F_LLTX;
993 spin_lock_init(&adapter->stats_lock); 981 spin_lock_init(&adapter->stats_lock);
994 982
995 memcpy(&netdev->dev_addr, &adapter->mac_addr, netdev->addr_len); 983 memcpy(&netdev->dev_addr, &adapter->mac_addr, netdev->addr_len);
996 984
997 for(i = 0; i<IbmVethNumBufferPools; i++) 985 for(i = 0; i<IbmVethNumBufferPools; i++) {
998 ibmveth_init_buffer_pool(&adapter->rx_buff_pool[i], i, 986 struct kobject *kobj = &adapter->rx_buff_pool[i].kobj;
999 pool_count[i], pool_size[i]); 987 ibmveth_init_buffer_pool(&adapter->rx_buff_pool[i], i,
988 pool_count[i], pool_size[i],
989 pool_active[i]);
990 kobj->parent = &dev->dev.kobj;
991 sprintf(kobj->name, "pool%d", i);
992 kobj->ktype = &ktype_veth_pool;
993 kobject_register(kobj);
994 }
1000 995
1001 ibmveth_debug_printk("adapter @ 0x%p\n", adapter); 996 ibmveth_debug_printk("adapter @ 0x%p\n", adapter);
1002 997
@@ -1025,6 +1020,10 @@ static int __devexit ibmveth_remove(struct vio_dev *dev)
1025{ 1020{
1026 struct net_device *netdev = dev->dev.driver_data; 1021 struct net_device *netdev = dev->dev.driver_data;
1027 struct ibmveth_adapter *adapter = netdev->priv; 1022 struct ibmveth_adapter *adapter = netdev->priv;
1023 int i;
1024
1025 for(i = 0; i<IbmVethNumBufferPools; i++)
1026 kobject_unregister(&adapter->rx_buff_pool[i].kobj);
1028 1027
1029 unregister_netdev(netdev); 1028 unregister_netdev(netdev);
1030 1029
@@ -1048,7 +1047,7 @@ static void ibmveth_proc_unregister_driver(void)
1048 remove_proc_entry(IBMVETH_PROC_DIR, NULL); 1047 remove_proc_entry(IBMVETH_PROC_DIR, NULL);
1049} 1048}
1050 1049
1051static void *ibmveth_seq_start(struct seq_file *seq, loff_t *pos) 1050static void *ibmveth_seq_start(struct seq_file *seq, loff_t *pos)
1052{ 1051{
1053 if (*pos == 0) { 1052 if (*pos == 0) {
1054 return (void *)1; 1053 return (void *)1;
@@ -1063,18 +1062,18 @@ static void *ibmveth_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1063 return NULL; 1062 return NULL;
1064} 1063}
1065 1064
1066static void ibmveth_seq_stop(struct seq_file *seq, void *v) 1065static void ibmveth_seq_stop(struct seq_file *seq, void *v)
1067{ 1066{
1068} 1067}
1069 1068
1070static int ibmveth_seq_show(struct seq_file *seq, void *v) 1069static int ibmveth_seq_show(struct seq_file *seq, void *v)
1071{ 1070{
1072 struct ibmveth_adapter *adapter = seq->private; 1071 struct ibmveth_adapter *adapter = seq->private;
1073 char *current_mac = ((char*) &adapter->netdev->dev_addr); 1072 char *current_mac = ((char*) &adapter->netdev->dev_addr);
1074 char *firmware_mac = ((char*) &adapter->mac_addr) ; 1073 char *firmware_mac = ((char*) &adapter->mac_addr) ;
1075 1074
1076 seq_printf(seq, "%s %s\n\n", ibmveth_driver_string, ibmveth_driver_version); 1075 seq_printf(seq, "%s %s\n\n", ibmveth_driver_string, ibmveth_driver_version);
1077 1076
1078 seq_printf(seq, "Unit Address: 0x%x\n", adapter->vdev->unit_address); 1077 seq_printf(seq, "Unit Address: 0x%x\n", adapter->vdev->unit_address);
1079 seq_printf(seq, "LIOBN: 0x%lx\n", adapter->liobn); 1078 seq_printf(seq, "LIOBN: 0x%lx\n", adapter->liobn);
1080 seq_printf(seq, "Current MAC: %02X:%02X:%02X:%02X:%02X:%02X\n", 1079 seq_printf(seq, "Current MAC: %02X:%02X:%02X:%02X:%02X:%02X\n",
@@ -1083,7 +1082,7 @@ static int ibmveth_seq_show(struct seq_file *seq, void *v)
1083 seq_printf(seq, "Firmware MAC: %02X:%02X:%02X:%02X:%02X:%02X\n", 1082 seq_printf(seq, "Firmware MAC: %02X:%02X:%02X:%02X:%02X:%02X\n",
1084 firmware_mac[0], firmware_mac[1], firmware_mac[2], 1083 firmware_mac[0], firmware_mac[1], firmware_mac[2],
1085 firmware_mac[3], firmware_mac[4], firmware_mac[5]); 1084 firmware_mac[3], firmware_mac[4], firmware_mac[5]);
1086 1085
1087 seq_printf(seq, "\nAdapter Statistics:\n"); 1086 seq_printf(seq, "\nAdapter Statistics:\n");
1088 seq_printf(seq, " TX: skbuffs linearized: %ld\n", adapter->tx_linearized); 1087 seq_printf(seq, " TX: skbuffs linearized: %ld\n", adapter->tx_linearized);
1089 seq_printf(seq, " multi-descriptor sends: %ld\n", adapter->tx_multidesc_send); 1088 seq_printf(seq, " multi-descriptor sends: %ld\n", adapter->tx_multidesc_send);
@@ -1095,7 +1094,7 @@ static int ibmveth_seq_show(struct seq_file *seq, void *v)
1095 seq_printf(seq, " add buffer failures: %ld\n", adapter->replenish_add_buff_failure); 1094 seq_printf(seq, " add buffer failures: %ld\n", adapter->replenish_add_buff_failure);
1096 seq_printf(seq, " invalid buffers: %ld\n", adapter->rx_invalid_buffer); 1095 seq_printf(seq, " invalid buffers: %ld\n", adapter->rx_invalid_buffer);
1097 seq_printf(seq, " no buffers: %ld\n", adapter->rx_no_buffer); 1096 seq_printf(seq, " no buffers: %ld\n", adapter->rx_no_buffer);
1098 1097
1099 return 0; 1098 return 0;
1100} 1099}
1101static struct seq_operations ibmveth_seq_ops = { 1100static struct seq_operations ibmveth_seq_ops = {
@@ -1153,11 +1152,11 @@ static void ibmveth_proc_unregister_adapter(struct ibmveth_adapter *adapter)
1153} 1152}
1154 1153
1155#else /* CONFIG_PROC_FS */ 1154#else /* CONFIG_PROC_FS */
1156static void ibmveth_proc_register_adapter(struct ibmveth_adapter *adapter) 1155static void ibmveth_proc_register_adapter(struct ibmveth_adapter *adapter)
1157{ 1156{
1158} 1157}
1159 1158
1160static void ibmveth_proc_unregister_adapter(struct ibmveth_adapter *adapter) 1159static void ibmveth_proc_unregister_adapter(struct ibmveth_adapter *adapter)
1161{ 1160{
1162} 1161}
1163static void ibmveth_proc_register_driver(void) 1162static void ibmveth_proc_register_driver(void)
@@ -1169,6 +1168,132 @@ static void ibmveth_proc_unregister_driver(void)
1169} 1168}
1170#endif /* CONFIG_PROC_FS */ 1169#endif /* CONFIG_PROC_FS */
1171 1170
1171static struct attribute veth_active_attr;
1172static struct attribute veth_num_attr;
1173static struct attribute veth_size_attr;
1174
1175static ssize_t veth_pool_show(struct kobject * kobj,
1176 struct attribute * attr, char * buf)
1177{
1178 struct ibmveth_buff_pool *pool = container_of(kobj,
1179 struct ibmveth_buff_pool,
1180 kobj);
1181
1182 if (attr == &veth_active_attr)
1183 return sprintf(buf, "%d\n", pool->active);
1184 else if (attr == &veth_num_attr)
1185 return sprintf(buf, "%d\n", pool->size);
1186 else if (attr == &veth_size_attr)
1187 return sprintf(buf, "%d\n", pool->buff_size);
1188 return 0;
1189}
1190
1191static ssize_t veth_pool_store(struct kobject * kobj, struct attribute * attr,
1192const char * buf, size_t count)
1193{
1194 struct ibmveth_buff_pool *pool = container_of(kobj,
1195 struct ibmveth_buff_pool,
1196 kobj);
1197 struct net_device *netdev =
1198 container_of(kobj->parent, struct device, kobj)->driver_data;
1199 struct ibmveth_adapter *adapter = netdev->priv;
1200 long value = simple_strtol(buf, NULL, 10);
1201 long rc;
1202
1203 if (attr == &veth_active_attr) {
1204 if (value && !pool->active) {
1205 if(ibmveth_alloc_buffer_pool(pool)) {
1206 ibmveth_error_printk("unable to alloc pool\n");
1207 return -ENOMEM;
1208 }
1209 pool->active = 1;
1210 adapter->pool_config = 1;
1211 ibmveth_close(netdev);
1212 adapter->pool_config = 0;
1213 if ((rc = ibmveth_open(netdev)))
1214 return rc;
1215 } else if (!value && pool->active) {
1216 int mtu = netdev->mtu + IBMVETH_BUFF_OH;
1217 int i;
1218 /* Make sure there is a buffer pool with buffers that
1219 can hold a packet of the size of the MTU */
1220 for(i = 0; i<IbmVethNumBufferPools; i++) {
1221 if (pool == &adapter->rx_buff_pool[i])
1222 continue;
1223 if (!adapter->rx_buff_pool[i].active)
1224 continue;
1225 if (mtu < adapter->rx_buff_pool[i].buff_size) {
1226 pool->active = 0;
1227 h_free_logical_lan_buffer(adapter->
1228 vdev->
1229 unit_address,
1230 pool->
1231 buff_size);
1232 }
1233 }
1234 if (pool->active) {
1235 ibmveth_error_printk("no active pool >= MTU\n");
1236 return -EPERM;
1237 }
1238 }
1239 } else if (attr == &veth_num_attr) {
1240 if (value <= 0 || value > IBMVETH_MAX_POOL_COUNT)
1241 return -EINVAL;
1242 else {
1243 adapter->pool_config = 1;
1244 ibmveth_close(netdev);
1245 adapter->pool_config = 0;
1246 pool->size = value;
1247 if ((rc = ibmveth_open(netdev)))
1248 return rc;
1249 }
1250 } else if (attr == &veth_size_attr) {
1251 if (value <= IBMVETH_BUFF_OH || value > IBMVETH_MAX_BUF_SIZE)
1252 return -EINVAL;
1253 else {
1254 adapter->pool_config = 1;
1255 ibmveth_close(netdev);
1256 adapter->pool_config = 0;
1257 pool->buff_size = value;
1258 if ((rc = ibmveth_open(netdev)))
1259 return rc;
1260 }
1261 }
1262
1263 /* kick the interrupt handler to allocate/deallocate pools */
1264 ibmveth_interrupt(netdev->irq, netdev, NULL);
1265 return count;
1266}
1267
1268
1269#define ATTR(_name, _mode) \
1270 struct attribute veth_##_name##_attr = { \
1271 .name = __stringify(_name), .mode = _mode, .owner = THIS_MODULE \
1272 };
1273
1274static ATTR(active, 0644);
1275static ATTR(num, 0644);
1276static ATTR(size, 0644);
1277
1278static struct attribute * veth_pool_attrs[] = {
1279 &veth_active_attr,
1280 &veth_num_attr,
1281 &veth_size_attr,
1282 NULL,
1283};
1284
1285static struct sysfs_ops veth_pool_ops = {
1286 .show = veth_pool_show,
1287 .store = veth_pool_store,
1288};
1289
1290static struct kobj_type ktype_veth_pool = {
1291 .release = NULL,
1292 .sysfs_ops = &veth_pool_ops,
1293 .default_attrs = veth_pool_attrs,
1294};
1295
1296
1172static struct vio_device_id ibmveth_device_table[] __devinitdata= { 1297static struct vio_device_id ibmveth_device_table[] __devinitdata= {
1173 { "network", "IBM,l-lan"}, 1298 { "network", "IBM,l-lan"},
1174 { "", "" } 1299 { "", "" }
@@ -1198,7 +1323,7 @@ static void __exit ibmveth_module_exit(void)
1198{ 1323{
1199 vio_unregister_driver(&ibmveth_driver); 1324 vio_unregister_driver(&ibmveth_driver);
1200 ibmveth_proc_unregister_driver(); 1325 ibmveth_proc_unregister_driver();
1201} 1326}
1202 1327
1203module_init(ibmveth_module_init); 1328module_init(ibmveth_module_init);
1204module_exit(ibmveth_module_exit); 1329module_exit(ibmveth_module_exit);
diff --git a/drivers/net/ibmveth.h b/drivers/net/ibmveth.h
index 46919a814fca..8385bf836507 100644
--- a/drivers/net/ibmveth.h
+++ b/drivers/net/ibmveth.h
@@ -75,10 +75,13 @@
75 75
76#define IbmVethNumBufferPools 5 76#define IbmVethNumBufferPools 5
77#define IBMVETH_BUFF_OH 22 /* Overhead: 14 ethernet header + 8 opaque handle */ 77#define IBMVETH_BUFF_OH 22 /* Overhead: 14 ethernet header + 8 opaque handle */
78#define IBMVETH_MAX_MTU 68
79#define IBMVETH_MAX_POOL_COUNT 4096
80#define IBMVETH_MAX_BUF_SIZE (1024 * 128)
78 81
79/* pool_size should be sorted */
80static int pool_size[] = { 512, 1024 * 2, 1024 * 16, 1024 * 32, 1024 * 64 }; 82static int pool_size[] = { 512, 1024 * 2, 1024 * 16, 1024 * 32, 1024 * 64 };
81static int pool_count[] = { 256, 768, 256, 256, 256 }; 83static int pool_count[] = { 256, 768, 256, 256, 256 };
84static int pool_active[] = { 1, 1, 0, 0, 0};
82 85
83#define IBM_VETH_INVALID_MAP ((u16)0xffff) 86#define IBM_VETH_INVALID_MAP ((u16)0xffff)
84 87
@@ -94,6 +97,7 @@ struct ibmveth_buff_pool {
94 dma_addr_t *dma_addr; 97 dma_addr_t *dma_addr;
95 struct sk_buff **skbuff; 98 struct sk_buff **skbuff;
96 int active; 99 int active;
100 struct kobject kobj;
97}; 101};
98 102
99struct ibmveth_rx_q { 103struct ibmveth_rx_q {
@@ -118,6 +122,7 @@ struct ibmveth_adapter {
118 dma_addr_t filter_list_dma; 122 dma_addr_t filter_list_dma;
119 struct ibmveth_buff_pool rx_buff_pool[IbmVethNumBufferPools]; 123 struct ibmveth_buff_pool rx_buff_pool[IbmVethNumBufferPools];
120 struct ibmveth_rx_q rx_queue; 124 struct ibmveth_rx_q rx_queue;
125 int pool_config;
121 126
122 /* adapter specific stats */ 127 /* adapter specific stats */
123 u64 replenish_task_cycles; 128 u64 replenish_task_cycles;
@@ -134,7 +139,7 @@ struct ibmveth_adapter {
134 spinlock_t stats_lock; 139 spinlock_t stats_lock;
135}; 140};
136 141
137struct ibmveth_buf_desc_fields { 142struct ibmveth_buf_desc_fields {
138 u32 valid : 1; 143 u32 valid : 1;
139 u32 toggle : 1; 144 u32 toggle : 1;
140 u32 reserved : 6; 145 u32 reserved : 6;
@@ -143,7 +148,7 @@ struct ibmveth_buf_desc_fields {
143}; 148};
144 149
145union ibmveth_buf_desc { 150union ibmveth_buf_desc {
146 u64 desc; 151 u64 desc;
147 struct ibmveth_buf_desc_fields fields; 152 struct ibmveth_buf_desc_fields fields;
148}; 153};
149 154
diff --git a/drivers/net/ixgb/Makefile b/drivers/net/ixgb/Makefile
index 7c7aff1ea7d5..a8a2d3d03567 100644
--- a/drivers/net/ixgb/Makefile
+++ b/drivers/net/ixgb/Makefile
@@ -1,7 +1,7 @@
1################################################################################ 1################################################################################
2# 2#
3# 3#
4# Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved. 4# Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5# 5#
6# This program is free software; you can redistribute it and/or modify it 6# This program is free software; you can redistribute it and/or modify it
7# under the terms of the GNU General Public License as published by the Free 7# under the terms of the GNU General Public License as published by the Free
diff --git a/drivers/net/ixgb/ixgb.h b/drivers/net/ixgb/ixgb.h
index c83271b38621..a83ef28dadb0 100644
--- a/drivers/net/ixgb/ixgb.h
+++ b/drivers/net/ixgb/ixgb.h
@@ -1,7 +1,7 @@
1/******************************************************************************* 1/*******************************************************************************
2 2
3 3
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5 5
6 This program is free software; you can redistribute it and/or modify it 6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free 7 under the terms of the GNU General Public License as published by the Free
@@ -84,7 +84,12 @@ struct ixgb_adapter;
84#define IXGB_DBG(args...) 84#define IXGB_DBG(args...)
85#endif 85#endif
86 86
87#define IXGB_ERR(args...) printk(KERN_ERR "ixgb: " args) 87#define PFX "ixgb: "
88#define DPRINTK(nlevel, klevel, fmt, args...) \
89 (void)((NETIF_MSG_##nlevel & adapter->msg_enable) && \
90 printk(KERN_##klevel PFX "%s: %s: " fmt, adapter->netdev->name, \
91 __FUNCTION__ , ## args))
92
88 93
89/* TX/RX descriptor defines */ 94/* TX/RX descriptor defines */
90#define DEFAULT_TXD 256 95#define DEFAULT_TXD 256
@@ -175,6 +180,7 @@ struct ixgb_adapter {
175 uint64_t hw_csum_tx_good; 180 uint64_t hw_csum_tx_good;
176 uint64_t hw_csum_tx_error; 181 uint64_t hw_csum_tx_error;
177 uint32_t tx_int_delay; 182 uint32_t tx_int_delay;
183 uint32_t tx_timeout_count;
178 boolean_t tx_int_delay_enable; 184 boolean_t tx_int_delay_enable;
179 boolean_t detect_tx_hung; 185 boolean_t detect_tx_hung;
180 186
@@ -192,7 +198,9 @@ struct ixgb_adapter {
192 198
193 /* structs defined in ixgb_hw.h */ 199 /* structs defined in ixgb_hw.h */
194 struct ixgb_hw hw; 200 struct ixgb_hw hw;
201 u16 msg_enable;
195 struct ixgb_hw_stats stats; 202 struct ixgb_hw_stats stats;
203 uint32_t alloc_rx_buff_failed;
196#ifdef CONFIG_PCI_MSI 204#ifdef CONFIG_PCI_MSI
197 boolean_t have_msi; 205 boolean_t have_msi;
198#endif 206#endif
diff --git a/drivers/net/ixgb/ixgb_ee.c b/drivers/net/ixgb/ixgb_ee.c
index 661a46b95a61..8357c5590bfb 100644
--- a/drivers/net/ixgb/ixgb_ee.c
+++ b/drivers/net/ixgb/ixgb_ee.c
@@ -1,7 +1,7 @@
1/******************************************************************************* 1/*******************************************************************************
2 2
3 3
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5 5
6 This program is free software; you can redistribute it and/or modify it 6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free 7 under the terms of the GNU General Public License as published by the Free
diff --git a/drivers/net/ixgb/ixgb_ee.h b/drivers/net/ixgb/ixgb_ee.h
index 5190aa8761a2..bf6fa220f38e 100644
--- a/drivers/net/ixgb/ixgb_ee.h
+++ b/drivers/net/ixgb/ixgb_ee.h
@@ -1,7 +1,7 @@
1/******************************************************************************* 1/*******************************************************************************
2 2
3 3
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5 5
6 This program is free software; you can redistribute it and/or modify it 6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free 7 under the terms of the GNU General Public License as published by the Free
diff --git a/drivers/net/ixgb/ixgb_ethtool.c b/drivers/net/ixgb/ixgb_ethtool.c
index d38ade5f2f4e..cf19b898ba9b 100644
--- a/drivers/net/ixgb/ixgb_ethtool.c
+++ b/drivers/net/ixgb/ixgb_ethtool.c
@@ -1,7 +1,7 @@
1/******************************************************************************* 1/*******************************************************************************
2 2
3 3
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5 5
6 This program is free software; you can redistribute it and/or modify it 6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free 7 under the terms of the GNU General Public License as published by the Free
@@ -44,6 +44,8 @@ extern void ixgb_free_rx_resources(struct ixgb_adapter *adapter);
44extern void ixgb_free_tx_resources(struct ixgb_adapter *adapter); 44extern void ixgb_free_tx_resources(struct ixgb_adapter *adapter);
45extern void ixgb_update_stats(struct ixgb_adapter *adapter); 45extern void ixgb_update_stats(struct ixgb_adapter *adapter);
46 46
47#define IXGB_ALL_RAR_ENTRIES 16
48
47struct ixgb_stats { 49struct ixgb_stats {
48 char stat_string[ETH_GSTRING_LEN]; 50 char stat_string[ETH_GSTRING_LEN];
49 int sizeof_stat; 51 int sizeof_stat;
@@ -76,6 +78,7 @@ static struct ixgb_stats ixgb_gstrings_stats[] = {
76 {"tx_heartbeat_errors", IXGB_STAT(net_stats.tx_heartbeat_errors)}, 78 {"tx_heartbeat_errors", IXGB_STAT(net_stats.tx_heartbeat_errors)},
77 {"tx_window_errors", IXGB_STAT(net_stats.tx_window_errors)}, 79 {"tx_window_errors", IXGB_STAT(net_stats.tx_window_errors)},
78 {"tx_deferred_ok", IXGB_STAT(stats.dc)}, 80 {"tx_deferred_ok", IXGB_STAT(stats.dc)},
81 {"tx_timeout_count", IXGB_STAT(tx_timeout_count) },
79 {"rx_long_length_errors", IXGB_STAT(stats.roc)}, 82 {"rx_long_length_errors", IXGB_STAT(stats.roc)},
80 {"rx_short_length_errors", IXGB_STAT(stats.ruc)}, 83 {"rx_short_length_errors", IXGB_STAT(stats.ruc)},
81#ifdef NETIF_F_TSO 84#ifdef NETIF_F_TSO
@@ -117,6 +120,16 @@ ixgb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
117 return 0; 120 return 0;
118} 121}
119 122
123static void ixgb_set_speed_duplex(struct net_device *netdev)
124{
125 struct ixgb_adapter *adapter = netdev_priv(netdev);
126 /* be optimistic about our link, since we were up before */
127 adapter->link_speed = 10000;
128 adapter->link_duplex = FULL_DUPLEX;
129 netif_carrier_on(netdev);
130 netif_wake_queue(netdev);
131}
132
120static int 133static int
121ixgb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) 134ixgb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
122{ 135{
@@ -130,12 +143,7 @@ ixgb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
130 ixgb_down(adapter, TRUE); 143 ixgb_down(adapter, TRUE);
131 ixgb_reset(adapter); 144 ixgb_reset(adapter);
132 ixgb_up(adapter); 145 ixgb_up(adapter);
133 /* be optimistic about our link, since we were up before */ 146 ixgb_set_speed_duplex(netdev);
134 adapter->link_speed = 10000;
135 adapter->link_duplex = FULL_DUPLEX;
136 netif_carrier_on(netdev);
137 netif_wake_queue(netdev);
138
139 } else 147 } else
140 ixgb_reset(adapter); 148 ixgb_reset(adapter);
141 149
@@ -183,11 +191,7 @@ ixgb_set_pauseparam(struct net_device *netdev,
183 if(netif_running(adapter->netdev)) { 191 if(netif_running(adapter->netdev)) {
184 ixgb_down(adapter, TRUE); 192 ixgb_down(adapter, TRUE);
185 ixgb_up(adapter); 193 ixgb_up(adapter);
186 /* be optimistic about our link, since we were up before */ 194 ixgb_set_speed_duplex(netdev);
187 adapter->link_speed = 10000;
188 adapter->link_duplex = FULL_DUPLEX;
189 netif_carrier_on(netdev);
190 netif_wake_queue(netdev);
191 } else 195 } else
192 ixgb_reset(adapter); 196 ixgb_reset(adapter);
193 197
@@ -212,11 +216,7 @@ ixgb_set_rx_csum(struct net_device *netdev, uint32_t data)
212 if(netif_running(netdev)) { 216 if(netif_running(netdev)) {
213 ixgb_down(adapter,TRUE); 217 ixgb_down(adapter,TRUE);
214 ixgb_up(adapter); 218 ixgb_up(adapter);
215 /* be optimistic about our link, since we were up before */ 219 ixgb_set_speed_duplex(netdev);
216 adapter->link_speed = 10000;
217 adapter->link_duplex = FULL_DUPLEX;
218 netif_carrier_on(netdev);
219 netif_wake_queue(netdev);
220 } else 220 } else
221 ixgb_reset(adapter); 221 ixgb_reset(adapter);
222 return 0; 222 return 0;
@@ -251,6 +251,19 @@ ixgb_set_tso(struct net_device *netdev, uint32_t data)
251} 251}
252#endif /* NETIF_F_TSO */ 252#endif /* NETIF_F_TSO */
253 253
254static uint32_t
255ixgb_get_msglevel(struct net_device *netdev)
256{
257 struct ixgb_adapter *adapter = netdev_priv(netdev);
258 return adapter->msg_enable;
259}
260
261static void
262ixgb_set_msglevel(struct net_device *netdev, uint32_t data)
263{
264 struct ixgb_adapter *adapter = netdev_priv(netdev);
265 adapter->msg_enable = data;
266}
254#define IXGB_GET_STAT(_A_, _R_) _A_->stats._R_ 267#define IXGB_GET_STAT(_A_, _R_) _A_->stats._R_
255 268
256static int 269static int
@@ -303,7 +316,7 @@ ixgb_get_regs(struct net_device *netdev,
303 *reg++ = IXGB_READ_REG(hw, RXCSUM); /* 20 */ 316 *reg++ = IXGB_READ_REG(hw, RXCSUM); /* 20 */
304 317
305 /* there are 16 RAR entries in hardware, we only use 3 */ 318 /* there are 16 RAR entries in hardware, we only use 3 */
306 for(i = 0; i < 16; i++) { 319 for(i = 0; i < IXGB_ALL_RAR_ENTRIES; i++) {
307 *reg++ = IXGB_READ_REG_ARRAY(hw, RAL, (i << 1)); /*21,...,51 */ 320 *reg++ = IXGB_READ_REG_ARRAY(hw, RAL, (i << 1)); /*21,...,51 */
308 *reg++ = IXGB_READ_REG_ARRAY(hw, RAH, (i << 1)); /*22,...,52 */ 321 *reg++ = IXGB_READ_REG_ARRAY(hw, RAH, (i << 1)); /*22,...,52 */
309 } 322 }
@@ -593,11 +606,7 @@ ixgb_set_ringparam(struct net_device *netdev,
593 adapter->tx_ring = tx_new; 606 adapter->tx_ring = tx_new;
594 if((err = ixgb_up(adapter))) 607 if((err = ixgb_up(adapter)))
595 return err; 608 return err;
596 /* be optimistic about our link, since we were up before */ 609 ixgb_set_speed_duplex(netdev);
597 adapter->link_speed = 10000;
598 adapter->link_duplex = FULL_DUPLEX;
599 netif_carrier_on(netdev);
600 netif_wake_queue(netdev);
601 } 610 }
602 611
603 return 0; 612 return 0;
@@ -714,6 +723,8 @@ static struct ethtool_ops ixgb_ethtool_ops = {
714 .set_tx_csum = ixgb_set_tx_csum, 723 .set_tx_csum = ixgb_set_tx_csum,
715 .get_sg = ethtool_op_get_sg, 724 .get_sg = ethtool_op_get_sg,
716 .set_sg = ethtool_op_set_sg, 725 .set_sg = ethtool_op_set_sg,
726 .get_msglevel = ixgb_get_msglevel,
727 .set_msglevel = ixgb_set_msglevel,
717#ifdef NETIF_F_TSO 728#ifdef NETIF_F_TSO
718 .get_tso = ethtool_op_get_tso, 729 .get_tso = ethtool_op_get_tso,
719 .set_tso = ixgb_set_tso, 730 .set_tso = ixgb_set_tso,
diff --git a/drivers/net/ixgb/ixgb_hw.c b/drivers/net/ixgb/ixgb_hw.c
index 620cad48bdea..f7fa10e47fa2 100644
--- a/drivers/net/ixgb/ixgb_hw.c
+++ b/drivers/net/ixgb/ixgb_hw.c
@@ -1,7 +1,7 @@
1/******************************************************************************* 1/*******************************************************************************
2 2
3 3
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5 5
6 This program is free software; you can redistribute it and/or modify it 6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free 7 under the terms of the GNU General Public License as published by the Free
diff --git a/drivers/net/ixgb/ixgb_hw.h b/drivers/net/ixgb/ixgb_hw.h
index 382c6300ccc2..cb4568915ada 100644
--- a/drivers/net/ixgb/ixgb_hw.h
+++ b/drivers/net/ixgb/ixgb_hw.h
@@ -1,7 +1,7 @@
1/******************************************************************************* 1/*******************************************************************************
2 2
3 3
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5 5
6 This program is free software; you can redistribute it and/or modify it 6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free 7 under the terms of the GNU General Public License as published by the Free
@@ -57,6 +57,7 @@ typedef enum {
57typedef enum { 57typedef enum {
58 ixgb_media_type_unknown = 0, 58 ixgb_media_type_unknown = 0,
59 ixgb_media_type_fiber = 1, 59 ixgb_media_type_fiber = 1,
60 ixgb_media_type_copper = 2,
60 ixgb_num_media_types 61 ixgb_num_media_types
61} ixgb_media_type; 62} ixgb_media_type;
62 63
diff --git a/drivers/net/ixgb/ixgb_ids.h b/drivers/net/ixgb/ixgb_ids.h
index aee207eaa287..40a085f94c7b 100644
--- a/drivers/net/ixgb/ixgb_ids.h
+++ b/drivers/net/ixgb/ixgb_ids.h
@@ -1,7 +1,7 @@
1/******************************************************************************* 1/*******************************************************************************
2 2
3 3
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5 5
6 This program is free software; you can redistribute it and/or modify it 6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free 7 under the terms of the GNU General Public License as published by the Free
@@ -43,6 +43,8 @@
43#define IXGB_SUBDEVICE_ID_A11F 0xA11F 43#define IXGB_SUBDEVICE_ID_A11F 0xA11F
44#define IXGB_SUBDEVICE_ID_A01F 0xA01F 44#define IXGB_SUBDEVICE_ID_A01F 0xA01F
45 45
46#endif /* #ifndef _IXGB_IDS_H_ */ 46#define IXGB_DEVICE_ID_82597EX_CX4 0x109E
47#define IXGB_SUBDEVICE_ID_A00C 0xA00C
47 48
49#endif /* #ifndef _IXGB_IDS_H_ */
48/* End of File */ 50/* End of File */
diff --git a/drivers/net/ixgb/ixgb_main.c b/drivers/net/ixgb/ixgb_main.c
index cfd67d812f0d..57006fb8840e 100644
--- a/drivers/net/ixgb/ixgb_main.c
+++ b/drivers/net/ixgb/ixgb_main.c
@@ -1,7 +1,7 @@
1/******************************************************************************* 1/*******************************************************************************
2 2
3 3
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5 5
6 This program is free software; you can redistribute it and/or modify it 6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free 7 under the terms of the GNU General Public License as published by the Free
@@ -28,22 +28,6 @@
28 28
29#include "ixgb.h" 29#include "ixgb.h"
30 30
31/* Change Log
32 * 1.0.96 04/19/05
33 * - Make needlessly global code static -- bunk@stusta.de
34 * - ethtool cleanup -- shemminger@osdl.org
35 * - Support for MODULE_VERSION -- linville@tuxdriver.com
36 * - add skb_header_cloned check to the tso path -- herbert@apana.org.au
37 * 1.0.88 01/05/05
38 * - include fix to the condition that determines when to quit NAPI - Robert Olsson
39 * - use netif_poll_{disable/enable} to synchronize between NAPI and i/f up/down
40 * 1.0.84 10/26/04
41 * - reset buffer_info->dma in Tx resource cleanup logic
42 * 1.0.83 10/12/04
43 * - sparse cleanup - shemminger@osdl.org
44 * - fix tx resource cleanup logic
45 */
46
47char ixgb_driver_name[] = "ixgb"; 31char ixgb_driver_name[] = "ixgb";
48static char ixgb_driver_string[] = "Intel(R) PRO/10GbE Network Driver"; 32static char ixgb_driver_string[] = "Intel(R) PRO/10GbE Network Driver";
49 33
@@ -52,9 +36,9 @@ static char ixgb_driver_string[] = "Intel(R) PRO/10GbE Network Driver";
52#else 36#else
53#define DRIVERNAPI "-NAPI" 37#define DRIVERNAPI "-NAPI"
54#endif 38#endif
55#define DRV_VERSION "1.0.100-k2"DRIVERNAPI 39#define DRV_VERSION "1.0.109-k2"DRIVERNAPI
56char ixgb_driver_version[] = DRV_VERSION; 40char ixgb_driver_version[] = DRV_VERSION;
57static char ixgb_copyright[] = "Copyright (c) 1999-2005 Intel Corporation."; 41static char ixgb_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
58 42
59/* ixgb_pci_tbl - PCI Device ID Table 43/* ixgb_pci_tbl - PCI Device ID Table
60 * 44 *
@@ -67,6 +51,8 @@ static char ixgb_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
67static struct pci_device_id ixgb_pci_tbl[] = { 51static struct pci_device_id ixgb_pci_tbl[] = {
68 {INTEL_VENDOR_ID, IXGB_DEVICE_ID_82597EX, 52 {INTEL_VENDOR_ID, IXGB_DEVICE_ID_82597EX,
69 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 53 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
54 {INTEL_VENDOR_ID, IXGB_DEVICE_ID_82597EX_CX4,
55 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
70 {INTEL_VENDOR_ID, IXGB_DEVICE_ID_82597EX_SR, 56 {INTEL_VENDOR_ID, IXGB_DEVICE_ID_82597EX_SR,
71 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 57 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
72 {INTEL_VENDOR_ID, IXGB_DEVICE_ID_82597EX_LR, 58 {INTEL_VENDOR_ID, IXGB_DEVICE_ID_82597EX_LR,
@@ -148,6 +134,11 @@ MODULE_DESCRIPTION("Intel(R) PRO/10GbE Network Driver");
148MODULE_LICENSE("GPL"); 134MODULE_LICENSE("GPL");
149MODULE_VERSION(DRV_VERSION); 135MODULE_VERSION(DRV_VERSION);
150 136
137#define DEFAULT_DEBUG_LEVEL_SHIFT 3
138static int debug = DEFAULT_DEBUG_LEVEL_SHIFT;
139module_param(debug, int, 0);
140MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
141
151/* some defines for controlling descriptor fetches in h/w */ 142/* some defines for controlling descriptor fetches in h/w */
152#define RXDCTL_WTHRESH_DEFAULT 16 /* chip writes back at this many or RXT0 */ 143#define RXDCTL_WTHRESH_DEFAULT 16 /* chip writes back at this many or RXT0 */
153#define RXDCTL_PTHRESH_DEFAULT 0 /* chip considers prefech below 144#define RXDCTL_PTHRESH_DEFAULT 0 /* chip considers prefech below
@@ -196,7 +187,7 @@ module_exit(ixgb_exit_module);
196 * @adapter: board private structure 187 * @adapter: board private structure
197 **/ 188 **/
198 189
199static inline void 190static void
200ixgb_irq_disable(struct ixgb_adapter *adapter) 191ixgb_irq_disable(struct ixgb_adapter *adapter)
201{ 192{
202 atomic_inc(&adapter->irq_sem); 193 atomic_inc(&adapter->irq_sem);
@@ -210,7 +201,7 @@ ixgb_irq_disable(struct ixgb_adapter *adapter)
210 * @adapter: board private structure 201 * @adapter: board private structure
211 **/ 202 **/
212 203
213static inline void 204static void
214ixgb_irq_enable(struct ixgb_adapter *adapter) 205ixgb_irq_enable(struct ixgb_adapter *adapter)
215{ 206{
216 if(atomic_dec_and_test(&adapter->irq_sem)) { 207 if(atomic_dec_and_test(&adapter->irq_sem)) {
@@ -231,6 +222,7 @@ ixgb_up(struct ixgb_adapter *adapter)
231 222
232 /* hardware has been reset, we need to reload some things */ 223 /* hardware has been reset, we need to reload some things */
233 224
225 ixgb_rar_set(hw, netdev->dev_addr, 0);
234 ixgb_set_multi(netdev); 226 ixgb_set_multi(netdev);
235 227
236 ixgb_restore_vlan(adapter); 228 ixgb_restore_vlan(adapter);
@@ -240,6 +232,9 @@ ixgb_up(struct ixgb_adapter *adapter)
240 ixgb_configure_rx(adapter); 232 ixgb_configure_rx(adapter);
241 ixgb_alloc_rx_buffers(adapter); 233 ixgb_alloc_rx_buffers(adapter);
242 234
235 /* disable interrupts and get the hardware into a known state */
236 IXGB_WRITE_REG(&adapter->hw, IMC, 0xffffffff);
237
243#ifdef CONFIG_PCI_MSI 238#ifdef CONFIG_PCI_MSI
244 { 239 {
245 boolean_t pcix = (IXGB_READ_REG(&adapter->hw, STATUS) & 240 boolean_t pcix = (IXGB_READ_REG(&adapter->hw, STATUS) &
@@ -249,7 +244,7 @@ ixgb_up(struct ixgb_adapter *adapter)
249 if (!pcix) 244 if (!pcix)
250 adapter->have_msi = FALSE; 245 adapter->have_msi = FALSE;
251 else if((err = pci_enable_msi(adapter->pdev))) { 246 else if((err = pci_enable_msi(adapter->pdev))) {
252 printk (KERN_ERR 247 DPRINTK(PROBE, ERR,
253 "Unable to allocate MSI interrupt Error: %d\n", err); 248 "Unable to allocate MSI interrupt Error: %d\n", err);
254 adapter->have_msi = FALSE; 249 adapter->have_msi = FALSE;
255 /* proceed to try to request regular interrupt */ 250 /* proceed to try to request regular interrupt */
@@ -259,11 +254,11 @@ ixgb_up(struct ixgb_adapter *adapter)
259#endif 254#endif
260 if((err = request_irq(adapter->pdev->irq, &ixgb_intr, 255 if((err = request_irq(adapter->pdev->irq, &ixgb_intr,
261 SA_SHIRQ | SA_SAMPLE_RANDOM, 256 SA_SHIRQ | SA_SAMPLE_RANDOM,
262 netdev->name, netdev))) 257 netdev->name, netdev))) {
258 DPRINTK(PROBE, ERR,
259 "Unable to allocate interrupt Error: %d\n", err);
263 return err; 260 return err;
264 261 }
265 /* disable interrupts and get the hardware into a known state */
266 IXGB_WRITE_REG(&adapter->hw, IMC, 0xffffffff);
267 262
268 if((hw->max_frame_size != max_frame) || 263 if((hw->max_frame_size != max_frame) ||
269 (hw->max_frame_size != 264 (hw->max_frame_size !=
@@ -285,11 +280,12 @@ ixgb_up(struct ixgb_adapter *adapter)
285 } 280 }
286 281
287 mod_timer(&adapter->watchdog_timer, jiffies); 282 mod_timer(&adapter->watchdog_timer, jiffies);
288 ixgb_irq_enable(adapter);
289 283
290#ifdef CONFIG_IXGB_NAPI 284#ifdef CONFIG_IXGB_NAPI
291 netif_poll_enable(netdev); 285 netif_poll_enable(netdev);
292#endif 286#endif
287 ixgb_irq_enable(adapter);
288
293 return 0; 289 return 0;
294} 290}
295 291
@@ -326,7 +322,7 @@ ixgb_reset(struct ixgb_adapter *adapter)
326 322
327 ixgb_adapter_stop(&adapter->hw); 323 ixgb_adapter_stop(&adapter->hw);
328 if(!ixgb_init_hw(&adapter->hw)) 324 if(!ixgb_init_hw(&adapter->hw))
329 IXGB_DBG("ixgb_init_hw failed.\n"); 325 DPRINTK(PROBE, ERR, "ixgb_init_hw failed.\n");
330} 326}
331 327
332/** 328/**
@@ -363,7 +359,8 @@ ixgb_probe(struct pci_dev *pdev,
363 } else { 359 } else {
364 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) || 360 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) ||
365 (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) { 361 (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
366 IXGB_ERR("No usable DMA configuration, aborting\n"); 362 printk(KERN_ERR
363 "ixgb: No usable DMA configuration, aborting\n");
367 goto err_dma_mask; 364 goto err_dma_mask;
368 } 365 }
369 pci_using_dac = 0; 366 pci_using_dac = 0;
@@ -388,6 +385,7 @@ ixgb_probe(struct pci_dev *pdev,
388 adapter->netdev = netdev; 385 adapter->netdev = netdev;
389 adapter->pdev = pdev; 386 adapter->pdev = pdev;
390 adapter->hw.back = adapter; 387 adapter->hw.back = adapter;
388 adapter->msg_enable = netif_msg_init(debug, DEFAULT_DEBUG_LEVEL_SHIFT);
391 389
392 mmio_start = pci_resource_start(pdev, BAR_0); 390 mmio_start = pci_resource_start(pdev, BAR_0);
393 mmio_len = pci_resource_len(pdev, BAR_0); 391 mmio_len = pci_resource_len(pdev, BAR_0);
@@ -416,7 +414,7 @@ ixgb_probe(struct pci_dev *pdev,
416 netdev->change_mtu = &ixgb_change_mtu; 414 netdev->change_mtu = &ixgb_change_mtu;
417 ixgb_set_ethtool_ops(netdev); 415 ixgb_set_ethtool_ops(netdev);
418 netdev->tx_timeout = &ixgb_tx_timeout; 416 netdev->tx_timeout = &ixgb_tx_timeout;
419 netdev->watchdog_timeo = HZ; 417 netdev->watchdog_timeo = 5 * HZ;
420#ifdef CONFIG_IXGB_NAPI 418#ifdef CONFIG_IXGB_NAPI
421 netdev->poll = &ixgb_clean; 419 netdev->poll = &ixgb_clean;
422 netdev->weight = 64; 420 netdev->weight = 64;
@@ -428,6 +426,7 @@ ixgb_probe(struct pci_dev *pdev,
428 netdev->poll_controller = ixgb_netpoll; 426 netdev->poll_controller = ixgb_netpoll;
429#endif 427#endif
430 428
429 strcpy(netdev->name, pci_name(pdev));
431 netdev->mem_start = mmio_start; 430 netdev->mem_start = mmio_start;
432 netdev->mem_end = mmio_start + mmio_len; 431 netdev->mem_end = mmio_start + mmio_len;
433 netdev->base_addr = adapter->hw.io_base; 432 netdev->base_addr = adapter->hw.io_base;
@@ -449,6 +448,9 @@ ixgb_probe(struct pci_dev *pdev,
449#ifdef NETIF_F_TSO 448#ifdef NETIF_F_TSO
450 netdev->features |= NETIF_F_TSO; 449 netdev->features |= NETIF_F_TSO;
451#endif 450#endif
451#ifdef NETIF_F_LLTX
452 netdev->features |= NETIF_F_LLTX;
453#endif
452 454
453 if(pci_using_dac) 455 if(pci_using_dac)
454 netdev->features |= NETIF_F_HIGHDMA; 456 netdev->features |= NETIF_F_HIGHDMA;
@@ -456,7 +458,7 @@ ixgb_probe(struct pci_dev *pdev,
456 /* make sure the EEPROM is good */ 458 /* make sure the EEPROM is good */
457 459
458 if(!ixgb_validate_eeprom_checksum(&adapter->hw)) { 460 if(!ixgb_validate_eeprom_checksum(&adapter->hw)) {
459 printk(KERN_ERR "The EEPROM Checksum Is Not Valid\n"); 461 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
460 err = -EIO; 462 err = -EIO;
461 goto err_eeprom; 463 goto err_eeprom;
462 } 464 }
@@ -465,6 +467,7 @@ ixgb_probe(struct pci_dev *pdev,
465 memcpy(netdev->perm_addr, netdev->dev_addr, netdev->addr_len); 467 memcpy(netdev->perm_addr, netdev->dev_addr, netdev->addr_len);
466 468
467 if(!is_valid_ether_addr(netdev->perm_addr)) { 469 if(!is_valid_ether_addr(netdev->perm_addr)) {
470 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
468 err = -EIO; 471 err = -EIO;
469 goto err_eeprom; 472 goto err_eeprom;
470 } 473 }
@@ -478,6 +481,7 @@ ixgb_probe(struct pci_dev *pdev,
478 INIT_WORK(&adapter->tx_timeout_task, 481 INIT_WORK(&adapter->tx_timeout_task,
479 (void (*)(void *))ixgb_tx_timeout_task, netdev); 482 (void (*)(void *))ixgb_tx_timeout_task, netdev);
480 483
484 strcpy(netdev->name, "eth%d");
481 if((err = register_netdev(netdev))) 485 if((err = register_netdev(netdev)))
482 goto err_register; 486 goto err_register;
483 487
@@ -486,8 +490,7 @@ ixgb_probe(struct pci_dev *pdev,
486 netif_carrier_off(netdev); 490 netif_carrier_off(netdev);
487 netif_stop_queue(netdev); 491 netif_stop_queue(netdev);
488 492
489 printk(KERN_INFO "%s: Intel(R) PRO/10GbE Network Connection\n", 493 DPRINTK(PROBE, INFO, "Intel(R) PRO/10GbE Network Connection\n");
490 netdev->name);
491 ixgb_check_options(adapter); 494 ixgb_check_options(adapter);
492 /* reset the hardware with the new settings */ 495 /* reset the hardware with the new settings */
493 496
@@ -557,17 +560,17 @@ ixgb_sw_init(struct ixgb_adapter *adapter)
557 hw->subsystem_vendor_id = pdev->subsystem_vendor; 560 hw->subsystem_vendor_id = pdev->subsystem_vendor;
558 hw->subsystem_id = pdev->subsystem_device; 561 hw->subsystem_id = pdev->subsystem_device;
559 562
560 adapter->rx_buffer_len = IXGB_RXBUFFER_2048;
561
562 hw->max_frame_size = netdev->mtu + ENET_HEADER_SIZE + ENET_FCS_LENGTH; 563 hw->max_frame_size = netdev->mtu + ENET_HEADER_SIZE + ENET_FCS_LENGTH;
564 adapter->rx_buffer_len = hw->max_frame_size;
563 565
564 if((hw->device_id == IXGB_DEVICE_ID_82597EX) 566 if((hw->device_id == IXGB_DEVICE_ID_82597EX)
565 ||(hw->device_id == IXGB_DEVICE_ID_82597EX_LR) 567 || (hw->device_id == IXGB_DEVICE_ID_82597EX_CX4)
566 ||(hw->device_id == IXGB_DEVICE_ID_82597EX_SR)) 568 || (hw->device_id == IXGB_DEVICE_ID_82597EX_LR)
569 || (hw->device_id == IXGB_DEVICE_ID_82597EX_SR))
567 hw->mac_type = ixgb_82597; 570 hw->mac_type = ixgb_82597;
568 else { 571 else {
569 /* should never have loaded on this device */ 572 /* should never have loaded on this device */
570 printk(KERN_ERR "ixgb: unsupported device id\n"); 573 DPRINTK(PROBE, ERR, "unsupported device id\n");
571 } 574 }
572 575
573 /* enable flow control to be programmed */ 576 /* enable flow control to be programmed */
@@ -665,6 +668,8 @@ ixgb_setup_tx_resources(struct ixgb_adapter *adapter)
665 size = sizeof(struct ixgb_buffer) * txdr->count; 668 size = sizeof(struct ixgb_buffer) * txdr->count;
666 txdr->buffer_info = vmalloc(size); 669 txdr->buffer_info = vmalloc(size);
667 if(!txdr->buffer_info) { 670 if(!txdr->buffer_info) {
671 DPRINTK(PROBE, ERR,
672 "Unable to allocate transmit descriptor ring memory\n");
668 return -ENOMEM; 673 return -ENOMEM;
669 } 674 }
670 memset(txdr->buffer_info, 0, size); 675 memset(txdr->buffer_info, 0, size);
@@ -677,6 +682,8 @@ ixgb_setup_tx_resources(struct ixgb_adapter *adapter)
677 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); 682 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
678 if(!txdr->desc) { 683 if(!txdr->desc) {
679 vfree(txdr->buffer_info); 684 vfree(txdr->buffer_info);
685 DPRINTK(PROBE, ERR,
686 "Unable to allocate transmit descriptor memory\n");
680 return -ENOMEM; 687 return -ENOMEM;
681 } 688 }
682 memset(txdr->desc, 0, txdr->size); 689 memset(txdr->desc, 0, txdr->size);
@@ -750,6 +757,8 @@ ixgb_setup_rx_resources(struct ixgb_adapter *adapter)
750 size = sizeof(struct ixgb_buffer) * rxdr->count; 757 size = sizeof(struct ixgb_buffer) * rxdr->count;
751 rxdr->buffer_info = vmalloc(size); 758 rxdr->buffer_info = vmalloc(size);
752 if(!rxdr->buffer_info) { 759 if(!rxdr->buffer_info) {
760 DPRINTK(PROBE, ERR,
761 "Unable to allocate receive descriptor ring\n");
753 return -ENOMEM; 762 return -ENOMEM;
754 } 763 }
755 memset(rxdr->buffer_info, 0, size); 764 memset(rxdr->buffer_info, 0, size);
@@ -763,6 +772,8 @@ ixgb_setup_rx_resources(struct ixgb_adapter *adapter)
763 772
764 if(!rxdr->desc) { 773 if(!rxdr->desc) {
765 vfree(rxdr->buffer_info); 774 vfree(rxdr->buffer_info);
775 DPRINTK(PROBE, ERR,
776 "Unable to allocate receive descriptors\n");
766 return -ENOMEM; 777 return -ENOMEM;
767 } 778 }
768 memset(rxdr->desc, 0, rxdr->size); 779 memset(rxdr->desc, 0, rxdr->size);
@@ -794,21 +805,14 @@ ixgb_setup_rctl(struct ixgb_adapter *adapter)
794 805
795 rctl |= IXGB_RCTL_SECRC; 806 rctl |= IXGB_RCTL_SECRC;
796 807
797 switch (adapter->rx_buffer_len) { 808 if (adapter->rx_buffer_len <= IXGB_RXBUFFER_2048)
798 case IXGB_RXBUFFER_2048:
799 default:
800 rctl |= IXGB_RCTL_BSIZE_2048; 809 rctl |= IXGB_RCTL_BSIZE_2048;
801 break; 810 else if (adapter->rx_buffer_len <= IXGB_RXBUFFER_4096)
802 case IXGB_RXBUFFER_4096:
803 rctl |= IXGB_RCTL_BSIZE_4096; 811 rctl |= IXGB_RCTL_BSIZE_4096;
804 break; 812 else if (adapter->rx_buffer_len <= IXGB_RXBUFFER_8192)
805 case IXGB_RXBUFFER_8192:
806 rctl |= IXGB_RCTL_BSIZE_8192; 813 rctl |= IXGB_RCTL_BSIZE_8192;
807 break; 814 else if (adapter->rx_buffer_len <= IXGB_RXBUFFER_16384)
808 case IXGB_RXBUFFER_16384:
809 rctl |= IXGB_RCTL_BSIZE_16384; 815 rctl |= IXGB_RCTL_BSIZE_16384;
810 break;
811 }
812 816
813 IXGB_WRITE_REG(&adapter->hw, RCTL, rctl); 817 IXGB_WRITE_REG(&adapter->hw, RCTL, rctl);
814} 818}
@@ -898,22 +902,25 @@ ixgb_free_tx_resources(struct ixgb_adapter *adapter)
898 adapter->tx_ring.desc = NULL; 902 adapter->tx_ring.desc = NULL;
899} 903}
900 904
901static inline void 905static void
902ixgb_unmap_and_free_tx_resource(struct ixgb_adapter *adapter, 906ixgb_unmap_and_free_tx_resource(struct ixgb_adapter *adapter,
903 struct ixgb_buffer *buffer_info) 907 struct ixgb_buffer *buffer_info)
904{ 908{
905 struct pci_dev *pdev = adapter->pdev; 909 struct pci_dev *pdev = adapter->pdev;
906 if(buffer_info->dma) { 910
907 pci_unmap_page(pdev, 911 if (buffer_info->dma)
908 buffer_info->dma, 912 pci_unmap_page(pdev, buffer_info->dma, buffer_info->length,
909 buffer_info->length, 913 PCI_DMA_TODEVICE);
910 PCI_DMA_TODEVICE); 914
911 buffer_info->dma = 0; 915 if (buffer_info->skb)
912 }
913 if(buffer_info->skb) {
914 dev_kfree_skb_any(buffer_info->skb); 916 dev_kfree_skb_any(buffer_info->skb);
915 buffer_info->skb = NULL; 917
916 } 918 buffer_info->skb = NULL;
919 buffer_info->dma = 0;
920 buffer_info->time_stamp = 0;
921 /* these fields must always be initialized in tx
922 * buffer_info->length = 0;
923 * buffer_info->next_to_watch = 0; */
917} 924}
918 925
919/** 926/**
@@ -1112,8 +1119,8 @@ ixgb_watchdog(unsigned long data)
1112 1119
1113 if(adapter->hw.link_up) { 1120 if(adapter->hw.link_up) {
1114 if(!netif_carrier_ok(netdev)) { 1121 if(!netif_carrier_ok(netdev)) {
1115 printk(KERN_INFO "ixgb: %s NIC Link is Up %d Mbps %s\n", 1122 DPRINTK(LINK, INFO,
1116 netdev->name, 10000, "Full Duplex"); 1123 "NIC Link is Up 10000 Mbps Full Duplex\n");
1117 adapter->link_speed = 10000; 1124 adapter->link_speed = 10000;
1118 adapter->link_duplex = FULL_DUPLEX; 1125 adapter->link_duplex = FULL_DUPLEX;
1119 netif_carrier_on(netdev); 1126 netif_carrier_on(netdev);
@@ -1123,9 +1130,7 @@ ixgb_watchdog(unsigned long data)
1123 if(netif_carrier_ok(netdev)) { 1130 if(netif_carrier_ok(netdev)) {
1124 adapter->link_speed = 0; 1131 adapter->link_speed = 0;
1125 adapter->link_duplex = 0; 1132 adapter->link_duplex = 0;
1126 printk(KERN_INFO 1133 DPRINTK(LINK, INFO, "NIC Link is Down\n");
1127 "ixgb: %s NIC Link is Down\n",
1128 netdev->name);
1129 netif_carrier_off(netdev); 1134 netif_carrier_off(netdev);
1130 netif_stop_queue(netdev); 1135 netif_stop_queue(netdev);
1131 1136
@@ -1158,7 +1163,7 @@ ixgb_watchdog(unsigned long data)
1158#define IXGB_TX_FLAGS_VLAN 0x00000002 1163#define IXGB_TX_FLAGS_VLAN 0x00000002
1159#define IXGB_TX_FLAGS_TSO 0x00000004 1164#define IXGB_TX_FLAGS_TSO 0x00000004
1160 1165
1161static inline int 1166static int
1162ixgb_tso(struct ixgb_adapter *adapter, struct sk_buff *skb) 1167ixgb_tso(struct ixgb_adapter *adapter, struct sk_buff *skb)
1163{ 1168{
1164#ifdef NETIF_F_TSO 1169#ifdef NETIF_F_TSO
@@ -1220,7 +1225,7 @@ ixgb_tso(struct ixgb_adapter *adapter, struct sk_buff *skb)
1220 return 0; 1225 return 0;
1221} 1226}
1222 1227
1223static inline boolean_t 1228static boolean_t
1224ixgb_tx_csum(struct ixgb_adapter *adapter, struct sk_buff *skb) 1229ixgb_tx_csum(struct ixgb_adapter *adapter, struct sk_buff *skb)
1225{ 1230{
1226 struct ixgb_context_desc *context_desc; 1231 struct ixgb_context_desc *context_desc;
@@ -1258,7 +1263,7 @@ ixgb_tx_csum(struct ixgb_adapter *adapter, struct sk_buff *skb)
1258#define IXGB_MAX_TXD_PWR 14 1263#define IXGB_MAX_TXD_PWR 14
1259#define IXGB_MAX_DATA_PER_TXD (1<<IXGB_MAX_TXD_PWR) 1264#define IXGB_MAX_DATA_PER_TXD (1<<IXGB_MAX_TXD_PWR)
1260 1265
1261static inline int 1266static int
1262ixgb_tx_map(struct ixgb_adapter *adapter, struct sk_buff *skb, 1267ixgb_tx_map(struct ixgb_adapter *adapter, struct sk_buff *skb,
1263 unsigned int first) 1268 unsigned int first)
1264{ 1269{
@@ -1284,6 +1289,7 @@ ixgb_tx_map(struct ixgb_adapter *adapter, struct sk_buff *skb,
1284 size, 1289 size,
1285 PCI_DMA_TODEVICE); 1290 PCI_DMA_TODEVICE);
1286 buffer_info->time_stamp = jiffies; 1291 buffer_info->time_stamp = jiffies;
1292 buffer_info->next_to_watch = 0;
1287 1293
1288 len -= size; 1294 len -= size;
1289 offset += size; 1295 offset += size;
@@ -1309,6 +1315,7 @@ ixgb_tx_map(struct ixgb_adapter *adapter, struct sk_buff *skb,
1309 size, 1315 size,
1310 PCI_DMA_TODEVICE); 1316 PCI_DMA_TODEVICE);
1311 buffer_info->time_stamp = jiffies; 1317 buffer_info->time_stamp = jiffies;
1318 buffer_info->next_to_watch = 0;
1312 1319
1313 len -= size; 1320 len -= size;
1314 offset += size; 1321 offset += size;
@@ -1323,7 +1330,7 @@ ixgb_tx_map(struct ixgb_adapter *adapter, struct sk_buff *skb,
1323 return count; 1330 return count;
1324} 1331}
1325 1332
1326static inline void 1333static void
1327ixgb_tx_queue(struct ixgb_adapter *adapter, int count, int vlan_id,int tx_flags) 1334ixgb_tx_queue(struct ixgb_adapter *adapter, int count, int vlan_id,int tx_flags)
1328{ 1335{
1329 struct ixgb_desc_ring *tx_ring = &adapter->tx_ring; 1336 struct ixgb_desc_ring *tx_ring = &adapter->tx_ring;
@@ -1395,13 +1402,26 @@ ixgb_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1395 return 0; 1402 return 0;
1396 } 1403 }
1397 1404
1405#ifdef NETIF_F_LLTX
1406 local_irq_save(flags);
1407 if (!spin_trylock(&adapter->tx_lock)) {
1408 /* Collision - tell upper layer to requeue */
1409 local_irq_restore(flags);
1410 return NETDEV_TX_LOCKED;
1411 }
1412#else
1398 spin_lock_irqsave(&adapter->tx_lock, flags); 1413 spin_lock_irqsave(&adapter->tx_lock, flags);
1414#endif
1415
1399 if(unlikely(IXGB_DESC_UNUSED(&adapter->tx_ring) < DESC_NEEDED)) { 1416 if(unlikely(IXGB_DESC_UNUSED(&adapter->tx_ring) < DESC_NEEDED)) {
1400 netif_stop_queue(netdev); 1417 netif_stop_queue(netdev);
1401 spin_unlock_irqrestore(&adapter->tx_lock, flags); 1418 spin_unlock_irqrestore(&adapter->tx_lock, flags);
1402 return 1; 1419 return NETDEV_TX_BUSY;
1403 } 1420 }
1421
1422#ifndef NETIF_F_LLTX
1404 spin_unlock_irqrestore(&adapter->tx_lock, flags); 1423 spin_unlock_irqrestore(&adapter->tx_lock, flags);
1424#endif
1405 1425
1406 if(adapter->vlgrp && vlan_tx_tag_present(skb)) { 1426 if(adapter->vlgrp && vlan_tx_tag_present(skb)) {
1407 tx_flags |= IXGB_TX_FLAGS_VLAN; 1427 tx_flags |= IXGB_TX_FLAGS_VLAN;
@@ -1413,10 +1433,13 @@ ixgb_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1413 tso = ixgb_tso(adapter, skb); 1433 tso = ixgb_tso(adapter, skb);
1414 if (tso < 0) { 1434 if (tso < 0) {
1415 dev_kfree_skb_any(skb); 1435 dev_kfree_skb_any(skb);
1436#ifdef NETIF_F_LLTX
1437 spin_unlock_irqrestore(&adapter->tx_lock, flags);
1438#endif
1416 return NETDEV_TX_OK; 1439 return NETDEV_TX_OK;
1417 } 1440 }
1418 1441
1419 if (tso) 1442 if (likely(tso))
1420 tx_flags |= IXGB_TX_FLAGS_TSO; 1443 tx_flags |= IXGB_TX_FLAGS_TSO;
1421 else if(ixgb_tx_csum(adapter, skb)) 1444 else if(ixgb_tx_csum(adapter, skb))
1422 tx_flags |= IXGB_TX_FLAGS_CSUM; 1445 tx_flags |= IXGB_TX_FLAGS_CSUM;
@@ -1426,7 +1449,15 @@ ixgb_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1426 1449
1427 netdev->trans_start = jiffies; 1450 netdev->trans_start = jiffies;
1428 1451
1429 return 0; 1452#ifdef NETIF_F_LLTX
1453 /* Make sure there is space in the ring for the next send. */
1454 if(unlikely(IXGB_DESC_UNUSED(&adapter->tx_ring) < DESC_NEEDED))
1455 netif_stop_queue(netdev);
1456
1457 spin_unlock_irqrestore(&adapter->tx_lock, flags);
1458
1459#endif
1460 return NETDEV_TX_OK;
1430} 1461}
1431 1462
1432/** 1463/**
@@ -1448,6 +1479,7 @@ ixgb_tx_timeout_task(struct net_device *netdev)
1448{ 1479{
1449 struct ixgb_adapter *adapter = netdev_priv(netdev); 1480 struct ixgb_adapter *adapter = netdev_priv(netdev);
1450 1481
1482 adapter->tx_timeout_count++;
1451 ixgb_down(adapter, TRUE); 1483 ixgb_down(adapter, TRUE);
1452 ixgb_up(adapter); 1484 ixgb_up(adapter);
1453} 1485}
@@ -1486,28 +1518,15 @@ ixgb_change_mtu(struct net_device *netdev, int new_mtu)
1486 1518
1487 if((max_frame < IXGB_MIN_ENET_FRAME_SIZE_WITHOUT_FCS + ENET_FCS_LENGTH) 1519 if((max_frame < IXGB_MIN_ENET_FRAME_SIZE_WITHOUT_FCS + ENET_FCS_LENGTH)
1488 || (max_frame > IXGB_MAX_JUMBO_FRAME_SIZE + ENET_FCS_LENGTH)) { 1520 || (max_frame > IXGB_MAX_JUMBO_FRAME_SIZE + ENET_FCS_LENGTH)) {
1489 IXGB_ERR("Invalid MTU setting\n"); 1521 DPRINTK(PROBE, ERR, "Invalid MTU setting %d\n", new_mtu);
1490 return -EINVAL; 1522 return -EINVAL;
1491 } 1523 }
1492 1524
1493 if((max_frame <= IXGB_MAX_ENET_FRAME_SIZE_WITHOUT_FCS + ENET_FCS_LENGTH) 1525 adapter->rx_buffer_len = max_frame;
1494 || (max_frame <= IXGB_RXBUFFER_2048)) {
1495 adapter->rx_buffer_len = IXGB_RXBUFFER_2048;
1496
1497 } else if(max_frame <= IXGB_RXBUFFER_4096) {
1498 adapter->rx_buffer_len = IXGB_RXBUFFER_4096;
1499
1500 } else if(max_frame <= IXGB_RXBUFFER_8192) {
1501 adapter->rx_buffer_len = IXGB_RXBUFFER_8192;
1502
1503 } else {
1504 adapter->rx_buffer_len = IXGB_RXBUFFER_16384;
1505 }
1506 1526
1507 netdev->mtu = new_mtu; 1527 netdev->mtu = new_mtu;
1508 1528
1509 if(old_max_frame != max_frame && netif_running(netdev)) { 1529 if ((old_max_frame != max_frame) && netif_running(netdev)) {
1510
1511 ixgb_down(adapter, TRUE); 1530 ixgb_down(adapter, TRUE);
1512 ixgb_up(adapter); 1531 ixgb_up(adapter);
1513 } 1532 }
@@ -1765,23 +1784,43 @@ ixgb_clean_tx_irq(struct ixgb_adapter *adapter)
1765 1784
1766 tx_ring->next_to_clean = i; 1785 tx_ring->next_to_clean = i;
1767 1786
1768 spin_lock(&adapter->tx_lock); 1787 if (unlikely(netif_queue_stopped(netdev))) {
1769 if(cleaned && netif_queue_stopped(netdev) && netif_carrier_ok(netdev) && 1788 spin_lock(&adapter->tx_lock);
1770 (IXGB_DESC_UNUSED(tx_ring) > IXGB_TX_QUEUE_WAKE)) { 1789 if (netif_queue_stopped(netdev) && netif_carrier_ok(netdev) &&
1771 1790 (IXGB_DESC_UNUSED(tx_ring) > IXGB_TX_QUEUE_WAKE))
1772 netif_wake_queue(netdev); 1791 netif_wake_queue(netdev);
1792 spin_unlock(&adapter->tx_lock);
1773 } 1793 }
1774 spin_unlock(&adapter->tx_lock);
1775 1794
1776 if(adapter->detect_tx_hung) { 1795 if(adapter->detect_tx_hung) {
1777 /* detect a transmit hang in hardware, this serializes the 1796 /* detect a transmit hang in hardware, this serializes the
1778 * check with the clearing of time_stamp and movement of i */ 1797 * check with the clearing of time_stamp and movement of i */
1779 adapter->detect_tx_hung = FALSE; 1798 adapter->detect_tx_hung = FALSE;
1780 if(tx_ring->buffer_info[i].dma && 1799 if (tx_ring->buffer_info[eop].dma &&
1781 time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ) 1800 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + HZ)
1782 && !(IXGB_READ_REG(&adapter->hw, STATUS) & 1801 && !(IXGB_READ_REG(&adapter->hw, STATUS) &
1783 IXGB_STATUS_TXOFF)) 1802 IXGB_STATUS_TXOFF)) {
1803 /* detected Tx unit hang */
1804 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
1805 " TDH <%x>\n"
1806 " TDT <%x>\n"
1807 " next_to_use <%x>\n"
1808 " next_to_clean <%x>\n"
1809 "buffer_info[next_to_clean]\n"
1810 " time_stamp <%lx>\n"
1811 " next_to_watch <%x>\n"
1812 " jiffies <%lx>\n"
1813 " next_to_watch.status <%x>\n",
1814 IXGB_READ_REG(&adapter->hw, TDH),
1815 IXGB_READ_REG(&adapter->hw, TDT),
1816 tx_ring->next_to_use,
1817 tx_ring->next_to_clean,
1818 tx_ring->buffer_info[eop].time_stamp,
1819 eop,
1820 jiffies,
1821 eop_desc->status);
1784 netif_stop_queue(netdev); 1822 netif_stop_queue(netdev);
1823 }
1785 } 1824 }
1786 1825
1787 return cleaned; 1826 return cleaned;
@@ -1794,7 +1833,7 @@ ixgb_clean_tx_irq(struct ixgb_adapter *adapter)
1794 * @sk_buff: socket buffer with received data 1833 * @sk_buff: socket buffer with received data
1795 **/ 1834 **/
1796 1835
1797static inline void 1836static void
1798ixgb_rx_checksum(struct ixgb_adapter *adapter, 1837ixgb_rx_checksum(struct ixgb_adapter *adapter,
1799 struct ixgb_rx_desc *rx_desc, 1838 struct ixgb_rx_desc *rx_desc,
1800 struct sk_buff *skb) 1839 struct sk_buff *skb)
@@ -1858,6 +1897,7 @@ ixgb_clean_rx_irq(struct ixgb_adapter *adapter)
1858#endif 1897#endif
1859 status = rx_desc->status; 1898 status = rx_desc->status;
1860 skb = buffer_info->skb; 1899 skb = buffer_info->skb;
1900 buffer_info->skb = NULL;
1861 1901
1862 prefetch(skb->data); 1902 prefetch(skb->data);
1863 1903
@@ -1902,6 +1942,26 @@ ixgb_clean_rx_irq(struct ixgb_adapter *adapter)
1902 goto rxdesc_done; 1942 goto rxdesc_done;
1903 } 1943 }
1904 1944
1945 /* code added for copybreak, this should improve
1946 * performance for small packets with large amounts
1947 * of reassembly being done in the stack */
1948#define IXGB_CB_LENGTH 256
1949 if (length < IXGB_CB_LENGTH) {
1950 struct sk_buff *new_skb =
1951 dev_alloc_skb(length + NET_IP_ALIGN);
1952 if (new_skb) {
1953 skb_reserve(new_skb, NET_IP_ALIGN);
1954 new_skb->dev = netdev;
1955 memcpy(new_skb->data - NET_IP_ALIGN,
1956 skb->data - NET_IP_ALIGN,
1957 length + NET_IP_ALIGN);
1958 /* save the skb in buffer_info as good */
1959 buffer_info->skb = skb;
1960 skb = new_skb;
1961 }
1962 }
1963 /* end copybreak code */
1964
1905 /* Good Receive */ 1965 /* Good Receive */
1906 skb_put(skb, length); 1966 skb_put(skb, length);
1907 1967
@@ -1931,7 +1991,6 @@ ixgb_clean_rx_irq(struct ixgb_adapter *adapter)
1931rxdesc_done: 1991rxdesc_done:
1932 /* clean up descriptor, might be written over by hw */ 1992 /* clean up descriptor, might be written over by hw */
1933 rx_desc->status = 0; 1993 rx_desc->status = 0;
1934 buffer_info->skb = NULL;
1935 1994
1936 /* use prefetched values */ 1995 /* use prefetched values */
1937 rx_desc = next_rxd; 1996 rx_desc = next_rxd;
@@ -1971,12 +2030,18 @@ ixgb_alloc_rx_buffers(struct ixgb_adapter *adapter)
1971 2030
1972 /* leave three descriptors unused */ 2031 /* leave three descriptors unused */
1973 while(--cleancount > 2) { 2032 while(--cleancount > 2) {
1974 rx_desc = IXGB_RX_DESC(*rx_ring, i); 2033 /* recycle! its good for you */
1975 2034 if (!(skb = buffer_info->skb))
1976 skb = dev_alloc_skb(adapter->rx_buffer_len + NET_IP_ALIGN); 2035 skb = dev_alloc_skb(adapter->rx_buffer_len
2036 + NET_IP_ALIGN);
2037 else {
2038 skb_trim(skb, 0);
2039 goto map_skb;
2040 }
1977 2041
1978 if(unlikely(!skb)) { 2042 if (unlikely(!skb)) {
1979 /* Better luck next round */ 2043 /* Better luck next round */
2044 adapter->alloc_rx_buff_failed++;
1980 break; 2045 break;
1981 } 2046 }
1982 2047
@@ -1990,33 +2055,36 @@ ixgb_alloc_rx_buffers(struct ixgb_adapter *adapter)
1990 2055
1991 buffer_info->skb = skb; 2056 buffer_info->skb = skb;
1992 buffer_info->length = adapter->rx_buffer_len; 2057 buffer_info->length = adapter->rx_buffer_len;
1993 buffer_info->dma = 2058map_skb:
1994 pci_map_single(pdev, 2059 buffer_info->dma = pci_map_single(pdev,
1995 skb->data, 2060 skb->data,
1996 adapter->rx_buffer_len, 2061 adapter->rx_buffer_len,
1997 PCI_DMA_FROMDEVICE); 2062 PCI_DMA_FROMDEVICE);
1998 2063
2064 rx_desc = IXGB_RX_DESC(*rx_ring, i);
1999 rx_desc->buff_addr = cpu_to_le64(buffer_info->dma); 2065 rx_desc->buff_addr = cpu_to_le64(buffer_info->dma);
2000 /* guarantee DD bit not set now before h/w gets descriptor 2066 /* guarantee DD bit not set now before h/w gets descriptor
2001 * this is the rest of the workaround for h/w double 2067 * this is the rest of the workaround for h/w double
2002 * writeback. */ 2068 * writeback. */
2003 rx_desc->status = 0; 2069 rx_desc->status = 0;
2004 2070
2005 if((i & ~(num_group_tail_writes- 1)) == i) {
2006 /* Force memory writes to complete before letting h/w
2007 * know there are new descriptors to fetch. (Only
2008 * applicable for weak-ordered memory model archs,
2009 * such as IA-64). */
2010 wmb();
2011
2012 IXGB_WRITE_REG(&adapter->hw, RDT, i);
2013 }
2014 2071
2015 if(++i == rx_ring->count) i = 0; 2072 if(++i == rx_ring->count) i = 0;
2016 buffer_info = &rx_ring->buffer_info[i]; 2073 buffer_info = &rx_ring->buffer_info[i];
2017 } 2074 }
2018 2075
2019 rx_ring->next_to_use = i; 2076 if (likely(rx_ring->next_to_use != i)) {
2077 rx_ring->next_to_use = i;
2078 if (unlikely(i-- == 0))
2079 i = (rx_ring->count - 1);
2080
2081 /* Force memory writes to complete before letting h/w
2082 * know there are new descriptors to fetch. (Only
2083 * applicable for weak-ordered memory model archs, such
2084 * as IA-64). */
2085 wmb();
2086 IXGB_WRITE_REG(&adapter->hw, RDT, i);
2087 }
2020} 2088}
2021 2089
2022/** 2090/**
diff --git a/drivers/net/ixgb/ixgb_osdep.h b/drivers/net/ixgb/ixgb_osdep.h
index dba20481ee80..ee982feac64d 100644
--- a/drivers/net/ixgb/ixgb_osdep.h
+++ b/drivers/net/ixgb/ixgb_osdep.h
@@ -1,7 +1,7 @@
1/******************************************************************************* 1/*******************************************************************************
2 2
3 3
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5 5
6 This program is free software; you can redistribute it and/or modify it 6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free 7 under the terms of the GNU General Public License as published by the Free
diff --git a/drivers/net/ixgb/ixgb_param.c b/drivers/net/ixgb/ixgb_param.c
index 8a83dfdf746d..39fbed29a3df 100644
--- a/drivers/net/ixgb/ixgb_param.c
+++ b/drivers/net/ixgb/ixgb_param.c
@@ -1,7 +1,7 @@
1/******************************************************************************* 1/*******************************************************************************
2 2
3 3
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5 5
6 This program is free software; you can redistribute it and/or modify it 6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free 7 under the terms of the GNU General Public License as published by the Free
@@ -76,7 +76,7 @@ IXGB_PARAM(RxDescriptors, "Number of receive descriptors");
76 * - 2 - Tx only, generate PAUSE frames but ignore them on receive 76 * - 2 - Tx only, generate PAUSE frames but ignore them on receive
77 * - 3 - Full Flow Control Support 77 * - 3 - Full Flow Control Support
78 * 78 *
79 * Default Value: Read flow control settings from the EEPROM 79 * Default Value: 2 - Tx only (silicon bug avoidance)
80 */ 80 */
81 81
82IXGB_PARAM(FlowControl, "Flow Control setting"); 82IXGB_PARAM(FlowControl, "Flow Control setting");
@@ -137,7 +137,7 @@ IXGB_PARAM(RxFCLowThresh, "Receive Flow Control Low Threshold");
137 * 137 *
138 * Valid Range: 1 - 65535 138 * Valid Range: 1 - 65535
139 * 139 *
140 * Default Value: 256 (0x100) 140 * Default Value: 65535 (0xffff) (we'll send an xon if we recover)
141 */ 141 */
142 142
143IXGB_PARAM(FCReqTimeout, "Flow Control Request Timeout"); 143IXGB_PARAM(FCReqTimeout, "Flow Control Request Timeout");
@@ -165,8 +165,6 @@ IXGB_PARAM(IntDelayEnable, "Transmit Interrupt Delay Enable");
165 165
166#define XSUMRX_DEFAULT OPTION_ENABLED 166#define XSUMRX_DEFAULT OPTION_ENABLED
167 167
168#define FLOW_CONTROL_FULL ixgb_fc_full
169#define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL
170#define DEFAULT_FCRTL 0x28000 168#define DEFAULT_FCRTL 0x28000
171#define DEFAULT_FCRTH 0x30000 169#define DEFAULT_FCRTH 0x30000
172#define MIN_FCRTL 0 170#define MIN_FCRTL 0
@@ -174,9 +172,9 @@ IXGB_PARAM(IntDelayEnable, "Transmit Interrupt Delay Enable");
174#define MIN_FCRTH 8 172#define MIN_FCRTH 8
175#define MAX_FCRTH 0x3FFF0 173#define MAX_FCRTH 0x3FFF0
176 174
177#define DEFAULT_FCPAUSE 0x100 /* this may be too long */
178#define MIN_FCPAUSE 1 175#define MIN_FCPAUSE 1
179#define MAX_FCPAUSE 0xffff 176#define MAX_FCPAUSE 0xffff
177#define DEFAULT_FCPAUSE 0xFFFF /* this may be too long */
180 178
181struct ixgb_option { 179struct ixgb_option {
182 enum { enable_option, range_option, list_option } type; 180 enum { enable_option, range_option, list_option } type;
@@ -336,7 +334,7 @@ ixgb_check_options(struct ixgb_adapter *adapter)
336 .type = list_option, 334 .type = list_option,
337 .name = "Flow Control", 335 .name = "Flow Control",
338 .err = "reading default settings from EEPROM", 336 .err = "reading default settings from EEPROM",
339 .def = ixgb_fc_full, 337 .def = ixgb_fc_tx_pause,
340 .arg = { .l = { .nr = LIST_LEN(fc_list), 338 .arg = { .l = { .nr = LIST_LEN(fc_list),
341 .p = fc_list }} 339 .p = fc_list }}
342 }; 340 };
@@ -365,8 +363,8 @@ ixgb_check_options(struct ixgb_adapter *adapter)
365 } else { 363 } else {
366 adapter->hw.fc.high_water = opt.def; 364 adapter->hw.fc.high_water = opt.def;
367 } 365 }
368 if(!(adapter->hw.fc.type & ixgb_fc_rx_pause) ) 366 if (!(adapter->hw.fc.type & ixgb_fc_tx_pause) )
369 printk (KERN_INFO 367 printk (KERN_INFO
370 "Ignoring RxFCHighThresh when no RxFC\n"); 368 "Ignoring RxFCHighThresh when no RxFC\n");
371 } 369 }
372 { /* Receive Flow Control Low Threshold */ 370 { /* Receive Flow Control Low Threshold */
@@ -385,8 +383,8 @@ ixgb_check_options(struct ixgb_adapter *adapter)
385 } else { 383 } else {
386 adapter->hw.fc.low_water = opt.def; 384 adapter->hw.fc.low_water = opt.def;
387 } 385 }
388 if(!(adapter->hw.fc.type & ixgb_fc_rx_pause) ) 386 if (!(adapter->hw.fc.type & ixgb_fc_tx_pause) )
389 printk (KERN_INFO 387 printk (KERN_INFO
390 "Ignoring RxFCLowThresh when no RxFC\n"); 388 "Ignoring RxFCLowThresh when no RxFC\n");
391 } 389 }
392 { /* Flow Control Pause Time Request*/ 390 { /* Flow Control Pause Time Request*/
@@ -406,12 +404,12 @@ ixgb_check_options(struct ixgb_adapter *adapter)
406 } else { 404 } else {
407 adapter->hw.fc.pause_time = opt.def; 405 adapter->hw.fc.pause_time = opt.def;
408 } 406 }
409 if(!(adapter->hw.fc.type & ixgb_fc_rx_pause) ) 407 if (!(adapter->hw.fc.type & ixgb_fc_tx_pause) )
410 printk (KERN_INFO 408 printk (KERN_INFO
411 "Ignoring FCReqTimeout when no RxFC\n"); 409 "Ignoring FCReqTimeout when no RxFC\n");
412 } 410 }
413 /* high low and spacing check for rx flow control thresholds */ 411 /* high low and spacing check for rx flow control thresholds */
414 if (adapter->hw.fc.type & ixgb_fc_rx_pause) { 412 if (adapter->hw.fc.type & ixgb_fc_tx_pause) {
415 /* high must be greater than low */ 413 /* high must be greater than low */
416 if (adapter->hw.fc.high_water < (adapter->hw.fc.low_water + 8)) { 414 if (adapter->hw.fc.high_water < (adapter->hw.fc.low_water + 8)) {
417 /* set defaults */ 415 /* set defaults */
diff --git a/drivers/net/myri10ge/Makefile b/drivers/net/myri10ge/Makefile
new file mode 100644
index 000000000000..5df891647aee
--- /dev/null
+++ b/drivers/net/myri10ge/Makefile
@@ -0,0 +1,5 @@
1#
2# Makefile for the Myricom Myri-10G ethernet driver
3#
4
5obj-$(CONFIG_MYRI10GE) += myri10ge.o
diff --git a/drivers/net/myri10ge/myri10ge.c b/drivers/net/myri10ge/myri10ge.c
new file mode 100644
index 000000000000..87933cba7e22
--- /dev/null
+++ b/drivers/net/myri10ge/myri10ge.c
@@ -0,0 +1,2851 @@
1/*************************************************************************
2 * myri10ge.c: Myricom Myri-10G Ethernet driver.
3 *
4 * Copyright (C) 2005, 2006 Myricom, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of Myricom, Inc. nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *
32 * If the eeprom on your board is not recent enough, you will need to get a
33 * newer firmware image at:
34 * http://www.myri.com/scs/download-Myri10GE.html
35 *
36 * Contact Information:
37 * <help@myri.com>
38 * Myricom, Inc., 325N Santa Anita Avenue, Arcadia, CA 91006
39 *************************************************************************/
40
41#include <linux/tcp.h>
42#include <linux/netdevice.h>
43#include <linux/skbuff.h>
44#include <linux/string.h>
45#include <linux/module.h>
46#include <linux/pci.h>
47#include <linux/etherdevice.h>
48#include <linux/if_ether.h>
49#include <linux/if_vlan.h>
50#include <linux/ip.h>
51#include <linux/inet.h>
52#include <linux/in.h>
53#include <linux/ethtool.h>
54#include <linux/firmware.h>
55#include <linux/delay.h>
56#include <linux/version.h>
57#include <linux/timer.h>
58#include <linux/vmalloc.h>
59#include <linux/crc32.h>
60#include <linux/moduleparam.h>
61#include <linux/io.h>
62#include <net/checksum.h>
63#include <asm/byteorder.h>
64#include <asm/io.h>
65#include <asm/pci.h>
66#include <asm/processor.h>
67#ifdef CONFIG_MTRR
68#include <asm/mtrr.h>
69#endif
70
71#include "myri10ge_mcp.h"
72#include "myri10ge_mcp_gen_header.h"
73
74#define MYRI10GE_VERSION_STR "0.9.0"
75
76MODULE_DESCRIPTION("Myricom 10G driver (10GbE)");
77MODULE_AUTHOR("Maintainer: help@myri.com");
78MODULE_VERSION(MYRI10GE_VERSION_STR);
79MODULE_LICENSE("Dual BSD/GPL");
80
81#define MYRI10GE_MAX_ETHER_MTU 9014
82
83#define MYRI10GE_ETH_STOPPED 0
84#define MYRI10GE_ETH_STOPPING 1
85#define MYRI10GE_ETH_STARTING 2
86#define MYRI10GE_ETH_RUNNING 3
87#define MYRI10GE_ETH_OPEN_FAILED 4
88
89#define MYRI10GE_EEPROM_STRINGS_SIZE 256
90#define MYRI10GE_MAX_SEND_DESC_TSO ((65536 / 2048) * 2)
91
92#define MYRI10GE_NO_CONFIRM_DATA 0xffffffff
93#define MYRI10GE_NO_RESPONSE_RESULT 0xffffffff
94
95struct myri10ge_rx_buffer_state {
96 struct sk_buff *skb;
97 DECLARE_PCI_UNMAP_ADDR(bus)
98 DECLARE_PCI_UNMAP_LEN(len)
99};
100
101struct myri10ge_tx_buffer_state {
102 struct sk_buff *skb;
103 int last;
104 DECLARE_PCI_UNMAP_ADDR(bus)
105 DECLARE_PCI_UNMAP_LEN(len)
106};
107
108struct myri10ge_cmd {
109 u32 data0;
110 u32 data1;
111 u32 data2;
112};
113
114struct myri10ge_rx_buf {
115 struct mcp_kreq_ether_recv __iomem *lanai; /* lanai ptr for recv ring */
116 u8 __iomem *wc_fifo; /* w/c rx dma addr fifo address */
117 struct mcp_kreq_ether_recv *shadow; /* host shadow of recv ring */
118 struct myri10ge_rx_buffer_state *info;
119 int cnt;
120 int alloc_fail;
121 int mask; /* number of rx slots -1 */
122};
123
124struct myri10ge_tx_buf {
125 struct mcp_kreq_ether_send __iomem *lanai; /* lanai ptr for sendq */
126 u8 __iomem *wc_fifo; /* w/c send fifo address */
127 struct mcp_kreq_ether_send *req_list; /* host shadow of sendq */
128 char *req_bytes;
129 struct myri10ge_tx_buffer_state *info;
130 int mask; /* number of transmit slots -1 */
131 int boundary; /* boundary transmits cannot cross */
132 int req ____cacheline_aligned; /* transmit slots submitted */
133 int pkt_start; /* packets started */
134 int done ____cacheline_aligned; /* transmit slots completed */
135 int pkt_done; /* packets completed */
136};
137
138struct myri10ge_rx_done {
139 struct mcp_slot *entry;
140 dma_addr_t bus;
141 int cnt;
142 int idx;
143};
144
145struct myri10ge_priv {
146 int running; /* running? */
147 int csum_flag; /* rx_csums? */
148 struct myri10ge_tx_buf tx; /* transmit ring */
149 struct myri10ge_rx_buf rx_small;
150 struct myri10ge_rx_buf rx_big;
151 struct myri10ge_rx_done rx_done;
152 int small_bytes;
153 struct net_device *dev;
154 struct net_device_stats stats;
155 u8 __iomem *sram;
156 int sram_size;
157 unsigned long board_span;
158 unsigned long iomem_base;
159 u32 __iomem *irq_claim;
160 u32 __iomem *irq_deassert;
161 char *mac_addr_string;
162 struct mcp_cmd_response *cmd;
163 dma_addr_t cmd_bus;
164 struct mcp_irq_data *fw_stats;
165 dma_addr_t fw_stats_bus;
166 struct pci_dev *pdev;
167 int msi_enabled;
168 unsigned int link_state;
169 unsigned int rdma_tags_available;
170 int intr_coal_delay;
171 u32 __iomem *intr_coal_delay_ptr;
172 int mtrr;
173 int wake_queue;
174 int stop_queue;
175 int down_cnt;
176 wait_queue_head_t down_wq;
177 struct work_struct watchdog_work;
178 struct timer_list watchdog_timer;
179 int watchdog_tx_done;
180 int watchdog_resets;
181 int tx_linearized;
182 int pause;
183 char *fw_name;
184 char eeprom_strings[MYRI10GE_EEPROM_STRINGS_SIZE];
185 char fw_version[128];
186 u8 mac_addr[6]; /* eeprom mac address */
187 unsigned long serial_number;
188 int vendor_specific_offset;
189 u32 devctl;
190 u16 msi_flags;
191 u32 pm_state[16];
192 u32 read_dma;
193 u32 write_dma;
194 u32 read_write_dma;
195};
196
197static char *myri10ge_fw_unaligned = "myri10ge_ethp_z8e.dat";
198static char *myri10ge_fw_aligned = "myri10ge_eth_z8e.dat";
199
200static char *myri10ge_fw_name = NULL;
201module_param(myri10ge_fw_name, charp, S_IRUGO | S_IWUSR);
202MODULE_PARM_DESC(myri10ge_fw_name, "Firmware image name\n");
203
204static int myri10ge_ecrc_enable = 1;
205module_param(myri10ge_ecrc_enable, int, S_IRUGO);
206MODULE_PARM_DESC(myri10ge_ecrc_enable, "Enable Extended CRC on PCI-E\n");
207
208static int myri10ge_max_intr_slots = 1024;
209module_param(myri10ge_max_intr_slots, int, S_IRUGO);
210MODULE_PARM_DESC(myri10ge_max_intr_slots, "Interrupt queue slots\n");
211
212static int myri10ge_small_bytes = -1; /* -1 == auto */
213module_param(myri10ge_small_bytes, int, S_IRUGO | S_IWUSR);
214MODULE_PARM_DESC(myri10ge_small_bytes, "Threshold of small packets\n");
215
216static int myri10ge_msi = 1; /* enable msi by default */
217module_param(myri10ge_msi, int, S_IRUGO);
218MODULE_PARM_DESC(myri10ge_msi, "Enable Message Signalled Interrupts\n");
219
220static int myri10ge_intr_coal_delay = 25;
221module_param(myri10ge_intr_coal_delay, int, S_IRUGO);
222MODULE_PARM_DESC(myri10ge_intr_coal_delay, "Interrupt coalescing delay\n");
223
224static int myri10ge_flow_control = 1;
225module_param(myri10ge_flow_control, int, S_IRUGO);
226MODULE_PARM_DESC(myri10ge_flow_control, "Pause parameter\n");
227
228static int myri10ge_deassert_wait = 1;
229module_param(myri10ge_deassert_wait, int, S_IRUGO | S_IWUSR);
230MODULE_PARM_DESC(myri10ge_deassert_wait,
231 "Wait when deasserting legacy interrupts\n");
232
233static int myri10ge_force_firmware = 0;
234module_param(myri10ge_force_firmware, int, S_IRUGO);
235MODULE_PARM_DESC(myri10ge_force_firmware,
236 "Force firmware to assume aligned completions\n");
237
238static int myri10ge_skb_cross_4k = 0;
239module_param(myri10ge_skb_cross_4k, int, S_IRUGO | S_IWUSR);
240MODULE_PARM_DESC(myri10ge_skb_cross_4k,
241 "Can a small skb cross a 4KB boundary?\n");
242
243static int myri10ge_initial_mtu = MYRI10GE_MAX_ETHER_MTU - ETH_HLEN;
244module_param(myri10ge_initial_mtu, int, S_IRUGO);
245MODULE_PARM_DESC(myri10ge_initial_mtu, "Initial MTU\n");
246
247static int myri10ge_napi_weight = 64;
248module_param(myri10ge_napi_weight, int, S_IRUGO);
249MODULE_PARM_DESC(myri10ge_napi_weight, "Set NAPI weight\n");
250
251static int myri10ge_watchdog_timeout = 1;
252module_param(myri10ge_watchdog_timeout, int, S_IRUGO);
253MODULE_PARM_DESC(myri10ge_watchdog_timeout, "Set watchdog timeout\n");
254
255static int myri10ge_max_irq_loops = 1048576;
256module_param(myri10ge_max_irq_loops, int, S_IRUGO);
257MODULE_PARM_DESC(myri10ge_max_irq_loops,
258 "Set stuck legacy IRQ detection threshold\n");
259
260#define MYRI10GE_FW_OFFSET 1024*1024
261#define MYRI10GE_HIGHPART_TO_U32(X) \
262(sizeof (X) == 8) ? ((u32)((u64)(X) >> 32)) : (0)
263#define MYRI10GE_LOWPART_TO_U32(X) ((u32)(X))
264
265#define myri10ge_pio_copy(to,from,size) __iowrite64_copy(to,from,size/8)
266
267static int
268myri10ge_send_cmd(struct myri10ge_priv *mgp, u32 cmd,
269 struct myri10ge_cmd *data, int atomic)
270{
271 struct mcp_cmd *buf;
272 char buf_bytes[sizeof(*buf) + 8];
273 struct mcp_cmd_response *response = mgp->cmd;
274 char __iomem *cmd_addr = mgp->sram + MXGEFW_CMD_OFFSET;
275 u32 dma_low, dma_high, result, value;
276 int sleep_total = 0;
277
278 /* ensure buf is aligned to 8 bytes */
279 buf = (struct mcp_cmd *)ALIGN((unsigned long)buf_bytes, 8);
280
281 buf->data0 = htonl(data->data0);
282 buf->data1 = htonl(data->data1);
283 buf->data2 = htonl(data->data2);
284 buf->cmd = htonl(cmd);
285 dma_low = MYRI10GE_LOWPART_TO_U32(mgp->cmd_bus);
286 dma_high = MYRI10GE_HIGHPART_TO_U32(mgp->cmd_bus);
287
288 buf->response_addr.low = htonl(dma_low);
289 buf->response_addr.high = htonl(dma_high);
290 response->result = MYRI10GE_NO_RESPONSE_RESULT;
291 mb();
292 myri10ge_pio_copy(cmd_addr, buf, sizeof(*buf));
293
294 /* wait up to 15ms. Longest command is the DMA benchmark,
295 * which is capped at 5ms, but runs from a timeout handler
296 * that runs every 7.8ms. So a 15ms timeout leaves us with
297 * a 2.2ms margin
298 */
299 if (atomic) {
300 /* if atomic is set, do not sleep,
301 * and try to get the completion quickly
302 * (1ms will be enough for those commands) */
303 for (sleep_total = 0;
304 sleep_total < 1000
305 && response->result == MYRI10GE_NO_RESPONSE_RESULT;
306 sleep_total += 10)
307 udelay(10);
308 } else {
309 /* use msleep for most command */
310 for (sleep_total = 0;
311 sleep_total < 15
312 && response->result == MYRI10GE_NO_RESPONSE_RESULT;
313 sleep_total++)
314 msleep(1);
315 }
316
317 result = ntohl(response->result);
318 value = ntohl(response->data);
319 if (result != MYRI10GE_NO_RESPONSE_RESULT) {
320 if (result == 0) {
321 data->data0 = value;
322 return 0;
323 } else {
324 dev_err(&mgp->pdev->dev,
325 "command %d failed, result = %d\n",
326 cmd, result);
327 return -ENXIO;
328 }
329 }
330
331 dev_err(&mgp->pdev->dev, "command %d timed out, result = %d\n",
332 cmd, result);
333 return -EAGAIN;
334}
335
336/*
337 * The eeprom strings on the lanaiX have the format
338 * SN=x\0
339 * MAC=x:x:x:x:x:x\0
340 * PT:ddd mmm xx xx:xx:xx xx\0
341 * PV:ddd mmm xx xx:xx:xx xx\0
342 */
343static int myri10ge_read_mac_addr(struct myri10ge_priv *mgp)
344{
345 char *ptr, *limit;
346 int i;
347
348 ptr = mgp->eeprom_strings;
349 limit = mgp->eeprom_strings + MYRI10GE_EEPROM_STRINGS_SIZE;
350
351 while (*ptr != '\0' && ptr < limit) {
352 if (memcmp(ptr, "MAC=", 4) == 0) {
353 ptr += 4;
354 mgp->mac_addr_string = ptr;
355 for (i = 0; i < 6; i++) {
356 if ((ptr + 2) > limit)
357 goto abort;
358 mgp->mac_addr[i] =
359 simple_strtoul(ptr, &ptr, 16);
360 ptr += 1;
361 }
362 }
363 if (memcmp((const void *)ptr, "SN=", 3) == 0) {
364 ptr += 3;
365 mgp->serial_number = simple_strtoul(ptr, &ptr, 10);
366 }
367 while (ptr < limit && *ptr++) ;
368 }
369
370 return 0;
371
372abort:
373 dev_err(&mgp->pdev->dev, "failed to parse eeprom_strings\n");
374 return -ENXIO;
375}
376
377/*
378 * Enable or disable periodic RDMAs from the host to make certain
379 * chipsets resend dropped PCIe messages
380 */
381
382static void myri10ge_dummy_rdma(struct myri10ge_priv *mgp, int enable)
383{
384 char __iomem *submit;
385 u32 buf[16];
386 u32 dma_low, dma_high;
387 int i;
388
389 /* clear confirmation addr */
390 mgp->cmd->data = 0;
391 mb();
392
393 /* send a rdma command to the PCIe engine, and wait for the
394 * response in the confirmation address. The firmware should
395 * write a -1 there to indicate it is alive and well
396 */
397 dma_low = MYRI10GE_LOWPART_TO_U32(mgp->cmd_bus);
398 dma_high = MYRI10GE_HIGHPART_TO_U32(mgp->cmd_bus);
399
400 buf[0] = htonl(dma_high); /* confirm addr MSW */
401 buf[1] = htonl(dma_low); /* confirm addr LSW */
402 buf[2] = htonl(MYRI10GE_NO_CONFIRM_DATA); /* confirm data */
403 buf[3] = htonl(dma_high); /* dummy addr MSW */
404 buf[4] = htonl(dma_low); /* dummy addr LSW */
405 buf[5] = htonl(enable); /* enable? */
406
407 submit = mgp->sram + 0xfc01c0;
408
409 myri10ge_pio_copy(submit, &buf, sizeof(buf));
410 for (i = 0; mgp->cmd->data != MYRI10GE_NO_CONFIRM_DATA && i < 20; i++)
411 msleep(1);
412 if (mgp->cmd->data != MYRI10GE_NO_CONFIRM_DATA)
413 dev_err(&mgp->pdev->dev, "dummy rdma %s failed\n",
414 (enable ? "enable" : "disable"));
415}
416
417static int
418myri10ge_validate_firmware(struct myri10ge_priv *mgp,
419 struct mcp_gen_header *hdr)
420{
421 struct device *dev = &mgp->pdev->dev;
422 int major, minor;
423
424 /* check firmware type */
425 if (ntohl(hdr->mcp_type) != MCP_TYPE_ETH) {
426 dev_err(dev, "Bad firmware type: 0x%x\n", ntohl(hdr->mcp_type));
427 return -EINVAL;
428 }
429
430 /* save firmware version for ethtool */
431 strncpy(mgp->fw_version, hdr->version, sizeof(mgp->fw_version));
432
433 sscanf(mgp->fw_version, "%d.%d", &major, &minor);
434
435 if (!(major == MXGEFW_VERSION_MAJOR && minor == MXGEFW_VERSION_MINOR)) {
436 dev_err(dev, "Found firmware version %s\n", mgp->fw_version);
437 dev_err(dev, "Driver needs %d.%d\n", MXGEFW_VERSION_MAJOR,
438 MXGEFW_VERSION_MINOR);
439 return -EINVAL;
440 }
441 return 0;
442}
443
444static int myri10ge_load_hotplug_firmware(struct myri10ge_priv *mgp, u32 * size)
445{
446 unsigned crc, reread_crc;
447 const struct firmware *fw;
448 struct device *dev = &mgp->pdev->dev;
449 struct mcp_gen_header *hdr;
450 size_t hdr_offset;
451 int status;
452
453 if ((status = request_firmware(&fw, mgp->fw_name, dev)) < 0) {
454 dev_err(dev, "Unable to load %s firmware image via hotplug\n",
455 mgp->fw_name);
456 status = -EINVAL;
457 goto abort_with_nothing;
458 }
459
460 /* check size */
461
462 if (fw->size >= mgp->sram_size - MYRI10GE_FW_OFFSET ||
463 fw->size < MCP_HEADER_PTR_OFFSET + 4) {
464 dev_err(dev, "Firmware size invalid:%d\n", (int)fw->size);
465 status = -EINVAL;
466 goto abort_with_fw;
467 }
468
469 /* check id */
470 hdr_offset = ntohl(*(u32 *) (fw->data + MCP_HEADER_PTR_OFFSET));
471 if ((hdr_offset & 3) || hdr_offset + sizeof(*hdr) > fw->size) {
472 dev_err(dev, "Bad firmware file\n");
473 status = -EINVAL;
474 goto abort_with_fw;
475 }
476 hdr = (void *)(fw->data + hdr_offset);
477
478 status = myri10ge_validate_firmware(mgp, hdr);
479 if (status != 0)
480 goto abort_with_fw;
481
482 crc = crc32(~0, fw->data, fw->size);
483 memcpy_toio(mgp->sram + MYRI10GE_FW_OFFSET, fw->data, fw->size);
484 /* corruption checking is good for parity recovery and buggy chipset */
485 memcpy_fromio(fw->data, mgp->sram + MYRI10GE_FW_OFFSET, fw->size);
486 reread_crc = crc32(~0, fw->data, fw->size);
487 if (crc != reread_crc) {
488 dev_err(dev, "CRC failed(fw-len=%u), got 0x%x (expect 0x%x)\n",
489 (unsigned)fw->size, reread_crc, crc);
490 status = -EIO;
491 goto abort_with_fw;
492 }
493 *size = (u32) fw->size;
494
495abort_with_fw:
496 release_firmware(fw);
497
498abort_with_nothing:
499 return status;
500}
501
502static int myri10ge_adopt_running_firmware(struct myri10ge_priv *mgp)
503{
504 struct mcp_gen_header *hdr;
505 struct device *dev = &mgp->pdev->dev;
506 const size_t bytes = sizeof(struct mcp_gen_header);
507 size_t hdr_offset;
508 int status;
509
510 /* find running firmware header */
511 hdr_offset = ntohl(__raw_readl(mgp->sram + MCP_HEADER_PTR_OFFSET));
512
513 if ((hdr_offset & 3) || hdr_offset + sizeof(*hdr) > mgp->sram_size) {
514 dev_err(dev, "Running firmware has bad header offset (%d)\n",
515 (int)hdr_offset);
516 return -EIO;
517 }
518
519 /* copy header of running firmware from SRAM to host memory to
520 * validate firmware */
521 hdr = kmalloc(bytes, GFP_KERNEL);
522 if (hdr == NULL) {
523 dev_err(dev, "could not malloc firmware hdr\n");
524 return -ENOMEM;
525 }
526 memcpy_fromio(hdr, mgp->sram + hdr_offset, bytes);
527 status = myri10ge_validate_firmware(mgp, hdr);
528 kfree(hdr);
529 return status;
530}
531
532static int myri10ge_load_firmware(struct myri10ge_priv *mgp)
533{
534 char __iomem *submit;
535 u32 buf[16];
536 u32 dma_low, dma_high, size;
537 int status, i;
538
539 status = myri10ge_load_hotplug_firmware(mgp, &size);
540 if (status) {
541 dev_warn(&mgp->pdev->dev, "hotplug firmware loading failed\n");
542
543 /* Do not attempt to adopt firmware if there
544 * was a bad crc */
545 if (status == -EIO)
546 return status;
547
548 status = myri10ge_adopt_running_firmware(mgp);
549 if (status != 0) {
550 dev_err(&mgp->pdev->dev,
551 "failed to adopt running firmware\n");
552 return status;
553 }
554 dev_info(&mgp->pdev->dev,
555 "Successfully adopted running firmware\n");
556 if (mgp->tx.boundary == 4096) {
557 dev_warn(&mgp->pdev->dev,
558 "Using firmware currently running on NIC"
559 ". For optimal\n");
560 dev_warn(&mgp->pdev->dev,
561 "performance consider loading optimized "
562 "firmware\n");
563 dev_warn(&mgp->pdev->dev, "via hotplug\n");
564 }
565
566 mgp->fw_name = "adopted";
567 mgp->tx.boundary = 2048;
568 return status;
569 }
570
571 /* clear confirmation addr */
572 mgp->cmd->data = 0;
573 mb();
574
575 /* send a reload command to the bootstrap MCP, and wait for the
576 * response in the confirmation address. The firmware should
577 * write a -1 there to indicate it is alive and well
578 */
579 dma_low = MYRI10GE_LOWPART_TO_U32(mgp->cmd_bus);
580 dma_high = MYRI10GE_HIGHPART_TO_U32(mgp->cmd_bus);
581
582 buf[0] = htonl(dma_high); /* confirm addr MSW */
583 buf[1] = htonl(dma_low); /* confirm addr LSW */
584 buf[2] = htonl(MYRI10GE_NO_CONFIRM_DATA); /* confirm data */
585
586 /* FIX: All newest firmware should un-protect the bottom of
587 * the sram before handoff. However, the very first interfaces
588 * do not. Therefore the handoff copy must skip the first 8 bytes
589 */
590 buf[3] = htonl(MYRI10GE_FW_OFFSET + 8); /* where the code starts */
591 buf[4] = htonl(size - 8); /* length of code */
592 buf[5] = htonl(8); /* where to copy to */
593 buf[6] = htonl(0); /* where to jump to */
594
595 submit = mgp->sram + 0xfc0000;
596
597 myri10ge_pio_copy(submit, &buf, sizeof(buf));
598 mb();
599 msleep(1);
600 mb();
601 i = 0;
602 while (mgp->cmd->data != MYRI10GE_NO_CONFIRM_DATA && i < 20) {
603 msleep(1);
604 i++;
605 }
606 if (mgp->cmd->data != MYRI10GE_NO_CONFIRM_DATA) {
607 dev_err(&mgp->pdev->dev, "handoff failed\n");
608 return -ENXIO;
609 }
610 dev_info(&mgp->pdev->dev, "handoff confirmed\n");
611 myri10ge_dummy_rdma(mgp, mgp->tx.boundary != 4096);
612
613 return 0;
614}
615
616static int myri10ge_update_mac_address(struct myri10ge_priv *mgp, u8 * addr)
617{
618 struct myri10ge_cmd cmd;
619 int status;
620
621 cmd.data0 = ((addr[0] << 24) | (addr[1] << 16)
622 | (addr[2] << 8) | addr[3]);
623
624 cmd.data1 = ((addr[4] << 8) | (addr[5]));
625
626 status = myri10ge_send_cmd(mgp, MXGEFW_SET_MAC_ADDRESS, &cmd, 0);
627 return status;
628}
629
630static int myri10ge_change_pause(struct myri10ge_priv *mgp, int pause)
631{
632 struct myri10ge_cmd cmd;
633 int status, ctl;
634
635 ctl = pause ? MXGEFW_ENABLE_FLOW_CONTROL : MXGEFW_DISABLE_FLOW_CONTROL;
636 status = myri10ge_send_cmd(mgp, ctl, &cmd, 0);
637
638 if (status) {
639 printk(KERN_ERR
640 "myri10ge: %s: Failed to set flow control mode\n",
641 mgp->dev->name);
642 return status;
643 }
644 mgp->pause = pause;
645 return 0;
646}
647
648static void
649myri10ge_change_promisc(struct myri10ge_priv *mgp, int promisc, int atomic)
650{
651 struct myri10ge_cmd cmd;
652 int status, ctl;
653
654 ctl = promisc ? MXGEFW_ENABLE_PROMISC : MXGEFW_DISABLE_PROMISC;
655 status = myri10ge_send_cmd(mgp, ctl, &cmd, atomic);
656 if (status)
657 printk(KERN_ERR "myri10ge: %s: Failed to set promisc mode\n",
658 mgp->dev->name);
659}
660
661static int myri10ge_reset(struct myri10ge_priv *mgp)
662{
663 struct myri10ge_cmd cmd;
664 int status;
665 size_t bytes;
666 u32 len;
667
668 /* try to send a reset command to the card to see if it
669 * is alive */
670 memset(&cmd, 0, sizeof(cmd));
671 status = myri10ge_send_cmd(mgp, MXGEFW_CMD_RESET, &cmd, 0);
672 if (status != 0) {
673 dev_err(&mgp->pdev->dev, "failed reset\n");
674 return -ENXIO;
675 }
676
677 /* Now exchange information about interrupts */
678
679 bytes = myri10ge_max_intr_slots * sizeof(*mgp->rx_done.entry);
680 memset(mgp->rx_done.entry, 0, bytes);
681 cmd.data0 = (u32) bytes;
682 status = myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_INTRQ_SIZE, &cmd, 0);
683 cmd.data0 = MYRI10GE_LOWPART_TO_U32(mgp->rx_done.bus);
684 cmd.data1 = MYRI10GE_HIGHPART_TO_U32(mgp->rx_done.bus);
685 status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_INTRQ_DMA, &cmd, 0);
686
687 status |=
688 myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_IRQ_ACK_OFFSET, &cmd, 0);
689 mgp->irq_claim = (__iomem u32 *) (mgp->sram + cmd.data0);
690 if (!mgp->msi_enabled) {
691 status |= myri10ge_send_cmd
692 (mgp, MXGEFW_CMD_GET_IRQ_DEASSERT_OFFSET, &cmd, 0);
693 mgp->irq_deassert = (__iomem u32 *) (mgp->sram + cmd.data0);
694
695 }
696 status |= myri10ge_send_cmd
697 (mgp, MXGEFW_CMD_GET_INTR_COAL_DELAY_OFFSET, &cmd, 0);
698 mgp->intr_coal_delay_ptr = (__iomem u32 *) (mgp->sram + cmd.data0);
699 if (status != 0) {
700 dev_err(&mgp->pdev->dev, "failed set interrupt parameters\n");
701 return status;
702 }
703 __raw_writel(htonl(mgp->intr_coal_delay), mgp->intr_coal_delay_ptr);
704
705 /* Run a small DMA test.
706 * The magic multipliers to the length tell the firmware
707 * to do DMA read, write, or read+write tests. The
708 * results are returned in cmd.data0. The upper 16
709 * bits or the return is the number of transfers completed.
710 * The lower 16 bits is the time in 0.5us ticks that the
711 * transfers took to complete.
712 */
713
714 len = mgp->tx.boundary;
715
716 cmd.data0 = MYRI10GE_LOWPART_TO_U32(mgp->rx_done.bus);
717 cmd.data1 = MYRI10GE_HIGHPART_TO_U32(mgp->rx_done.bus);
718 cmd.data2 = len * 0x10000;
719 status = myri10ge_send_cmd(mgp, MXGEFW_DMA_TEST, &cmd, 0);
720 if (status == 0)
721 mgp->read_dma = ((cmd.data0 >> 16) * len * 2) /
722 (cmd.data0 & 0xffff);
723 else
724 dev_warn(&mgp->pdev->dev, "DMA read benchmark failed: %d\n",
725 status);
726 cmd.data0 = MYRI10GE_LOWPART_TO_U32(mgp->rx_done.bus);
727 cmd.data1 = MYRI10GE_HIGHPART_TO_U32(mgp->rx_done.bus);
728 cmd.data2 = len * 0x1;
729 status = myri10ge_send_cmd(mgp, MXGEFW_DMA_TEST, &cmd, 0);
730 if (status == 0)
731 mgp->write_dma = ((cmd.data0 >> 16) * len * 2) /
732 (cmd.data0 & 0xffff);
733 else
734 dev_warn(&mgp->pdev->dev, "DMA write benchmark failed: %d\n",
735 status);
736
737 cmd.data0 = MYRI10GE_LOWPART_TO_U32(mgp->rx_done.bus);
738 cmd.data1 = MYRI10GE_HIGHPART_TO_U32(mgp->rx_done.bus);
739 cmd.data2 = len * 0x10001;
740 status = myri10ge_send_cmd(mgp, MXGEFW_DMA_TEST, &cmd, 0);
741 if (status == 0)
742 mgp->read_write_dma = ((cmd.data0 >> 16) * len * 2 * 2) /
743 (cmd.data0 & 0xffff);
744 else
745 dev_warn(&mgp->pdev->dev,
746 "DMA read/write benchmark failed: %d\n", status);
747
748 memset(mgp->rx_done.entry, 0, bytes);
749
750 /* reset mcp/driver shared state back to 0 */
751 mgp->tx.req = 0;
752 mgp->tx.done = 0;
753 mgp->tx.pkt_start = 0;
754 mgp->tx.pkt_done = 0;
755 mgp->rx_big.cnt = 0;
756 mgp->rx_small.cnt = 0;
757 mgp->rx_done.idx = 0;
758 mgp->rx_done.cnt = 0;
759 status = myri10ge_update_mac_address(mgp, mgp->dev->dev_addr);
760 myri10ge_change_promisc(mgp, 0, 0);
761 myri10ge_change_pause(mgp, mgp->pause);
762 return status;
763}
764
765static inline void
766myri10ge_submit_8rx(struct mcp_kreq_ether_recv __iomem * dst,
767 struct mcp_kreq_ether_recv *src)
768{
769 u32 low;
770
771 low = src->addr_low;
772 src->addr_low = DMA_32BIT_MASK;
773 myri10ge_pio_copy(dst, src, 8 * sizeof(*src));
774 mb();
775 src->addr_low = low;
776 __raw_writel(low, &dst->addr_low);
777 mb();
778}
779
780/*
781 * Set of routunes to get a new receive buffer. Any buffer which
782 * crosses a 4KB boundary must start on a 4KB boundary due to PCIe
783 * wdma restrictions. We also try to align any smaller allocation to
784 * at least a 16 byte boundary for efficiency. We assume the linux
785 * memory allocator works by powers of 2, and will not return memory
786 * smaller than 2KB which crosses a 4KB boundary. If it does, we fall
787 * back to allocating 2x as much space as required.
788 *
789 * We intend to replace large (>4KB) skb allocations by using
790 * pages directly and building a fraglist in the near future.
791 */
792
793static inline struct sk_buff *myri10ge_alloc_big(int bytes)
794{
795 struct sk_buff *skb;
796 unsigned long data, roundup;
797
798 skb = dev_alloc_skb(bytes + 4096 + MXGEFW_PAD);
799 if (skb == NULL)
800 return NULL;
801
802 /* Correct skb->truesize so that socket buffer
803 * accounting is not confused the rounding we must
804 * do to satisfy alignment constraints.
805 */
806 skb->truesize -= 4096;
807
808 data = (unsigned long)(skb->data);
809 roundup = (-data) & (4095);
810 skb_reserve(skb, roundup);
811 return skb;
812}
813
814/* Allocate 2x as much space as required and use whichever portion
815 * does not cross a 4KB boundary */
816static inline struct sk_buff *myri10ge_alloc_small_safe(unsigned int bytes)
817{
818 struct sk_buff *skb;
819 unsigned long data, boundary;
820
821 skb = dev_alloc_skb(2 * (bytes + MXGEFW_PAD) - 1);
822 if (unlikely(skb == NULL))
823 return NULL;
824
825 /* Correct skb->truesize so that socket buffer
826 * accounting is not confused the rounding we must
827 * do to satisfy alignment constraints.
828 */
829 skb->truesize -= bytes + MXGEFW_PAD;
830
831 data = (unsigned long)(skb->data);
832 boundary = (data + 4095UL) & ~4095UL;
833 if ((boundary - data) >= (bytes + MXGEFW_PAD))
834 return skb;
835
836 skb_reserve(skb, boundary - data);
837 return skb;
838}
839
840/* Allocate just enough space, and verify that the allocated
841 * space does not cross a 4KB boundary */
842static inline struct sk_buff *myri10ge_alloc_small(int bytes)
843{
844 struct sk_buff *skb;
845 unsigned long roundup, data, end;
846
847 skb = dev_alloc_skb(bytes + 16 + MXGEFW_PAD);
848 if (unlikely(skb == NULL))
849 return NULL;
850
851 /* Round allocated buffer to 16 byte boundary */
852 data = (unsigned long)(skb->data);
853 roundup = (-data) & 15UL;
854 skb_reserve(skb, roundup);
855 /* Verify that the data buffer does not cross a page boundary */
856 data = (unsigned long)(skb->data);
857 end = data + bytes + MXGEFW_PAD - 1;
858 if (unlikely(((end >> 12) != (data >> 12)) && (data & 4095UL))) {
859 printk(KERN_NOTICE
860 "myri10ge_alloc_small: small skb crossed 4KB boundary\n");
861 myri10ge_skb_cross_4k = 1;
862 dev_kfree_skb_any(skb);
863 skb = myri10ge_alloc_small_safe(bytes);
864 }
865 return skb;
866}
867
868static inline int
869myri10ge_getbuf(struct myri10ge_rx_buf *rx, struct pci_dev *pdev, int bytes,
870 int idx)
871{
872 struct sk_buff *skb;
873 dma_addr_t bus;
874 int len, retval = 0;
875
876 bytes += VLAN_HLEN; /* account for 802.1q vlan tag */
877
878 if ((bytes + MXGEFW_PAD) > (4096 - 16) /* linux overhead */ )
879 skb = myri10ge_alloc_big(bytes);
880 else if (myri10ge_skb_cross_4k)
881 skb = myri10ge_alloc_small_safe(bytes);
882 else
883 skb = myri10ge_alloc_small(bytes);
884
885 if (unlikely(skb == NULL)) {
886 rx->alloc_fail++;
887 retval = -ENOBUFS;
888 goto done;
889 }
890
891 /* set len so that it only covers the area we
892 * need mapped for DMA */
893 len = bytes + MXGEFW_PAD;
894
895 bus = pci_map_single(pdev, skb->data, len, PCI_DMA_FROMDEVICE);
896 rx->info[idx].skb = skb;
897 pci_unmap_addr_set(&rx->info[idx], bus, bus);
898 pci_unmap_len_set(&rx->info[idx], len, len);
899 rx->shadow[idx].addr_low = htonl(MYRI10GE_LOWPART_TO_U32(bus));
900 rx->shadow[idx].addr_high = htonl(MYRI10GE_HIGHPART_TO_U32(bus));
901
902done:
903 /* copy 8 descriptors (64-bytes) to the mcp at a time */
904 if ((idx & 7) == 7) {
905 if (rx->wc_fifo == NULL)
906 myri10ge_submit_8rx(&rx->lanai[idx - 7],
907 &rx->shadow[idx - 7]);
908 else {
909 mb();
910 myri10ge_pio_copy(rx->wc_fifo,
911 &rx->shadow[idx - 7], 64);
912 }
913 }
914 return retval;
915}
916
917static inline void myri10ge_vlan_ip_csum(struct sk_buff *skb, u16 hw_csum)
918{
919 struct vlan_hdr *vh = (struct vlan_hdr *)(skb->data);
920
921 if ((skb->protocol == ntohs(ETH_P_8021Q)) &&
922 (vh->h_vlan_encapsulated_proto == htons(ETH_P_IP) ||
923 vh->h_vlan_encapsulated_proto == htons(ETH_P_IPV6))) {
924 skb->csum = hw_csum;
925 skb->ip_summed = CHECKSUM_HW;
926 }
927}
928
929static inline unsigned long
930myri10ge_rx_done(struct myri10ge_priv *mgp, struct myri10ge_rx_buf *rx,
931 int bytes, int len, int csum)
932{
933 dma_addr_t bus;
934 struct sk_buff *skb;
935 int idx, unmap_len;
936
937 idx = rx->cnt & rx->mask;
938 rx->cnt++;
939
940 /* save a pointer to the received skb */
941 skb = rx->info[idx].skb;
942 bus = pci_unmap_addr(&rx->info[idx], bus);
943 unmap_len = pci_unmap_len(&rx->info[idx], len);
944
945 /* try to replace the received skb */
946 if (myri10ge_getbuf(rx, mgp->pdev, bytes, idx)) {
947 /* drop the frame -- the old skbuf is re-cycled */
948 mgp->stats.rx_dropped += 1;
949 return 0;
950 }
951
952 /* unmap the recvd skb */
953 pci_unmap_single(mgp->pdev, bus, unmap_len, PCI_DMA_FROMDEVICE);
954
955 /* mcp implicitly skips 1st bytes so that packet is properly
956 * aligned */
957 skb_reserve(skb, MXGEFW_PAD);
958
959 /* set the length of the frame */
960 skb_put(skb, len);
961
962 skb->protocol = eth_type_trans(skb, mgp->dev);
963 skb->dev = mgp->dev;
964 if (mgp->csum_flag) {
965 if ((skb->protocol == ntohs(ETH_P_IP)) ||
966 (skb->protocol == ntohs(ETH_P_IPV6))) {
967 skb->csum = ntohs((u16) csum);
968 skb->ip_summed = CHECKSUM_HW;
969 } else
970 myri10ge_vlan_ip_csum(skb, ntohs((u16) csum));
971 }
972
973 netif_receive_skb(skb);
974 mgp->dev->last_rx = jiffies;
975 return 1;
976}
977
978static inline void myri10ge_tx_done(struct myri10ge_priv *mgp, int mcp_index)
979{
980 struct pci_dev *pdev = mgp->pdev;
981 struct myri10ge_tx_buf *tx = &mgp->tx;
982 struct sk_buff *skb;
983 int idx, len;
984 int limit = 0;
985
986 while (tx->pkt_done != mcp_index) {
987 idx = tx->done & tx->mask;
988 skb = tx->info[idx].skb;
989
990 /* Mark as free */
991 tx->info[idx].skb = NULL;
992 if (tx->info[idx].last) {
993 tx->pkt_done++;
994 tx->info[idx].last = 0;
995 }
996 tx->done++;
997 len = pci_unmap_len(&tx->info[idx], len);
998 pci_unmap_len_set(&tx->info[idx], len, 0);
999 if (skb) {
1000 mgp->stats.tx_bytes += skb->len;
1001 mgp->stats.tx_packets++;
1002 dev_kfree_skb_irq(skb);
1003 if (len)
1004 pci_unmap_single(pdev,
1005 pci_unmap_addr(&tx->info[idx],
1006 bus), len,
1007 PCI_DMA_TODEVICE);
1008 } else {
1009 if (len)
1010 pci_unmap_page(pdev,
1011 pci_unmap_addr(&tx->info[idx],
1012 bus), len,
1013 PCI_DMA_TODEVICE);
1014 }
1015
1016 /* limit potential for livelock by only handling
1017 * 2 full tx rings per call */
1018 if (unlikely(++limit > 2 * tx->mask))
1019 break;
1020 }
1021 /* start the queue if we've stopped it */
1022 if (netif_queue_stopped(mgp->dev)
1023 && tx->req - tx->done < (tx->mask >> 1)) {
1024 mgp->wake_queue++;
1025 netif_wake_queue(mgp->dev);
1026 }
1027}
1028
1029static inline void myri10ge_clean_rx_done(struct myri10ge_priv *mgp, int *limit)
1030{
1031 struct myri10ge_rx_done *rx_done = &mgp->rx_done;
1032 unsigned long rx_bytes = 0;
1033 unsigned long rx_packets = 0;
1034 unsigned long rx_ok;
1035
1036 int idx = rx_done->idx;
1037 int cnt = rx_done->cnt;
1038 u16 length;
1039 u16 checksum;
1040
1041 while (rx_done->entry[idx].length != 0 && *limit != 0) {
1042 length = ntohs(rx_done->entry[idx].length);
1043 rx_done->entry[idx].length = 0;
1044 checksum = ntohs(rx_done->entry[idx].checksum);
1045 if (length <= mgp->small_bytes)
1046 rx_ok = myri10ge_rx_done(mgp, &mgp->rx_small,
1047 mgp->small_bytes,
1048 length, checksum);
1049 else
1050 rx_ok = myri10ge_rx_done(mgp, &mgp->rx_big,
1051 mgp->dev->mtu + ETH_HLEN,
1052 length, checksum);
1053 rx_packets += rx_ok;
1054 rx_bytes += rx_ok * (unsigned long)length;
1055 cnt++;
1056 idx = cnt & (myri10ge_max_intr_slots - 1);
1057
1058 /* limit potential for livelock by only handling a
1059 * limited number of frames. */
1060 (*limit)--;
1061 }
1062 rx_done->idx = idx;
1063 rx_done->cnt = cnt;
1064 mgp->stats.rx_packets += rx_packets;
1065 mgp->stats.rx_bytes += rx_bytes;
1066}
1067
1068static inline void myri10ge_check_statblock(struct myri10ge_priv *mgp)
1069{
1070 struct mcp_irq_data *stats = mgp->fw_stats;
1071
1072 if (unlikely(stats->stats_updated)) {
1073 if (mgp->link_state != stats->link_up) {
1074 mgp->link_state = stats->link_up;
1075 if (mgp->link_state) {
1076 printk(KERN_INFO "myri10ge: %s: link up\n",
1077 mgp->dev->name);
1078 netif_carrier_on(mgp->dev);
1079 } else {
1080 printk(KERN_INFO "myri10ge: %s: link down\n",
1081 mgp->dev->name);
1082 netif_carrier_off(mgp->dev);
1083 }
1084 }
1085 if (mgp->rdma_tags_available !=
1086 ntohl(mgp->fw_stats->rdma_tags_available)) {
1087 mgp->rdma_tags_available =
1088 ntohl(mgp->fw_stats->rdma_tags_available);
1089 printk(KERN_WARNING "myri10ge: %s: RDMA timed out! "
1090 "%d tags left\n", mgp->dev->name,
1091 mgp->rdma_tags_available);
1092 }
1093 mgp->down_cnt += stats->link_down;
1094 if (stats->link_down)
1095 wake_up(&mgp->down_wq);
1096 }
1097}
1098
1099static int myri10ge_poll(struct net_device *netdev, int *budget)
1100{
1101 struct myri10ge_priv *mgp = netdev_priv(netdev);
1102 struct myri10ge_rx_done *rx_done = &mgp->rx_done;
1103 int limit, orig_limit, work_done;
1104
1105 /* process as many rx events as NAPI will allow */
1106 limit = min(*budget, netdev->quota);
1107 orig_limit = limit;
1108 myri10ge_clean_rx_done(mgp, &limit);
1109 work_done = orig_limit - limit;
1110 *budget -= work_done;
1111 netdev->quota -= work_done;
1112
1113 if (rx_done->entry[rx_done->idx].length == 0 || !netif_running(netdev)) {
1114 netif_rx_complete(netdev);
1115 __raw_writel(htonl(3), mgp->irq_claim);
1116 return 0;
1117 }
1118 return 1;
1119}
1120
1121static irqreturn_t myri10ge_intr(int irq, void *arg, struct pt_regs *regs)
1122{
1123 struct myri10ge_priv *mgp = arg;
1124 struct mcp_irq_data *stats = mgp->fw_stats;
1125 struct myri10ge_tx_buf *tx = &mgp->tx;
1126 u32 send_done_count;
1127 int i;
1128
1129 /* make sure it is our IRQ, and that the DMA has finished */
1130 if (unlikely(!stats->valid))
1131 return (IRQ_NONE);
1132
1133 /* low bit indicates receives are present, so schedule
1134 * napi poll handler */
1135 if (stats->valid & 1)
1136 netif_rx_schedule(mgp->dev);
1137
1138 if (!mgp->msi_enabled) {
1139 __raw_writel(0, mgp->irq_deassert);
1140 if (!myri10ge_deassert_wait)
1141 stats->valid = 0;
1142 mb();
1143 } else
1144 stats->valid = 0;
1145
1146 /* Wait for IRQ line to go low, if using INTx */
1147 i = 0;
1148 while (1) {
1149 i++;
1150 /* check for transmit completes and receives */
1151 send_done_count = ntohl(stats->send_done_count);
1152 if (send_done_count != tx->pkt_done)
1153 myri10ge_tx_done(mgp, (int)send_done_count);
1154 if (unlikely(i > myri10ge_max_irq_loops)) {
1155 printk(KERN_WARNING "myri10ge: %s: irq stuck?\n",
1156 mgp->dev->name);
1157 stats->valid = 0;
1158 schedule_work(&mgp->watchdog_work);
1159 }
1160 if (likely(stats->valid == 0))
1161 break;
1162 cpu_relax();
1163 barrier();
1164 }
1165
1166 myri10ge_check_statblock(mgp);
1167
1168 __raw_writel(htonl(3), mgp->irq_claim + 1);
1169 return (IRQ_HANDLED);
1170}
1171
1172static int
1173myri10ge_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1174{
1175 cmd->autoneg = AUTONEG_DISABLE;
1176 cmd->speed = SPEED_10000;
1177 cmd->duplex = DUPLEX_FULL;
1178 return 0;
1179}
1180
1181static void
1182myri10ge_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *info)
1183{
1184 struct myri10ge_priv *mgp = netdev_priv(netdev);
1185
1186 strlcpy(info->driver, "myri10ge", sizeof(info->driver));
1187 strlcpy(info->version, MYRI10GE_VERSION_STR, sizeof(info->version));
1188 strlcpy(info->fw_version, mgp->fw_version, sizeof(info->fw_version));
1189 strlcpy(info->bus_info, pci_name(mgp->pdev), sizeof(info->bus_info));
1190}
1191
1192static int
1193myri10ge_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *coal)
1194{
1195 struct myri10ge_priv *mgp = netdev_priv(netdev);
1196 coal->rx_coalesce_usecs = mgp->intr_coal_delay;
1197 return 0;
1198}
1199
1200static int
1201myri10ge_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *coal)
1202{
1203 struct myri10ge_priv *mgp = netdev_priv(netdev);
1204
1205 mgp->intr_coal_delay = coal->rx_coalesce_usecs;
1206 __raw_writel(htonl(mgp->intr_coal_delay), mgp->intr_coal_delay_ptr);
1207 return 0;
1208}
1209
1210static void
1211myri10ge_get_pauseparam(struct net_device *netdev,
1212 struct ethtool_pauseparam *pause)
1213{
1214 struct myri10ge_priv *mgp = netdev_priv(netdev);
1215
1216 pause->autoneg = 0;
1217 pause->rx_pause = mgp->pause;
1218 pause->tx_pause = mgp->pause;
1219}
1220
1221static int
1222myri10ge_set_pauseparam(struct net_device *netdev,
1223 struct ethtool_pauseparam *pause)
1224{
1225 struct myri10ge_priv *mgp = netdev_priv(netdev);
1226
1227 if (pause->tx_pause != mgp->pause)
1228 return myri10ge_change_pause(mgp, pause->tx_pause);
1229 if (pause->rx_pause != mgp->pause)
1230 return myri10ge_change_pause(mgp, pause->tx_pause);
1231 if (pause->autoneg != 0)
1232 return -EINVAL;
1233 return 0;
1234}
1235
1236static void
1237myri10ge_get_ringparam(struct net_device *netdev,
1238 struct ethtool_ringparam *ring)
1239{
1240 struct myri10ge_priv *mgp = netdev_priv(netdev);
1241
1242 ring->rx_mini_max_pending = mgp->rx_small.mask + 1;
1243 ring->rx_max_pending = mgp->rx_big.mask + 1;
1244 ring->rx_jumbo_max_pending = 0;
1245 ring->tx_max_pending = mgp->rx_small.mask + 1;
1246 ring->rx_mini_pending = ring->rx_mini_max_pending;
1247 ring->rx_pending = ring->rx_max_pending;
1248 ring->rx_jumbo_pending = ring->rx_jumbo_max_pending;
1249 ring->tx_pending = ring->tx_max_pending;
1250}
1251
1252static u32 myri10ge_get_rx_csum(struct net_device *netdev)
1253{
1254 struct myri10ge_priv *mgp = netdev_priv(netdev);
1255 if (mgp->csum_flag)
1256 return 1;
1257 else
1258 return 0;
1259}
1260
1261static int myri10ge_set_rx_csum(struct net_device *netdev, u32 csum_enabled)
1262{
1263 struct myri10ge_priv *mgp = netdev_priv(netdev);
1264 if (csum_enabled)
1265 mgp->csum_flag = MXGEFW_FLAGS_CKSUM;
1266 else
1267 mgp->csum_flag = 0;
1268 return 0;
1269}
1270
1271static const char myri10ge_gstrings_stats[][ETH_GSTRING_LEN] = {
1272 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
1273 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
1274 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
1275 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
1276 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
1277 "tx_heartbeat_errors", "tx_window_errors",
1278 /* device-specific stats */
1279 "read_dma_bw_MBs", "write_dma_bw_MBs", "read_write_dma_bw_MBs",
1280 "serial_number", "tx_pkt_start", "tx_pkt_done",
1281 "tx_req", "tx_done", "rx_small_cnt", "rx_big_cnt",
1282 "wake_queue", "stop_queue", "watchdog_resets", "tx_linearized",
1283 "link_up", "dropped_link_overflow", "dropped_link_error_or_filtered",
1284 "dropped_runt", "dropped_overrun", "dropped_no_small_buffer",
1285 "dropped_no_big_buffer"
1286};
1287
1288#define MYRI10GE_NET_STATS_LEN 21
1289#define MYRI10GE_STATS_LEN sizeof(myri10ge_gstrings_stats) / ETH_GSTRING_LEN
1290
1291static void
1292myri10ge_get_strings(struct net_device *netdev, u32 stringset, u8 * data)
1293{
1294 switch (stringset) {
1295 case ETH_SS_STATS:
1296 memcpy(data, *myri10ge_gstrings_stats,
1297 sizeof(myri10ge_gstrings_stats));
1298 break;
1299 }
1300}
1301
1302static int myri10ge_get_stats_count(struct net_device *netdev)
1303{
1304 return MYRI10GE_STATS_LEN;
1305}
1306
1307static void
1308myri10ge_get_ethtool_stats(struct net_device *netdev,
1309 struct ethtool_stats *stats, u64 * data)
1310{
1311 struct myri10ge_priv *mgp = netdev_priv(netdev);
1312 int i;
1313
1314 for (i = 0; i < MYRI10GE_NET_STATS_LEN; i++)
1315 data[i] = ((unsigned long *)&mgp->stats)[i];
1316
1317 data[i++] = (unsigned int)mgp->read_dma;
1318 data[i++] = (unsigned int)mgp->write_dma;
1319 data[i++] = (unsigned int)mgp->read_write_dma;
1320 data[i++] = (unsigned int)mgp->serial_number;
1321 data[i++] = (unsigned int)mgp->tx.pkt_start;
1322 data[i++] = (unsigned int)mgp->tx.pkt_done;
1323 data[i++] = (unsigned int)mgp->tx.req;
1324 data[i++] = (unsigned int)mgp->tx.done;
1325 data[i++] = (unsigned int)mgp->rx_small.cnt;
1326 data[i++] = (unsigned int)mgp->rx_big.cnt;
1327 data[i++] = (unsigned int)mgp->wake_queue;
1328 data[i++] = (unsigned int)mgp->stop_queue;
1329 data[i++] = (unsigned int)mgp->watchdog_resets;
1330 data[i++] = (unsigned int)mgp->tx_linearized;
1331 data[i++] = (unsigned int)ntohl(mgp->fw_stats->link_up);
1332 data[i++] = (unsigned int)ntohl(mgp->fw_stats->dropped_link_overflow);
1333 data[i++] =
1334 (unsigned int)ntohl(mgp->fw_stats->dropped_link_error_or_filtered);
1335 data[i++] = (unsigned int)ntohl(mgp->fw_stats->dropped_runt);
1336 data[i++] = (unsigned int)ntohl(mgp->fw_stats->dropped_overrun);
1337 data[i++] = (unsigned int)ntohl(mgp->fw_stats->dropped_no_small_buffer);
1338 data[i++] = (unsigned int)ntohl(mgp->fw_stats->dropped_no_big_buffer);
1339}
1340
1341static struct ethtool_ops myri10ge_ethtool_ops = {
1342 .get_settings = myri10ge_get_settings,
1343 .get_drvinfo = myri10ge_get_drvinfo,
1344 .get_coalesce = myri10ge_get_coalesce,
1345 .set_coalesce = myri10ge_set_coalesce,
1346 .get_pauseparam = myri10ge_get_pauseparam,
1347 .set_pauseparam = myri10ge_set_pauseparam,
1348 .get_ringparam = myri10ge_get_ringparam,
1349 .get_rx_csum = myri10ge_get_rx_csum,
1350 .set_rx_csum = myri10ge_set_rx_csum,
1351 .get_tx_csum = ethtool_op_get_tx_csum,
1352 .set_tx_csum = ethtool_op_set_tx_csum,
1353 .get_sg = ethtool_op_get_sg,
1354 .set_sg = ethtool_op_set_sg,
1355#ifdef NETIF_F_TSO
1356 .get_tso = ethtool_op_get_tso,
1357 .set_tso = ethtool_op_set_tso,
1358#endif
1359 .get_strings = myri10ge_get_strings,
1360 .get_stats_count = myri10ge_get_stats_count,
1361 .get_ethtool_stats = myri10ge_get_ethtool_stats
1362};
1363
1364static int myri10ge_allocate_rings(struct net_device *dev)
1365{
1366 struct myri10ge_priv *mgp;
1367 struct myri10ge_cmd cmd;
1368 int tx_ring_size, rx_ring_size;
1369 int tx_ring_entries, rx_ring_entries;
1370 int i, status;
1371 size_t bytes;
1372
1373 mgp = netdev_priv(dev);
1374
1375 /* get ring sizes */
1376
1377 status = myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_SEND_RING_SIZE, &cmd, 0);
1378 tx_ring_size = cmd.data0;
1379 status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_RX_RING_SIZE, &cmd, 0);
1380 rx_ring_size = cmd.data0;
1381
1382 tx_ring_entries = tx_ring_size / sizeof(struct mcp_kreq_ether_send);
1383 rx_ring_entries = rx_ring_size / sizeof(struct mcp_dma_addr);
1384 mgp->tx.mask = tx_ring_entries - 1;
1385 mgp->rx_small.mask = mgp->rx_big.mask = rx_ring_entries - 1;
1386
1387 /* allocate the host shadow rings */
1388
1389 bytes = 8 + (MYRI10GE_MAX_SEND_DESC_TSO + 4)
1390 * sizeof(*mgp->tx.req_list);
1391 mgp->tx.req_bytes = kzalloc(bytes, GFP_KERNEL);
1392 if (mgp->tx.req_bytes == NULL)
1393 goto abort_with_nothing;
1394
1395 /* ensure req_list entries are aligned to 8 bytes */
1396 mgp->tx.req_list = (struct mcp_kreq_ether_send *)
1397 ALIGN((unsigned long)mgp->tx.req_bytes, 8);
1398
1399 bytes = rx_ring_entries * sizeof(*mgp->rx_small.shadow);
1400 mgp->rx_small.shadow = kzalloc(bytes, GFP_KERNEL);
1401 if (mgp->rx_small.shadow == NULL)
1402 goto abort_with_tx_req_bytes;
1403
1404 bytes = rx_ring_entries * sizeof(*mgp->rx_big.shadow);
1405 mgp->rx_big.shadow = kzalloc(bytes, GFP_KERNEL);
1406 if (mgp->rx_big.shadow == NULL)
1407 goto abort_with_rx_small_shadow;
1408
1409 /* allocate the host info rings */
1410
1411 bytes = tx_ring_entries * sizeof(*mgp->tx.info);
1412 mgp->tx.info = kzalloc(bytes, GFP_KERNEL);
1413 if (mgp->tx.info == NULL)
1414 goto abort_with_rx_big_shadow;
1415
1416 bytes = rx_ring_entries * sizeof(*mgp->rx_small.info);
1417 mgp->rx_small.info = kzalloc(bytes, GFP_KERNEL);
1418 if (mgp->rx_small.info == NULL)
1419 goto abort_with_tx_info;
1420
1421 bytes = rx_ring_entries * sizeof(*mgp->rx_big.info);
1422 mgp->rx_big.info = kzalloc(bytes, GFP_KERNEL);
1423 if (mgp->rx_big.info == NULL)
1424 goto abort_with_rx_small_info;
1425
1426 /* Fill the receive rings */
1427
1428 for (i = 0; i <= mgp->rx_small.mask; i++) {
1429 status = myri10ge_getbuf(&mgp->rx_small, mgp->pdev,
1430 mgp->small_bytes, i);
1431 if (status) {
1432 printk(KERN_ERR
1433 "myri10ge: %s: alloced only %d small bufs\n",
1434 dev->name, i);
1435 goto abort_with_rx_small_ring;
1436 }
1437 }
1438
1439 for (i = 0; i <= mgp->rx_big.mask; i++) {
1440 status =
1441 myri10ge_getbuf(&mgp->rx_big, mgp->pdev,
1442 dev->mtu + ETH_HLEN, i);
1443 if (status) {
1444 printk(KERN_ERR
1445 "myri10ge: %s: alloced only %d big bufs\n",
1446 dev->name, i);
1447 goto abort_with_rx_big_ring;
1448 }
1449 }
1450
1451 return 0;
1452
1453abort_with_rx_big_ring:
1454 for (i = 0; i <= mgp->rx_big.mask; i++) {
1455 if (mgp->rx_big.info[i].skb != NULL)
1456 dev_kfree_skb_any(mgp->rx_big.info[i].skb);
1457 if (pci_unmap_len(&mgp->rx_big.info[i], len))
1458 pci_unmap_single(mgp->pdev,
1459 pci_unmap_addr(&mgp->rx_big.info[i],
1460 bus),
1461 pci_unmap_len(&mgp->rx_big.info[i],
1462 len),
1463 PCI_DMA_FROMDEVICE);
1464 }
1465
1466abort_with_rx_small_ring:
1467 for (i = 0; i <= mgp->rx_small.mask; i++) {
1468 if (mgp->rx_small.info[i].skb != NULL)
1469 dev_kfree_skb_any(mgp->rx_small.info[i].skb);
1470 if (pci_unmap_len(&mgp->rx_small.info[i], len))
1471 pci_unmap_single(mgp->pdev,
1472 pci_unmap_addr(&mgp->rx_small.info[i],
1473 bus),
1474 pci_unmap_len(&mgp->rx_small.info[i],
1475 len),
1476 PCI_DMA_FROMDEVICE);
1477 }
1478 kfree(mgp->rx_big.info);
1479
1480abort_with_rx_small_info:
1481 kfree(mgp->rx_small.info);
1482
1483abort_with_tx_info:
1484 kfree(mgp->tx.info);
1485
1486abort_with_rx_big_shadow:
1487 kfree(mgp->rx_big.shadow);
1488
1489abort_with_rx_small_shadow:
1490 kfree(mgp->rx_small.shadow);
1491
1492abort_with_tx_req_bytes:
1493 kfree(mgp->tx.req_bytes);
1494 mgp->tx.req_bytes = NULL;
1495 mgp->tx.req_list = NULL;
1496
1497abort_with_nothing:
1498 return status;
1499}
1500
1501static void myri10ge_free_rings(struct net_device *dev)
1502{
1503 struct myri10ge_priv *mgp;
1504 struct sk_buff *skb;
1505 struct myri10ge_tx_buf *tx;
1506 int i, len, idx;
1507
1508 mgp = netdev_priv(dev);
1509
1510 for (i = 0; i <= mgp->rx_big.mask; i++) {
1511 if (mgp->rx_big.info[i].skb != NULL)
1512 dev_kfree_skb_any(mgp->rx_big.info[i].skb);
1513 if (pci_unmap_len(&mgp->rx_big.info[i], len))
1514 pci_unmap_single(mgp->pdev,
1515 pci_unmap_addr(&mgp->rx_big.info[i],
1516 bus),
1517 pci_unmap_len(&mgp->rx_big.info[i],
1518 len),
1519 PCI_DMA_FROMDEVICE);
1520 }
1521
1522 for (i = 0; i <= mgp->rx_small.mask; i++) {
1523 if (mgp->rx_small.info[i].skb != NULL)
1524 dev_kfree_skb_any(mgp->rx_small.info[i].skb);
1525 if (pci_unmap_len(&mgp->rx_small.info[i], len))
1526 pci_unmap_single(mgp->pdev,
1527 pci_unmap_addr(&mgp->rx_small.info[i],
1528 bus),
1529 pci_unmap_len(&mgp->rx_small.info[i],
1530 len),
1531 PCI_DMA_FROMDEVICE);
1532 }
1533
1534 tx = &mgp->tx;
1535 while (tx->done != tx->req) {
1536 idx = tx->done & tx->mask;
1537 skb = tx->info[idx].skb;
1538
1539 /* Mark as free */
1540 tx->info[idx].skb = NULL;
1541 tx->done++;
1542 len = pci_unmap_len(&tx->info[idx], len);
1543 pci_unmap_len_set(&tx->info[idx], len, 0);
1544 if (skb) {
1545 mgp->stats.tx_dropped++;
1546 dev_kfree_skb_any(skb);
1547 if (len)
1548 pci_unmap_single(mgp->pdev,
1549 pci_unmap_addr(&tx->info[idx],
1550 bus), len,
1551 PCI_DMA_TODEVICE);
1552 } else {
1553 if (len)
1554 pci_unmap_page(mgp->pdev,
1555 pci_unmap_addr(&tx->info[idx],
1556 bus), len,
1557 PCI_DMA_TODEVICE);
1558 }
1559 }
1560 kfree(mgp->rx_big.info);
1561
1562 kfree(mgp->rx_small.info);
1563
1564 kfree(mgp->tx.info);
1565
1566 kfree(mgp->rx_big.shadow);
1567
1568 kfree(mgp->rx_small.shadow);
1569
1570 kfree(mgp->tx.req_bytes);
1571 mgp->tx.req_bytes = NULL;
1572 mgp->tx.req_list = NULL;
1573}
1574
1575static int myri10ge_open(struct net_device *dev)
1576{
1577 struct myri10ge_priv *mgp;
1578 struct myri10ge_cmd cmd;
1579 int status, big_pow2;
1580
1581 mgp = netdev_priv(dev);
1582
1583 if (mgp->running != MYRI10GE_ETH_STOPPED)
1584 return -EBUSY;
1585
1586 mgp->running = MYRI10GE_ETH_STARTING;
1587 status = myri10ge_reset(mgp);
1588 if (status != 0) {
1589 printk(KERN_ERR "myri10ge: %s: failed reset\n", dev->name);
1590 mgp->running = MYRI10GE_ETH_STOPPED;
1591 return -ENXIO;
1592 }
1593
1594 /* decide what small buffer size to use. For good TCP rx
1595 * performance, it is important to not receive 1514 byte
1596 * frames into jumbo buffers, as it confuses the socket buffer
1597 * accounting code, leading to drops and erratic performance.
1598 */
1599
1600 if (dev->mtu <= ETH_DATA_LEN)
1601 mgp->small_bytes = 128; /* enough for a TCP header */
1602 else
1603 mgp->small_bytes = ETH_FRAME_LEN; /* enough for an ETH_DATA_LEN frame */
1604
1605 /* Override the small buffer size? */
1606 if (myri10ge_small_bytes > 0)
1607 mgp->small_bytes = myri10ge_small_bytes;
1608
1609 /* If the user sets an obscenely small MTU, adjust the small
1610 * bytes down to nearly nothing */
1611 if (mgp->small_bytes >= (dev->mtu + ETH_HLEN))
1612 mgp->small_bytes = 64;
1613
1614 /* get the lanai pointers to the send and receive rings */
1615
1616 status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_SEND_OFFSET, &cmd, 0);
1617 mgp->tx.lanai =
1618 (struct mcp_kreq_ether_send __iomem *)(mgp->sram + cmd.data0);
1619
1620 status |=
1621 myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_SMALL_RX_OFFSET, &cmd, 0);
1622 mgp->rx_small.lanai =
1623 (struct mcp_kreq_ether_recv __iomem *)(mgp->sram + cmd.data0);
1624
1625 status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_BIG_RX_OFFSET, &cmd, 0);
1626 mgp->rx_big.lanai =
1627 (struct mcp_kreq_ether_recv __iomem *)(mgp->sram + cmd.data0);
1628
1629 if (status != 0) {
1630 printk(KERN_ERR
1631 "myri10ge: %s: failed to get ring sizes or locations\n",
1632 dev->name);
1633 mgp->running = MYRI10GE_ETH_STOPPED;
1634 return -ENXIO;
1635 }
1636
1637 if (mgp->mtrr >= 0) {
1638 mgp->tx.wc_fifo = (u8 __iomem *) mgp->sram + 0x200000;
1639 mgp->rx_small.wc_fifo = (u8 __iomem *) mgp->sram + 0x300000;
1640 mgp->rx_big.wc_fifo = (u8 __iomem *) mgp->sram + 0x340000;
1641 } else {
1642 mgp->tx.wc_fifo = NULL;
1643 mgp->rx_small.wc_fifo = NULL;
1644 mgp->rx_big.wc_fifo = NULL;
1645 }
1646
1647 status = myri10ge_allocate_rings(dev);
1648 if (status != 0)
1649 goto abort_with_nothing;
1650
1651 /* Firmware needs the big buff size as a power of 2. Lie and
1652 * tell him the buffer is larger, because we only use 1
1653 * buffer/pkt, and the mtu will prevent overruns.
1654 */
1655 big_pow2 = dev->mtu + ETH_HLEN + MXGEFW_PAD;
1656 while ((big_pow2 & (big_pow2 - 1)) != 0)
1657 big_pow2++;
1658
1659 /* now give firmware buffers sizes, and MTU */
1660 cmd.data0 = dev->mtu + ETH_HLEN + VLAN_HLEN;
1661 status = myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_MTU, &cmd, 0);
1662 cmd.data0 = mgp->small_bytes;
1663 status |=
1664 myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_SMALL_BUFFER_SIZE, &cmd, 0);
1665 cmd.data0 = big_pow2;
1666 status |=
1667 myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_BIG_BUFFER_SIZE, &cmd, 0);
1668 if (status) {
1669 printk(KERN_ERR "myri10ge: %s: Couldn't set buffer sizes\n",
1670 dev->name);
1671 goto abort_with_rings;
1672 }
1673
1674 cmd.data0 = MYRI10GE_LOWPART_TO_U32(mgp->fw_stats_bus);
1675 cmd.data1 = MYRI10GE_HIGHPART_TO_U32(mgp->fw_stats_bus);
1676 status = myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_STATS_DMA, &cmd, 0);
1677 if (status) {
1678 printk(KERN_ERR "myri10ge: %s: Couldn't set stats DMA\n",
1679 dev->name);
1680 goto abort_with_rings;
1681 }
1682
1683 mgp->link_state = -1;
1684 mgp->rdma_tags_available = 15;
1685
1686 netif_poll_enable(mgp->dev); /* must happen prior to any irq */
1687
1688 status = myri10ge_send_cmd(mgp, MXGEFW_CMD_ETHERNET_UP, &cmd, 0);
1689 if (status) {
1690 printk(KERN_ERR "myri10ge: %s: Couldn't bring up link\n",
1691 dev->name);
1692 goto abort_with_rings;
1693 }
1694
1695 mgp->wake_queue = 0;
1696 mgp->stop_queue = 0;
1697 mgp->running = MYRI10GE_ETH_RUNNING;
1698 mgp->watchdog_timer.expires = jiffies + myri10ge_watchdog_timeout * HZ;
1699 add_timer(&mgp->watchdog_timer);
1700 netif_wake_queue(dev);
1701 return 0;
1702
1703abort_with_rings:
1704 myri10ge_free_rings(dev);
1705
1706abort_with_nothing:
1707 mgp->running = MYRI10GE_ETH_STOPPED;
1708 return -ENOMEM;
1709}
1710
1711static int myri10ge_close(struct net_device *dev)
1712{
1713 struct myri10ge_priv *mgp;
1714 struct myri10ge_cmd cmd;
1715 int status, old_down_cnt;
1716
1717 mgp = netdev_priv(dev);
1718
1719 if (mgp->running != MYRI10GE_ETH_RUNNING)
1720 return 0;
1721
1722 if (mgp->tx.req_bytes == NULL)
1723 return 0;
1724
1725 del_timer_sync(&mgp->watchdog_timer);
1726 mgp->running = MYRI10GE_ETH_STOPPING;
1727 netif_poll_disable(mgp->dev);
1728 netif_carrier_off(dev);
1729 netif_stop_queue(dev);
1730 old_down_cnt = mgp->down_cnt;
1731 mb();
1732 status = myri10ge_send_cmd(mgp, MXGEFW_CMD_ETHERNET_DOWN, &cmd, 0);
1733 if (status)
1734 printk(KERN_ERR "myri10ge: %s: Couldn't bring down link\n",
1735 dev->name);
1736
1737 wait_event_timeout(mgp->down_wq, old_down_cnt != mgp->down_cnt, HZ);
1738 if (old_down_cnt == mgp->down_cnt)
1739 printk(KERN_ERR "myri10ge: %s never got down irq\n", dev->name);
1740
1741 netif_tx_disable(dev);
1742
1743 myri10ge_free_rings(dev);
1744
1745 mgp->running = MYRI10GE_ETH_STOPPED;
1746 return 0;
1747}
1748
1749/* copy an array of struct mcp_kreq_ether_send's to the mcp. Copy
1750 * backwards one at a time and handle ring wraps */
1751
1752static inline void
1753myri10ge_submit_req_backwards(struct myri10ge_tx_buf *tx,
1754 struct mcp_kreq_ether_send *src, int cnt)
1755{
1756 int idx, starting_slot;
1757 starting_slot = tx->req;
1758 while (cnt > 1) {
1759 cnt--;
1760 idx = (starting_slot + cnt) & tx->mask;
1761 myri10ge_pio_copy(&tx->lanai[idx], &src[cnt], sizeof(*src));
1762 mb();
1763 }
1764}
1765
1766/*
1767 * copy an array of struct mcp_kreq_ether_send's to the mcp. Copy
1768 * at most 32 bytes at a time, so as to avoid involving the software
1769 * pio handler in the nic. We re-write the first segment's flags
1770 * to mark them valid only after writing the entire chain.
1771 */
1772
1773static inline void
1774myri10ge_submit_req(struct myri10ge_tx_buf *tx, struct mcp_kreq_ether_send *src,
1775 int cnt)
1776{
1777 int idx, i;
1778 struct mcp_kreq_ether_send __iomem *dstp, *dst;
1779 struct mcp_kreq_ether_send *srcp;
1780 u8 last_flags;
1781
1782 idx = tx->req & tx->mask;
1783
1784 last_flags = src->flags;
1785 src->flags = 0;
1786 mb();
1787 dst = dstp = &tx->lanai[idx];
1788 srcp = src;
1789
1790 if ((idx + cnt) < tx->mask) {
1791 for (i = 0; i < (cnt - 1); i += 2) {
1792 myri10ge_pio_copy(dstp, srcp, 2 * sizeof(*src));
1793 mb(); /* force write every 32 bytes */
1794 srcp += 2;
1795 dstp += 2;
1796 }
1797 } else {
1798 /* submit all but the first request, and ensure
1799 * that it is submitted below */
1800 myri10ge_submit_req_backwards(tx, src, cnt);
1801 i = 0;
1802 }
1803 if (i < cnt) {
1804 /* submit the first request */
1805 myri10ge_pio_copy(dstp, srcp, sizeof(*src));
1806 mb(); /* barrier before setting valid flag */
1807 }
1808
1809 /* re-write the last 32-bits with the valid flags */
1810 src->flags = last_flags;
1811 __raw_writel(*((u32 *) src + 3), (u32 __iomem *) dst + 3);
1812 tx->req += cnt;
1813 mb();
1814}
1815
1816static inline void
1817myri10ge_submit_req_wc(struct myri10ge_tx_buf *tx,
1818 struct mcp_kreq_ether_send *src, int cnt)
1819{
1820 tx->req += cnt;
1821 mb();
1822 while (cnt >= 4) {
1823 myri10ge_pio_copy(tx->wc_fifo, src, 64);
1824 mb();
1825 src += 4;
1826 cnt -= 4;
1827 }
1828 if (cnt > 0) {
1829 /* pad it to 64 bytes. The src is 64 bytes bigger than it
1830 * needs to be so that we don't overrun it */
1831 myri10ge_pio_copy(tx->wc_fifo + (cnt << 18), src, 64);
1832 mb();
1833 }
1834}
1835
1836/*
1837 * Transmit a packet. We need to split the packet so that a single
1838 * segment does not cross myri10ge->tx.boundary, so this makes segment
1839 * counting tricky. So rather than try to count segments up front, we
1840 * just give up if there are too few segments to hold a reasonably
1841 * fragmented packet currently available. If we run
1842 * out of segments while preparing a packet for DMA, we just linearize
1843 * it and try again.
1844 */
1845
1846static int myri10ge_xmit(struct sk_buff *skb, struct net_device *dev)
1847{
1848 struct myri10ge_priv *mgp = netdev_priv(dev);
1849 struct mcp_kreq_ether_send *req;
1850 struct myri10ge_tx_buf *tx = &mgp->tx;
1851 struct skb_frag_struct *frag;
1852 dma_addr_t bus;
1853 u32 low, high_swapped;
1854 unsigned int len;
1855 int idx, last_idx, avail, frag_cnt, frag_idx, count, mss, max_segments;
1856 u16 pseudo_hdr_offset, cksum_offset;
1857 int cum_len, seglen, boundary, rdma_count;
1858 u8 flags, odd_flag;
1859
1860again:
1861 req = tx->req_list;
1862 avail = tx->mask - 1 - (tx->req - tx->done);
1863
1864 mss = 0;
1865 max_segments = MXGEFW_MAX_SEND_DESC;
1866
1867#ifdef NETIF_F_TSO
1868 if (skb->len > (dev->mtu + ETH_HLEN)) {
1869 mss = skb_shinfo(skb)->tso_size;
1870 if (mss != 0)
1871 max_segments = MYRI10GE_MAX_SEND_DESC_TSO;
1872 }
1873#endif /*NETIF_F_TSO */
1874
1875 if ((unlikely(avail < max_segments))) {
1876 /* we are out of transmit resources */
1877 mgp->stop_queue++;
1878 netif_stop_queue(dev);
1879 return 1;
1880 }
1881
1882 /* Setup checksum offloading, if needed */
1883 cksum_offset = 0;
1884 pseudo_hdr_offset = 0;
1885 odd_flag = 0;
1886 flags = (MXGEFW_FLAGS_NO_TSO | MXGEFW_FLAGS_FIRST);
1887 if (likely(skb->ip_summed == CHECKSUM_HW)) {
1888 cksum_offset = (skb->h.raw - skb->data);
1889 pseudo_hdr_offset = (skb->h.raw + skb->csum) - skb->data;
1890 /* If the headers are excessively large, then we must
1891 * fall back to a software checksum */
1892 if (unlikely(cksum_offset > 255 || pseudo_hdr_offset > 127)) {
1893 if (skb_checksum_help(skb, 0))
1894 goto drop;
1895 cksum_offset = 0;
1896 pseudo_hdr_offset = 0;
1897 } else {
1898 pseudo_hdr_offset = htons(pseudo_hdr_offset);
1899 odd_flag = MXGEFW_FLAGS_ALIGN_ODD;
1900 flags |= MXGEFW_FLAGS_CKSUM;
1901 }
1902 }
1903
1904 cum_len = 0;
1905
1906#ifdef NETIF_F_TSO
1907 if (mss) { /* TSO */
1908 /* this removes any CKSUM flag from before */
1909 flags = (MXGEFW_FLAGS_TSO_HDR | MXGEFW_FLAGS_FIRST);
1910
1911 /* negative cum_len signifies to the
1912 * send loop that we are still in the
1913 * header portion of the TSO packet.
1914 * TSO header must be at most 134 bytes long */
1915 cum_len = -((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
1916
1917 /* for TSO, pseudo_hdr_offset holds mss.
1918 * The firmware figures out where to put
1919 * the checksum by parsing the header. */
1920 pseudo_hdr_offset = htons(mss);
1921 } else
1922#endif /*NETIF_F_TSO */
1923 /* Mark small packets, and pad out tiny packets */
1924 if (skb->len <= MXGEFW_SEND_SMALL_SIZE) {
1925 flags |= MXGEFW_FLAGS_SMALL;
1926
1927 /* pad frames to at least ETH_ZLEN bytes */
1928 if (unlikely(skb->len < ETH_ZLEN)) {
1929 skb = skb_padto(skb, ETH_ZLEN);
1930 if (skb == NULL) {
1931 /* The packet is gone, so we must
1932 * return 0 */
1933 mgp->stats.tx_dropped += 1;
1934 return 0;
1935 }
1936 /* adjust the len to account for the zero pad
1937 * so that the nic can know how long it is */
1938 skb->len = ETH_ZLEN;
1939 }
1940 }
1941
1942 /* map the skb for DMA */
1943 len = skb->len - skb->data_len;
1944 idx = tx->req & tx->mask;
1945 tx->info[idx].skb = skb;
1946 bus = pci_map_single(mgp->pdev, skb->data, len, PCI_DMA_TODEVICE);
1947 pci_unmap_addr_set(&tx->info[idx], bus, bus);
1948 pci_unmap_len_set(&tx->info[idx], len, len);
1949
1950 frag_cnt = skb_shinfo(skb)->nr_frags;
1951 frag_idx = 0;
1952 count = 0;
1953 rdma_count = 0;
1954
1955 /* "rdma_count" is the number of RDMAs belonging to the
1956 * current packet BEFORE the current send request. For
1957 * non-TSO packets, this is equal to "count".
1958 * For TSO packets, rdma_count needs to be reset
1959 * to 0 after a segment cut.
1960 *
1961 * The rdma_count field of the send request is
1962 * the number of RDMAs of the packet starting at
1963 * that request. For TSO send requests with one ore more cuts
1964 * in the middle, this is the number of RDMAs starting
1965 * after the last cut in the request. All previous
1966 * segments before the last cut implicitly have 1 RDMA.
1967 *
1968 * Since the number of RDMAs is not known beforehand,
1969 * it must be filled-in retroactively - after each
1970 * segmentation cut or at the end of the entire packet.
1971 */
1972
1973 while (1) {
1974 /* Break the SKB or Fragment up into pieces which
1975 * do not cross mgp->tx.boundary */
1976 low = MYRI10GE_LOWPART_TO_U32(bus);
1977 high_swapped = htonl(MYRI10GE_HIGHPART_TO_U32(bus));
1978 while (len) {
1979 u8 flags_next;
1980 int cum_len_next;
1981
1982 if (unlikely(count == max_segments))
1983 goto abort_linearize;
1984
1985 boundary = (low + tx->boundary) & ~(tx->boundary - 1);
1986 seglen = boundary - low;
1987 if (seglen > len)
1988 seglen = len;
1989 flags_next = flags & ~MXGEFW_FLAGS_FIRST;
1990 cum_len_next = cum_len + seglen;
1991#ifdef NETIF_F_TSO
1992 if (mss) { /* TSO */
1993 (req - rdma_count)->rdma_count = rdma_count + 1;
1994
1995 if (likely(cum_len >= 0)) { /* payload */
1996 int next_is_first, chop;
1997
1998 chop = (cum_len_next > mss);
1999 cum_len_next = cum_len_next % mss;
2000 next_is_first = (cum_len_next == 0);
2001 flags |= chop * MXGEFW_FLAGS_TSO_CHOP;
2002 flags_next |= next_is_first *
2003 MXGEFW_FLAGS_FIRST;
2004 rdma_count |= -(chop | next_is_first);
2005 rdma_count += chop & !next_is_first;
2006 } else if (likely(cum_len_next >= 0)) { /* header ends */
2007 int small;
2008
2009 rdma_count = -1;
2010 cum_len_next = 0;
2011 seglen = -cum_len;
2012 small = (mss <= MXGEFW_SEND_SMALL_SIZE);
2013 flags_next = MXGEFW_FLAGS_TSO_PLD |
2014 MXGEFW_FLAGS_FIRST |
2015 (small * MXGEFW_FLAGS_SMALL);
2016 }
2017 }
2018#endif /* NETIF_F_TSO */
2019 req->addr_high = high_swapped;
2020 req->addr_low = htonl(low);
2021 req->pseudo_hdr_offset = pseudo_hdr_offset;
2022 req->pad = 0; /* complete solid 16-byte block; does this matter? */
2023 req->rdma_count = 1;
2024 req->length = htons(seglen);
2025 req->cksum_offset = cksum_offset;
2026 req->flags = flags | ((cum_len & 1) * odd_flag);
2027
2028 low += seglen;
2029 len -= seglen;
2030 cum_len = cum_len_next;
2031 flags = flags_next;
2032 req++;
2033 count++;
2034 rdma_count++;
2035 if (unlikely(cksum_offset > seglen))
2036 cksum_offset -= seglen;
2037 else
2038 cksum_offset = 0;
2039 }
2040 if (frag_idx == frag_cnt)
2041 break;
2042
2043 /* map next fragment for DMA */
2044 idx = (count + tx->req) & tx->mask;
2045 frag = &skb_shinfo(skb)->frags[frag_idx];
2046 frag_idx++;
2047 len = frag->size;
2048 bus = pci_map_page(mgp->pdev, frag->page, frag->page_offset,
2049 len, PCI_DMA_TODEVICE);
2050 pci_unmap_addr_set(&tx->info[idx], bus, bus);
2051 pci_unmap_len_set(&tx->info[idx], len, len);
2052 }
2053
2054 (req - rdma_count)->rdma_count = rdma_count;
2055#ifdef NETIF_F_TSO
2056 if (mss)
2057 do {
2058 req--;
2059 req->flags |= MXGEFW_FLAGS_TSO_LAST;
2060 } while (!(req->flags & (MXGEFW_FLAGS_TSO_CHOP |
2061 MXGEFW_FLAGS_FIRST)));
2062#endif
2063 idx = ((count - 1) + tx->req) & tx->mask;
2064 tx->info[idx].last = 1;
2065 if (tx->wc_fifo == NULL)
2066 myri10ge_submit_req(tx, tx->req_list, count);
2067 else
2068 myri10ge_submit_req_wc(tx, tx->req_list, count);
2069 tx->pkt_start++;
2070 if ((avail - count) < MXGEFW_MAX_SEND_DESC) {
2071 mgp->stop_queue++;
2072 netif_stop_queue(dev);
2073 }
2074 dev->trans_start = jiffies;
2075 return 0;
2076
2077abort_linearize:
2078 /* Free any DMA resources we've alloced and clear out the skb
2079 * slot so as to not trip up assertions, and to avoid a
2080 * double-free if linearizing fails */
2081
2082 last_idx = (idx + 1) & tx->mask;
2083 idx = tx->req & tx->mask;
2084 tx->info[idx].skb = NULL;
2085 do {
2086 len = pci_unmap_len(&tx->info[idx], len);
2087 if (len) {
2088 if (tx->info[idx].skb != NULL)
2089 pci_unmap_single(mgp->pdev,
2090 pci_unmap_addr(&tx->info[idx],
2091 bus), len,
2092 PCI_DMA_TODEVICE);
2093 else
2094 pci_unmap_page(mgp->pdev,
2095 pci_unmap_addr(&tx->info[idx],
2096 bus), len,
2097 PCI_DMA_TODEVICE);
2098 pci_unmap_len_set(&tx->info[idx], len, 0);
2099 tx->info[idx].skb = NULL;
2100 }
2101 idx = (idx + 1) & tx->mask;
2102 } while (idx != last_idx);
2103 if (skb_shinfo(skb)->tso_size) {
2104 printk(KERN_ERR
2105 "myri10ge: %s: TSO but wanted to linearize?!?!?\n",
2106 mgp->dev->name);
2107 goto drop;
2108 }
2109
2110 if (skb_linearize(skb, GFP_ATOMIC))
2111 goto drop;
2112
2113 mgp->tx_linearized++;
2114 goto again;
2115
2116drop:
2117 dev_kfree_skb_any(skb);
2118 mgp->stats.tx_dropped += 1;
2119 return 0;
2120
2121}
2122
2123static struct net_device_stats *myri10ge_get_stats(struct net_device *dev)
2124{
2125 struct myri10ge_priv *mgp = netdev_priv(dev);
2126 return &mgp->stats;
2127}
2128
2129static void myri10ge_set_multicast_list(struct net_device *dev)
2130{
2131 /* can be called from atomic contexts,
2132 * pass 1 to force atomicity in myri10ge_send_cmd() */
2133 myri10ge_change_promisc(netdev_priv(dev), dev->flags & IFF_PROMISC, 1);
2134}
2135
2136static int myri10ge_set_mac_address(struct net_device *dev, void *addr)
2137{
2138 struct sockaddr *sa = addr;
2139 struct myri10ge_priv *mgp = netdev_priv(dev);
2140 int status;
2141
2142 if (!is_valid_ether_addr(sa->sa_data))
2143 return -EADDRNOTAVAIL;
2144
2145 status = myri10ge_update_mac_address(mgp, sa->sa_data);
2146 if (status != 0) {
2147 printk(KERN_ERR
2148 "myri10ge: %s: changing mac address failed with %d\n",
2149 dev->name, status);
2150 return status;
2151 }
2152
2153 /* change the dev structure */
2154 memcpy(dev->dev_addr, sa->sa_data, 6);
2155 return 0;
2156}
2157
2158static int myri10ge_change_mtu(struct net_device *dev, int new_mtu)
2159{
2160 struct myri10ge_priv *mgp = netdev_priv(dev);
2161 int error = 0;
2162
2163 if ((new_mtu < 68) || (ETH_HLEN + new_mtu > MYRI10GE_MAX_ETHER_MTU)) {
2164 printk(KERN_ERR "myri10ge: %s: new mtu (%d) is not valid\n",
2165 dev->name, new_mtu);
2166 return -EINVAL;
2167 }
2168 printk(KERN_INFO "%s: changing mtu from %d to %d\n",
2169 dev->name, dev->mtu, new_mtu);
2170 if (mgp->running) {
2171 /* if we change the mtu on an active device, we must
2172 * reset the device so the firmware sees the change */
2173 myri10ge_close(dev);
2174 dev->mtu = new_mtu;
2175 myri10ge_open(dev);
2176 } else
2177 dev->mtu = new_mtu;
2178
2179 return error;
2180}
2181
2182/*
2183 * Enable ECRC to align PCI-E Completion packets on an 8-byte boundary.
2184 * Only do it if the bridge is a root port since we don't want to disturb
2185 * any other device, except if forced with myri10ge_ecrc_enable > 1.
2186 */
2187
2188#define PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_PCIE 0x005d
2189
2190static void myri10ge_enable_ecrc(struct myri10ge_priv *mgp)
2191{
2192 struct pci_dev *bridge = mgp->pdev->bus->self;
2193 struct device *dev = &mgp->pdev->dev;
2194 unsigned cap;
2195 unsigned err_cap;
2196 u16 val;
2197 u8 ext_type;
2198 int ret;
2199
2200 if (!myri10ge_ecrc_enable || !bridge)
2201 return;
2202
2203 /* check that the bridge is a root port */
2204 cap = pci_find_capability(bridge, PCI_CAP_ID_EXP);
2205 pci_read_config_word(bridge, cap + PCI_CAP_FLAGS, &val);
2206 ext_type = (val & PCI_EXP_FLAGS_TYPE) >> 4;
2207 if (ext_type != PCI_EXP_TYPE_ROOT_PORT) {
2208 if (myri10ge_ecrc_enable > 1) {
2209 struct pci_dev *old_bridge = bridge;
2210
2211 /* Walk the hierarchy up to the root port
2212 * where ECRC has to be enabled */
2213 do {
2214 bridge = bridge->bus->self;
2215 if (!bridge) {
2216 dev_err(dev,
2217 "Failed to find root port"
2218 " to force ECRC\n");
2219 return;
2220 }
2221 cap =
2222 pci_find_capability(bridge, PCI_CAP_ID_EXP);
2223 pci_read_config_word(bridge,
2224 cap + PCI_CAP_FLAGS, &val);
2225 ext_type = (val & PCI_EXP_FLAGS_TYPE) >> 4;
2226 } while (ext_type != PCI_EXP_TYPE_ROOT_PORT);
2227
2228 dev_info(dev,
2229 "Forcing ECRC on non-root port %s"
2230 " (enabling on root port %s)\n",
2231 pci_name(old_bridge), pci_name(bridge));
2232 } else {
2233 dev_err(dev,
2234 "Not enabling ECRC on non-root port %s\n",
2235 pci_name(bridge));
2236 return;
2237 }
2238 }
2239
2240 cap = pci_find_ext_capability(bridge, PCI_EXT_CAP_ID_ERR);
2241 /* nvidia ext cap is not always linked in ext cap chain */
2242 if (!cap
2243 && bridge->vendor == PCI_VENDOR_ID_NVIDIA
2244 && bridge->device == PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_PCIE)
2245 cap = 0x160;
2246
2247 if (!cap)
2248 return;
2249
2250 ret = pci_read_config_dword(bridge, cap + PCI_ERR_CAP, &err_cap);
2251 if (ret) {
2252 dev_err(dev, "failed reading ext-conf-space of %s\n",
2253 pci_name(bridge));
2254 dev_err(dev, "\t pci=nommconf in use? "
2255 "or buggy/incomplete/absent ACPI MCFG attr?\n");
2256 return;
2257 }
2258 if (!(err_cap & PCI_ERR_CAP_ECRC_GENC))
2259 return;
2260
2261 err_cap |= PCI_ERR_CAP_ECRC_GENE;
2262 pci_write_config_dword(bridge, cap + PCI_ERR_CAP, err_cap);
2263 dev_info(dev, "Enabled ECRC on upstream bridge %s\n", pci_name(bridge));
2264 mgp->tx.boundary = 4096;
2265 mgp->fw_name = myri10ge_fw_aligned;
2266}
2267
2268/*
2269 * The Lanai Z8E PCI-E interface achieves higher Read-DMA throughput
2270 * when the PCI-E Completion packets are aligned on an 8-byte
2271 * boundary. Some PCI-E chip sets always align Completion packets; on
2272 * the ones that do not, the alignment can be enforced by enabling
2273 * ECRC generation (if supported).
2274 *
2275 * When PCI-E Completion packets are not aligned, it is actually more
2276 * efficient to limit Read-DMA transactions to 2KB, rather than 4KB.
2277 *
2278 * If the driver can neither enable ECRC nor verify that it has
2279 * already been enabled, then it must use a firmware image which works
2280 * around unaligned completion packets (myri10ge_ethp_z8e.dat), and it
2281 * should also ensure that it never gives the device a Read-DMA which is
2282 * larger than 2KB by setting the tx.boundary to 2KB. If ECRC is
2283 * enabled, then the driver should use the aligned (myri10ge_eth_z8e.dat)
2284 * firmware image, and set tx.boundary to 4KB.
2285 */
2286
2287#define PCI_DEVICE_ID_SERVERWORKS_HT2000_PCIE 0x0132
2288
2289static void myri10ge_select_firmware(struct myri10ge_priv *mgp)
2290{
2291 struct pci_dev *bridge = mgp->pdev->bus->self;
2292
2293 mgp->tx.boundary = 2048;
2294 mgp->fw_name = myri10ge_fw_unaligned;
2295
2296 if (myri10ge_force_firmware == 0) {
2297 myri10ge_enable_ecrc(mgp);
2298
2299 /* Check to see if the upstream bridge is known to
2300 * provide aligned completions */
2301 if (bridge
2302 /* ServerWorks HT2000/HT1000 */
2303 && bridge->vendor == PCI_VENDOR_ID_SERVERWORKS
2304 && bridge->device ==
2305 PCI_DEVICE_ID_SERVERWORKS_HT2000_PCIE) {
2306 dev_info(&mgp->pdev->dev,
2307 "Assuming aligned completions (0x%x:0x%x)\n",
2308 bridge->vendor, bridge->device);
2309 mgp->tx.boundary = 4096;
2310 mgp->fw_name = myri10ge_fw_aligned;
2311 }
2312 } else {
2313 if (myri10ge_force_firmware == 1) {
2314 dev_info(&mgp->pdev->dev,
2315 "Assuming aligned completions (forced)\n");
2316 mgp->tx.boundary = 4096;
2317 mgp->fw_name = myri10ge_fw_aligned;
2318 } else {
2319 dev_info(&mgp->pdev->dev,
2320 "Assuming unaligned completions (forced)\n");
2321 mgp->tx.boundary = 2048;
2322 mgp->fw_name = myri10ge_fw_unaligned;
2323 }
2324 }
2325 if (myri10ge_fw_name != NULL) {
2326 dev_info(&mgp->pdev->dev, "overriding firmware to %s\n",
2327 myri10ge_fw_name);
2328 mgp->fw_name = myri10ge_fw_name;
2329 }
2330}
2331
2332static void myri10ge_save_state(struct myri10ge_priv *mgp)
2333{
2334 struct pci_dev *pdev = mgp->pdev;
2335 int cap;
2336
2337 pci_save_state(pdev);
2338 /* now save PCIe and MSI state that Linux will not
2339 * save for us */
2340 cap = pci_find_capability(pdev, PCI_CAP_ID_EXP);
2341 pci_read_config_dword(pdev, cap + PCI_EXP_DEVCTL, &mgp->devctl);
2342 cap = pci_find_capability(pdev, PCI_CAP_ID_MSI);
2343 pci_read_config_word(pdev, cap + PCI_MSI_FLAGS, &mgp->msi_flags);
2344}
2345
2346static void myri10ge_restore_state(struct myri10ge_priv *mgp)
2347{
2348 struct pci_dev *pdev = mgp->pdev;
2349 int cap;
2350
2351 /* restore PCIe and MSI state that linux will not */
2352 cap = pci_find_capability(pdev, PCI_CAP_ID_EXP);
2353 pci_write_config_dword(pdev, cap + PCI_CAP_ID_EXP, mgp->devctl);
2354 cap = pci_find_capability(pdev, PCI_CAP_ID_MSI);
2355 pci_write_config_word(pdev, cap + PCI_MSI_FLAGS, mgp->msi_flags);
2356
2357 pci_restore_state(pdev);
2358}
2359
2360#ifdef CONFIG_PM
2361
2362static int myri10ge_suspend(struct pci_dev *pdev, pm_message_t state)
2363{
2364 struct myri10ge_priv *mgp;
2365 struct net_device *netdev;
2366
2367 mgp = pci_get_drvdata(pdev);
2368 if (mgp == NULL)
2369 return -EINVAL;
2370 netdev = mgp->dev;
2371
2372 netif_device_detach(netdev);
2373 if (netif_running(netdev)) {
2374 printk(KERN_INFO "myri10ge: closing %s\n", netdev->name);
2375 rtnl_lock();
2376 myri10ge_close(netdev);
2377 rtnl_unlock();
2378 }
2379 myri10ge_dummy_rdma(mgp, 0);
2380 free_irq(pdev->irq, mgp);
2381 myri10ge_save_state(mgp);
2382 pci_disable_device(pdev);
2383 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2384 return 0;
2385}
2386
2387static int myri10ge_resume(struct pci_dev *pdev)
2388{
2389 struct myri10ge_priv *mgp;
2390 struct net_device *netdev;
2391 int status;
2392 u16 vendor;
2393
2394 mgp = pci_get_drvdata(pdev);
2395 if (mgp == NULL)
2396 return -EINVAL;
2397 netdev = mgp->dev;
2398 pci_set_power_state(pdev, 0); /* zeros conf space as a side effect */
2399 msleep(5); /* give card time to respond */
2400 pci_read_config_word(mgp->pdev, PCI_VENDOR_ID, &vendor);
2401 if (vendor == 0xffff) {
2402 printk(KERN_ERR "myri10ge: %s: device disappeared!\n",
2403 mgp->dev->name);
2404 return -EIO;
2405 }
2406 myri10ge_restore_state(mgp);
2407 pci_enable_device(pdev);
2408 pci_set_master(pdev);
2409
2410 status = request_irq(pdev->irq, myri10ge_intr, SA_SHIRQ,
2411 netdev->name, mgp);
2412 if (status != 0) {
2413 dev_err(&pdev->dev, "failed to allocate IRQ\n");
2414 goto abort_with_msi;
2415 }
2416
2417 myri10ge_reset(mgp);
2418 myri10ge_dummy_rdma(mgp, mgp->tx.boundary != 4096);
2419
2420 /* Save configuration space to be restored if the
2421 * nic resets due to a parity error */
2422 myri10ge_save_state(mgp);
2423
2424 if (netif_running(netdev)) {
2425 rtnl_lock();
2426 myri10ge_open(netdev);
2427 rtnl_unlock();
2428 }
2429 netif_device_attach(netdev);
2430
2431 return 0;
2432
2433abort_with_msi:
2434 return -EIO;
2435
2436}
2437
2438#endif /* CONFIG_PM */
2439
2440static u32 myri10ge_read_reboot(struct myri10ge_priv *mgp)
2441{
2442 struct pci_dev *pdev = mgp->pdev;
2443 int vs = mgp->vendor_specific_offset;
2444 u32 reboot;
2445
2446 /*enter read32 mode */
2447 pci_write_config_byte(pdev, vs + 0x10, 0x3);
2448
2449 /*read REBOOT_STATUS (0xfffffff0) */
2450 pci_write_config_dword(pdev, vs + 0x18, 0xfffffff0);
2451 pci_read_config_dword(pdev, vs + 0x14, &reboot);
2452 return reboot;
2453}
2454
2455/*
2456 * This watchdog is used to check whether the board has suffered
2457 * from a parity error and needs to be recovered.
2458 */
2459static void myri10ge_watchdog(void *arg)
2460{
2461 struct myri10ge_priv *mgp = arg;
2462 u32 reboot;
2463 int status;
2464 u16 cmd, vendor;
2465
2466 mgp->watchdog_resets++;
2467 pci_read_config_word(mgp->pdev, PCI_COMMAND, &cmd);
2468 if ((cmd & PCI_COMMAND_MASTER) == 0) {
2469 /* Bus master DMA disabled? Check to see
2470 * if the card rebooted due to a parity error
2471 * For now, just report it */
2472 reboot = myri10ge_read_reboot(mgp);
2473 printk(KERN_ERR
2474 "myri10ge: %s: NIC rebooted (0x%x), resetting\n",
2475 mgp->dev->name, reboot);
2476 /*
2477 * A rebooted nic will come back with config space as
2478 * it was after power was applied to PCIe bus.
2479 * Attempt to restore config space which was saved
2480 * when the driver was loaded, or the last time the
2481 * nic was resumed from power saving mode.
2482 */
2483 myri10ge_restore_state(mgp);
2484 } else {
2485 /* if we get back -1's from our slot, perhaps somebody
2486 * powered off our card. Don't try to reset it in
2487 * this case */
2488 if (cmd == 0xffff) {
2489 pci_read_config_word(mgp->pdev, PCI_VENDOR_ID, &vendor);
2490 if (vendor == 0xffff) {
2491 printk(KERN_ERR
2492 "myri10ge: %s: device disappeared!\n",
2493 mgp->dev->name);
2494 return;
2495 }
2496 }
2497 /* Perhaps it is a software error. Try to reset */
2498
2499 printk(KERN_ERR "myri10ge: %s: device timeout, resetting\n",
2500 mgp->dev->name);
2501 printk(KERN_INFO "myri10ge: %s: %d %d %d %d %d\n",
2502 mgp->dev->name, mgp->tx.req, mgp->tx.done,
2503 mgp->tx.pkt_start, mgp->tx.pkt_done,
2504 (int)ntohl(mgp->fw_stats->send_done_count));
2505 msleep(2000);
2506 printk(KERN_INFO "myri10ge: %s: %d %d %d %d %d\n",
2507 mgp->dev->name, mgp->tx.req, mgp->tx.done,
2508 mgp->tx.pkt_start, mgp->tx.pkt_done,
2509 (int)ntohl(mgp->fw_stats->send_done_count));
2510 }
2511 rtnl_lock();
2512 myri10ge_close(mgp->dev);
2513 status = myri10ge_load_firmware(mgp);
2514 if (status != 0)
2515 printk(KERN_ERR "myri10ge: %s: failed to load firmware\n",
2516 mgp->dev->name);
2517 else
2518 myri10ge_open(mgp->dev);
2519 rtnl_unlock();
2520}
2521
2522/*
2523 * We use our own timer routine rather than relying upon
2524 * netdev->tx_timeout because we have a very large hardware transmit
2525 * queue. Due to the large queue, the netdev->tx_timeout function
2526 * cannot detect a NIC with a parity error in a timely fashion if the
2527 * NIC is lightly loaded.
2528 */
2529static void myri10ge_watchdog_timer(unsigned long arg)
2530{
2531 struct myri10ge_priv *mgp;
2532
2533 mgp = (struct myri10ge_priv *)arg;
2534 if (mgp->tx.req != mgp->tx.done &&
2535 mgp->tx.done == mgp->watchdog_tx_done)
2536 /* nic seems like it might be stuck.. */
2537 schedule_work(&mgp->watchdog_work);
2538 else
2539 /* rearm timer */
2540 mod_timer(&mgp->watchdog_timer,
2541 jiffies + myri10ge_watchdog_timeout * HZ);
2542
2543 mgp->watchdog_tx_done = mgp->tx.done;
2544}
2545
2546static int myri10ge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2547{
2548 struct net_device *netdev;
2549 struct myri10ge_priv *mgp;
2550 struct device *dev = &pdev->dev;
2551 size_t bytes;
2552 int i;
2553 int status = -ENXIO;
2554 int cap;
2555 int dac_enabled;
2556 u16 val;
2557
2558 netdev = alloc_etherdev(sizeof(*mgp));
2559 if (netdev == NULL) {
2560 dev_err(dev, "Could not allocate ethernet device\n");
2561 return -ENOMEM;
2562 }
2563
2564 mgp = netdev_priv(netdev);
2565 memset(mgp, 0, sizeof(*mgp));
2566 mgp->dev = netdev;
2567 mgp->pdev = pdev;
2568 mgp->csum_flag = MXGEFW_FLAGS_CKSUM;
2569 mgp->pause = myri10ge_flow_control;
2570 mgp->intr_coal_delay = myri10ge_intr_coal_delay;
2571 init_waitqueue_head(&mgp->down_wq);
2572
2573 if (pci_enable_device(pdev)) {
2574 dev_err(&pdev->dev, "pci_enable_device call failed\n");
2575 status = -ENODEV;
2576 goto abort_with_netdev;
2577 }
2578 myri10ge_select_firmware(mgp);
2579
2580 /* Find the vendor-specific cap so we can check
2581 * the reboot register later on */
2582 mgp->vendor_specific_offset
2583 = pci_find_capability(pdev, PCI_CAP_ID_VNDR);
2584
2585 /* Set our max read request to 4KB */
2586 cap = pci_find_capability(pdev, PCI_CAP_ID_EXP);
2587 if (cap < 64) {
2588 dev_err(&pdev->dev, "Bad PCI_CAP_ID_EXP location %d\n", cap);
2589 goto abort_with_netdev;
2590 }
2591 status = pci_read_config_word(pdev, cap + PCI_EXP_DEVCTL, &val);
2592 if (status != 0) {
2593 dev_err(&pdev->dev, "Error %d reading PCI_EXP_DEVCTL\n",
2594 status);
2595 goto abort_with_netdev;
2596 }
2597 val = (val & ~PCI_EXP_DEVCTL_READRQ) | (5 << 12);
2598 status = pci_write_config_word(pdev, cap + PCI_EXP_DEVCTL, val);
2599 if (status != 0) {
2600 dev_err(&pdev->dev, "Error %d writing PCI_EXP_DEVCTL\n",
2601 status);
2602 goto abort_with_netdev;
2603 }
2604
2605 pci_set_master(pdev);
2606 dac_enabled = 1;
2607 status = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
2608 if (status != 0) {
2609 dac_enabled = 0;
2610 dev_err(&pdev->dev,
2611 "64-bit pci address mask was refused, trying 32-bit");
2612 status = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2613 }
2614 if (status != 0) {
2615 dev_err(&pdev->dev, "Error %d setting DMA mask\n", status);
2616 goto abort_with_netdev;
2617 }
2618 mgp->cmd = pci_alloc_consistent(pdev, sizeof(*mgp->cmd), &mgp->cmd_bus);
2619 if (mgp->cmd == NULL)
2620 goto abort_with_netdev;
2621
2622 mgp->fw_stats = pci_alloc_consistent(pdev, sizeof(*mgp->fw_stats),
2623 &mgp->fw_stats_bus);
2624 if (mgp->fw_stats == NULL)
2625 goto abort_with_cmd;
2626
2627 mgp->board_span = pci_resource_len(pdev, 0);
2628 mgp->iomem_base = pci_resource_start(pdev, 0);
2629 mgp->mtrr = -1;
2630#ifdef CONFIG_MTRR
2631 mgp->mtrr = mtrr_add(mgp->iomem_base, mgp->board_span,
2632 MTRR_TYPE_WRCOMB, 1);
2633#endif
2634 /* Hack. need to get rid of these magic numbers */
2635 mgp->sram_size =
2636 2 * 1024 * 1024 - (2 * (48 * 1024) + (32 * 1024)) - 0x100;
2637 if (mgp->sram_size > mgp->board_span) {
2638 dev_err(&pdev->dev, "board span %ld bytes too small\n",
2639 mgp->board_span);
2640 goto abort_with_wc;
2641 }
2642 mgp->sram = ioremap(mgp->iomem_base, mgp->board_span);
2643 if (mgp->sram == NULL) {
2644 dev_err(&pdev->dev, "ioremap failed for %ld bytes at 0x%lx\n",
2645 mgp->board_span, mgp->iomem_base);
2646 status = -ENXIO;
2647 goto abort_with_wc;
2648 }
2649 memcpy_fromio(mgp->eeprom_strings,
2650 mgp->sram + mgp->sram_size - MYRI10GE_EEPROM_STRINGS_SIZE,
2651 MYRI10GE_EEPROM_STRINGS_SIZE);
2652 memset(mgp->eeprom_strings + MYRI10GE_EEPROM_STRINGS_SIZE - 2, 0, 2);
2653 status = myri10ge_read_mac_addr(mgp);
2654 if (status)
2655 goto abort_with_ioremap;
2656
2657 for (i = 0; i < ETH_ALEN; i++)
2658 netdev->dev_addr[i] = mgp->mac_addr[i];
2659
2660 /* allocate rx done ring */
2661 bytes = myri10ge_max_intr_slots * sizeof(*mgp->rx_done.entry);
2662 mgp->rx_done.entry =
2663 pci_alloc_consistent(pdev, bytes, &mgp->rx_done.bus);
2664 if (mgp->rx_done.entry == NULL)
2665 goto abort_with_ioremap;
2666 memset(mgp->rx_done.entry, 0, bytes);
2667
2668 status = myri10ge_load_firmware(mgp);
2669 if (status != 0) {
2670 dev_err(&pdev->dev, "failed to load firmware\n");
2671 goto abort_with_rx_done;
2672 }
2673
2674 status = myri10ge_reset(mgp);
2675 if (status != 0) {
2676 dev_err(&pdev->dev, "failed reset\n");
2677 goto abort_with_firmware;
2678 }
2679
2680 if (myri10ge_msi) {
2681 status = pci_enable_msi(pdev);
2682 if (status != 0)
2683 dev_err(&pdev->dev,
2684 "Error %d setting up MSI; falling back to xPIC\n",
2685 status);
2686 else
2687 mgp->msi_enabled = 1;
2688 }
2689
2690 status = request_irq(pdev->irq, myri10ge_intr, SA_SHIRQ,
2691 netdev->name, mgp);
2692 if (status != 0) {
2693 dev_err(&pdev->dev, "failed to allocate IRQ\n");
2694 goto abort_with_firmware;
2695 }
2696
2697 pci_set_drvdata(pdev, mgp);
2698 if ((myri10ge_initial_mtu + ETH_HLEN) > MYRI10GE_MAX_ETHER_MTU)
2699 myri10ge_initial_mtu = MYRI10GE_MAX_ETHER_MTU - ETH_HLEN;
2700 if ((myri10ge_initial_mtu + ETH_HLEN) < 68)
2701 myri10ge_initial_mtu = 68;
2702 netdev->mtu = myri10ge_initial_mtu;
2703 netdev->open = myri10ge_open;
2704 netdev->stop = myri10ge_close;
2705 netdev->hard_start_xmit = myri10ge_xmit;
2706 netdev->get_stats = myri10ge_get_stats;
2707 netdev->base_addr = mgp->iomem_base;
2708 netdev->irq = pdev->irq;
2709 netdev->change_mtu = myri10ge_change_mtu;
2710 netdev->set_multicast_list = myri10ge_set_multicast_list;
2711 netdev->set_mac_address = myri10ge_set_mac_address;
2712 netdev->features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_TSO;
2713 if (dac_enabled)
2714 netdev->features |= NETIF_F_HIGHDMA;
2715 netdev->poll = myri10ge_poll;
2716 netdev->weight = myri10ge_napi_weight;
2717
2718 /* Save configuration space to be restored if the
2719 * nic resets due to a parity error */
2720 myri10ge_save_state(mgp);
2721 /* Restore state immediately since pci_save_msi_state disables MSI */
2722 myri10ge_restore_state(mgp);
2723
2724 /* Setup the watchdog timer */
2725 setup_timer(&mgp->watchdog_timer, myri10ge_watchdog_timer,
2726 (unsigned long)mgp);
2727
2728 SET_ETHTOOL_OPS(netdev, &myri10ge_ethtool_ops);
2729 INIT_WORK(&mgp->watchdog_work, myri10ge_watchdog, mgp);
2730 status = register_netdev(netdev);
2731 if (status != 0) {
2732 dev_err(&pdev->dev, "register_netdev failed: %d\n", status);
2733 goto abort_with_irq;
2734 }
2735
2736 printk(KERN_INFO "myri10ge: %s: %s IRQ %d, tx bndry %d, fw %s, WC %s\n",
2737 netdev->name, (mgp->msi_enabled ? "MSI" : "xPIC"),
2738 pdev->irq, mgp->tx.boundary, mgp->fw_name,
2739 (mgp->mtrr >= 0 ? "Enabled" : "Disabled"));
2740
2741 return 0;
2742
2743abort_with_irq:
2744 free_irq(pdev->irq, mgp);
2745 if (mgp->msi_enabled)
2746 pci_disable_msi(pdev);
2747
2748abort_with_firmware:
2749 myri10ge_dummy_rdma(mgp, 0);
2750
2751abort_with_rx_done:
2752 bytes = myri10ge_max_intr_slots * sizeof(*mgp->rx_done.entry);
2753 pci_free_consistent(pdev, bytes, mgp->rx_done.entry, mgp->rx_done.bus);
2754
2755abort_with_ioremap:
2756 iounmap(mgp->sram);
2757
2758abort_with_wc:
2759#ifdef CONFIG_MTRR
2760 if (mgp->mtrr >= 0)
2761 mtrr_del(mgp->mtrr, mgp->iomem_base, mgp->board_span);
2762#endif
2763 pci_free_consistent(pdev, sizeof(*mgp->fw_stats),
2764 mgp->fw_stats, mgp->fw_stats_bus);
2765
2766abort_with_cmd:
2767 pci_free_consistent(pdev, sizeof(*mgp->cmd), mgp->cmd, mgp->cmd_bus);
2768
2769abort_with_netdev:
2770
2771 free_netdev(netdev);
2772 return status;
2773}
2774
2775/*
2776 * myri10ge_remove
2777 *
2778 * Does what is necessary to shutdown one Myrinet device. Called
2779 * once for each Myrinet card by the kernel when a module is
2780 * unloaded.
2781 */
2782static void myri10ge_remove(struct pci_dev *pdev)
2783{
2784 struct myri10ge_priv *mgp;
2785 struct net_device *netdev;
2786 size_t bytes;
2787
2788 mgp = pci_get_drvdata(pdev);
2789 if (mgp == NULL)
2790 return;
2791
2792 flush_scheduled_work();
2793 netdev = mgp->dev;
2794 unregister_netdev(netdev);
2795 free_irq(pdev->irq, mgp);
2796 if (mgp->msi_enabled)
2797 pci_disable_msi(pdev);
2798
2799 myri10ge_dummy_rdma(mgp, 0);
2800
2801 bytes = myri10ge_max_intr_slots * sizeof(*mgp->rx_done.entry);
2802 pci_free_consistent(pdev, bytes, mgp->rx_done.entry, mgp->rx_done.bus);
2803
2804 iounmap(mgp->sram);
2805
2806#ifdef CONFIG_MTRR
2807 if (mgp->mtrr >= 0)
2808 mtrr_del(mgp->mtrr, mgp->iomem_base, mgp->board_span);
2809#endif
2810 pci_free_consistent(pdev, sizeof(*mgp->fw_stats),
2811 mgp->fw_stats, mgp->fw_stats_bus);
2812
2813 pci_free_consistent(pdev, sizeof(*mgp->cmd), mgp->cmd, mgp->cmd_bus);
2814
2815 free_netdev(netdev);
2816 pci_set_drvdata(pdev, NULL);
2817}
2818
2819#define PCI_DEVICE_ID_MYIRCOM_MYRI10GE_Z8E 0x0008
2820
2821static struct pci_device_id myri10ge_pci_tbl[] = {
2822 {PCI_DEVICE(PCI_VENDOR_ID_MYRICOM, PCI_DEVICE_ID_MYIRCOM_MYRI10GE_Z8E)},
2823 {0},
2824};
2825
2826static struct pci_driver myri10ge_driver = {
2827 .name = "myri10ge",
2828 .probe = myri10ge_probe,
2829 .remove = myri10ge_remove,
2830 .id_table = myri10ge_pci_tbl,
2831#ifdef CONFIG_PM
2832 .suspend = myri10ge_suspend,
2833 .resume = myri10ge_resume,
2834#endif
2835};
2836
2837static __init int myri10ge_init_module(void)
2838{
2839 printk(KERN_INFO "%s: Version %s\n", myri10ge_driver.name,
2840 MYRI10GE_VERSION_STR);
2841 return pci_register_driver(&myri10ge_driver);
2842}
2843
2844module_init(myri10ge_init_module);
2845
2846static __exit void myri10ge_cleanup_module(void)
2847{
2848 pci_unregister_driver(&myri10ge_driver);
2849}
2850
2851module_exit(myri10ge_cleanup_module);
diff --git a/drivers/net/myri10ge/myri10ge_mcp.h b/drivers/net/myri10ge/myri10ge_mcp.h
new file mode 100644
index 000000000000..0a6cae6cb186
--- /dev/null
+++ b/drivers/net/myri10ge/myri10ge_mcp.h
@@ -0,0 +1,205 @@
1#ifndef __MYRI10GE_MCP_H__
2#define __MYRI10GE_MCP_H__
3
4#define MXGEFW_VERSION_MAJOR 1
5#define MXGEFW_VERSION_MINOR 4
6
7/* 8 Bytes */
8struct mcp_dma_addr {
9 u32 high;
10 u32 low;
11};
12
13/* 4 Bytes */
14struct mcp_slot {
15 u16 checksum;
16 u16 length;
17};
18
19/* 64 Bytes */
20struct mcp_cmd {
21 u32 cmd;
22 u32 data0; /* will be low portion if data > 32 bits */
23 /* 8 */
24 u32 data1; /* will be high portion if data > 32 bits */
25 u32 data2; /* currently unused.. */
26 /* 16 */
27 struct mcp_dma_addr response_addr;
28 /* 24 */
29 u8 pad[40];
30};
31
32/* 8 Bytes */
33struct mcp_cmd_response {
34 u32 data;
35 u32 result;
36};
37
38/*
39 * flags used in mcp_kreq_ether_send_t:
40 *
41 * The SMALL flag is only needed in the first segment. It is raised
42 * for packets that are total less or equal 512 bytes.
43 *
44 * The CKSUM flag must be set in all segments.
45 *
46 * The PADDED flags is set if the packet needs to be padded, and it
47 * must be set for all segments.
48 *
49 * The MXGEFW_FLAGS_ALIGN_ODD must be set if the cumulative
50 * length of all previous segments was odd.
51 */
52
53#define MXGEFW_FLAGS_SMALL 0x1
54#define MXGEFW_FLAGS_TSO_HDR 0x1
55#define MXGEFW_FLAGS_FIRST 0x2
56#define MXGEFW_FLAGS_ALIGN_ODD 0x4
57#define MXGEFW_FLAGS_CKSUM 0x8
58#define MXGEFW_FLAGS_TSO_LAST 0x8
59#define MXGEFW_FLAGS_NO_TSO 0x10
60#define MXGEFW_FLAGS_TSO_CHOP 0x10
61#define MXGEFW_FLAGS_TSO_PLD 0x20
62
63#define MXGEFW_SEND_SMALL_SIZE 1520
64#define MXGEFW_MAX_MTU 9400
65
66union mcp_pso_or_cumlen {
67 u16 pseudo_hdr_offset;
68 u16 cum_len;
69};
70
71#define MXGEFW_MAX_SEND_DESC 12
72#define MXGEFW_PAD 2
73
74/* 16 Bytes */
75struct mcp_kreq_ether_send {
76 u32 addr_high;
77 u32 addr_low;
78 u16 pseudo_hdr_offset;
79 u16 length;
80 u8 pad;
81 u8 rdma_count;
82 u8 cksum_offset; /* where to start computing cksum */
83 u8 flags; /* as defined above */
84};
85
86/* 8 Bytes */
87struct mcp_kreq_ether_recv {
88 u32 addr_high;
89 u32 addr_low;
90};
91
92/* Commands */
93
94#define MXGEFW_CMD_OFFSET 0xf80000
95
96enum myri10ge_mcp_cmd_type {
97 MXGEFW_CMD_NONE = 0,
98 /* Reset the mcp, it is left in a safe state, waiting
99 * for the driver to set all its parameters */
100 MXGEFW_CMD_RESET,
101
102 /* get the version number of the current firmware..
103 * (may be available in the eeprom strings..? */
104 MXGEFW_GET_MCP_VERSION,
105
106 /* Parameters which must be set by the driver before it can
107 * issue MXGEFW_CMD_ETHERNET_UP. They persist until the next
108 * MXGEFW_CMD_RESET is issued */
109
110 MXGEFW_CMD_SET_INTRQ_DMA,
111 MXGEFW_CMD_SET_BIG_BUFFER_SIZE, /* in bytes, power of 2 */
112 MXGEFW_CMD_SET_SMALL_BUFFER_SIZE, /* in bytes */
113
114 /* Parameters which refer to lanai SRAM addresses where the
115 * driver must issue PIO writes for various things */
116
117 MXGEFW_CMD_GET_SEND_OFFSET,
118 MXGEFW_CMD_GET_SMALL_RX_OFFSET,
119 MXGEFW_CMD_GET_BIG_RX_OFFSET,
120 MXGEFW_CMD_GET_IRQ_ACK_OFFSET,
121 MXGEFW_CMD_GET_IRQ_DEASSERT_OFFSET,
122
123 /* Parameters which refer to rings stored on the MCP,
124 * and whose size is controlled by the mcp */
125
126 MXGEFW_CMD_GET_SEND_RING_SIZE, /* in bytes */
127 MXGEFW_CMD_GET_RX_RING_SIZE, /* in bytes */
128
129 /* Parameters which refer to rings stored in the host,
130 * and whose size is controlled by the host. Note that
131 * all must be physically contiguous and must contain
132 * a power of 2 number of entries. */
133
134 MXGEFW_CMD_SET_INTRQ_SIZE, /* in bytes */
135
136 /* command to bring ethernet interface up. Above parameters
137 * (plus mtu & mac address) must have been exchanged prior
138 * to issuing this command */
139 MXGEFW_CMD_ETHERNET_UP,
140
141 /* command to bring ethernet interface down. No further sends
142 * or receives may be processed until an MXGEFW_CMD_ETHERNET_UP
143 * is issued, and all interrupt queues must be flushed prior
144 * to ack'ing this command */
145
146 MXGEFW_CMD_ETHERNET_DOWN,
147
148 /* commands the driver may issue live, without resetting
149 * the nic. Note that increasing the mtu "live" should
150 * only be done if the driver has already supplied buffers
151 * sufficiently large to handle the new mtu. Decreasing
152 * the mtu live is safe */
153
154 MXGEFW_CMD_SET_MTU,
155 MXGEFW_CMD_GET_INTR_COAL_DELAY_OFFSET, /* in microseconds */
156 MXGEFW_CMD_SET_STATS_INTERVAL, /* in microseconds */
157 MXGEFW_CMD_SET_STATS_DMA,
158
159 MXGEFW_ENABLE_PROMISC,
160 MXGEFW_DISABLE_PROMISC,
161 MXGEFW_SET_MAC_ADDRESS,
162
163 MXGEFW_ENABLE_FLOW_CONTROL,
164 MXGEFW_DISABLE_FLOW_CONTROL,
165
166 /* do a DMA test
167 * data0,data1 = DMA address
168 * data2 = RDMA length (MSH), WDMA length (LSH)
169 * command return data = repetitions (MSH), 0.5-ms ticks (LSH)
170 */
171 MXGEFW_DMA_TEST
172};
173
174enum myri10ge_mcp_cmd_status {
175 MXGEFW_CMD_OK = 0,
176 MXGEFW_CMD_UNKNOWN,
177 MXGEFW_CMD_ERROR_RANGE,
178 MXGEFW_CMD_ERROR_BUSY,
179 MXGEFW_CMD_ERROR_EMPTY,
180 MXGEFW_CMD_ERROR_CLOSED,
181 MXGEFW_CMD_ERROR_HASH_ERROR,
182 MXGEFW_CMD_ERROR_BAD_PORT,
183 MXGEFW_CMD_ERROR_RESOURCES
184};
185
186/* 40 Bytes */
187struct mcp_irq_data {
188 u32 send_done_count;
189
190 u32 link_up;
191 u32 dropped_link_overflow;
192 u32 dropped_link_error_or_filtered;
193 u32 dropped_runt;
194 u32 dropped_overrun;
195 u32 dropped_no_small_buffer;
196 u32 dropped_no_big_buffer;
197 u32 rdma_tags_available;
198
199 u8 tx_stopped;
200 u8 link_down;
201 u8 stats_updated;
202 u8 valid;
203};
204
205#endif /* __MYRI10GE_MCP_H__ */
diff --git a/drivers/net/myri10ge/myri10ge_mcp_gen_header.h b/drivers/net/myri10ge/myri10ge_mcp_gen_header.h
new file mode 100644
index 000000000000..487f7792fd46
--- /dev/null
+++ b/drivers/net/myri10ge/myri10ge_mcp_gen_header.h
@@ -0,0 +1,58 @@
1#ifndef __MYRI10GE_MCP_GEN_HEADER_H__
2#define __MYRI10GE_MCP_GEN_HEADER_H__
3
4/* this file define a standard header used as a first entry point to
5 * exchange information between firmware/driver and driver. The
6 * header structure can be anywhere in the mcp. It will usually be in
7 * the .data section, because some fields needs to be initialized at
8 * compile time.
9 * The 32bit word at offset MX_HEADER_PTR_OFFSET in the mcp must
10 * contains the location of the header.
11 *
12 * Typically a MCP will start with the following:
13 * .text
14 * .space 52 ! to help catch MEMORY_INT errors
15 * bt start ! jump to real code
16 * nop
17 * .long _gen_mcp_header
18 *
19 * The source will have a definition like:
20 *
21 * mcp_gen_header_t gen_mcp_header = {
22 * .header_length = sizeof(mcp_gen_header_t),
23 * .mcp_type = MCP_TYPE_XXX,
24 * .version = "something $Id: mcp_gen_header.h,v 1.2 2006/05/13 10:04:35 bgoglin Exp $",
25 * .mcp_globals = (unsigned)&Globals
26 * };
27 */
28
29#define MCP_HEADER_PTR_OFFSET 0x3c
30
31#define MCP_TYPE_MX 0x4d582020 /* "MX " */
32#define MCP_TYPE_PCIE 0x70636965 /* "PCIE" pcie-only MCP */
33#define MCP_TYPE_ETH 0x45544820 /* "ETH " */
34#define MCP_TYPE_MCP0 0x4d435030 /* "MCP0" */
35
36struct mcp_gen_header {
37 /* the first 4 fields are filled at compile time */
38 unsigned header_length;
39 unsigned mcp_type;
40 char version[128];
41 unsigned mcp_globals; /* pointer to mcp-type specific structure */
42
43 /* filled by the MCP at run-time */
44 unsigned sram_size;
45 unsigned string_specs; /* either the original STRING_SPECS or a superset */
46 unsigned string_specs_len;
47
48 /* Fields above this comment are guaranteed to be present.
49 *
50 * Fields below this comment are extensions added in later versions
51 * of this struct, drivers should compare the header_length against
52 * offsetof(field) to check wether a given MCP implements them.
53 *
54 * Never remove any field. Keep everything naturally align.
55 */
56};
57
58#endif /* __MYRI10GE_MCP_GEN_HEADER_H__ */
diff --git a/drivers/net/pcmcia/pcnet_cs.c b/drivers/net/pcmcia/pcnet_cs.c
index d090df413049..661bfe54ff5d 100644
--- a/drivers/net/pcmcia/pcnet_cs.c
+++ b/drivers/net/pcmcia/pcnet_cs.c
@@ -12,7 +12,7 @@
12 Copyright (C) 1999 David A. Hinds -- dahinds@users.sourceforge.net 12 Copyright (C) 1999 David A. Hinds -- dahinds@users.sourceforge.net
13 13
14 pcnet_cs.c 1.153 2003/11/09 18:53:09 14 pcnet_cs.c 1.153 2003/11/09 18:53:09
15 15
16 The network driver code is based on Donald Becker's NE2000 code: 16 The network driver code is based on Donald Becker's NE2000 code:
17 17
18 Written 1992,1993 by Donald Becker. 18 Written 1992,1993 by Donald Becker.
@@ -146,7 +146,7 @@ typedef struct hw_info_t {
146#define MII_PHYID_REG2 0x03 146#define MII_PHYID_REG2 0x03
147 147
148static hw_info_t hw_info[] = { 148static hw_info_t hw_info[] = {
149 { /* Accton EN2212 */ 0x0ff0, 0x00, 0x00, 0xe8, DELAY_OUTPUT }, 149 { /* Accton EN2212 */ 0x0ff0, 0x00, 0x00, 0xe8, DELAY_OUTPUT },
150 { /* Allied Telesis LA-PCM */ 0x0ff0, 0x00, 0x00, 0xf4, 0 }, 150 { /* Allied Telesis LA-PCM */ 0x0ff0, 0x00, 0x00, 0xf4, 0 },
151 { /* APEX MultiCard */ 0x03f4, 0x00, 0x20, 0xe5, 0 }, 151 { /* APEX MultiCard */ 0x03f4, 0x00, 0x20, 0xe5, 0 },
152 { /* ASANTE FriendlyNet */ 0x4910, 0x00, 0x00, 0x94, 152 { /* ASANTE FriendlyNet */ 0x4910, 0x00, 0x00, 0x94,
@@ -193,7 +193,7 @@ static hw_info_t hw_info[] = {
193 { /* NE2000 Compatible */ 0x0ff0, 0x00, 0xa0, 0x0c, 0 }, 193 { /* NE2000 Compatible */ 0x0ff0, 0x00, 0xa0, 0x0c, 0 },
194 { /* Network General Sniffer */ 0x0ff0, 0x00, 0x00, 0x65, 194 { /* Network General Sniffer */ 0x0ff0, 0x00, 0x00, 0x65,
195 HAS_MISC_REG | HAS_IBM_MISC }, 195 HAS_MISC_REG | HAS_IBM_MISC },
196 { /* Panasonic VEL211 */ 0x0ff0, 0x00, 0x80, 0x45, 196 { /* Panasonic VEL211 */ 0x0ff0, 0x00, 0x80, 0x45,
197 HAS_MISC_REG | HAS_IBM_MISC }, 197 HAS_MISC_REG | HAS_IBM_MISC },
198 { /* PreMax PE-200 */ 0x07f0, 0x00, 0x20, 0xe0, 0 }, 198 { /* PreMax PE-200 */ 0x07f0, 0x00, 0x20, 0xe0, 0 },
199 { /* RPTI EP400 */ 0x0110, 0x00, 0x40, 0x95, 0 }, 199 { /* RPTI EP400 */ 0x0110, 0x00, 0x40, 0x95, 0 },
@@ -330,7 +330,7 @@ static hw_info_t *get_hwinfo(struct pcmcia_device *link)
330 for (j = 0; j < 6; j++) 330 for (j = 0; j < 6; j++)
331 dev->dev_addr[j] = readb(base + (j<<1)); 331 dev->dev_addr[j] = readb(base + (j<<1));
332 } 332 }
333 333
334 iounmap(virt); 334 iounmap(virt);
335 j = pcmcia_release_window(link->win); 335 j = pcmcia_release_window(link->win);
336 if (j != CS_SUCCESS) 336 if (j != CS_SUCCESS)
@@ -490,7 +490,7 @@ static int try_io_port(struct pcmcia_device *link)
490 if (link->io.NumPorts2 > 0) { 490 if (link->io.NumPorts2 > 0) {
491 /* for master/slave multifunction cards */ 491 /* for master/slave multifunction cards */
492 link->io.Attributes2 = IO_DATA_PATH_WIDTH_8; 492 link->io.Attributes2 = IO_DATA_PATH_WIDTH_8;
493 link->irq.Attributes = 493 link->irq.Attributes =
494 IRQ_TYPE_DYNAMIC_SHARING|IRQ_FIRST_SHARED; 494 IRQ_TYPE_DYNAMIC_SHARING|IRQ_FIRST_SHARED;
495 } 495 }
496 } else { 496 } else {
@@ -543,19 +543,19 @@ static int pcnet_config(struct pcmcia_device *link)
543 manfid = le16_to_cpu(buf[0]); 543 manfid = le16_to_cpu(buf[0]);
544 prodid = le16_to_cpu(buf[1]); 544 prodid = le16_to_cpu(buf[1]);
545 } 545 }
546 546
547 tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY; 547 tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY;
548 tuple.Attributes = 0; 548 tuple.Attributes = 0;
549 CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(link, &tuple)); 549 CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(link, &tuple));
550 while (last_ret == CS_SUCCESS) { 550 while (last_ret == CS_SUCCESS) {
551 cistpl_cftable_entry_t *cfg = &(parse.cftable_entry); 551 cistpl_cftable_entry_t *cfg = &(parse.cftable_entry);
552 cistpl_io_t *io = &(parse.cftable_entry.io); 552 cistpl_io_t *io = &(parse.cftable_entry.io);
553 553
554 if (pcmcia_get_tuple_data(link, &tuple) != 0 || 554 if (pcmcia_get_tuple_data(link, &tuple) != 0 ||
555 pcmcia_parse_tuple(link, &tuple, &parse) != 0 || 555 pcmcia_parse_tuple(link, &tuple, &parse) != 0 ||
556 cfg->index == 0 || cfg->io.nwin == 0) 556 cfg->index == 0 || cfg->io.nwin == 0)
557 goto next_entry; 557 goto next_entry;
558 558
559 link->conf.ConfigIndex = cfg->index; 559 link->conf.ConfigIndex = cfg->index;
560 /* For multifunction cards, by convention, we configure the 560 /* For multifunction cards, by convention, we configure the
561 network function with window 0, and serial with window 1 */ 561 network function with window 0, and serial with window 1 */
@@ -584,7 +584,7 @@ static int pcnet_config(struct pcmcia_device *link)
584 } 584 }
585 585
586 CS_CHECK(RequestIRQ, pcmcia_request_irq(link, &link->irq)); 586 CS_CHECK(RequestIRQ, pcmcia_request_irq(link, &link->irq));
587 587
588 if (link->io.NumPorts2 == 8) { 588 if (link->io.NumPorts2 == 8) {
589 link->conf.Attributes |= CONF_ENABLE_SPKR; 589 link->conf.Attributes |= CONF_ENABLE_SPKR;
590 link->conf.Status = CCSR_AUDIO_ENA; 590 link->conf.Status = CCSR_AUDIO_ENA;
@@ -592,7 +592,7 @@ static int pcnet_config(struct pcmcia_device *link)
592 if ((manfid == MANFID_IBM) && 592 if ((manfid == MANFID_IBM) &&
593 (prodid == PRODID_IBM_HOME_AND_AWAY)) 593 (prodid == PRODID_IBM_HOME_AND_AWAY))
594 link->conf.ConfigIndex |= 0x10; 594 link->conf.ConfigIndex |= 0x10;
595 595
596 CS_CHECK(RequestConfiguration, pcmcia_request_configuration(link, &link->conf)); 596 CS_CHECK(RequestConfiguration, pcmcia_request_configuration(link, &link->conf));
597 dev->irq = link->irq.AssignedIRQ; 597 dev->irq = link->irq.AssignedIRQ;
598 dev->base_addr = link->io.BasePort1; 598 dev->base_addr = link->io.BasePort1;
@@ -614,7 +614,7 @@ static int pcnet_config(struct pcmcia_device *link)
614 hw_info = get_ax88190(link); 614 hw_info = get_ax88190(link);
615 if (hw_info == NULL) 615 if (hw_info == NULL)
616 hw_info = get_hwired(link); 616 hw_info = get_hwired(link);
617 617
618 if (hw_info == NULL) { 618 if (hw_info == NULL) {
619 printk(KERN_NOTICE "pcnet_cs: unable to read hardware net" 619 printk(KERN_NOTICE "pcnet_cs: unable to read hardware net"
620 " address for io base %#3lx\n", dev->base_addr); 620 " address for io base %#3lx\n", dev->base_addr);
@@ -631,7 +631,7 @@ static int pcnet_config(struct pcmcia_device *link)
631 info->flags &= ~USE_BIG_BUF; 631 info->flags &= ~USE_BIG_BUF;
632 if (!use_big_buf) 632 if (!use_big_buf)
633 info->flags &= ~USE_BIG_BUF; 633 info->flags &= ~USE_BIG_BUF;
634 634
635 if (info->flags & USE_BIG_BUF) { 635 if (info->flags & USE_BIG_BUF) {
636 start_pg = SOCKET_START_PG; 636 start_pg = SOCKET_START_PG;
637 stop_pg = SOCKET_STOP_PG; 637 stop_pg = SOCKET_STOP_PG;
@@ -929,7 +929,7 @@ static void set_misc_reg(struct net_device *dev)
929 kio_addr_t nic_base = dev->base_addr; 929 kio_addr_t nic_base = dev->base_addr;
930 pcnet_dev_t *info = PRIV(dev); 930 pcnet_dev_t *info = PRIV(dev);
931 u_char tmp; 931 u_char tmp;
932 932
933 if (info->flags & HAS_MISC_REG) { 933 if (info->flags & HAS_MISC_REG) {
934 tmp = inb_p(nic_base + PCNET_MISC) & ~3; 934 tmp = inb_p(nic_base + PCNET_MISC) & ~3;
935 if (dev->if_port == 2) 935 if (dev->if_port == 2)
@@ -1022,7 +1022,7 @@ static int pcnet_close(struct net_device *dev)
1022 1022
1023 ei_close(dev); 1023 ei_close(dev);
1024 free_irq(dev->irq, dev); 1024 free_irq(dev->irq, dev);
1025 1025
1026 link->open--; 1026 link->open--;
1027 netif_stop_queue(dev); 1027 netif_stop_queue(dev);
1028 del_timer_sync(&info->watchdog); 1028 del_timer_sync(&info->watchdog);
@@ -1054,12 +1054,12 @@ static void pcnet_reset_8390(struct net_device *dev)
1054 udelay(100); 1054 udelay(100);
1055 } 1055 }
1056 outb_p(ENISR_RESET, nic_base + EN0_ISR); /* Ack intr. */ 1056 outb_p(ENISR_RESET, nic_base + EN0_ISR); /* Ack intr. */
1057 1057
1058 if (i == 100) 1058 if (i == 100)
1059 printk(KERN_ERR "%s: pcnet_reset_8390() did not complete.\n", 1059 printk(KERN_ERR "%s: pcnet_reset_8390() did not complete.\n",
1060 dev->name); 1060 dev->name);
1061 set_misc_reg(dev); 1061 set_misc_reg(dev);
1062 1062
1063} /* pcnet_reset_8390 */ 1063} /* pcnet_reset_8390 */
1064 1064
1065/*====================================================================*/ 1065/*====================================================================*/
@@ -1233,7 +1233,7 @@ static void dma_get_8390_hdr(struct net_device *dev,
1233 dev->name, ei_status.dmaing, ei_status.irqlock); 1233 dev->name, ei_status.dmaing, ei_status.irqlock);
1234 return; 1234 return;
1235 } 1235 }
1236 1236
1237 ei_status.dmaing |= 0x01; 1237 ei_status.dmaing |= 0x01;
1238 outb_p(E8390_NODMA+E8390_PAGE0+E8390_START, nic_base + PCNET_CMD); 1238 outb_p(E8390_NODMA+E8390_PAGE0+E8390_START, nic_base + PCNET_CMD);
1239 outb_p(sizeof(struct e8390_pkt_hdr), nic_base + EN0_RCNTLO); 1239 outb_p(sizeof(struct e8390_pkt_hdr), nic_base + EN0_RCNTLO);
@@ -1458,7 +1458,7 @@ static void shmem_get_8390_hdr(struct net_device *dev,
1458 void __iomem *xfer_start = ei_status.mem + (TX_PAGES<<8) 1458 void __iomem *xfer_start = ei_status.mem + (TX_PAGES<<8)
1459 + (ring_page << 8) 1459 + (ring_page << 8)
1460 - (ei_status.rx_start_page << 8); 1460 - (ei_status.rx_start_page << 8);
1461 1461
1462 copyin(hdr, xfer_start, sizeof(struct e8390_pkt_hdr)); 1462 copyin(hdr, xfer_start, sizeof(struct e8390_pkt_hdr));
1463 /* Fix for big endian systems */ 1463 /* Fix for big endian systems */
1464 hdr->count = le16_to_cpu(hdr->count); 1464 hdr->count = le16_to_cpu(hdr->count);
@@ -1473,7 +1473,7 @@ static void shmem_block_input(struct net_device *dev, int count,
1473 unsigned long offset = (TX_PAGES<<8) + ring_offset 1473 unsigned long offset = (TX_PAGES<<8) + ring_offset
1474 - (ei_status.rx_start_page << 8); 1474 - (ei_status.rx_start_page << 8);
1475 char *buf = skb->data; 1475 char *buf = skb->data;
1476 1476
1477 if (offset + count > ei_status.priv) { 1477 if (offset + count > ei_status.priv) {
1478 /* We must wrap the input move. */ 1478 /* We must wrap the input move. */
1479 int semi_count = ei_status.priv - offset; 1479 int semi_count = ei_status.priv - offset;
@@ -1541,7 +1541,7 @@ static int setup_shmem_window(struct pcmcia_device *link, int start_pg,
1541 info->base = NULL; link->win = NULL; 1541 info->base = NULL; link->win = NULL;
1542 goto failed; 1542 goto failed;
1543 } 1543 }
1544 1544
1545 ei_status.mem = info->base + offset; 1545 ei_status.mem = info->base + offset;
1546 ei_status.priv = req.Size; 1546 ei_status.priv = req.Size;
1547 dev->mem_start = (u_long)ei_status.mem; 1547 dev->mem_start = (u_long)ei_status.mem;
@@ -1768,6 +1768,8 @@ static struct pcmcia_device_id pcnet_ids[] = {
1768 PCMCIA_DEVICE_CIS_PROD_ID12("NDC", "Ethernet", 0x01c43ae1, 0x00b2e941, "NE2K.cis"), 1768 PCMCIA_DEVICE_CIS_PROD_ID12("NDC", "Ethernet", 0x01c43ae1, 0x00b2e941, "NE2K.cis"),
1769 PCMCIA_DEVICE_CIS_PROD_ID12("PMX ", "PE-200", 0x34f3f1c8, 0x10b59f8c, "PE-200.cis"), 1769 PCMCIA_DEVICE_CIS_PROD_ID12("PMX ", "PE-200", 0x34f3f1c8, 0x10b59f8c, "PE-200.cis"),
1770 PCMCIA_DEVICE_CIS_PROD_ID12("TAMARACK", "Ethernet", 0xcf434fba, 0x00b2e941, "tamarack.cis"), 1770 PCMCIA_DEVICE_CIS_PROD_ID12("TAMARACK", "Ethernet", 0xcf434fba, 0x00b2e941, "tamarack.cis"),
1771 PCMCIA_DEVICE_PROD_ID123("Fast Ethernet", "CF Size PC Card", "1.0",
1772 0xb4be14e3, 0x43ac239b, 0x0877b627),
1771 PCMCIA_DEVICE_NULL 1773 PCMCIA_DEVICE_NULL
1772}; 1774};
1773MODULE_DEVICE_TABLE(pcmcia, pcnet_ids); 1775MODULE_DEVICE_TABLE(pcmcia, pcnet_ids);
diff --git a/drivers/net/phy/Kconfig b/drivers/net/phy/Kconfig
index fa39b944bc46..cda3e53d6917 100644
--- a/drivers/net/phy/Kconfig
+++ b/drivers/net/phy/Kconfig
@@ -45,5 +45,11 @@ config CICADA_PHY
45 ---help--- 45 ---help---
46 Currently supports the cis8204 46 Currently supports the cis8204
47 47
48config SMSC_PHY
49 tristate "Drivers for SMSC PHYs"
50 depends on PHYLIB
51 ---help---
52 Currently supports the LAN83C185 PHY
53
48endmenu 54endmenu
49 55
diff --git a/drivers/net/phy/Makefile b/drivers/net/phy/Makefile
index e4116a5fbb4c..d9614134cc06 100644
--- a/drivers/net/phy/Makefile
+++ b/drivers/net/phy/Makefile
@@ -8,3 +8,4 @@ obj-$(CONFIG_DAVICOM_PHY) += davicom.o
8obj-$(CONFIG_CICADA_PHY) += cicada.o 8obj-$(CONFIG_CICADA_PHY) += cicada.o
9obj-$(CONFIG_LXT_PHY) += lxt.o 9obj-$(CONFIG_LXT_PHY) += lxt.o
10obj-$(CONFIG_QSEMI_PHY) += qsemi.o 10obj-$(CONFIG_QSEMI_PHY) += qsemi.o
11obj-$(CONFIG_SMSC_PHY) += smsc.o
diff --git a/drivers/net/phy/smsc.c b/drivers/net/phy/smsc.c
new file mode 100644
index 000000000000..25e31fb5cb31
--- /dev/null
+++ b/drivers/net/phy/smsc.c
@@ -0,0 +1,101 @@
1/*
2 * drivers/net/phy/smsc.c
3 *
4 * Driver for SMSC PHYs
5 *
6 * Author: Herbert Valerio Riedel
7 *
8 * Copyright (c) 2006 Herbert Valerio Riedel <hvr@gnu.org>
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 */
16
17#include <linux/config.h>
18#include <linux/kernel.h>
19#include <linux/module.h>
20#include <linux/mii.h>
21#include <linux/ethtool.h>
22#include <linux/phy.h>
23#include <linux/netdevice.h>
24
25#define MII_LAN83C185_ISF 29 /* Interrupt Source Flags */
26#define MII_LAN83C185_IM 30 /* Interrupt Mask */
27
28#define MII_LAN83C185_ISF_INT1 (1<<1) /* Auto-Negotiation Page Received */
29#define MII_LAN83C185_ISF_INT2 (1<<2) /* Parallel Detection Fault */
30#define MII_LAN83C185_ISF_INT3 (1<<3) /* Auto-Negotiation LP Ack */
31#define MII_LAN83C185_ISF_INT4 (1<<4) /* Link Down */
32#define MII_LAN83C185_ISF_INT5 (1<<5) /* Remote Fault Detected */
33#define MII_LAN83C185_ISF_INT6 (1<<6) /* Auto-Negotiation complete */
34#define MII_LAN83C185_ISF_INT7 (1<<7) /* ENERGYON */
35
36#define MII_LAN83C185_ISF_INT_ALL (0x0e)
37
38#define MII_LAN83C185_ISF_INT_PHYLIB_EVENTS \
39 (MII_LAN83C185_ISF_INT6 | MII_LAN83C185_ISF_INT4)
40
41
42static int lan83c185_config_intr(struct phy_device *phydev)
43{
44 int rc = phy_write (phydev, MII_LAN83C185_IM,
45 ((PHY_INTERRUPT_ENABLED == phydev->interrupts)
46 ? MII_LAN83C185_ISF_INT_PHYLIB_EVENTS
47 : 0));
48
49 return rc < 0 ? rc : 0;
50}
51
52static int lan83c185_ack_interrupt(struct phy_device *phydev)
53{
54 int rc = phy_read (phydev, MII_LAN83C185_ISF);
55
56 return rc < 0 ? rc : 0;
57}
58
59static int lan83c185_config_init(struct phy_device *phydev)
60{
61 return lan83c185_ack_interrupt (phydev);
62}
63
64
65static struct phy_driver lan83c185_driver = {
66 .phy_id = 0x0007c0a0, /* OUI=0x00800f, Model#=0x0a */
67 .phy_id_mask = 0xfffffff0,
68 .name = "SMSC LAN83C185",
69
70 .features = (PHY_BASIC_FEATURES | SUPPORTED_Pause
71 | SUPPORTED_Asym_Pause),
72 .flags = PHY_HAS_INTERRUPT | PHY_HAS_MAGICANEG,
73
74 /* basic functions */
75 .config_aneg = genphy_config_aneg,
76 .read_status = genphy_read_status,
77 .config_init = lan83c185_config_init,
78
79 /* IRQ related */
80 .ack_interrupt = lan83c185_ack_interrupt,
81 .config_intr = lan83c185_config_intr,
82
83 .driver = { .owner = THIS_MODULE, }
84};
85
86static int __init smsc_init(void)
87{
88 return phy_driver_register (&lan83c185_driver);
89}
90
91static void __exit smsc_exit(void)
92{
93 phy_driver_unregister (&lan83c185_driver);
94}
95
96MODULE_DESCRIPTION("SMSC PHY driver");
97MODULE_AUTHOR("Herbert Valerio Riedel");
98MODULE_LICENSE("GPL");
99
100module_init(smsc_init);
101module_exit(smsc_exit);
diff --git a/drivers/net/r8169.c b/drivers/net/r8169.c
index 0ad3310290f1..9945cc6b8d90 100644
--- a/drivers/net/r8169.c
+++ b/drivers/net/r8169.c
@@ -184,6 +184,7 @@ static const struct {
184 184
185static struct pci_device_id rtl8169_pci_tbl[] = { 185static struct pci_device_id rtl8169_pci_tbl[] = {
186 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8169), }, 186 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8169), },
187 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8129), },
187 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4300), }, 188 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4300), },
188 { PCI_DEVICE(0x16ec, 0x0116), }, 189 { PCI_DEVICE(0x16ec, 0x0116), },
189 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0024, }, 190 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0024, },
diff --git a/drivers/net/s2io-regs.h b/drivers/net/s2io-regs.h
index 00179bc3437f..0ef525899566 100644
--- a/drivers/net/s2io-regs.h
+++ b/drivers/net/s2io-regs.h
@@ -167,6 +167,7 @@ typedef struct _XENA_dev_config {
167 u8 unused4[0x08]; 167 u8 unused4[0x08];
168 168
169 u64 gpio_int_reg; 169 u64 gpio_int_reg;
170#define GPIO_INT_REG_DP_ERR_INT BIT(0)
170#define GPIO_INT_REG_LINK_DOWN BIT(1) 171#define GPIO_INT_REG_LINK_DOWN BIT(1)
171#define GPIO_INT_REG_LINK_UP BIT(2) 172#define GPIO_INT_REG_LINK_UP BIT(2)
172 u64 gpio_int_mask; 173 u64 gpio_int_mask;
@@ -187,7 +188,7 @@ typedef struct _XENA_dev_config {
187/* PIC Control registers */ 188/* PIC Control registers */
188 u64 pic_control; 189 u64 pic_control;
189#define PIC_CNTL_RX_ALARM_MAP_1 BIT(0) 190#define PIC_CNTL_RX_ALARM_MAP_1 BIT(0)
190#define PIC_CNTL_SHARED_SPLITS(n) vBIT(n,11,4) 191#define PIC_CNTL_SHARED_SPLITS(n) vBIT(n,11,5)
191 192
192 u64 swapper_ctrl; 193 u64 swapper_ctrl;
193#define SWAPPER_CTRL_PIF_R_FE BIT(0) 194#define SWAPPER_CTRL_PIF_R_FE BIT(0)
@@ -267,6 +268,21 @@ typedef struct _XENA_dev_config {
267 268
268 /* General Configuration */ 269 /* General Configuration */
269 u64 mdio_control; 270 u64 mdio_control;
271#define MDIO_MMD_INDX_ADDR(val) vBIT(val, 0, 16)
272#define MDIO_MMD_DEV_ADDR(val) vBIT(val, 19, 5)
273#define MDIO_MMD_PMA_DEV_ADDR 0x1
274#define MDIO_MMD_PMD_DEV_ADDR 0x1
275#define MDIO_MMD_WIS_DEV_ADDR 0x2
276#define MDIO_MMD_PCS_DEV_ADDR 0x3
277#define MDIO_MMD_PHYXS_DEV_ADDR 0x4
278#define MDIO_MMS_PRT_ADDR(val) vBIT(val, 27, 5)
279#define MDIO_CTRL_START_TRANS(val) vBIT(val, 56, 4)
280#define MDIO_OP(val) vBIT(val, 60, 2)
281#define MDIO_OP_ADDR_TRANS 0x0
282#define MDIO_OP_WRITE_TRANS 0x1
283#define MDIO_OP_READ_POST_INC_TRANS 0x2
284#define MDIO_OP_READ_TRANS 0x3
285#define MDIO_MDIO_DATA(val) vBIT(val, 32, 16)
270 286
271 u64 dtx_control; 287 u64 dtx_control;
272 288
@@ -284,9 +300,13 @@ typedef struct _XENA_dev_config {
284 u64 gpio_control; 300 u64 gpio_control;
285#define GPIO_CTRL_GPIO_0 BIT(8) 301#define GPIO_CTRL_GPIO_0 BIT(8)
286 u64 misc_control; 302 u64 misc_control;
303#define EXT_REQ_EN BIT(1)
287#define MISC_LINK_STABILITY_PRD(val) vBIT(val,29,3) 304#define MISC_LINK_STABILITY_PRD(val) vBIT(val,29,3)
288 305
289 u8 unused7_1[0x240 - 0x208]; 306 u8 unused7_1[0x230 - 0x208];
307
308 u64 pic_control2;
309 u64 ini_dperr_ctrl;
290 310
291 u64 wreq_split_mask; 311 u64 wreq_split_mask;
292#define WREQ_SPLIT_MASK_SET_MASK(val) vBIT(val, 52, 12) 312#define WREQ_SPLIT_MASK_SET_MASK(val) vBIT(val, 52, 12)
@@ -493,6 +513,7 @@ typedef struct _XENA_dev_config {
493#define PRC_CTRL_NO_SNOOP_DESC BIT(22) 513#define PRC_CTRL_NO_SNOOP_DESC BIT(22)
494#define PRC_CTRL_NO_SNOOP_BUFF BIT(23) 514#define PRC_CTRL_NO_SNOOP_BUFF BIT(23)
495#define PRC_CTRL_BIMODAL_INTERRUPT BIT(37) 515#define PRC_CTRL_BIMODAL_INTERRUPT BIT(37)
516#define PRC_CTRL_GROUP_READS BIT(38)
496#define PRC_CTRL_RXD_BACKOFF_INTERVAL(val) vBIT(val,40,24) 517#define PRC_CTRL_RXD_BACKOFF_INTERVAL(val) vBIT(val,40,24)
497 518
498 u64 prc_alarm_action; 519 u64 prc_alarm_action;
@@ -541,7 +562,12 @@ typedef struct _XENA_dev_config {
541#define RX_PA_CFG_IGNORE_LLC_CTRL BIT(3) 562#define RX_PA_CFG_IGNORE_LLC_CTRL BIT(3)
542#define RX_PA_CFG_IGNORE_L2_ERR BIT(6) 563#define RX_PA_CFG_IGNORE_L2_ERR BIT(6)
543 564
544 u8 unused12[0x700 - 0x1D8]; 565 u64 unused_11_1;
566
567 u64 ring_bump_counter1;
568 u64 ring_bump_counter2;
569
570 u8 unused12[0x700 - 0x1F0];
545 571
546 u64 rxdma_debug_ctrl; 572 u64 rxdma_debug_ctrl;
547 573
diff --git a/drivers/net/s2io.c b/drivers/net/s2io.c
index 79208f434ac1..cac9fdd2e1d5 100644
--- a/drivers/net/s2io.c
+++ b/drivers/net/s2io.c
@@ -26,15 +26,22 @@
26 * 26 *
27 * The module loadable parameters that are supported by the driver and a brief 27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables. 28 * explaination of all the variables.
29 *
29 * rx_ring_num : This can be used to program the number of receive rings used 30 * rx_ring_num : This can be used to program the number of receive rings used
30 * in the driver. 31 * in the driver.
31 * rx_ring_sz: This defines the number of descriptors each ring can have. This 32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
32 * is also an array of size 8. 33 * This is also an array of size 8.
33 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
34 * values are 1, 2 and 3. 35 * values are 1, 2 and 3.
35 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver. 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
36 * tx_fifo_len: This too is an array of 8. Each element defines the number of 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
37 * Tx descriptors that can be associated with each corresponding FIFO. 38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
38 ************************************************************************/ 45 ************************************************************************/
39 46
40#include <linux/config.h> 47#include <linux/config.h>
@@ -70,7 +77,7 @@
70#include "s2io.h" 77#include "s2io.h"
71#include "s2io-regs.h" 78#include "s2io-regs.h"
72 79
73#define DRV_VERSION "2.0.11.2" 80#define DRV_VERSION "2.0.14.2"
74 81
75/* S2io Driver name & version. */ 82/* S2io Driver name & version. */
76static char s2io_driver_name[] = "Neterion"; 83static char s2io_driver_name[] = "Neterion";
@@ -106,18 +113,14 @@ static inline int RXD_IS_UP2DT(RxD_t *rxdp)
106#define LOW 2 113#define LOW 2
107static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring) 114static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
108{ 115{
109 int level = 0;
110 mac_info_t *mac_control; 116 mac_info_t *mac_control;
111 117
112 mac_control = &sp->mac_control; 118 mac_control = &sp->mac_control;
113 if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16) { 119 if (rxb_size <= rxd_count[sp->rxd_mode])
114 level = LOW; 120 return PANIC;
115 if (rxb_size <= rxd_count[sp->rxd_mode]) { 121 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
116 level = PANIC; 122 return LOW;
117 } 123 return 0;
118 }
119
120 return level;
121} 124}
122 125
123/* Ethtool related variables and Macros. */ 126/* Ethtool related variables and Macros. */
@@ -136,7 +139,11 @@ static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
136 {"tmac_mcst_frms"}, 139 {"tmac_mcst_frms"},
137 {"tmac_bcst_frms"}, 140 {"tmac_bcst_frms"},
138 {"tmac_pause_ctrl_frms"}, 141 {"tmac_pause_ctrl_frms"},
142 {"tmac_ttl_octets"},
143 {"tmac_ucst_frms"},
144 {"tmac_nucst_frms"},
139 {"tmac_any_err_frms"}, 145 {"tmac_any_err_frms"},
146 {"tmac_ttl_less_fb_octets"},
140 {"tmac_vld_ip_octets"}, 147 {"tmac_vld_ip_octets"},
141 {"tmac_vld_ip"}, 148 {"tmac_vld_ip"},
142 {"tmac_drop_ip"}, 149 {"tmac_drop_ip"},
@@ -151,13 +158,27 @@ static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
151 {"rmac_vld_mcst_frms"}, 158 {"rmac_vld_mcst_frms"},
152 {"rmac_vld_bcst_frms"}, 159 {"rmac_vld_bcst_frms"},
153 {"rmac_in_rng_len_err_frms"}, 160 {"rmac_in_rng_len_err_frms"},
161 {"rmac_out_rng_len_err_frms"},
154 {"rmac_long_frms"}, 162 {"rmac_long_frms"},
155 {"rmac_pause_ctrl_frms"}, 163 {"rmac_pause_ctrl_frms"},
164 {"rmac_unsup_ctrl_frms"},
165 {"rmac_ttl_octets"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
156 {"rmac_discarded_frms"}, 168 {"rmac_discarded_frms"},
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
171 {"rmac_ttl_frms"},
157 {"rmac_usized_frms"}, 172 {"rmac_usized_frms"},
158 {"rmac_osized_frms"}, 173 {"rmac_osized_frms"},
159 {"rmac_frag_frms"}, 174 {"rmac_frag_frms"},
160 {"rmac_jabber_frms"}, 175 {"rmac_jabber_frms"},
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
161 {"rmac_ip"}, 182 {"rmac_ip"},
162 {"rmac_ip_octets"}, 183 {"rmac_ip_octets"},
163 {"rmac_hdr_err_ip"}, 184 {"rmac_hdr_err_ip"},
@@ -166,12 +187,82 @@ static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
166 {"rmac_tcp"}, 187 {"rmac_tcp"},
167 {"rmac_udp"}, 188 {"rmac_udp"},
168 {"rmac_err_drp_udp"}, 189 {"rmac_err_drp_udp"},
190 {"rmac_xgmii_err_sym"},
191 {"rmac_frms_q0"},
192 {"rmac_frms_q1"},
193 {"rmac_frms_q2"},
194 {"rmac_frms_q3"},
195 {"rmac_frms_q4"},
196 {"rmac_frms_q5"},
197 {"rmac_frms_q6"},
198 {"rmac_frms_q7"},
199 {"rmac_full_q0"},
200 {"rmac_full_q1"},
201 {"rmac_full_q2"},
202 {"rmac_full_q3"},
203 {"rmac_full_q4"},
204 {"rmac_full_q5"},
205 {"rmac_full_q6"},
206 {"rmac_full_q7"},
169 {"rmac_pause_cnt"}, 207 {"rmac_pause_cnt"},
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
170 {"rmac_accepted_ip"}, 210 {"rmac_accepted_ip"},
171 {"rmac_err_tcp"}, 211 {"rmac_err_tcp"},
212 {"rd_req_cnt"},
213 {"new_rd_req_cnt"},
214 {"new_rd_req_rtry_cnt"},
215 {"rd_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
217 {"wr_req_cnt"},
218 {"new_wr_req_cnt"},
219 {"new_wr_req_rtry_cnt"},
220 {"wr_rtry_cnt"},
221 {"wr_disc_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
223 {"txp_wr_cnt"},
224 {"txd_rd_cnt"},
225 {"txd_wr_cnt"},
226 {"rxd_rd_cnt"},
227 {"rxd_wr_cnt"},
228 {"txf_rd_cnt"},
229 {"rxf_wr_cnt"},
230 {"rmac_ttl_1519_4095_frms"},
231 {"rmac_ttl_4096_8191_frms"},
232 {"rmac_ttl_8192_max_frms"},
233 {"rmac_ttl_gt_max_frms"},
234 {"rmac_osized_alt_frms"},
235 {"rmac_jabber_alt_frms"},
236 {"rmac_gt_max_alt_frms"},
237 {"rmac_vlan_frms"},
238 {"rmac_len_discard"},
239 {"rmac_fcs_discard"},
240 {"rmac_pf_discard"},
241 {"rmac_da_discard"},
242 {"rmac_red_discard"},
243 {"rmac_rts_discard"},
244 {"rmac_ingm_full_discard"},
245 {"link_fault_cnt"},
172 {"\n DRIVER STATISTICS"}, 246 {"\n DRIVER STATISTICS"},
173 {"single_bit_ecc_errs"}, 247 {"single_bit_ecc_errs"},
174 {"double_bit_ecc_errs"}, 248 {"double_bit_ecc_errs"},
249 {"parity_err_cnt"},
250 {"serious_err_cnt"},
251 {"soft_reset_cnt"},
252 {"fifo_full_cnt"},
253 {"ring_full_cnt"},
254 ("alarm_transceiver_temp_high"),
255 ("alarm_transceiver_temp_low"),
256 ("alarm_laser_bias_current_high"),
257 ("alarm_laser_bias_current_low"),
258 ("alarm_laser_output_power_high"),
259 ("alarm_laser_output_power_low"),
260 ("warn_transceiver_temp_high"),
261 ("warn_transceiver_temp_low"),
262 ("warn_laser_bias_current_high"),
263 ("warn_laser_bias_current_low"),
264 ("warn_laser_output_power_high"),
265 ("warn_laser_output_power_low"),
175 ("lro_aggregated_pkts"), 266 ("lro_aggregated_pkts"),
176 ("lro_flush_both_count"), 267 ("lro_flush_both_count"),
177 ("lro_out_of_sequence_pkts"), 268 ("lro_out_of_sequence_pkts"),
@@ -220,9 +311,7 @@ static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
220 * the XAUI. 311 * the XAUI.
221 */ 312 */
222 313
223#define SWITCH_SIGN 0xA5A5A5A5A5A5A5A5ULL
224#define END_SIGN 0x0 314#define END_SIGN 0x0
225
226static const u64 herc_act_dtx_cfg[] = { 315static const u64 herc_act_dtx_cfg[] = {
227 /* Set address */ 316 /* Set address */
228 0x8000051536750000ULL, 0x80000515367500E0ULL, 317 0x8000051536750000ULL, 0x80000515367500E0ULL,
@@ -244,37 +333,19 @@ static const u64 herc_act_dtx_cfg[] = {
244 END_SIGN 333 END_SIGN
245}; 334};
246 335
247static const u64 xena_mdio_cfg[] = {
248 /* Reset PMA PLL */
249 0xC001010000000000ULL, 0xC0010100000000E0ULL,
250 0xC0010100008000E4ULL,
251 /* Remove Reset from PMA PLL */
252 0xC001010000000000ULL, 0xC0010100000000E0ULL,
253 0xC0010100000000E4ULL,
254 END_SIGN
255};
256
257static const u64 xena_dtx_cfg[] = { 336static const u64 xena_dtx_cfg[] = {
337 /* Set address */
258 0x8000051500000000ULL, 0x80000515000000E0ULL, 338 0x8000051500000000ULL, 0x80000515000000E0ULL,
259 0x80000515D93500E4ULL, 0x8001051500000000ULL, 339 /* Write data */
260 0x80010515000000E0ULL, 0x80010515001E00E4ULL, 340 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
261 0x8002051500000000ULL, 0x80020515000000E0ULL, 341 /* Set address */
262 0x80020515F21000E4ULL, 342 0x8001051500000000ULL, 0x80010515000000E0ULL,
263 /* Set PADLOOPBACKN */ 343 /* Write data */
264 0x8002051500000000ULL, 0x80020515000000E0ULL, 344 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
265 0x80020515B20000E4ULL, 0x8003051500000000ULL, 345 /* Set address */
266 0x80030515000000E0ULL, 0x80030515B20000E4ULL,
267 0x8004051500000000ULL, 0x80040515000000E0ULL,
268 0x80040515B20000E4ULL, 0x8005051500000000ULL,
269 0x80050515000000E0ULL, 0x80050515B20000E4ULL,
270 SWITCH_SIGN,
271 /* Remove PADLOOPBACKN */
272 0x8002051500000000ULL, 0x80020515000000E0ULL, 346 0x8002051500000000ULL, 0x80020515000000E0ULL,
273 0x80020515F20000E4ULL, 0x8003051500000000ULL, 347 /* Write data */
274 0x80030515000000E0ULL, 0x80030515F20000E4ULL, 348 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
275 0x8004051500000000ULL, 0x80040515000000E0ULL,
276 0x80040515F20000E4ULL, 0x8005051500000000ULL,
277 0x80050515000000E0ULL, 0x80050515F20000E4ULL,
278 END_SIGN 349 END_SIGN
279}; 350};
280 351
@@ -303,15 +374,15 @@ static const u64 fix_mac[] = {
303/* Module Loadable parameters. */ 374/* Module Loadable parameters. */
304static unsigned int tx_fifo_num = 1; 375static unsigned int tx_fifo_num = 1;
305static unsigned int tx_fifo_len[MAX_TX_FIFOS] = 376static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
306 {[0 ...(MAX_TX_FIFOS - 1)] = 0 }; 377 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
307static unsigned int rx_ring_num = 1; 378static unsigned int rx_ring_num = 1;
308static unsigned int rx_ring_sz[MAX_RX_RINGS] = 379static unsigned int rx_ring_sz[MAX_RX_RINGS] =
309 {[0 ...(MAX_RX_RINGS - 1)] = 0 }; 380 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
310static unsigned int rts_frm_len[MAX_RX_RINGS] = 381static unsigned int rts_frm_len[MAX_RX_RINGS] =
311 {[0 ...(MAX_RX_RINGS - 1)] = 0 }; 382 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
312static unsigned int rx_ring_mode = 1; 383static unsigned int rx_ring_mode = 1;
313static unsigned int use_continuous_tx_intrs = 1; 384static unsigned int use_continuous_tx_intrs = 1;
314static unsigned int rmac_pause_time = 65535; 385static unsigned int rmac_pause_time = 0x100;
315static unsigned int mc_pause_threshold_q0q3 = 187; 386static unsigned int mc_pause_threshold_q0q3 = 187;
316static unsigned int mc_pause_threshold_q4q7 = 187; 387static unsigned int mc_pause_threshold_q4q7 = 187;
317static unsigned int shared_splits; 388static unsigned int shared_splits;
@@ -549,11 +620,6 @@ static int init_shared_mem(struct s2io_nic *nic)
549 rx_blocks->block_dma_addr + 620 rx_blocks->block_dma_addr +
550 (rxd_size[nic->rxd_mode] * l); 621 (rxd_size[nic->rxd_mode] * l);
551 } 622 }
552
553 mac_control->rings[i].rx_blocks[j].block_virt_addr =
554 tmp_v_addr;
555 mac_control->rings[i].rx_blocks[j].block_dma_addr =
556 tmp_p_addr;
557 } 623 }
558 /* Interlinking all Rx Blocks */ 624 /* Interlinking all Rx Blocks */
559 for (j = 0; j < blk_cnt; j++) { 625 for (j = 0; j < blk_cnt; j++) {
@@ -772,7 +838,21 @@ static int s2io_verify_pci_mode(nic_t *nic)
772 return mode; 838 return mode;
773} 839}
774 840
841#define NEC_VENID 0x1033
842#define NEC_DEVID 0x0125
843static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
844{
845 struct pci_dev *tdev = NULL;
846 while ((tdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
847 if ((tdev->vendor == NEC_VENID) && (tdev->device == NEC_DEVID)){
848 if (tdev->bus == s2io_pdev->bus->parent)
849 return 1;
850 }
851 }
852 return 0;
853}
775 854
855static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
776/** 856/**
777 * s2io_print_pci_mode - 857 * s2io_print_pci_mode -
778 */ 858 */
@@ -789,6 +869,14 @@ static int s2io_print_pci_mode(nic_t *nic)
789 if ( val64 & PCI_MODE_UNKNOWN_MODE) 869 if ( val64 & PCI_MODE_UNKNOWN_MODE)
790 return -1; /* Unknown PCI mode */ 870 return -1; /* Unknown PCI mode */
791 871
872 config->bus_speed = bus_speed[mode];
873
874 if (s2io_on_nec_bridge(nic->pdev)) {
875 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
876 nic->dev->name);
877 return mode;
878 }
879
792 if (val64 & PCI_MODE_32_BITS) { 880 if (val64 & PCI_MODE_32_BITS) {
793 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name); 881 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
794 } else { 882 } else {
@@ -798,35 +886,27 @@ static int s2io_print_pci_mode(nic_t *nic)
798 switch(mode) { 886 switch(mode) {
799 case PCI_MODE_PCI_33: 887 case PCI_MODE_PCI_33:
800 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n"); 888 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
801 config->bus_speed = 33;
802 break; 889 break;
803 case PCI_MODE_PCI_66: 890 case PCI_MODE_PCI_66:
804 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n"); 891 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
805 config->bus_speed = 133;
806 break; 892 break;
807 case PCI_MODE_PCIX_M1_66: 893 case PCI_MODE_PCIX_M1_66:
808 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n"); 894 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
809 config->bus_speed = 133; /* Herc doubles the clock rate */
810 break; 895 break;
811 case PCI_MODE_PCIX_M1_100: 896 case PCI_MODE_PCIX_M1_100:
812 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n"); 897 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
813 config->bus_speed = 200;
814 break; 898 break;
815 case PCI_MODE_PCIX_M1_133: 899 case PCI_MODE_PCIX_M1_133:
816 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n"); 900 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
817 config->bus_speed = 266;
818 break; 901 break;
819 case PCI_MODE_PCIX_M2_66: 902 case PCI_MODE_PCIX_M2_66:
820 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n"); 903 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
821 config->bus_speed = 133;
822 break; 904 break;
823 case PCI_MODE_PCIX_M2_100: 905 case PCI_MODE_PCIX_M2_100:
824 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n"); 906 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
825 config->bus_speed = 200;
826 break; 907 break;
827 case PCI_MODE_PCIX_M2_133: 908 case PCI_MODE_PCIX_M2_133:
828 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n"); 909 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
829 config->bus_speed = 266;
830 break; 910 break;
831 default: 911 default:
832 return -1; /* Unsupported bus speed */ 912 return -1; /* Unsupported bus speed */
@@ -854,7 +934,7 @@ static int init_nic(struct s2io_nic *nic)
854 int i, j; 934 int i, j;
855 mac_info_t *mac_control; 935 mac_info_t *mac_control;
856 struct config_param *config; 936 struct config_param *config;
857 int mdio_cnt = 0, dtx_cnt = 0; 937 int dtx_cnt = 0;
858 unsigned long long mem_share; 938 unsigned long long mem_share;
859 int mem_size; 939 int mem_size;
860 940
@@ -901,20 +981,6 @@ static int init_nic(struct s2io_nic *nic)
901 val64 = dev->mtu; 981 val64 = dev->mtu;
902 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); 982 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
903 983
904 /*
905 * Configuring the XAUI Interface of Xena.
906 * ***************************************
907 * To Configure the Xena's XAUI, one has to write a series
908 * of 64 bit values into two registers in a particular
909 * sequence. Hence a macro 'SWITCH_SIGN' has been defined
910 * which will be defined in the array of configuration values
911 * (xena_dtx_cfg & xena_mdio_cfg) at appropriate places
912 * to switch writing from one regsiter to another. We continue
913 * writing these values until we encounter the 'END_SIGN' macro.
914 * For example, After making a series of 21 writes into
915 * dtx_control register the 'SWITCH_SIGN' appears and hence we
916 * start writing into mdio_control until we encounter END_SIGN.
917 */
918 if (nic->device_type & XFRAME_II_DEVICE) { 984 if (nic->device_type & XFRAME_II_DEVICE) {
919 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) { 985 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
920 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt], 986 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
@@ -924,35 +990,11 @@ static int init_nic(struct s2io_nic *nic)
924 dtx_cnt++; 990 dtx_cnt++;
925 } 991 }
926 } else { 992 } else {
927 while (1) { 993 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
928 dtx_cfg: 994 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
929 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) { 995 &bar0->dtx_control, UF);
930 if (xena_dtx_cfg[dtx_cnt] == SWITCH_SIGN) { 996 val64 = readq(&bar0->dtx_control);
931 dtx_cnt++; 997 dtx_cnt++;
932 goto mdio_cfg;
933 }
934 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
935 &bar0->dtx_control, UF);
936 val64 = readq(&bar0->dtx_control);
937 dtx_cnt++;
938 }
939 mdio_cfg:
940 while (xena_mdio_cfg[mdio_cnt] != END_SIGN) {
941 if (xena_mdio_cfg[mdio_cnt] == SWITCH_SIGN) {
942 mdio_cnt++;
943 goto dtx_cfg;
944 }
945 SPECIAL_REG_WRITE(xena_mdio_cfg[mdio_cnt],
946 &bar0->mdio_control, UF);
947 val64 = readq(&bar0->mdio_control);
948 mdio_cnt++;
949 }
950 if ((xena_dtx_cfg[dtx_cnt] == END_SIGN) &&
951 (xena_mdio_cfg[mdio_cnt] == END_SIGN)) {
952 break;
953 } else {
954 goto dtx_cfg;
955 }
956 } 998 }
957 } 999 }
958 1000
@@ -994,11 +1036,6 @@ static int init_nic(struct s2io_nic *nic)
994 } 1036 }
995 } 1037 }
996 1038
997 /* Enable Tx FIFO partition 0. */
998 val64 = readq(&bar0->tx_fifo_partition_0);
999 val64 |= BIT(0); /* To enable the FIFO partition. */
1000 writeq(val64, &bar0->tx_fifo_partition_0);
1001
1002 /* 1039 /*
1003 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug 1040 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1004 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE. 1041 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
@@ -1177,6 +1214,11 @@ static int init_nic(struct s2io_nic *nic)
1177 break; 1214 break;
1178 } 1215 }
1179 1216
1217 /* Enable Tx FIFO partition 0. */
1218 val64 = readq(&bar0->tx_fifo_partition_0);
1219 val64 |= (TX_FIFO_PARTITION_EN);
1220 writeq(val64, &bar0->tx_fifo_partition_0);
1221
1180 /* Filling the Rx round robin registers as per the 1222 /* Filling the Rx round robin registers as per the
1181 * number of Rings and steering based on QoS. 1223 * number of Rings and steering based on QoS.
1182 */ 1224 */
@@ -1545,19 +1587,26 @@ static int init_nic(struct s2io_nic *nic)
1545 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits); 1587 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1546 writeq(val64, &bar0->pic_control); 1588 writeq(val64, &bar0->pic_control);
1547 1589
1590 if (nic->config.bus_speed == 266) {
1591 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1592 writeq(0x0, &bar0->read_retry_delay);
1593 writeq(0x0, &bar0->write_retry_delay);
1594 }
1595
1548 /* 1596 /*
1549 * Programming the Herc to split every write transaction 1597 * Programming the Herc to split every write transaction
1550 * that does not start on an ADB to reduce disconnects. 1598 * that does not start on an ADB to reduce disconnects.
1551 */ 1599 */
1552 if (nic->device_type == XFRAME_II_DEVICE) { 1600 if (nic->device_type == XFRAME_II_DEVICE) {
1553 val64 = WREQ_SPLIT_MASK_SET_MASK(255); 1601 val64 = EXT_REQ_EN | MISC_LINK_STABILITY_PRD(3);
1554 writeq(val64, &bar0->wreq_split_mask);
1555 }
1556
1557 /* Setting Link stability period to 64 ms */
1558 if (nic->device_type == XFRAME_II_DEVICE) {
1559 val64 = MISC_LINK_STABILITY_PRD(3);
1560 writeq(val64, &bar0->misc_control); 1602 writeq(val64, &bar0->misc_control);
1603 val64 = readq(&bar0->pic_control2);
1604 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1605 writeq(val64, &bar0->pic_control2);
1606 }
1607 if (strstr(nic->product_name, "CX4")) {
1608 val64 = TMAC_AVG_IPG(0x17);
1609 writeq(val64, &bar0->tmac_avg_ipg);
1561 } 1610 }
1562 1611
1563 return SUCCESS; 1612 return SUCCESS;
@@ -1948,6 +1997,10 @@ static int start_nic(struct s2io_nic *nic)
1948 val64 |= PRC_CTRL_RC_ENABLED; 1997 val64 |= PRC_CTRL_RC_ENABLED;
1949 else 1998 else
1950 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3; 1999 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2000 if (nic->device_type == XFRAME_II_DEVICE)
2001 val64 |= PRC_CTRL_GROUP_READS;
2002 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2003 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1951 writeq(val64, &bar0->prc_ctrl_n[i]); 2004 writeq(val64, &bar0->prc_ctrl_n[i]);
1952 } 2005 }
1953 2006
@@ -2018,6 +2071,13 @@ static int start_nic(struct s2io_nic *nic)
2018 val64 |= ADAPTER_EOI_TX_ON; 2071 val64 |= ADAPTER_EOI_TX_ON;
2019 writeq(val64, &bar0->adapter_control); 2072 writeq(val64, &bar0->adapter_control);
2020 2073
2074 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2075 /*
2076 * Dont see link state interrupts initally on some switches,
2077 * so directly scheduling the link state task here.
2078 */
2079 schedule_work(&nic->set_link_task);
2080 }
2021 /* SXE-002: Initialize link and activity LED */ 2081 /* SXE-002: Initialize link and activity LED */
2022 subid = nic->pdev->subsystem_device; 2082 subid = nic->pdev->subsystem_device;
2023 if (((subid & 0xFF) >= 0x07) && 2083 if (((subid & 0xFF) >= 0x07) &&
@@ -2029,12 +2089,6 @@ static int start_nic(struct s2io_nic *nic)
2029 writeq(val64, (void __iomem *)bar0 + 0x2700); 2089 writeq(val64, (void __iomem *)bar0 + 0x2700);
2030 } 2090 }
2031 2091
2032 /*
2033 * Don't see link state interrupts on certain switches, so
2034 * directly scheduling a link state task from here.
2035 */
2036 schedule_work(&nic->set_link_task);
2037
2038 return SUCCESS; 2092 return SUCCESS;
2039} 2093}
2040/** 2094/**
@@ -2134,7 +2188,7 @@ static void stop_nic(struct s2io_nic *nic)
2134{ 2188{
2135 XENA_dev_config_t __iomem *bar0 = nic->bar0; 2189 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2136 register u64 val64 = 0; 2190 register u64 val64 = 0;
2137 u16 interruptible, i; 2191 u16 interruptible;
2138 mac_info_t *mac_control; 2192 mac_info_t *mac_control;
2139 struct config_param *config; 2193 struct config_param *config;
2140 2194
@@ -2147,12 +2201,10 @@ static void stop_nic(struct s2io_nic *nic)
2147 interruptible |= TX_MAC_INTR | RX_MAC_INTR; 2201 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2148 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS); 2202 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2149 2203
2150 /* Disable PRCs */ 2204 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2151 for (i = 0; i < config->rx_ring_num; i++) { 2205 val64 = readq(&bar0->adapter_control);
2152 val64 = readq(&bar0->prc_ctrl_n[i]); 2206 val64 &= ~(ADAPTER_CNTL_EN);
2153 val64 &= ~((u64) PRC_CTRL_RC_ENABLED); 2207 writeq(val64, &bar0->adapter_control);
2154 writeq(val64, &bar0->prc_ctrl_n[i]);
2155 }
2156} 2208}
2157 2209
2158static int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb) 2210static int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
@@ -2231,13 +2283,12 @@ static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2231 alloc_cnt = mac_control->rings[ring_no].pkt_cnt - 2283 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2232 atomic_read(&nic->rx_bufs_left[ring_no]); 2284 atomic_read(&nic->rx_bufs_left[ring_no]);
2233 2285
2286 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2287 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2234 while (alloc_tab < alloc_cnt) { 2288 while (alloc_tab < alloc_cnt) {
2235 block_no = mac_control->rings[ring_no].rx_curr_put_info. 2289 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2236 block_index; 2290 block_index;
2237 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.
2238 block_index;
2239 off = mac_control->rings[ring_no].rx_curr_put_info.offset; 2291 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2240 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2241 2292
2242 rxdp = mac_control->rings[ring_no]. 2293 rxdp = mac_control->rings[ring_no].
2243 rx_blocks[block_no].rxds[off].virt_addr; 2294 rx_blocks[block_no].rxds[off].virt_addr;
@@ -2307,9 +2358,9 @@ static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2307 memset(rxdp, 0, sizeof(RxD1_t)); 2358 memset(rxdp, 0, sizeof(RxD1_t));
2308 skb_reserve(skb, NET_IP_ALIGN); 2359 skb_reserve(skb, NET_IP_ALIGN);
2309 ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single 2360 ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
2310 (nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE); 2361 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2311 rxdp->Control_2 &= (~MASK_BUFFER0_SIZE_1); 2362 PCI_DMA_FROMDEVICE);
2312 rxdp->Control_2 |= SET_BUFFER0_SIZE_1(size); 2363 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2313 2364
2314 } else if (nic->rxd_mode >= RXD_MODE_3A) { 2365 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2315 /* 2366 /*
@@ -2516,7 +2567,7 @@ static int s2io_poll(struct net_device *dev, int *budget)
2516 mac_info_t *mac_control; 2567 mac_info_t *mac_control;
2517 struct config_param *config; 2568 struct config_param *config;
2518 XENA_dev_config_t __iomem *bar0 = nic->bar0; 2569 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2519 u64 val64; 2570 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2520 int i; 2571 int i;
2521 2572
2522 atomic_inc(&nic->isr_cnt); 2573 atomic_inc(&nic->isr_cnt);
@@ -2528,8 +2579,8 @@ static int s2io_poll(struct net_device *dev, int *budget)
2528 nic->pkts_to_process = dev->quota; 2579 nic->pkts_to_process = dev->quota;
2529 org_pkts_to_process = nic->pkts_to_process; 2580 org_pkts_to_process = nic->pkts_to_process;
2530 2581
2531 val64 = readq(&bar0->rx_traffic_int);
2532 writeq(val64, &bar0->rx_traffic_int); 2582 writeq(val64, &bar0->rx_traffic_int);
2583 val64 = readl(&bar0->rx_traffic_int);
2533 2584
2534 for (i = 0; i < config->rx_ring_num; i++) { 2585 for (i = 0; i < config->rx_ring_num; i++) {
2535 rx_intr_handler(&mac_control->rings[i]); 2586 rx_intr_handler(&mac_control->rings[i]);
@@ -2554,7 +2605,8 @@ static int s2io_poll(struct net_device *dev, int *budget)
2554 } 2605 }
2555 } 2606 }
2556 /* Re enable the Rx interrupts. */ 2607 /* Re enable the Rx interrupts. */
2557 en_dis_able_nic_intrs(nic, RX_TRAFFIC_INTR, ENABLE_INTRS); 2608 writeq(0x0, &bar0->rx_traffic_mask);
2609 val64 = readl(&bar0->rx_traffic_mask);
2558 atomic_dec(&nic->isr_cnt); 2610 atomic_dec(&nic->isr_cnt);
2559 return 0; 2611 return 0;
2560 2612
@@ -2666,6 +2718,7 @@ static void rx_intr_handler(ring_info_t *ring_data)
2666 ((RxD3_t*)rxdp)->Buffer2_ptr, 2718 ((RxD3_t*)rxdp)->Buffer2_ptr,
2667 dev->mtu, PCI_DMA_FROMDEVICE); 2719 dev->mtu, PCI_DMA_FROMDEVICE);
2668 } 2720 }
2721 prefetch(skb->data);
2669 rx_osm_handler(ring_data, rxdp); 2722 rx_osm_handler(ring_data, rxdp);
2670 get_info.offset++; 2723 get_info.offset++;
2671 ring_data->rx_curr_get_info.offset = get_info.offset; 2724 ring_data->rx_curr_get_info.offset = get_info.offset;
@@ -2737,6 +2790,10 @@ static void tx_intr_handler(fifo_info_t *fifo_data)
2737 if (txdlp->Control_1 & TXD_T_CODE) { 2790 if (txdlp->Control_1 & TXD_T_CODE) {
2738 unsigned long long err; 2791 unsigned long long err;
2739 err = txdlp->Control_1 & TXD_T_CODE; 2792 err = txdlp->Control_1 & TXD_T_CODE;
2793 if (err & 0x1) {
2794 nic->mac_control.stats_info->sw_stat.
2795 parity_err_cnt++;
2796 }
2740 if ((err >> 48) == 0xA) { 2797 if ((err >> 48) == 0xA) {
2741 DBG_PRINT(TX_DBG, "TxD returned due \ 2798 DBG_PRINT(TX_DBG, "TxD returned due \
2742to loss of link\n"); 2799to loss of link\n");
@@ -2760,7 +2817,8 @@ to loss of link\n");
2760 dev_kfree_skb_irq(skb); 2817 dev_kfree_skb_irq(skb);
2761 2818
2762 get_info.offset++; 2819 get_info.offset++;
2763 get_info.offset %= get_info.fifo_len + 1; 2820 if (get_info.offset == get_info.fifo_len + 1)
2821 get_info.offset = 0;
2764 txdlp = (TxD_t *) fifo_data->list_info 2822 txdlp = (TxD_t *) fifo_data->list_info
2765 [get_info.offset].list_virt_addr; 2823 [get_info.offset].list_virt_addr;
2766 fifo_data->tx_curr_get_info.offset = 2824 fifo_data->tx_curr_get_info.offset =
@@ -2774,6 +2832,256 @@ to loss of link\n");
2774} 2832}
2775 2833
2776/** 2834/**
2835 * s2io_mdio_write - Function to write in to MDIO registers
2836 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2837 * @addr : address value
2838 * @value : data value
2839 * @dev : pointer to net_device structure
2840 * Description:
2841 * This function is used to write values to the MDIO registers
2842 * NONE
2843 */
2844static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2845{
2846 u64 val64 = 0x0;
2847 nic_t *sp = dev->priv;
2848 XENA_dev_config_t *bar0 = (XENA_dev_config_t *)sp->bar0;
2849
2850 //address transaction
2851 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2852 | MDIO_MMD_DEV_ADDR(mmd_type)
2853 | MDIO_MMS_PRT_ADDR(0x0);
2854 writeq(val64, &bar0->mdio_control);
2855 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2856 writeq(val64, &bar0->mdio_control);
2857 udelay(100);
2858
2859 //Data transaction
2860 val64 = 0x0;
2861 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2862 | MDIO_MMD_DEV_ADDR(mmd_type)
2863 | MDIO_MMS_PRT_ADDR(0x0)
2864 | MDIO_MDIO_DATA(value)
2865 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2866 writeq(val64, &bar0->mdio_control);
2867 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2868 writeq(val64, &bar0->mdio_control);
2869 udelay(100);
2870
2871 val64 = 0x0;
2872 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2873 | MDIO_MMD_DEV_ADDR(mmd_type)
2874 | MDIO_MMS_PRT_ADDR(0x0)
2875 | MDIO_OP(MDIO_OP_READ_TRANS);
2876 writeq(val64, &bar0->mdio_control);
2877 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2878 writeq(val64, &bar0->mdio_control);
2879 udelay(100);
2880
2881}
2882
2883/**
2884 * s2io_mdio_read - Function to write in to MDIO registers
2885 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2886 * @addr : address value
2887 * @dev : pointer to net_device structure
2888 * Description:
2889 * This function is used to read values to the MDIO registers
2890 * NONE
2891 */
2892static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2893{
2894 u64 val64 = 0x0;
2895 u64 rval64 = 0x0;
2896 nic_t *sp = dev->priv;
2897 XENA_dev_config_t *bar0 = (XENA_dev_config_t *)sp->bar0;
2898
2899 /* address transaction */
2900 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2901 | MDIO_MMD_DEV_ADDR(mmd_type)
2902 | MDIO_MMS_PRT_ADDR(0x0);
2903 writeq(val64, &bar0->mdio_control);
2904 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2905 writeq(val64, &bar0->mdio_control);
2906 udelay(100);
2907
2908 /* Data transaction */
2909 val64 = 0x0;
2910 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2911 | MDIO_MMD_DEV_ADDR(mmd_type)
2912 | MDIO_MMS_PRT_ADDR(0x0)
2913 | MDIO_OP(MDIO_OP_READ_TRANS);
2914 writeq(val64, &bar0->mdio_control);
2915 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2916 writeq(val64, &bar0->mdio_control);
2917 udelay(100);
2918
2919 /* Read the value from regs */
2920 rval64 = readq(&bar0->mdio_control);
2921 rval64 = rval64 & 0xFFFF0000;
2922 rval64 = rval64 >> 16;
2923 return rval64;
2924}
2925/**
2926 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
2927 * @counter : couter value to be updated
2928 * @flag : flag to indicate the status
2929 * @type : counter type
2930 * Description:
2931 * This function is to check the status of the xpak counters value
2932 * NONE
2933 */
2934
2935static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2936{
2937 u64 mask = 0x3;
2938 u64 val64;
2939 int i;
2940 for(i = 0; i <index; i++)
2941 mask = mask << 0x2;
2942
2943 if(flag > 0)
2944 {
2945 *counter = *counter + 1;
2946 val64 = *regs_stat & mask;
2947 val64 = val64 >> (index * 0x2);
2948 val64 = val64 + 1;
2949 if(val64 == 3)
2950 {
2951 switch(type)
2952 {
2953 case 1:
2954 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2955 "service. Excessive temperatures may "
2956 "result in premature transceiver "
2957 "failure \n");
2958 break;
2959 case 2:
2960 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2961 "service Excessive bias currents may "
2962 "indicate imminent laser diode "
2963 "failure \n");
2964 break;
2965 case 3:
2966 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2967 "service Excessive laser output "
2968 "power may saturate far-end "
2969 "receiver\n");
2970 break;
2971 default:
2972 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
2973 "type \n");
2974 }
2975 val64 = 0x0;
2976 }
2977 val64 = val64 << (index * 0x2);
2978 *regs_stat = (*regs_stat & (~mask)) | (val64);
2979
2980 } else {
2981 *regs_stat = *regs_stat & (~mask);
2982 }
2983}
2984
2985/**
2986 * s2io_updt_xpak_counter - Function to update the xpak counters
2987 * @dev : pointer to net_device struct
2988 * Description:
2989 * This function is to upate the status of the xpak counters value
2990 * NONE
2991 */
2992static void s2io_updt_xpak_counter(struct net_device *dev)
2993{
2994 u16 flag = 0x0;
2995 u16 type = 0x0;
2996 u16 val16 = 0x0;
2997 u64 val64 = 0x0;
2998 u64 addr = 0x0;
2999
3000 nic_t *sp = dev->priv;
3001 StatInfo_t *stat_info = sp->mac_control.stats_info;
3002
3003 /* Check the communication with the MDIO slave */
3004 addr = 0x0000;
3005 val64 = 0x0;
3006 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3007 if((val64 == 0xFFFF) || (val64 == 0x0000))
3008 {
3009 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3010 "Returned %llx\n", (unsigned long long)val64);
3011 return;
3012 }
3013
3014 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3015 if(val64 != 0x2040)
3016 {
3017 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3018 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3019 (unsigned long long)val64);
3020 return;
3021 }
3022
3023 /* Loading the DOM register to MDIO register */
3024 addr = 0xA100;
3025 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3026 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3027
3028 /* Reading the Alarm flags */
3029 addr = 0xA070;
3030 val64 = 0x0;
3031 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3032
3033 flag = CHECKBIT(val64, 0x7);
3034 type = 1;
3035 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3036 &stat_info->xpak_stat.xpak_regs_stat,
3037 0x0, flag, type);
3038
3039 if(CHECKBIT(val64, 0x6))
3040 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3041
3042 flag = CHECKBIT(val64, 0x3);
3043 type = 2;
3044 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3045 &stat_info->xpak_stat.xpak_regs_stat,
3046 0x2, flag, type);
3047
3048 if(CHECKBIT(val64, 0x2))
3049 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3050
3051 flag = CHECKBIT(val64, 0x1);
3052 type = 3;
3053 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3054 &stat_info->xpak_stat.xpak_regs_stat,
3055 0x4, flag, type);
3056
3057 if(CHECKBIT(val64, 0x0))
3058 stat_info->xpak_stat.alarm_laser_output_power_low++;
3059
3060 /* Reading the Warning flags */
3061 addr = 0xA074;
3062 val64 = 0x0;
3063 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3064
3065 if(CHECKBIT(val64, 0x7))
3066 stat_info->xpak_stat.warn_transceiver_temp_high++;
3067
3068 if(CHECKBIT(val64, 0x6))
3069 stat_info->xpak_stat.warn_transceiver_temp_low++;
3070
3071 if(CHECKBIT(val64, 0x3))
3072 stat_info->xpak_stat.warn_laser_bias_current_high++;
3073
3074 if(CHECKBIT(val64, 0x2))
3075 stat_info->xpak_stat.warn_laser_bias_current_low++;
3076
3077 if(CHECKBIT(val64, 0x1))
3078 stat_info->xpak_stat.warn_laser_output_power_high++;
3079
3080 if(CHECKBIT(val64, 0x0))
3081 stat_info->xpak_stat.warn_laser_output_power_low++;
3082}
3083
3084/**
2777 * alarm_intr_handler - Alarm Interrrupt handler 3085 * alarm_intr_handler - Alarm Interrrupt handler
2778 * @nic: device private variable 3086 * @nic: device private variable
2779 * Description: If the interrupt was neither because of Rx packet or Tx 3087 * Description: If the interrupt was neither because of Rx packet or Tx
@@ -2790,6 +3098,18 @@ static void alarm_intr_handler(struct s2io_nic *nic)
2790 struct net_device *dev = (struct net_device *) nic->dev; 3098 struct net_device *dev = (struct net_device *) nic->dev;
2791 XENA_dev_config_t __iomem *bar0 = nic->bar0; 3099 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2792 register u64 val64 = 0, err_reg = 0; 3100 register u64 val64 = 0, err_reg = 0;
3101 u64 cnt;
3102 int i;
3103 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3104 /* Handling the XPAK counters update */
3105 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3106 /* waiting for an hour */
3107 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3108 } else {
3109 s2io_updt_xpak_counter(dev);
3110 /* reset the count to zero */
3111 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3112 }
2793 3113
2794 /* Handling link status change error Intr */ 3114 /* Handling link status change error Intr */
2795 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { 3115 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
@@ -2816,6 +3136,8 @@ static void alarm_intr_handler(struct s2io_nic *nic)
2816 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) { 3136 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
2817 netif_stop_queue(dev); 3137 netif_stop_queue(dev);
2818 schedule_work(&nic->rst_timer_task); 3138 schedule_work(&nic->rst_timer_task);
3139 nic->mac_control.stats_info->sw_stat.
3140 soft_reset_cnt++;
2819 } 3141 }
2820 } 3142 }
2821 } else { 3143 } else {
@@ -2827,11 +3149,13 @@ static void alarm_intr_handler(struct s2io_nic *nic)
2827 /* In case of a serious error, the device will be Reset. */ 3149 /* In case of a serious error, the device will be Reset. */
2828 val64 = readq(&bar0->serr_source); 3150 val64 = readq(&bar0->serr_source);
2829 if (val64 & SERR_SOURCE_ANY) { 3151 if (val64 & SERR_SOURCE_ANY) {
3152 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
2830 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name); 3153 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
2831 DBG_PRINT(ERR_DBG, "serious error %llx!!\n", 3154 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
2832 (unsigned long long)val64); 3155 (unsigned long long)val64);
2833 netif_stop_queue(dev); 3156 netif_stop_queue(dev);
2834 schedule_work(&nic->rst_timer_task); 3157 schedule_work(&nic->rst_timer_task);
3158 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
2835 } 3159 }
2836 3160
2837 /* 3161 /*
@@ -2849,6 +3173,35 @@ static void alarm_intr_handler(struct s2io_nic *nic)
2849 ac = readq(&bar0->adapter_control); 3173 ac = readq(&bar0->adapter_control);
2850 schedule_work(&nic->set_link_task); 3174 schedule_work(&nic->set_link_task);
2851 } 3175 }
3176 /* Check for data parity error */
3177 val64 = readq(&bar0->pic_int_status);
3178 if (val64 & PIC_INT_GPIO) {
3179 val64 = readq(&bar0->gpio_int_reg);
3180 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3181 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3182 schedule_work(&nic->rst_timer_task);
3183 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3184 }
3185 }
3186
3187 /* Check for ring full counter */
3188 if (nic->device_type & XFRAME_II_DEVICE) {
3189 val64 = readq(&bar0->ring_bump_counter1);
3190 for (i=0; i<4; i++) {
3191 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3192 cnt >>= 64 - ((i+1)*16);
3193 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3194 += cnt;
3195 }
3196
3197 val64 = readq(&bar0->ring_bump_counter2);
3198 for (i=0; i<4; i++) {
3199 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3200 cnt >>= 64 - ((i+1)*16);
3201 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3202 += cnt;
3203 }
3204 }
2852 3205
2853 /* Other type of interrupts are not being handled now, TODO */ 3206 /* Other type of interrupts are not being handled now, TODO */
2854} 3207}
@@ -2864,23 +3217,26 @@ static void alarm_intr_handler(struct s2io_nic *nic)
2864 * SUCCESS on success and FAILURE on failure. 3217 * SUCCESS on success and FAILURE on failure.
2865 */ 3218 */
2866 3219
2867static int wait_for_cmd_complete(nic_t * sp) 3220static int wait_for_cmd_complete(void *addr, u64 busy_bit)
2868{ 3221{
2869 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2870 int ret = FAILURE, cnt = 0; 3222 int ret = FAILURE, cnt = 0;
2871 u64 val64; 3223 u64 val64;
2872 3224
2873 while (TRUE) { 3225 while (TRUE) {
2874 val64 = readq(&bar0->rmac_addr_cmd_mem); 3226 val64 = readq(addr);
2875 if (!(val64 & RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) { 3227 if (!(val64 & busy_bit)) {
2876 ret = SUCCESS; 3228 ret = SUCCESS;
2877 break; 3229 break;
2878 } 3230 }
2879 msleep(50); 3231
3232 if(in_interrupt())
3233 mdelay(50);
3234 else
3235 msleep(50);
3236
2880 if (cnt++ > 10) 3237 if (cnt++ > 10)
2881 break; 3238 break;
2882 } 3239 }
2883
2884 return ret; 3240 return ret;
2885} 3241}
2886 3242
@@ -2919,6 +3275,9 @@ static void s2io_reset(nic_t * sp)
2919 * PCI write to sw_reset register is done by this time. 3275 * PCI write to sw_reset register is done by this time.
2920 */ 3276 */
2921 msleep(250); 3277 msleep(250);
3278 if (strstr(sp->product_name, "CX4")) {
3279 msleep(750);
3280 }
2922 3281
2923 /* Restore the PCI state saved during initialization. */ 3282 /* Restore the PCI state saved during initialization. */
2924 pci_restore_state(sp->pdev); 3283 pci_restore_state(sp->pdev);
@@ -3137,7 +3496,7 @@ static void restore_xmsi_data(nic_t *nic)
3137 u64 val64; 3496 u64 val64;
3138 int i; 3497 int i;
3139 3498
3140 for (i=0; i< MAX_REQUESTED_MSI_X; i++) { 3499 for (i=0; i< nic->avail_msix_vectors; i++) {
3141 writeq(nic->msix_info[i].addr, &bar0->xmsi_address); 3500 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3142 writeq(nic->msix_info[i].data, &bar0->xmsi_data); 3501 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3143 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6)); 3502 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
@@ -3156,7 +3515,7 @@ static void store_xmsi_data(nic_t *nic)
3156 int i; 3515 int i;
3157 3516
3158 /* Store and display */ 3517 /* Store and display */
3159 for (i=0; i< MAX_REQUESTED_MSI_X; i++) { 3518 for (i=0; i< nic->avail_msix_vectors; i++) {
3160 val64 = (BIT(15) | vBIT(i, 26, 6)); 3519 val64 = (BIT(15) | vBIT(i, 26, 6));
3161 writeq(val64, &bar0->xmsi_access); 3520 writeq(val64, &bar0->xmsi_access);
3162 if (wait_for_msix_trans(nic, i)) { 3521 if (wait_for_msix_trans(nic, i)) {
@@ -3284,15 +3643,24 @@ static int s2io_enable_msi_x(nic_t *nic)
3284 writeq(tx_mat, &bar0->tx_mat0_n[7]); 3643 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3285 } 3644 }
3286 3645
3646 nic->avail_msix_vectors = 0;
3287 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X); 3647 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3648 /* We fail init if error or we get less vectors than min required */
3649 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3650 nic->avail_msix_vectors = ret;
3651 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3652 }
3288 if (ret) { 3653 if (ret) {
3289 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name); 3654 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3290 kfree(nic->entries); 3655 kfree(nic->entries);
3291 kfree(nic->s2io_entries); 3656 kfree(nic->s2io_entries);
3292 nic->entries = NULL; 3657 nic->entries = NULL;
3293 nic->s2io_entries = NULL; 3658 nic->s2io_entries = NULL;
3659 nic->avail_msix_vectors = 0;
3294 return -ENOMEM; 3660 return -ENOMEM;
3295 } 3661 }
3662 if (!nic->avail_msix_vectors)
3663 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3296 3664
3297 /* 3665 /*
3298 * To enable MSI-X, MSI also needs to be enabled, due to a bug 3666 * To enable MSI-X, MSI also needs to be enabled, due to a bug
@@ -3325,8 +3693,6 @@ static int s2io_open(struct net_device *dev)
3325{ 3693{
3326 nic_t *sp = dev->priv; 3694 nic_t *sp = dev->priv;
3327 int err = 0; 3695 int err = 0;
3328 int i;
3329 u16 msi_control; /* Temp variable */
3330 3696
3331 /* 3697 /*
3332 * Make sure you have link off by default every time 3698 * Make sure you have link off by default every time
@@ -3336,11 +3702,14 @@ static int s2io_open(struct net_device *dev)
3336 sp->last_link_state = 0; 3702 sp->last_link_state = 0;
3337 3703
3338 /* Initialize H/W and enable interrupts */ 3704 /* Initialize H/W and enable interrupts */
3339 if (s2io_card_up(sp)) { 3705 err = s2io_card_up(sp);
3706 if (err) {
3340 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", 3707 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3341 dev->name); 3708 dev->name);
3342 err = -ENODEV; 3709 if (err == -ENODEV)
3343 goto hw_init_failed; 3710 goto hw_init_failed;
3711 else
3712 goto hw_enable_failed;
3344 } 3713 }
3345 3714
3346 /* Store the values of the MSIX table in the nic_t structure */ 3715 /* Store the values of the MSIX table in the nic_t structure */
@@ -3357,6 +3726,8 @@ failed\n", dev->name);
3357 } 3726 }
3358 } 3727 }
3359 if (sp->intr_type == MSI_X) { 3728 if (sp->intr_type == MSI_X) {
3729 int i;
3730
3360 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) { 3731 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
3361 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) { 3732 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
3362 sprintf(sp->desc1, "%s:MSI-X-%d-TX", 3733 sprintf(sp->desc1, "%s:MSI-X-%d-TX",
@@ -3409,24 +3780,26 @@ setting_mac_address_failed:
3409isr_registration_failed: 3780isr_registration_failed:
3410 del_timer_sync(&sp->alarm_timer); 3781 del_timer_sync(&sp->alarm_timer);
3411 if (sp->intr_type == MSI_X) { 3782 if (sp->intr_type == MSI_X) {
3412 if (sp->device_type == XFRAME_II_DEVICE) { 3783 int i;
3413 for (i=1; (sp->s2io_entries[i].in_use == 3784 u16 msi_control; /* Temp variable */
3414 MSIX_REGISTERED_SUCCESS); i++) {
3415 int vector = sp->entries[i].vector;
3416 void *arg = sp->s2io_entries[i].arg;
3417 3785
3418 free_irq(vector, arg); 3786 for (i=1; (sp->s2io_entries[i].in_use ==
3419 } 3787 MSIX_REGISTERED_SUCCESS); i++) {
3420 pci_disable_msix(sp->pdev); 3788 int vector = sp->entries[i].vector;
3789 void *arg = sp->s2io_entries[i].arg;
3421 3790
3422 /* Temp */ 3791 free_irq(vector, arg);
3423 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3424 msi_control &= 0xFFFE; /* Disable MSI */
3425 pci_write_config_word(sp->pdev, 0x42, msi_control);
3426 } 3792 }
3793 pci_disable_msix(sp->pdev);
3794
3795 /* Temp */
3796 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3797 msi_control &= 0xFFFE; /* Disable MSI */
3798 pci_write_config_word(sp->pdev, 0x42, msi_control);
3427 } 3799 }
3428 else if (sp->intr_type == MSI) 3800 else if (sp->intr_type == MSI)
3429 pci_disable_msi(sp->pdev); 3801 pci_disable_msi(sp->pdev);
3802hw_enable_failed:
3430 s2io_reset(sp); 3803 s2io_reset(sp);
3431hw_init_failed: 3804hw_init_failed:
3432 if (sp->intr_type == MSI_X) { 3805 if (sp->intr_type == MSI_X) {
@@ -3454,35 +3827,12 @@ hw_init_failed:
3454static int s2io_close(struct net_device *dev) 3827static int s2io_close(struct net_device *dev)
3455{ 3828{
3456 nic_t *sp = dev->priv; 3829 nic_t *sp = dev->priv;
3457 int i;
3458 u16 msi_control;
3459 3830
3460 flush_scheduled_work(); 3831 flush_scheduled_work();
3461 netif_stop_queue(dev); 3832 netif_stop_queue(dev);
3462 /* Reset card, kill tasklet and free Tx and Rx buffers. */ 3833 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3463 s2io_card_down(sp); 3834 s2io_card_down(sp, 1);
3464
3465 if (sp->intr_type == MSI_X) {
3466 if (sp->device_type == XFRAME_II_DEVICE) {
3467 for (i=1; (sp->s2io_entries[i].in_use ==
3468 MSIX_REGISTERED_SUCCESS); i++) {
3469 int vector = sp->entries[i].vector;
3470 void *arg = sp->s2io_entries[i].arg;
3471 3835
3472 free_irq(vector, arg);
3473 }
3474 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3475 msi_control &= 0xFFFE; /* Disable MSI */
3476 pci_write_config_word(sp->pdev, 0x42, msi_control);
3477
3478 pci_disable_msix(sp->pdev);
3479 }
3480 }
3481 else {
3482 free_irq(sp->pdev->irq, dev);
3483 if (sp->intr_type == MSI)
3484 pci_disable_msi(sp->pdev);
3485 }
3486 sp->device_close_flag = TRUE; /* Device is shut down. */ 3836 sp->device_close_flag = TRUE; /* Device is shut down. */
3487 return 0; 3837 return 0;
3488} 3838}
@@ -3545,7 +3895,8 @@ static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3545 3895
3546 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1; 3896 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3547 /* Avoid "put" pointer going beyond "get" pointer */ 3897 /* Avoid "put" pointer going beyond "get" pointer */
3548 if (txdp->Host_Control || (((put_off + 1) % queue_len) == get_off)) { 3898 if (txdp->Host_Control ||
3899 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3549 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n"); 3900 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3550 netif_stop_queue(dev); 3901 netif_stop_queue(dev);
3551 dev_kfree_skb(skb); 3902 dev_kfree_skb(skb);
@@ -3655,11 +4006,13 @@ static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3655 mmiowb(); 4006 mmiowb();
3656 4007
3657 put_off++; 4008 put_off++;
3658 put_off %= mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1; 4009 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4010 put_off = 0;
3659 mac_control->fifos[queue].tx_curr_put_info.offset = put_off; 4011 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
3660 4012
3661 /* Avoid "put" pointer going beyond "get" pointer */ 4013 /* Avoid "put" pointer going beyond "get" pointer */
3662 if (((put_off + 1) % queue_len) == get_off) { 4014 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4015 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
3663 DBG_PRINT(TX_DBG, 4016 DBG_PRINT(TX_DBG,
3664 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n", 4017 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3665 put_off, get_off); 4018 put_off, get_off);
@@ -3795,7 +4148,6 @@ s2io_msix_fifo_handle(int irq, void *dev_id, struct pt_regs *regs)
3795 atomic_dec(&sp->isr_cnt); 4148 atomic_dec(&sp->isr_cnt);
3796 return IRQ_HANDLED; 4149 return IRQ_HANDLED;
3797} 4150}
3798
3799static void s2io_txpic_intr_handle(nic_t *sp) 4151static void s2io_txpic_intr_handle(nic_t *sp)
3800{ 4152{
3801 XENA_dev_config_t __iomem *bar0 = sp->bar0; 4153 XENA_dev_config_t __iomem *bar0 = sp->bar0;
@@ -3806,41 +4158,56 @@ static void s2io_txpic_intr_handle(nic_t *sp)
3806 val64 = readq(&bar0->gpio_int_reg); 4158 val64 = readq(&bar0->gpio_int_reg);
3807 if ((val64 & GPIO_INT_REG_LINK_DOWN) && 4159 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
3808 (val64 & GPIO_INT_REG_LINK_UP)) { 4160 (val64 & GPIO_INT_REG_LINK_UP)) {
4161 /*
4162 * This is unstable state so clear both up/down
4163 * interrupt and adapter to re-evaluate the link state.
4164 */
3809 val64 |= GPIO_INT_REG_LINK_DOWN; 4165 val64 |= GPIO_INT_REG_LINK_DOWN;
3810 val64 |= GPIO_INT_REG_LINK_UP; 4166 val64 |= GPIO_INT_REG_LINK_UP;
3811 writeq(val64, &bar0->gpio_int_reg); 4167 writeq(val64, &bar0->gpio_int_reg);
3812 goto masking;
3813 }
3814
3815 if (((sp->last_link_state == LINK_UP) &&
3816 (val64 & GPIO_INT_REG_LINK_DOWN)) ||
3817 ((sp->last_link_state == LINK_DOWN) &&
3818 (val64 & GPIO_INT_REG_LINK_UP))) {
3819 val64 = readq(&bar0->gpio_int_mask); 4168 val64 = readq(&bar0->gpio_int_mask);
3820 val64 |= GPIO_INT_MASK_LINK_DOWN; 4169 val64 &= ~(GPIO_INT_MASK_LINK_UP |
3821 val64 |= GPIO_INT_MASK_LINK_UP; 4170 GPIO_INT_MASK_LINK_DOWN);
3822 writeq(val64, &bar0->gpio_int_mask); 4171 writeq(val64, &bar0->gpio_int_mask);
3823 s2io_set_link((unsigned long)sp);
3824 } 4172 }
3825masking: 4173 else if (val64 & GPIO_INT_REG_LINK_UP) {
3826 if (sp->last_link_state == LINK_UP) { 4174 val64 = readq(&bar0->adapter_status);
3827 /*enable down interrupt */ 4175 if (verify_xena_quiescence(sp, val64,
3828 val64 = readq(&bar0->gpio_int_mask); 4176 sp->device_enabled_once)) {
3829 /* unmasks link down intr */ 4177 /* Enable Adapter */
3830 val64 &= ~GPIO_INT_MASK_LINK_DOWN; 4178 val64 = readq(&bar0->adapter_control);
3831 /* masks link up intr */ 4179 val64 |= ADAPTER_CNTL_EN;
3832 val64 |= GPIO_INT_MASK_LINK_UP; 4180 writeq(val64, &bar0->adapter_control);
3833 writeq(val64, &bar0->gpio_int_mask); 4181 val64 |= ADAPTER_LED_ON;
3834 } else { 4182 writeq(val64, &bar0->adapter_control);
3835 /*enable UP Interrupt */ 4183 if (!sp->device_enabled_once)
3836 val64 = readq(&bar0->gpio_int_mask); 4184 sp->device_enabled_once = 1;
3837 /* unmasks link up interrupt */ 4185
3838 val64 &= ~GPIO_INT_MASK_LINK_UP; 4186 s2io_link(sp, LINK_UP);
3839 /* masks link down interrupt */ 4187 /*
3840 val64 |= GPIO_INT_MASK_LINK_DOWN; 4188 * unmask link down interrupt and mask link-up
3841 writeq(val64, &bar0->gpio_int_mask); 4189 * intr
4190 */
4191 val64 = readq(&bar0->gpio_int_mask);
4192 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4193 val64 |= GPIO_INT_MASK_LINK_UP;
4194 writeq(val64, &bar0->gpio_int_mask);
4195
4196 }
4197 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4198 val64 = readq(&bar0->adapter_status);
4199 if (verify_xena_quiescence(sp, val64,
4200 sp->device_enabled_once)) {
4201 s2io_link(sp, LINK_DOWN);
4202 /* Link is down so unmaks link up interrupt */
4203 val64 = readq(&bar0->gpio_int_mask);
4204 val64 &= ~GPIO_INT_MASK_LINK_UP;
4205 val64 |= GPIO_INT_MASK_LINK_DOWN;
4206 writeq(val64, &bar0->gpio_int_mask);
4207 }
3842 } 4208 }
3843 } 4209 }
4210 val64 = readq(&bar0->gpio_int_mask);
3844} 4211}
3845 4212
3846/** 4213/**
@@ -3863,7 +4230,7 @@ static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
3863 nic_t *sp = dev->priv; 4230 nic_t *sp = dev->priv;
3864 XENA_dev_config_t __iomem *bar0 = sp->bar0; 4231 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3865 int i; 4232 int i;
3866 u64 reason = 0, val64; 4233 u64 reason = 0, val64, org_mask;
3867 mac_info_t *mac_control; 4234 mac_info_t *mac_control;
3868 struct config_param *config; 4235 struct config_param *config;
3869 4236
@@ -3887,43 +4254,41 @@ static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
3887 return IRQ_NONE; 4254 return IRQ_NONE;
3888 } 4255 }
3889 4256
4257 val64 = 0xFFFFFFFFFFFFFFFFULL;
4258 /* Store current mask before masking all interrupts */
4259 org_mask = readq(&bar0->general_int_mask);
4260 writeq(val64, &bar0->general_int_mask);
4261
3890#ifdef CONFIG_S2IO_NAPI 4262#ifdef CONFIG_S2IO_NAPI
3891 if (reason & GEN_INTR_RXTRAFFIC) { 4263 if (reason & GEN_INTR_RXTRAFFIC) {
3892 if (netif_rx_schedule_prep(dev)) { 4264 if (netif_rx_schedule_prep(dev)) {
3893 en_dis_able_nic_intrs(sp, RX_TRAFFIC_INTR, 4265 writeq(val64, &bar0->rx_traffic_mask);
3894 DISABLE_INTRS);
3895 __netif_rx_schedule(dev); 4266 __netif_rx_schedule(dev);
3896 } 4267 }
3897 } 4268 }
3898#else 4269#else
3899 /* If Intr is because of Rx Traffic */ 4270 /*
3900 if (reason & GEN_INTR_RXTRAFFIC) { 4271 * Rx handler is called by default, without checking for the
3901 /* 4272 * cause of interrupt.
3902 * rx_traffic_int reg is an R1 register, writing all 1's 4273 * rx_traffic_int reg is an R1 register, writing all 1's
3903 * will ensure that the actual interrupt causing bit get's 4274 * will ensure that the actual interrupt causing bit get's
3904 * cleared and hence a read can be avoided. 4275 * cleared and hence a read can be avoided.
3905 */ 4276 */
3906 val64 = 0xFFFFFFFFFFFFFFFFULL; 4277 writeq(val64, &bar0->rx_traffic_int);
3907 writeq(val64, &bar0->rx_traffic_int); 4278 for (i = 0; i < config->rx_ring_num; i++) {
3908 for (i = 0; i < config->rx_ring_num; i++) { 4279 rx_intr_handler(&mac_control->rings[i]);
3909 rx_intr_handler(&mac_control->rings[i]);
3910 }
3911 } 4280 }
3912#endif 4281#endif
3913 4282
3914 /* If Intr is because of Tx Traffic */ 4283 /*
3915 if (reason & GEN_INTR_TXTRAFFIC) { 4284 * tx_traffic_int reg is an R1 register, writing all 1's
3916 /* 4285 * will ensure that the actual interrupt causing bit get's
3917 * tx_traffic_int reg is an R1 register, writing all 1's 4286 * cleared and hence a read can be avoided.
3918 * will ensure that the actual interrupt causing bit get's 4287 */
3919 * cleared and hence a read can be avoided. 4288 writeq(val64, &bar0->tx_traffic_int);
3920 */
3921 val64 = 0xFFFFFFFFFFFFFFFFULL;
3922 writeq(val64, &bar0->tx_traffic_int);
3923 4289
3924 for (i = 0; i < config->tx_fifo_num; i++) 4290 for (i = 0; i < config->tx_fifo_num; i++)
3925 tx_intr_handler(&mac_control->fifos[i]); 4291 tx_intr_handler(&mac_control->fifos[i]);
3926 }
3927 4292
3928 if (reason & GEN_INTR_TXPIC) 4293 if (reason & GEN_INTR_TXPIC)
3929 s2io_txpic_intr_handle(sp); 4294 s2io_txpic_intr_handle(sp);
@@ -3949,6 +4314,7 @@ static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
3949 DBG_PRINT(ERR_DBG, " in ISR!!\n"); 4314 DBG_PRINT(ERR_DBG, " in ISR!!\n");
3950 clear_bit(0, (&sp->tasklet_status)); 4315 clear_bit(0, (&sp->tasklet_status));
3951 atomic_dec(&sp->isr_cnt); 4316 atomic_dec(&sp->isr_cnt);
4317 writeq(org_mask, &bar0->general_int_mask);
3952 return IRQ_HANDLED; 4318 return IRQ_HANDLED;
3953 } 4319 }
3954 clear_bit(0, (&sp->tasklet_status)); 4320 clear_bit(0, (&sp->tasklet_status));
@@ -3964,7 +4330,7 @@ static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
3964 } 4330 }
3965 } 4331 }
3966#endif 4332#endif
3967 4333 writeq(org_mask, &bar0->general_int_mask);
3968 atomic_dec(&sp->isr_cnt); 4334 atomic_dec(&sp->isr_cnt);
3969 return IRQ_HANDLED; 4335 return IRQ_HANDLED;
3970} 4336}
@@ -4067,7 +4433,8 @@ static void s2io_set_multicast(struct net_device *dev)
4067 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET); 4433 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4068 writeq(val64, &bar0->rmac_addr_cmd_mem); 4434 writeq(val64, &bar0->rmac_addr_cmd_mem);
4069 /* Wait till command completes */ 4435 /* Wait till command completes */
4070 wait_for_cmd_complete(sp); 4436 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4437 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4071 4438
4072 sp->m_cast_flg = 1; 4439 sp->m_cast_flg = 1;
4073 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET; 4440 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
@@ -4082,7 +4449,8 @@ static void s2io_set_multicast(struct net_device *dev)
4082 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos); 4449 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4083 writeq(val64, &bar0->rmac_addr_cmd_mem); 4450 writeq(val64, &bar0->rmac_addr_cmd_mem);
4084 /* Wait till command completes */ 4451 /* Wait till command completes */
4085 wait_for_cmd_complete(sp); 4452 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4453 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4086 4454
4087 sp->m_cast_flg = 0; 4455 sp->m_cast_flg = 0;
4088 sp->all_multi_pos = 0; 4456 sp->all_multi_pos = 0;
@@ -4147,7 +4515,8 @@ static void s2io_set_multicast(struct net_device *dev)
4147 writeq(val64, &bar0->rmac_addr_cmd_mem); 4515 writeq(val64, &bar0->rmac_addr_cmd_mem);
4148 4516
4149 /* Wait for command completes */ 4517 /* Wait for command completes */
4150 if (wait_for_cmd_complete(sp)) { 4518 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4519 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4151 DBG_PRINT(ERR_DBG, "%s: Adding ", 4520 DBG_PRINT(ERR_DBG, "%s: Adding ",
4152 dev->name); 4521 dev->name);
4153 DBG_PRINT(ERR_DBG, "Multicasts failed\n"); 4522 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
@@ -4177,7 +4546,8 @@ static void s2io_set_multicast(struct net_device *dev)
4177 writeq(val64, &bar0->rmac_addr_cmd_mem); 4546 writeq(val64, &bar0->rmac_addr_cmd_mem);
4178 4547
4179 /* Wait for command completes */ 4548 /* Wait for command completes */
4180 if (wait_for_cmd_complete(sp)) { 4549 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4550 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4181 DBG_PRINT(ERR_DBG, "%s: Adding ", 4551 DBG_PRINT(ERR_DBG, "%s: Adding ",
4182 dev->name); 4552 dev->name);
4183 DBG_PRINT(ERR_DBG, "Multicasts failed\n"); 4553 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
@@ -4222,7 +4592,8 @@ static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4222 RMAC_ADDR_CMD_MEM_OFFSET(0); 4592 RMAC_ADDR_CMD_MEM_OFFSET(0);
4223 writeq(val64, &bar0->rmac_addr_cmd_mem); 4593 writeq(val64, &bar0->rmac_addr_cmd_mem);
4224 /* Wait till command completes */ 4594 /* Wait till command completes */
4225 if (wait_for_cmd_complete(sp)) { 4595 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4596 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4226 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name); 4597 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4227 return FAILURE; 4598 return FAILURE;
4228 } 4599 }
@@ -4619,6 +4990,44 @@ static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
4619 } 4990 }
4620 return ret; 4991 return ret;
4621} 4992}
4993static void s2io_vpd_read(nic_t *nic)
4994{
4995 u8 vpd_data[256],data;
4996 int i=0, cnt, fail = 0;
4997 int vpd_addr = 0x80;
4998
4999 if (nic->device_type == XFRAME_II_DEVICE) {
5000 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5001 vpd_addr = 0x80;
5002 }
5003 else {
5004 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5005 vpd_addr = 0x50;
5006 }
5007
5008 for (i = 0; i < 256; i +=4 ) {
5009 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5010 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5011 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5012 for (cnt = 0; cnt <5; cnt++) {
5013 msleep(2);
5014 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5015 if (data == 0x80)
5016 break;
5017 }
5018 if (cnt >= 5) {
5019 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5020 fail = 1;
5021 break;
5022 }
5023 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5024 (u32 *)&vpd_data[i]);
5025 }
5026 if ((!fail) && (vpd_data[1] < VPD_PRODUCT_NAME_LEN)) {
5027 memset(nic->product_name, 0, vpd_data[1]);
5028 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5029 }
5030}
4622 5031
4623/** 5032/**
4624 * s2io_ethtool_geeprom - reads the value stored in the Eeprom. 5033 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
@@ -4931,8 +5340,10 @@ static int s2io_link_test(nic_t * sp, uint64_t * data)
4931 u64 val64; 5340 u64 val64;
4932 5341
4933 val64 = readq(&bar0->adapter_status); 5342 val64 = readq(&bar0->adapter_status);
4934 if (val64 & ADAPTER_STATUS_RMAC_LOCAL_FAULT) 5343 if(!(LINK_IS_UP(val64)))
4935 *data = 1; 5344 *data = 1;
5345 else
5346 *data = 0;
4936 5347
4937 return 0; 5348 return 0;
4938} 5349}
@@ -5112,7 +5523,6 @@ static void s2io_get_ethtool_stats(struct net_device *dev,
5112 int i = 0; 5523 int i = 0;
5113 nic_t *sp = dev->priv; 5524 nic_t *sp = dev->priv;
5114 StatInfo_t *stat_info = sp->mac_control.stats_info; 5525 StatInfo_t *stat_info = sp->mac_control.stats_info;
5115 u64 tmp;
5116 5526
5117 s2io_updt_stats(sp); 5527 s2io_updt_stats(sp);
5118 tmp_stats[i++] = 5528 tmp_stats[i++] =
@@ -5129,9 +5539,19 @@ static void s2io_get_ethtool_stats(struct net_device *dev,
5129 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 | 5539 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5130 le32_to_cpu(stat_info->tmac_bcst_frms); 5540 le32_to_cpu(stat_info->tmac_bcst_frms);
5131 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms); 5541 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5542 tmp_stats[i++] =
5543 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5544 le32_to_cpu(stat_info->tmac_ttl_octets);
5545 tmp_stats[i++] =
5546 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5547 le32_to_cpu(stat_info->tmac_ucst_frms);
5548 tmp_stats[i++] =
5549 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5550 le32_to_cpu(stat_info->tmac_nucst_frms);
5132 tmp_stats[i++] = 5551 tmp_stats[i++] =
5133 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 | 5552 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5134 le32_to_cpu(stat_info->tmac_any_err_frms); 5553 le32_to_cpu(stat_info->tmac_any_err_frms);
5554 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5135 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets); 5555 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5136 tmp_stats[i++] = 5556 tmp_stats[i++] =
5137 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 | 5557 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
@@ -5163,11 +5583,27 @@ static void s2io_get_ethtool_stats(struct net_device *dev,
5163 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 | 5583 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5164 le32_to_cpu(stat_info->rmac_vld_bcst_frms); 5584 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5165 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms); 5585 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5586 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5166 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms); 5587 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5167 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms); 5588 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5589 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5590 tmp_stats[i++] =
5591 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5592 le32_to_cpu(stat_info->rmac_ttl_octets);
5593 tmp_stats[i++] =
5594 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5595 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5596 tmp_stats[i++] =
5597 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5598 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5168 tmp_stats[i++] = 5599 tmp_stats[i++] =
5169 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 | 5600 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5170 le32_to_cpu(stat_info->rmac_discarded_frms); 5601 le32_to_cpu(stat_info->rmac_discarded_frms);
5602 tmp_stats[i++] =
5603 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5604 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5605 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5606 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5171 tmp_stats[i++] = 5607 tmp_stats[i++] =
5172 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 | 5608 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5173 le32_to_cpu(stat_info->rmac_usized_frms); 5609 le32_to_cpu(stat_info->rmac_usized_frms);
@@ -5180,40 +5616,129 @@ static void s2io_get_ethtool_stats(struct net_device *dev,
5180 tmp_stats[i++] = 5616 tmp_stats[i++] =
5181 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 | 5617 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5182 le32_to_cpu(stat_info->rmac_jabber_frms); 5618 le32_to_cpu(stat_info->rmac_jabber_frms);
5183 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 | 5619 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5620 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5621 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5622 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5623 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5624 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5625 tmp_stats[i++] =
5626 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5184 le32_to_cpu(stat_info->rmac_ip); 5627 le32_to_cpu(stat_info->rmac_ip);
5185 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets); 5628 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5186 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip); 5629 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5187 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 | 5630 tmp_stats[i++] =
5631 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5188 le32_to_cpu(stat_info->rmac_drop_ip); 5632 le32_to_cpu(stat_info->rmac_drop_ip);
5189 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 | 5633 tmp_stats[i++] =
5634 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5190 le32_to_cpu(stat_info->rmac_icmp); 5635 le32_to_cpu(stat_info->rmac_icmp);
5191 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp); 5636 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5192 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 | 5637 tmp_stats[i++] =
5638 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5193 le32_to_cpu(stat_info->rmac_udp); 5639 le32_to_cpu(stat_info->rmac_udp);
5194 tmp_stats[i++] = 5640 tmp_stats[i++] =
5195 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 | 5641 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5196 le32_to_cpu(stat_info->rmac_err_drp_udp); 5642 le32_to_cpu(stat_info->rmac_err_drp_udp);
5643 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5644 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5645 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5646 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5647 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5648 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5649 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5650 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5651 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5652 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5653 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5654 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5655 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5656 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5657 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5658 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5659 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5197 tmp_stats[i++] = 5660 tmp_stats[i++] =
5198 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 | 5661 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5199 le32_to_cpu(stat_info->rmac_pause_cnt); 5662 le32_to_cpu(stat_info->rmac_pause_cnt);
5663 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5664 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5200 tmp_stats[i++] = 5665 tmp_stats[i++] =
5201 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 | 5666 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5202 le32_to_cpu(stat_info->rmac_accepted_ip); 5667 le32_to_cpu(stat_info->rmac_accepted_ip);
5203 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp); 5668 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5669 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5670 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5671 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5672 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5673 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5674 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5675 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5676 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5677 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5678 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5679 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5680 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5681 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5682 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5683 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5684 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5685 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5686 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5687 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5688 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5689 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5690 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5691 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5692 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5693 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5694 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5695 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5696 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5697 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5698 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5699 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5700 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5701 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5702 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5204 tmp_stats[i++] = 0; 5703 tmp_stats[i++] = 0;
5205 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs; 5704 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5206 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs; 5705 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5706 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5707 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5708 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5709 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5710 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5711 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5712 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5713 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5714 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5715 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5716 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5717 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5718 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5719 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5720 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5721 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5722 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5207 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt; 5723 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5208 tmp_stats[i++] = stat_info->sw_stat.sending_both; 5724 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5209 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts; 5725 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5210 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts; 5726 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5211 tmp = 0;
5212 if (stat_info->sw_stat.num_aggregations) { 5727 if (stat_info->sw_stat.num_aggregations) {
5213 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated; 5728 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5214 do_div(tmp, stat_info->sw_stat.num_aggregations); 5729 int count = 0;
5730 /*
5731 * Since 64-bit divide does not work on all platforms,
5732 * do repeated subtraction.
5733 */
5734 while (tmp >= stat_info->sw_stat.num_aggregations) {
5735 tmp -= stat_info->sw_stat.num_aggregations;
5736 count++;
5737 }
5738 tmp_stats[i++] = count;
5215 } 5739 }
5216 tmp_stats[i++] = tmp; 5740 else
5741 tmp_stats[i++] = 0;
5217} 5742}
5218 5743
5219static int s2io_ethtool_get_regs_len(struct net_device *dev) 5744static int s2io_ethtool_get_regs_len(struct net_device *dev)
@@ -5351,7 +5876,7 @@ static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5351 5876
5352 dev->mtu = new_mtu; 5877 dev->mtu = new_mtu;
5353 if (netif_running(dev)) { 5878 if (netif_running(dev)) {
5354 s2io_card_down(sp); 5879 s2io_card_down(sp, 0);
5355 netif_stop_queue(dev); 5880 netif_stop_queue(dev);
5356 if (s2io_card_up(sp)) { 5881 if (s2io_card_up(sp)) {
5357 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", 5882 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
@@ -5489,12 +6014,172 @@ static void s2io_set_link(unsigned long data)
5489 clear_bit(0, &(nic->link_state)); 6014 clear_bit(0, &(nic->link_state));
5490} 6015}
5491 6016
5492static void s2io_card_down(nic_t * sp) 6017static int set_rxd_buffer_pointer(nic_t *sp, RxD_t *rxdp, buffAdd_t *ba,
6018 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6019 u64 *temp2, int size)
6020{
6021 struct net_device *dev = sp->dev;
6022 struct sk_buff *frag_list;
6023
6024 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6025 /* allocate skb */
6026 if (*skb) {
6027 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6028 /*
6029 * As Rx frame are not going to be processed,
6030 * using same mapped address for the Rxd
6031 * buffer pointer
6032 */
6033 ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0;
6034 } else {
6035 *skb = dev_alloc_skb(size);
6036 if (!(*skb)) {
6037 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
6038 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
6039 return -ENOMEM ;
6040 }
6041 /* storing the mapped addr in a temp variable
6042 * such it will be used for next rxd whose
6043 * Host Control is NULL
6044 */
6045 ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0 =
6046 pci_map_single( sp->pdev, (*skb)->data,
6047 size - NET_IP_ALIGN,
6048 PCI_DMA_FROMDEVICE);
6049 rxdp->Host_Control = (unsigned long) (*skb);
6050 }
6051 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6052 /* Two buffer Mode */
6053 if (*skb) {
6054 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
6055 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
6056 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
6057 } else {
6058 *skb = dev_alloc_skb(size);
6059 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
6060 pci_map_single(sp->pdev, (*skb)->data,
6061 dev->mtu + 4,
6062 PCI_DMA_FROMDEVICE);
6063 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
6064 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6065 PCI_DMA_FROMDEVICE);
6066 rxdp->Host_Control = (unsigned long) (*skb);
6067
6068 /* Buffer-1 will be dummy buffer not used */
6069 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6070 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6071 PCI_DMA_FROMDEVICE);
6072 }
6073 } else if ((rxdp->Host_Control == 0)) {
6074 /* Three buffer mode */
6075 if (*skb) {
6076 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
6077 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
6078 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
6079 } else {
6080 *skb = dev_alloc_skb(size);
6081
6082 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
6083 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6084 PCI_DMA_FROMDEVICE);
6085 /* Buffer-1 receives L3/L4 headers */
6086 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6087 pci_map_single( sp->pdev, (*skb)->data,
6088 l3l4hdr_size + 4,
6089 PCI_DMA_FROMDEVICE);
6090 /*
6091 * skb_shinfo(skb)->frag_list will have L4
6092 * data payload
6093 */
6094 skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6095 ALIGN_SIZE);
6096 if (skb_shinfo(*skb)->frag_list == NULL) {
6097 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6098 failed\n ", dev->name);
6099 return -ENOMEM ;
6100 }
6101 frag_list = skb_shinfo(*skb)->frag_list;
6102 frag_list->next = NULL;
6103 /*
6104 * Buffer-2 receives L4 data payload
6105 */
6106 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
6107 pci_map_single( sp->pdev, frag_list->data,
6108 dev->mtu, PCI_DMA_FROMDEVICE);
6109 }
6110 }
6111 return 0;
6112}
6113static void set_rxd_buffer_size(nic_t *sp, RxD_t *rxdp, int size)
6114{
6115 struct net_device *dev = sp->dev;
6116 if (sp->rxd_mode == RXD_MODE_1) {
6117 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6118 } else if (sp->rxd_mode == RXD_MODE_3B) {
6119 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6120 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6121 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6122 } else {
6123 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6124 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6125 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6126 }
6127}
6128
6129static int rxd_owner_bit_reset(nic_t *sp)
6130{
6131 int i, j, k, blk_cnt = 0, size;
6132 mac_info_t * mac_control = &sp->mac_control;
6133 struct config_param *config = &sp->config;
6134 struct net_device *dev = sp->dev;
6135 RxD_t *rxdp = NULL;
6136 struct sk_buff *skb = NULL;
6137 buffAdd_t *ba = NULL;
6138 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6139
6140 /* Calculate the size based on ring mode */
6141 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6142 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6143 if (sp->rxd_mode == RXD_MODE_1)
6144 size += NET_IP_ALIGN;
6145 else if (sp->rxd_mode == RXD_MODE_3B)
6146 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6147 else
6148 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6149
6150 for (i = 0; i < config->rx_ring_num; i++) {
6151 blk_cnt = config->rx_cfg[i].num_rxd /
6152 (rxd_count[sp->rxd_mode] +1);
6153
6154 for (j = 0; j < blk_cnt; j++) {
6155 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6156 rxdp = mac_control->rings[i].
6157 rx_blocks[j].rxds[k].virt_addr;
6158 if(sp->rxd_mode >= RXD_MODE_3A)
6159 ba = &mac_control->rings[i].ba[j][k];
6160 set_rxd_buffer_pointer(sp, rxdp, ba,
6161 &skb,(u64 *)&temp0_64,
6162 (u64 *)&temp1_64,
6163 (u64 *)&temp2_64, size);
6164
6165 set_rxd_buffer_size(sp, rxdp, size);
6166 wmb();
6167 /* flip the Ownership bit to Hardware */
6168 rxdp->Control_1 |= RXD_OWN_XENA;
6169 }
6170 }
6171 }
6172 return 0;
6173
6174}
6175
6176static void s2io_card_down(nic_t * sp, int flag)
5493{ 6177{
5494 int cnt = 0; 6178 int cnt = 0;
5495 XENA_dev_config_t __iomem *bar0 = sp->bar0; 6179 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5496 unsigned long flags; 6180 unsigned long flags;
5497 register u64 val64 = 0; 6181 register u64 val64 = 0;
6182 struct net_device *dev = sp->dev;
5498 6183
5499 del_timer_sync(&sp->alarm_timer); 6184 del_timer_sync(&sp->alarm_timer);
5500 /* If s2io_set_link task is executing, wait till it completes. */ 6185 /* If s2io_set_link task is executing, wait till it completes. */
@@ -5505,12 +6190,51 @@ static void s2io_card_down(nic_t * sp)
5505 6190
5506 /* disable Tx and Rx traffic on the NIC */ 6191 /* disable Tx and Rx traffic on the NIC */
5507 stop_nic(sp); 6192 stop_nic(sp);
6193 if (flag) {
6194 if (sp->intr_type == MSI_X) {
6195 int i;
6196 u16 msi_control;
6197
6198 for (i=1; (sp->s2io_entries[i].in_use ==
6199 MSIX_REGISTERED_SUCCESS); i++) {
6200 int vector = sp->entries[i].vector;
6201 void *arg = sp->s2io_entries[i].arg;
6202
6203 free_irq(vector, arg);
6204 }
6205 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6206 msi_control &= 0xFFFE; /* Disable MSI */
6207 pci_write_config_word(sp->pdev, 0x42, msi_control);
6208 pci_disable_msix(sp->pdev);
6209 } else {
6210 free_irq(sp->pdev->irq, dev);
6211 if (sp->intr_type == MSI)
6212 pci_disable_msi(sp->pdev);
6213 }
6214 }
6215 /* Waiting till all Interrupt handlers are complete */
6216 cnt = 0;
6217 do {
6218 msleep(10);
6219 if (!atomic_read(&sp->isr_cnt))
6220 break;
6221 cnt++;
6222 } while(cnt < 5);
5508 6223
5509 /* Kill tasklet. */ 6224 /* Kill tasklet. */
5510 tasklet_kill(&sp->task); 6225 tasklet_kill(&sp->task);
5511 6226
5512 /* Check if the device is Quiescent and then Reset the NIC */ 6227 /* Check if the device is Quiescent and then Reset the NIC */
5513 do { 6228 do {
6229 /* As per the HW requirement we need to replenish the
6230 * receive buffer to avoid the ring bump. Since there is
6231 * no intention of processing the Rx frame at this pointwe are
6232 * just settting the ownership bit of rxd in Each Rx
6233 * ring to HW and set the appropriate buffer size
6234 * based on the ring mode
6235 */
6236 rxd_owner_bit_reset(sp);
6237
5514 val64 = readq(&bar0->adapter_status); 6238 val64 = readq(&bar0->adapter_status);
5515 if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) { 6239 if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
5516 break; 6240 break;
@@ -5528,15 +6252,6 @@ static void s2io_card_down(nic_t * sp)
5528 } while (1); 6252 } while (1);
5529 s2io_reset(sp); 6253 s2io_reset(sp);
5530 6254
5531 /* Waiting till all Interrupt handlers are complete */
5532 cnt = 0;
5533 do {
5534 msleep(10);
5535 if (!atomic_read(&sp->isr_cnt))
5536 break;
5537 cnt++;
5538 } while(cnt < 5);
5539
5540 spin_lock_irqsave(&sp->tx_lock, flags); 6255 spin_lock_irqsave(&sp->tx_lock, flags);
5541 /* Free all Tx buffers */ 6256 /* Free all Tx buffers */
5542 free_tx_buffers(sp); 6257 free_tx_buffers(sp);
@@ -5637,7 +6352,7 @@ static void s2io_restart_nic(unsigned long data)
5637 struct net_device *dev = (struct net_device *) data; 6352 struct net_device *dev = (struct net_device *) data;
5638 nic_t *sp = dev->priv; 6353 nic_t *sp = dev->priv;
5639 6354
5640 s2io_card_down(sp); 6355 s2io_card_down(sp, 0);
5641 if (s2io_card_up(sp)) { 6356 if (s2io_card_up(sp)) {
5642 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", 6357 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5643 dev->name); 6358 dev->name);
@@ -5667,6 +6382,7 @@ static void s2io_tx_watchdog(struct net_device *dev)
5667 6382
5668 if (netif_carrier_ok(dev)) { 6383 if (netif_carrier_ok(dev)) {
5669 schedule_work(&sp->rst_timer_task); 6384 schedule_work(&sp->rst_timer_task);
6385 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
5670 } 6386 }
5671} 6387}
5672 6388
@@ -5695,18 +6411,33 @@ static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
5695 ((unsigned long) rxdp->Host_Control); 6411 ((unsigned long) rxdp->Host_Control);
5696 int ring_no = ring_data->ring_no; 6412 int ring_no = ring_data->ring_no;
5697 u16 l3_csum, l4_csum; 6413 u16 l3_csum, l4_csum;
6414 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
5698 lro_t *lro; 6415 lro_t *lro;
5699 6416
5700 skb->dev = dev; 6417 skb->dev = dev;
5701 if (rxdp->Control_1 & RXD_T_CODE) { 6418
5702 unsigned long long err = rxdp->Control_1 & RXD_T_CODE; 6419 if (err) {
5703 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n", 6420 /* Check for parity error */
5704 dev->name, err); 6421 if (err & 0x1) {
5705 dev_kfree_skb(skb); 6422 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
5706 sp->stats.rx_crc_errors++; 6423 }
5707 atomic_dec(&sp->rx_bufs_left[ring_no]); 6424
5708 rxdp->Host_Control = 0; 6425 /*
5709 return 0; 6426 * Drop the packet if bad transfer code. Exception being
6427 * 0x5, which could be due to unsupported IPv6 extension header.
6428 * In this case, we let stack handle the packet.
6429 * Note that in this case, since checksum will be incorrect,
6430 * stack will validate the same.
6431 */
6432 if (err && ((err >> 48) != 0x5)) {
6433 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6434 dev->name, err);
6435 sp->stats.rx_crc_errors++;
6436 dev_kfree_skb(skb);
6437 atomic_dec(&sp->rx_bufs_left[ring_no]);
6438 rxdp->Host_Control = 0;
6439 return 0;
6440 }
5710 } 6441 }
5711 6442
5712 /* Updating statistics */ 6443 /* Updating statistics */
@@ -5792,6 +6523,9 @@ static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
5792 clear_lro_session(lro); 6523 clear_lro_session(lro);
5793 goto send_up; 6524 goto send_up;
5794 case 0: /* sessions exceeded */ 6525 case 0: /* sessions exceeded */
6526 case -1: /* non-TCP or not
6527 * L2 aggregatable
6528 */
5795 case 5: /* 6529 case 5: /*
5796 * First pkt in session not 6530 * First pkt in session not
5797 * L3/L4 aggregatable 6531 * L3/L4 aggregatable
@@ -5918,13 +6652,6 @@ static void s2io_init_pci(nic_t * sp)
5918 pci_write_config_word(sp->pdev, PCI_COMMAND, 6652 pci_write_config_word(sp->pdev, PCI_COMMAND,
5919 (pci_cmd | PCI_COMMAND_PARITY)); 6653 (pci_cmd | PCI_COMMAND_PARITY));
5920 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); 6654 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
5921
5922 /* Forcibly disabling relaxed ordering capability of the card. */
5923 pcix_cmd &= 0xfffd;
5924 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5925 pcix_cmd);
5926 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5927 &(pcix_cmd));
5928} 6655}
5929 6656
5930MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>"); 6657MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
@@ -5954,6 +6681,55 @@ module_param(intr_type, int, 0);
5954module_param(lro, int, 0); 6681module_param(lro, int, 0);
5955module_param(lro_max_pkts, int, 0); 6682module_param(lro_max_pkts, int, 0);
5956 6683
6684static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6685{
6686 if ( tx_fifo_num > 8) {
6687 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6688 "supported\n");
6689 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6690 tx_fifo_num = 8;
6691 }
6692 if ( rx_ring_num > 8) {
6693 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6694 "supported\n");
6695 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6696 rx_ring_num = 8;
6697 }
6698#ifdef CONFIG_S2IO_NAPI
6699 if (*dev_intr_type != INTA) {
6700 DBG_PRINT(ERR_DBG, "s2io: NAPI cannot be enabled when "
6701 "MSI/MSI-X is enabled. Defaulting to INTA\n");
6702 *dev_intr_type = INTA;
6703 }
6704#endif
6705#ifndef CONFIG_PCI_MSI
6706 if (*dev_intr_type != INTA) {
6707 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6708 "MSI/MSI-X. Defaulting to INTA\n");
6709 *dev_intr_type = INTA;
6710 }
6711#else
6712 if (*dev_intr_type > MSI_X) {
6713 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6714 "Defaulting to INTA\n");
6715 *dev_intr_type = INTA;
6716 }
6717#endif
6718 if ((*dev_intr_type == MSI_X) &&
6719 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6720 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6721 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
6722 "Defaulting to INTA\n");
6723 *dev_intr_type = INTA;
6724 }
6725 if (rx_ring_mode > 3) {
6726 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6727 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6728 rx_ring_mode = 3;
6729 }
6730 return SUCCESS;
6731}
6732
5957/** 6733/**
5958 * s2io_init_nic - Initialization of the adapter . 6734 * s2io_init_nic - Initialization of the adapter .
5959 * @pdev : structure containing the PCI related information of the device. 6735 * @pdev : structure containing the PCI related information of the device.
@@ -5984,15 +6760,8 @@ s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
5984 int mode; 6760 int mode;
5985 u8 dev_intr_type = intr_type; 6761 u8 dev_intr_type = intr_type;
5986 6762
5987#ifdef CONFIG_S2IO_NAPI 6763 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
5988 if (dev_intr_type != INTA) { 6764 return ret;
5989 DBG_PRINT(ERR_DBG, "NAPI cannot be enabled when MSI/MSI-X \
5990is enabled. Defaulting to INTA\n");
5991 dev_intr_type = INTA;
5992 }
5993 else
5994 DBG_PRINT(ERR_DBG, "NAPI support has been enabled\n");
5995#endif
5996 6765
5997 if ((ret = pci_enable_device(pdev))) { 6766 if ((ret = pci_enable_device(pdev))) {
5998 DBG_PRINT(ERR_DBG, 6767 DBG_PRINT(ERR_DBG,
@@ -6017,14 +6786,6 @@ is enabled. Defaulting to INTA\n");
6017 pci_disable_device(pdev); 6786 pci_disable_device(pdev);
6018 return -ENOMEM; 6787 return -ENOMEM;
6019 } 6788 }
6020
6021 if ((dev_intr_type == MSI_X) &&
6022 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6023 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6024 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. \
6025Defaulting to INTA\n");
6026 dev_intr_type = INTA;
6027 }
6028 if (dev_intr_type != MSI_X) { 6789 if (dev_intr_type != MSI_X) {
6029 if (pci_request_regions(pdev, s2io_driver_name)) { 6790 if (pci_request_regions(pdev, s2io_driver_name)) {
6030 DBG_PRINT(ERR_DBG, "Request Regions failed\n"), 6791 DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
@@ -6100,8 +6861,6 @@ Defaulting to INTA\n");
6100 config = &sp->config; 6861 config = &sp->config;
6101 6862
6102 /* Tx side parameters. */ 6863 /* Tx side parameters. */
6103 if (tx_fifo_len[0] == 0)
6104 tx_fifo_len[0] = DEFAULT_FIFO_LEN; /* Default value. */
6105 config->tx_fifo_num = tx_fifo_num; 6864 config->tx_fifo_num = tx_fifo_num;
6106 for (i = 0; i < MAX_TX_FIFOS; i++) { 6865 for (i = 0; i < MAX_TX_FIFOS; i++) {
6107 config->tx_cfg[i].fifo_len = tx_fifo_len[i]; 6866 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
@@ -6125,8 +6884,6 @@ Defaulting to INTA\n");
6125 config->max_txds = MAX_SKB_FRAGS + 2; 6884 config->max_txds = MAX_SKB_FRAGS + 2;
6126 6885
6127 /* Rx side parameters. */ 6886 /* Rx side parameters. */
6128 if (rx_ring_sz[0] == 0)
6129 rx_ring_sz[0] = SMALL_BLK_CNT; /* Default value. */
6130 config->rx_ring_num = rx_ring_num; 6887 config->rx_ring_num = rx_ring_num;
6131 for (i = 0; i < MAX_RX_RINGS; i++) { 6888 for (i = 0; i < MAX_RX_RINGS; i++) {
6132 config->rx_cfg[i].num_rxd = rx_ring_sz[i] * 6889 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
@@ -6267,8 +7024,8 @@ Defaulting to INTA\n");
6267 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 7024 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
6268 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET); 7025 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
6269 writeq(val64, &bar0->rmac_addr_cmd_mem); 7026 writeq(val64, &bar0->rmac_addr_cmd_mem);
6270 wait_for_cmd_complete(sp); 7027 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
6271 7028 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
6272 tmp64 = readq(&bar0->rmac_addr_data0_mem); 7029 tmp64 = readq(&bar0->rmac_addr_data0_mem);
6273 mac_down = (u32) tmp64; 7030 mac_down = (u32) tmp64;
6274 mac_up = (u32) (tmp64 >> 32); 7031 mac_up = (u32) (tmp64 >> 32);
@@ -6322,82 +7079,63 @@ Defaulting to INTA\n");
6322 ret = -ENODEV; 7079 ret = -ENODEV;
6323 goto register_failed; 7080 goto register_failed;
6324 } 7081 }
6325 7082 s2io_vpd_read(sp);
6326 if (sp->device_type & XFRAME_II_DEVICE) { 7083 DBG_PRINT(ERR_DBG, "%s: Neterion %s",dev->name, sp->product_name);
6327 DBG_PRINT(ERR_DBG, "%s: Neterion Xframe II 10GbE adapter ", 7084 DBG_PRINT(ERR_DBG, "(rev %d), Driver version %s\n",
6328 dev->name);
6329 DBG_PRINT(ERR_DBG, "(rev %d), Version %s",
6330 get_xena_rev_id(sp->pdev), 7085 get_xena_rev_id(sp->pdev),
6331 s2io_driver_version); 7086 s2io_driver_version);
6332 switch(sp->intr_type) { 7087 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
6333 case INTA: 7088 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
6334 DBG_PRINT(ERR_DBG, ", Intr type INTA"); 7089 "%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name,
6335 break;
6336 case MSI:
6337 DBG_PRINT(ERR_DBG, ", Intr type MSI");
6338 break;
6339 case MSI_X:
6340 DBG_PRINT(ERR_DBG, ", Intr type MSI-X");
6341 break;
6342 }
6343
6344 DBG_PRINT(ERR_DBG, "\nCopyright(c) 2002-2005 Neterion Inc.\n");
6345 DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n",
6346 sp->def_mac_addr[0].mac_addr[0], 7090 sp->def_mac_addr[0].mac_addr[0],
6347 sp->def_mac_addr[0].mac_addr[1], 7091 sp->def_mac_addr[0].mac_addr[1],
6348 sp->def_mac_addr[0].mac_addr[2], 7092 sp->def_mac_addr[0].mac_addr[2],
6349 sp->def_mac_addr[0].mac_addr[3], 7093 sp->def_mac_addr[0].mac_addr[3],
6350 sp->def_mac_addr[0].mac_addr[4], 7094 sp->def_mac_addr[0].mac_addr[4],
6351 sp->def_mac_addr[0].mac_addr[5]); 7095 sp->def_mac_addr[0].mac_addr[5]);
7096 if (sp->device_type & XFRAME_II_DEVICE) {
6352 mode = s2io_print_pci_mode(sp); 7097 mode = s2io_print_pci_mode(sp);
6353 if (mode < 0) { 7098 if (mode < 0) {
6354 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode "); 7099 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
6355 ret = -EBADSLT; 7100 ret = -EBADSLT;
7101 unregister_netdev(dev);
6356 goto set_swap_failed; 7102 goto set_swap_failed;
6357 } 7103 }
6358 } else {
6359 DBG_PRINT(ERR_DBG, "%s: Neterion Xframe I 10GbE adapter ",
6360 dev->name);
6361 DBG_PRINT(ERR_DBG, "(rev %d), Version %s",
6362 get_xena_rev_id(sp->pdev),
6363 s2io_driver_version);
6364 switch(sp->intr_type) {
6365 case INTA:
6366 DBG_PRINT(ERR_DBG, ", Intr type INTA");
6367 break;
6368 case MSI:
6369 DBG_PRINT(ERR_DBG, ", Intr type MSI");
6370 break;
6371 case MSI_X:
6372 DBG_PRINT(ERR_DBG, ", Intr type MSI-X");
6373 break;
6374 }
6375 DBG_PRINT(ERR_DBG, "\nCopyright(c) 2002-2005 Neterion Inc.\n");
6376 DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n",
6377 sp->def_mac_addr[0].mac_addr[0],
6378 sp->def_mac_addr[0].mac_addr[1],
6379 sp->def_mac_addr[0].mac_addr[2],
6380 sp->def_mac_addr[0].mac_addr[3],
6381 sp->def_mac_addr[0].mac_addr[4],
6382 sp->def_mac_addr[0].mac_addr[5]);
6383 } 7104 }
6384 if (sp->rxd_mode == RXD_MODE_3B) 7105 switch(sp->rxd_mode) {
6385 DBG_PRINT(ERR_DBG, "%s: 2-Buffer mode support has been " 7106 case RXD_MODE_1:
6386 "enabled\n",dev->name); 7107 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
6387 if (sp->rxd_mode == RXD_MODE_3A) 7108 dev->name);
6388 DBG_PRINT(ERR_DBG, "%s: 3-Buffer mode support has been " 7109 break;
6389 "enabled\n",dev->name); 7110 case RXD_MODE_3B:
6390 7111 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7112 dev->name);
7113 break;
7114 case RXD_MODE_3A:
7115 DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7116 dev->name);
7117 break;
7118 }
7119#ifdef CONFIG_S2IO_NAPI
7120 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7121#endif
7122 switch(sp->intr_type) {
7123 case INTA:
7124 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7125 break;
7126 case MSI:
7127 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7128 break;
7129 case MSI_X:
7130 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7131 break;
7132 }
6391 if (sp->lro) 7133 if (sp->lro)
6392 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n", 7134 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
6393 dev->name); 7135 dev->name);
6394 7136
6395 /* Initialize device name */ 7137 /* Initialize device name */
6396 strcpy(sp->name, dev->name); 7138 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
6397 if (sp->device_type & XFRAME_II_DEVICE)
6398 strcat(sp->name, ": Neterion Xframe II 10GbE adapter");
6399 else
6400 strcat(sp->name, ": Neterion Xframe I 10GbE adapter");
6401 7139
6402 /* Initialize bimodal Interrupts */ 7140 /* Initialize bimodal Interrupts */
6403 sp->config.bimodal = bimodal; 7141 sp->config.bimodal = bimodal;
diff --git a/drivers/net/s2io.h b/drivers/net/s2io.h
index 0a0b5b29d81e..3203732a668d 100644
--- a/drivers/net/s2io.h
+++ b/drivers/net/s2io.h
@@ -31,6 +31,8 @@
31#define SUCCESS 0 31#define SUCCESS 0
32#define FAILURE -1 32#define FAILURE -1
33 33
34#define CHECKBIT(value, nbit) (value & (1 << nbit))
35
34/* Maximum time to flicker LED when asked to identify NIC using ethtool */ 36/* Maximum time to flicker LED when asked to identify NIC using ethtool */
35#define MAX_FLICKER_TIME 60000 /* 60 Secs */ 37#define MAX_FLICKER_TIME 60000 /* 60 Secs */
36 38
@@ -78,6 +80,11 @@ static int debug_level = ERR_DBG;
78typedef struct { 80typedef struct {
79 unsigned long long single_ecc_errs; 81 unsigned long long single_ecc_errs;
80 unsigned long long double_ecc_errs; 82 unsigned long long double_ecc_errs;
83 unsigned long long parity_err_cnt;
84 unsigned long long serious_err_cnt;
85 unsigned long long soft_reset_cnt;
86 unsigned long long fifo_full_cnt;
87 unsigned long long ring_full_cnt;
81 /* LRO statistics */ 88 /* LRO statistics */
82 unsigned long long clubbed_frms_cnt; 89 unsigned long long clubbed_frms_cnt;
83 unsigned long long sending_both; 90 unsigned long long sending_both;
@@ -87,6 +94,25 @@ typedef struct {
87 unsigned long long num_aggregations; 94 unsigned long long num_aggregations;
88} swStat_t; 95} swStat_t;
89 96
97/* Xpak releated alarm and warnings */
98typedef struct {
99 u64 alarm_transceiver_temp_high;
100 u64 alarm_transceiver_temp_low;
101 u64 alarm_laser_bias_current_high;
102 u64 alarm_laser_bias_current_low;
103 u64 alarm_laser_output_power_high;
104 u64 alarm_laser_output_power_low;
105 u64 warn_transceiver_temp_high;
106 u64 warn_transceiver_temp_low;
107 u64 warn_laser_bias_current_high;
108 u64 warn_laser_bias_current_low;
109 u64 warn_laser_output_power_high;
110 u64 warn_laser_output_power_low;
111 u64 xpak_regs_stat;
112 u32 xpak_timer_count;
113} xpakStat_t;
114
115
90/* The statistics block of Xena */ 116/* The statistics block of Xena */
91typedef struct stat_block { 117typedef struct stat_block {
92/* Tx MAC statistics counters. */ 118/* Tx MAC statistics counters. */
@@ -263,7 +289,9 @@ typedef struct stat_block {
263 u32 rmac_accepted_ip_oflow; 289 u32 rmac_accepted_ip_oflow;
264 u32 reserved_14; 290 u32 reserved_14;
265 u32 link_fault_cnt; 291 u32 link_fault_cnt;
292 u8 buffer[20];
266 swStat_t sw_stat; 293 swStat_t sw_stat;
294 xpakStat_t xpak_stat;
267} StatInfo_t; 295} StatInfo_t;
268 296
269/* 297/*
@@ -659,7 +687,8 @@ typedef struct {
659} usr_addr_t; 687} usr_addr_t;
660 688
661/* Default Tunable parameters of the NIC. */ 689/* Default Tunable parameters of the NIC. */
662#define DEFAULT_FIFO_LEN 4096 690#define DEFAULT_FIFO_0_LEN 4096
691#define DEFAULT_FIFO_1_7_LEN 512
663#define SMALL_BLK_CNT 30 692#define SMALL_BLK_CNT 30
664#define LARGE_BLK_CNT 100 693#define LARGE_BLK_CNT 100
665 694
@@ -732,7 +761,7 @@ struct s2io_nic {
732 int device_close_flag; 761 int device_close_flag;
733 int device_enabled_once; 762 int device_enabled_once;
734 763
735 char name[50]; 764 char name[60];
736 struct tasklet_struct task; 765 struct tasklet_struct task;
737 volatile unsigned long tasklet_status; 766 volatile unsigned long tasklet_status;
738 767
@@ -803,6 +832,8 @@ struct s2io_nic {
803 char desc1[35]; 832 char desc1[35];
804 char desc2[35]; 833 char desc2[35];
805 834
835 int avail_msix_vectors; /* No. of MSI-X vectors granted by system */
836
806 struct msix_info_st msix_info[0x3f]; 837 struct msix_info_st msix_info[0x3f];
807 838
808#define XFRAME_I_DEVICE 1 839#define XFRAME_I_DEVICE 1
@@ -824,6 +855,8 @@ struct s2io_nic {
824 spinlock_t rx_lock; 855 spinlock_t rx_lock;
825 atomic_t isr_cnt; 856 atomic_t isr_cnt;
826 u64 *ufo_in_band_v; 857 u64 *ufo_in_band_v;
858#define VPD_PRODUCT_NAME_LEN 50
859 u8 product_name[VPD_PRODUCT_NAME_LEN];
827}; 860};
828 861
829#define RESET_ERROR 1; 862#define RESET_ERROR 1;
@@ -848,28 +881,32 @@ static inline void writeq(u64 val, void __iomem *addr)
848 writel((u32) (val), addr); 881 writel((u32) (val), addr);
849 writel((u32) (val >> 32), (addr + 4)); 882 writel((u32) (val >> 32), (addr + 4));
850} 883}
884#endif
851 885
852/* In 32 bit modes, some registers have to be written in a 886/*
853 * particular order to expect correct hardware operation. The 887 * Some registers have to be written in a particular order to
854 * macro SPECIAL_REG_WRITE is used to perform such ordered 888 * expect correct hardware operation. The macro SPECIAL_REG_WRITE
855 * writes. Defines UF (Upper First) and LF (Lower First) will 889 * is used to perform such ordered writes. Defines UF (Upper First)
856 * be used to specify the required write order. 890 * and LF (Lower First) will be used to specify the required write order.
857 */ 891 */
858#define UF 1 892#define UF 1
859#define LF 2 893#define LF 2
860static inline void SPECIAL_REG_WRITE(u64 val, void __iomem *addr, int order) 894static inline void SPECIAL_REG_WRITE(u64 val, void __iomem *addr, int order)
861{ 895{
896 u32 ret;
897
862 if (order == LF) { 898 if (order == LF) {
863 writel((u32) (val), addr); 899 writel((u32) (val), addr);
900 ret = readl(addr);
864 writel((u32) (val >> 32), (addr + 4)); 901 writel((u32) (val >> 32), (addr + 4));
902 ret = readl(addr + 4);
865 } else { 903 } else {
866 writel((u32) (val >> 32), (addr + 4)); 904 writel((u32) (val >> 32), (addr + 4));
905 ret = readl(addr + 4);
867 writel((u32) (val), addr); 906 writel((u32) (val), addr);
907 ret = readl(addr);
868 } 908 }
869} 909}
870#else
871#define SPECIAL_REG_WRITE(val, addr, dummy) writeq(val, addr)
872#endif
873 910
874/* Interrupt related values of Xena */ 911/* Interrupt related values of Xena */
875 912
@@ -965,7 +1002,7 @@ static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag);
965static struct ethtool_ops netdev_ethtool_ops; 1002static struct ethtool_ops netdev_ethtool_ops;
966static void s2io_set_link(unsigned long data); 1003static void s2io_set_link(unsigned long data);
967static int s2io_set_swapper(nic_t * sp); 1004static int s2io_set_swapper(nic_t * sp);
968static void s2io_card_down(nic_t *nic); 1005static void s2io_card_down(nic_t *nic, int flag);
969static int s2io_card_up(nic_t *nic); 1006static int s2io_card_up(nic_t *nic);
970static int get_xena_rev_id(struct pci_dev *pdev); 1007static int get_xena_rev_id(struct pci_dev *pdev);
971static void restore_xmsi_data(nic_t *nic); 1008static void restore_xmsi_data(nic_t *nic);
diff --git a/drivers/net/sis900.c b/drivers/net/sis900.c
index f5a3bf4d959a..d05874172209 100644
--- a/drivers/net/sis900.c
+++ b/drivers/net/sis900.c
@@ -1,6 +1,6 @@
1/* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux. 1/* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2 Copyright 1999 Silicon Integrated System Corporation 2 Copyright 1999 Silicon Integrated System Corporation
3 Revision: 1.08.09 Sep. 19 2005 3 Revision: 1.08.10 Apr. 2 2006
4 4
5 Modified from the driver which is originally written by Donald Becker. 5 Modified from the driver which is originally written by Donald Becker.
6 6
@@ -17,9 +17,10 @@
17 SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution, 17 SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18 preliminary Rev. 1.0 Jan. 18, 1998 18 preliminary Rev. 1.0 Jan. 18, 1998
19 19
20 Rev 1.08.10 Apr. 2 2006 Daniele Venzano add vlan (jumbo packets) support
20 Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support 21 Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
21 Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages 22 Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
22 Rev 1.08.07 Nov. 2 2003 Daniele Venzano <webvenza@libero.it> add suspend/resume support 23 Rev 1.08.07 Nov. 2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
23 Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support 24 Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
24 Rev 1.08.05 Jun. 6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary 25 Rev 1.08.05 Jun. 6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
25 Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support 26 Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
@@ -77,7 +78,7 @@
77#include "sis900.h" 78#include "sis900.h"
78 79
79#define SIS900_MODULE_NAME "sis900" 80#define SIS900_MODULE_NAME "sis900"
80#define SIS900_DRV_VERSION "v1.08.09 Sep. 19 2005" 81#define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
81 82
82static char version[] __devinitdata = 83static char version[] __devinitdata =
83KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n"; 84KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
@@ -1402,6 +1403,11 @@ static void sis900_set_mode (long ioaddr, int speed, int duplex)
1402 rx_flags |= RxATX; 1403 rx_flags |= RxATX;
1403 } 1404 }
1404 1405
1406#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1407 /* Can accept Jumbo packet */
1408 rx_flags |= RxAJAB;
1409#endif
1410
1405 outl (tx_flags, ioaddr + txcfg); 1411 outl (tx_flags, ioaddr + txcfg);
1406 outl (rx_flags, ioaddr + rxcfg); 1412 outl (rx_flags, ioaddr + rxcfg);
1407} 1413}
@@ -1714,18 +1720,26 @@ static int sis900_rx(struct net_device *net_dev)
1714 1720
1715 while (rx_status & OWN) { 1721 while (rx_status & OWN) {
1716 unsigned int rx_size; 1722 unsigned int rx_size;
1723 unsigned int data_size;
1717 1724
1718 if (--rx_work_limit < 0) 1725 if (--rx_work_limit < 0)
1719 break; 1726 break;
1720 1727
1721 rx_size = (rx_status & DSIZE) - CRC_SIZE; 1728 data_size = rx_status & DSIZE;
1729 rx_size = data_size - CRC_SIZE;
1730
1731#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1732 /* ``TOOLONG'' flag means jumbo packet recived. */
1733 if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1734 rx_status &= (~ ((unsigned int)TOOLONG));
1735#endif
1722 1736
1723 if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) { 1737 if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1724 /* corrupted packet received */ 1738 /* corrupted packet received */
1725 if (netif_msg_rx_err(sis_priv)) 1739 if (netif_msg_rx_err(sis_priv))
1726 printk(KERN_DEBUG "%s: Corrupted packet " 1740 printk(KERN_DEBUG "%s: Corrupted packet "
1727 "received, buffer status = 0x%8.8x.\n", 1741 "received, buffer status = 0x%8.8x/%d.\n",
1728 net_dev->name, rx_status); 1742 net_dev->name, rx_status, data_size);
1729 sis_priv->stats.rx_errors++; 1743 sis_priv->stats.rx_errors++;
1730 if (rx_status & OVERRUN) 1744 if (rx_status & OVERRUN)
1731 sis_priv->stats.rx_over_errors++; 1745 sis_priv->stats.rx_over_errors++;
diff --git a/drivers/net/sis900.h b/drivers/net/sis900.h
index 50323941e3c0..4834e3a15694 100644
--- a/drivers/net/sis900.h
+++ b/drivers/net/sis900.h
@@ -310,8 +310,14 @@ enum sis630_revision_id {
310#define CRC_SIZE 4 310#define CRC_SIZE 4
311#define MAC_HEADER_SIZE 14 311#define MAC_HEADER_SIZE 14
312 312
313#define TX_BUF_SIZE 1536 313#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
314#define RX_BUF_SIZE 1536 314#define MAX_FRAME_SIZE (1518 + 4)
315#else
316#define MAX_FRAME_SIZE 1518
317#endif /* CONFIG_VLAN_802_1Q */
318
319#define TX_BUF_SIZE (MAX_FRAME_SIZE+18)
320#define RX_BUF_SIZE (MAX_FRAME_SIZE+18)
315 321
316#define NUM_TX_DESC 16 /* Number of Tx descriptor registers. */ 322#define NUM_TX_DESC 16 /* Number of Tx descriptor registers. */
317#define NUM_RX_DESC 16 /* Number of Rx descriptor registers. */ 323#define NUM_RX_DESC 16 /* Number of Rx descriptor registers. */
diff --git a/drivers/net/smc911x.c b/drivers/net/smc911x.c
new file mode 100644
index 000000000000..bdd8702ead54
--- /dev/null
+++ b/drivers/net/smc911x.c
@@ -0,0 +1,2307 @@
1/*
2 * smc911x.c
3 * This is a driver for SMSC's LAN911{5,6,7,8} single-chip Ethernet devices.
4 *
5 * Copyright (C) 2005 Sensoria Corp
6 * Derived from the unified SMC91x driver by Nicolas Pitre
7 * and the smsc911x.c reference driver by SMSC
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Arguments:
24 * watchdog = TX watchdog timeout
25 * tx_fifo_kb = Size of TX FIFO in KB
26 *
27 * History:
28 * 04/16/05 Dustin McIntire Initial version
29 */
30static const char version[] =
31 "smc911x.c: v1.0 04-16-2005 by Dustin McIntire <dustin@sensoria.com>\n";
32
33/* Debugging options */
34#define ENABLE_SMC_DEBUG_RX 0
35#define ENABLE_SMC_DEBUG_TX 0
36#define ENABLE_SMC_DEBUG_DMA 0
37#define ENABLE_SMC_DEBUG_PKTS 0
38#define ENABLE_SMC_DEBUG_MISC 0
39#define ENABLE_SMC_DEBUG_FUNC 0
40
41#define SMC_DEBUG_RX ((ENABLE_SMC_DEBUG_RX ? 1 : 0) << 0)
42#define SMC_DEBUG_TX ((ENABLE_SMC_DEBUG_TX ? 1 : 0) << 1)
43#define SMC_DEBUG_DMA ((ENABLE_SMC_DEBUG_DMA ? 1 : 0) << 2)
44#define SMC_DEBUG_PKTS ((ENABLE_SMC_DEBUG_PKTS ? 1 : 0) << 3)
45#define SMC_DEBUG_MISC ((ENABLE_SMC_DEBUG_MISC ? 1 : 0) << 4)
46#define SMC_DEBUG_FUNC ((ENABLE_SMC_DEBUG_FUNC ? 1 : 0) << 5)
47
48#ifndef SMC_DEBUG
49#define SMC_DEBUG ( SMC_DEBUG_RX | \
50 SMC_DEBUG_TX | \
51 SMC_DEBUG_DMA | \
52 SMC_DEBUG_PKTS | \
53 SMC_DEBUG_MISC | \
54 SMC_DEBUG_FUNC \
55 )
56#endif
57
58
59#include <linux/config.h>
60#include <linux/init.h>
61#include <linux/module.h>
62#include <linux/kernel.h>
63#include <linux/sched.h>
64#include <linux/slab.h>
65#include <linux/delay.h>
66#include <linux/interrupt.h>
67#include <linux/errno.h>
68#include <linux/ioport.h>
69#include <linux/crc32.h>
70#include <linux/device.h>
71#include <linux/platform_device.h>
72#include <linux/spinlock.h>
73#include <linux/ethtool.h>
74#include <linux/mii.h>
75#include <linux/workqueue.h>
76
77#include <linux/netdevice.h>
78#include <linux/etherdevice.h>
79#include <linux/skbuff.h>
80
81#include <asm/io.h>
82#include <asm/irq.h>
83
84#include "smc911x.h"
85
86/*
87 * Transmit timeout, default 5 seconds.
88 */
89static int watchdog = 5000;
90module_param(watchdog, int, 0400);
91MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
92
93static int tx_fifo_kb=8;
94module_param(tx_fifo_kb, int, 0400);
95MODULE_PARM_DESC(tx_fifo_kb,"transmit FIFO size in KB (1<x<15)(default=8)");
96
97MODULE_LICENSE("GPL");
98
99/*
100 * The internal workings of the driver. If you are changing anything
101 * here with the SMC stuff, you should have the datasheet and know
102 * what you are doing.
103 */
104#define CARDNAME "smc911x"
105
106/*
107 * Use power-down feature of the chip
108 */
109#define POWER_DOWN 1
110
111
112/* store this information for the driver.. */
113struct smc911x_local {
114 /*
115 * If I have to wait until the DMA is finished and ready to reload a
116 * packet, I will store the skbuff here. Then, the DMA will send it
117 * out and free it.
118 */
119 struct sk_buff *pending_tx_skb;
120
121 /*
122 * these are things that the kernel wants me to keep, so users
123 * can find out semi-useless statistics of how well the card is
124 * performing
125 */
126 struct net_device_stats stats;
127
128 /* version/revision of the SMC911x chip */
129 u16 version;
130 u16 revision;
131
132 /* FIFO sizes */
133 int tx_fifo_kb;
134 int tx_fifo_size;
135 int rx_fifo_size;
136 int afc_cfg;
137
138 /* Contains the current active receive/phy mode */
139 int ctl_rfduplx;
140 int ctl_rspeed;
141
142 u32 msg_enable;
143 u32 phy_type;
144 struct mii_if_info mii;
145
146 /* work queue */
147 struct work_struct phy_configure;
148 int work_pending;
149
150 int tx_throttle;
151 spinlock_t lock;
152
153#ifdef SMC_USE_DMA
154 /* DMA needs the physical address of the chip */
155 u_long physaddr;
156 int rxdma;
157 int txdma;
158 int rxdma_active;
159 int txdma_active;
160 struct sk_buff *current_rx_skb;
161 struct sk_buff *current_tx_skb;
162 struct device *dev;
163#endif
164};
165
166#if SMC_DEBUG > 0
167#define DBG(n, args...) \
168 do { \
169 if (SMC_DEBUG & (n)) \
170 printk(args); \
171 } while (0)
172
173#define PRINTK(args...) printk(args)
174#else
175#define DBG(n, args...) do { } while (0)
176#define PRINTK(args...) printk(KERN_DEBUG args)
177#endif
178
179#if SMC_DEBUG_PKTS > 0
180static void PRINT_PKT(u_char *buf, int length)
181{
182 int i;
183 int remainder;
184 int lines;
185
186 lines = length / 16;
187 remainder = length % 16;
188
189 for (i = 0; i < lines ; i ++) {
190 int cur;
191 for (cur = 0; cur < 8; cur++) {
192 u_char a, b;
193 a = *buf++;
194 b = *buf++;
195 printk("%02x%02x ", a, b);
196 }
197 printk("\n");
198 }
199 for (i = 0; i < remainder/2 ; i++) {
200 u_char a, b;
201 a = *buf++;
202 b = *buf++;
203 printk("%02x%02x ", a, b);
204 }
205 printk("\n");
206}
207#else
208#define PRINT_PKT(x...) do { } while (0)
209#endif
210
211
212/* this enables an interrupt in the interrupt mask register */
213#define SMC_ENABLE_INT(x) do { \
214 unsigned int __mask; \
215 unsigned long __flags; \
216 spin_lock_irqsave(&lp->lock, __flags); \
217 __mask = SMC_GET_INT_EN(); \
218 __mask |= (x); \
219 SMC_SET_INT_EN(__mask); \
220 spin_unlock_irqrestore(&lp->lock, __flags); \
221} while (0)
222
223/* this disables an interrupt from the interrupt mask register */
224#define SMC_DISABLE_INT(x) do { \
225 unsigned int __mask; \
226 unsigned long __flags; \
227 spin_lock_irqsave(&lp->lock, __flags); \
228 __mask = SMC_GET_INT_EN(); \
229 __mask &= ~(x); \
230 SMC_SET_INT_EN(__mask); \
231 spin_unlock_irqrestore(&lp->lock, __flags); \
232} while (0)
233
234/*
235 * this does a soft reset on the device
236 */
237static void smc911x_reset(struct net_device *dev)
238{
239 unsigned long ioaddr = dev->base_addr;
240 struct smc911x_local *lp = netdev_priv(dev);
241 unsigned int reg, timeout=0, resets=1;
242 unsigned long flags;
243
244 DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
245
246 /* Take out of PM setting first */
247 if ((SMC_GET_PMT_CTRL() & PMT_CTRL_READY_) == 0) {
248 /* Write to the bytetest will take out of powerdown */
249 SMC_SET_BYTE_TEST(0);
250 timeout=10;
251 do {
252 udelay(10);
253 reg = SMC_GET_PMT_CTRL() & PMT_CTRL_READY_;
254 } while ( timeout-- && !reg);
255 if (timeout == 0) {
256 PRINTK("%s: smc911x_reset timeout waiting for PM restore\n", dev->name);
257 return;
258 }
259 }
260
261 /* Disable all interrupts */
262 spin_lock_irqsave(&lp->lock, flags);
263 SMC_SET_INT_EN(0);
264 spin_unlock_irqrestore(&lp->lock, flags);
265
266 while (resets--) {
267 SMC_SET_HW_CFG(HW_CFG_SRST_);
268 timeout=10;
269 do {
270 udelay(10);
271 reg = SMC_GET_HW_CFG();
272 /* If chip indicates reset timeout then try again */
273 if (reg & HW_CFG_SRST_TO_) {
274 PRINTK("%s: chip reset timeout, retrying...\n", dev->name);
275 resets++;
276 break;
277 }
278 } while ( timeout-- && (reg & HW_CFG_SRST_));
279 }
280 if (timeout == 0) {
281 PRINTK("%s: smc911x_reset timeout waiting for reset\n", dev->name);
282 return;
283 }
284
285 /* make sure EEPROM has finished loading before setting GPIO_CFG */
286 timeout=1000;
287 while ( timeout-- && (SMC_GET_E2P_CMD() & E2P_CMD_EPC_BUSY_)) {
288 udelay(10);
289 }
290 if (timeout == 0){
291 PRINTK("%s: smc911x_reset timeout waiting for EEPROM busy\n", dev->name);
292 return;
293 }
294
295 /* Initialize interrupts */
296 SMC_SET_INT_EN(0);
297 SMC_ACK_INT(-1);
298
299 /* Reset the FIFO level and flow control settings */
300 SMC_SET_HW_CFG((lp->tx_fifo_kb & 0xF) << 16);
301//TODO: Figure out what appropriate pause time is
302 SMC_SET_FLOW(FLOW_FCPT_ | FLOW_FCEN_);
303 SMC_SET_AFC_CFG(lp->afc_cfg);
304
305
306 /* Set to LED outputs */
307 SMC_SET_GPIO_CFG(0x70070000);
308
309 /*
310 * Deassert IRQ for 1*10us for edge type interrupts
311 * and drive IRQ pin push-pull
312 */
313 SMC_SET_IRQ_CFG( (1 << 24) | INT_CFG_IRQ_EN_ | INT_CFG_IRQ_TYPE_ );
314
315 /* clear anything saved */
316 if (lp->pending_tx_skb != NULL) {
317 dev_kfree_skb (lp->pending_tx_skb);
318 lp->pending_tx_skb = NULL;
319 lp->stats.tx_errors++;
320 lp->stats.tx_aborted_errors++;
321 }
322}
323
324/*
325 * Enable Interrupts, Receive, and Transmit
326 */
327static void smc911x_enable(struct net_device *dev)
328{
329 unsigned long ioaddr = dev->base_addr;
330 struct smc911x_local *lp = netdev_priv(dev);
331 unsigned mask, cfg, cr;
332 unsigned long flags;
333
334 DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
335
336 SMC_SET_MAC_ADDR(dev->dev_addr);
337
338 /* Enable TX */
339 cfg = SMC_GET_HW_CFG();
340 cfg &= HW_CFG_TX_FIF_SZ_ | 0xFFF;
341 cfg |= HW_CFG_SF_;
342 SMC_SET_HW_CFG(cfg);
343 SMC_SET_FIFO_TDA(0xFF);
344 /* Update TX stats on every 64 packets received or every 1 sec */
345 SMC_SET_FIFO_TSL(64);
346 SMC_SET_GPT_CFG(GPT_CFG_TIMER_EN_ | 10000);
347
348 spin_lock_irqsave(&lp->lock, flags);
349 SMC_GET_MAC_CR(cr);
350 cr |= MAC_CR_TXEN_ | MAC_CR_HBDIS_;
351 SMC_SET_MAC_CR(cr);
352 SMC_SET_TX_CFG(TX_CFG_TX_ON_);
353 spin_unlock_irqrestore(&lp->lock, flags);
354
355 /* Add 2 byte padding to start of packets */
356 SMC_SET_RX_CFG((2<<8) & RX_CFG_RXDOFF_);
357
358 /* Turn on receiver and enable RX */
359 if (cr & MAC_CR_RXEN_)
360 DBG(SMC_DEBUG_RX, "%s: Receiver already enabled\n", dev->name);
361
362 spin_lock_irqsave(&lp->lock, flags);
363 SMC_SET_MAC_CR( cr | MAC_CR_RXEN_ );
364 spin_unlock_irqrestore(&lp->lock, flags);
365
366 /* Interrupt on every received packet */
367 SMC_SET_FIFO_RSA(0x01);
368 SMC_SET_FIFO_RSL(0x00);
369
370 /* now, enable interrupts */
371 mask = INT_EN_TDFA_EN_ | INT_EN_TSFL_EN_ | INT_EN_RSFL_EN_ |
372 INT_EN_GPT_INT_EN_ | INT_EN_RXDFH_INT_EN_ | INT_EN_RXE_EN_ |
373 INT_EN_PHY_INT_EN_;
374 if (IS_REV_A(lp->revision))
375 mask|=INT_EN_RDFL_EN_;
376 else {
377 mask|=INT_EN_RDFO_EN_;
378 }
379 SMC_ENABLE_INT(mask);
380}
381
382/*
383 * this puts the device in an inactive state
384 */
385static void smc911x_shutdown(struct net_device *dev)
386{
387 unsigned long ioaddr = dev->base_addr;
388 struct smc911x_local *lp = netdev_priv(dev);
389 unsigned cr;
390 unsigned long flags;
391
392 DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", CARDNAME, __FUNCTION__);
393
394 /* Disable IRQ's */
395 SMC_SET_INT_EN(0);
396
397 /* Turn of Rx and TX */
398 spin_lock_irqsave(&lp->lock, flags);
399 SMC_GET_MAC_CR(cr);
400 cr &= ~(MAC_CR_TXEN_ | MAC_CR_RXEN_ | MAC_CR_HBDIS_);
401 SMC_SET_MAC_CR(cr);
402 SMC_SET_TX_CFG(TX_CFG_STOP_TX_);
403 spin_unlock_irqrestore(&lp->lock, flags);
404}
405
406static inline void smc911x_drop_pkt(struct net_device *dev)
407{
408 unsigned long ioaddr = dev->base_addr;
409 unsigned int fifo_count, timeout, reg;
410
411 DBG(SMC_DEBUG_FUNC | SMC_DEBUG_RX, "%s: --> %s\n", CARDNAME, __FUNCTION__);
412 fifo_count = SMC_GET_RX_FIFO_INF() & 0xFFFF;
413 if (fifo_count <= 4) {
414 /* Manually dump the packet data */
415 while (fifo_count--)
416 SMC_GET_RX_FIFO();
417 } else {
418 /* Fast forward through the bad packet */
419 SMC_SET_RX_DP_CTRL(RX_DP_CTRL_FFWD_BUSY_);
420 timeout=50;
421 do {
422 udelay(10);
423 reg = SMC_GET_RX_DP_CTRL() & RX_DP_CTRL_FFWD_BUSY_;
424 } while ( timeout-- && reg);
425 if (timeout == 0) {
426 PRINTK("%s: timeout waiting for RX fast forward\n", dev->name);
427 }
428 }
429}
430
431/*
432 * This is the procedure to handle the receipt of a packet.
433 * It should be called after checking for packet presence in
434 * the RX status FIFO. It must be called with the spin lock
435 * already held.
436 */
437static inline void smc911x_rcv(struct net_device *dev)
438{
439 struct smc911x_local *lp = netdev_priv(dev);
440 unsigned long ioaddr = dev->base_addr;
441 unsigned int pkt_len, status;
442 struct sk_buff *skb;
443 unsigned char *data;
444
445 DBG(SMC_DEBUG_FUNC | SMC_DEBUG_RX, "%s: --> %s\n",
446 dev->name, __FUNCTION__);
447 status = SMC_GET_RX_STS_FIFO();
448 DBG(SMC_DEBUG_RX, "%s: Rx pkt len %d status 0x%08x \n",
449 dev->name, (status & 0x3fff0000) >> 16, status & 0xc000ffff);
450 pkt_len = (status & RX_STS_PKT_LEN_) >> 16;
451 if (status & RX_STS_ES_) {
452 /* Deal with a bad packet */
453 lp->stats.rx_errors++;
454 if (status & RX_STS_CRC_ERR_)
455 lp->stats.rx_crc_errors++;
456 else {
457 if (status & RX_STS_LEN_ERR_)
458 lp->stats.rx_length_errors++;
459 if (status & RX_STS_MCAST_)
460 lp->stats.multicast++;
461 }
462 /* Remove the bad packet data from the RX FIFO */
463 smc911x_drop_pkt(dev);
464 } else {
465 /* Receive a valid packet */
466 /* Alloc a buffer with extra room for DMA alignment */
467 skb=dev_alloc_skb(pkt_len+32);
468 if (unlikely(skb == NULL)) {
469 PRINTK( "%s: Low memory, rcvd packet dropped.\n",
470 dev->name);
471 lp->stats.rx_dropped++;
472 smc911x_drop_pkt(dev);
473 return;
474 }
475 /* Align IP header to 32 bits
476 * Note that the device is configured to add a 2
477 * byte padding to the packet start, so we really
478 * want to write to the orignal data pointer */
479 data = skb->data;
480 skb_reserve(skb, 2);
481 skb_put(skb,pkt_len-4);
482#ifdef SMC_USE_DMA
483 {
484 unsigned int fifo;
485 /* Lower the FIFO threshold if possible */
486 fifo = SMC_GET_FIFO_INT();
487 if (fifo & 0xFF) fifo--;
488 DBG(SMC_DEBUG_RX, "%s: Setting RX stat FIFO threshold to %d\n",
489 dev->name, fifo & 0xff);
490 SMC_SET_FIFO_INT(fifo);
491 /* Setup RX DMA */
492 SMC_SET_RX_CFG(RX_CFG_RX_END_ALGN16_ | ((2<<8) & RX_CFG_RXDOFF_));
493 lp->rxdma_active = 1;
494 lp->current_rx_skb = skb;
495 SMC_PULL_DATA(data, (pkt_len+2+15) & ~15);
496 /* Packet processing deferred to DMA RX interrupt */
497 }
498#else
499 SMC_SET_RX_CFG(RX_CFG_RX_END_ALGN4_ | ((2<<8) & RX_CFG_RXDOFF_));
500 SMC_PULL_DATA(data, pkt_len+2+3);
501
502 DBG(SMC_DEBUG_PKTS, "%s: Received packet\n", dev->name,);
503 PRINT_PKT(data, ((pkt_len - 4) <= 64) ? pkt_len - 4 : 64);
504 dev->last_rx = jiffies;
505 skb->dev = dev;
506 skb->protocol = eth_type_trans(skb, dev);
507 netif_rx(skb);
508 lp->stats.rx_packets++;
509 lp->stats.rx_bytes += pkt_len-4;
510#endif
511 }
512}
513
514/*
515 * This is called to actually send a packet to the chip.
516 */
517static void smc911x_hardware_send_pkt(struct net_device *dev)
518{
519 struct smc911x_local *lp = netdev_priv(dev);
520 unsigned long ioaddr = dev->base_addr;
521 struct sk_buff *skb;
522 unsigned int cmdA, cmdB, len;
523 unsigned char *buf;
524 unsigned long flags;
525
526 DBG(SMC_DEBUG_FUNC | SMC_DEBUG_TX, "%s: --> %s\n", dev->name, __FUNCTION__);
527 BUG_ON(lp->pending_tx_skb == NULL);
528
529 skb = lp->pending_tx_skb;
530 lp->pending_tx_skb = NULL;
531
532 /* cmdA {25:24] data alignment [20:16] start offset [10:0] buffer length */
533 /* cmdB {31:16] pkt tag [10:0] length */
534#ifdef SMC_USE_DMA
535 /* 16 byte buffer alignment mode */
536 buf = (char*)((u32)(skb->data) & ~0xF);
537 len = (skb->len + 0xF + ((u32)skb->data & 0xF)) & ~0xF;
538 cmdA = (1<<24) | (((u32)skb->data & 0xF)<<16) |
539 TX_CMD_A_INT_FIRST_SEG_ | TX_CMD_A_INT_LAST_SEG_ |
540 skb->len;
541#else
542 buf = (char*)((u32)skb->data & ~0x3);
543 len = (skb->len + 3 + ((u32)skb->data & 3)) & ~0x3;
544 cmdA = (((u32)skb->data & 0x3) << 16) |
545 TX_CMD_A_INT_FIRST_SEG_ | TX_CMD_A_INT_LAST_SEG_ |
546 skb->len;
547#endif
548 /* tag is packet length so we can use this in stats update later */
549 cmdB = (skb->len << 16) | (skb->len & 0x7FF);
550
551 DBG(SMC_DEBUG_TX, "%s: TX PKT LENGTH 0x%04x (%d) BUF 0x%p CMDA 0x%08x CMDB 0x%08x\n",
552 dev->name, len, len, buf, cmdA, cmdB);
553 SMC_SET_TX_FIFO(cmdA);
554 SMC_SET_TX_FIFO(cmdB);
555
556 DBG(SMC_DEBUG_PKTS, "%s: Transmitted packet\n", dev->name);
557 PRINT_PKT(buf, len <= 64 ? len : 64);
558
559 /* Send pkt via PIO or DMA */
560#ifdef SMC_USE_DMA
561 lp->current_tx_skb = skb;
562 SMC_PUSH_DATA(buf, len);
563 /* DMA complete IRQ will free buffer and set jiffies */
564#else
565 SMC_PUSH_DATA(buf, len);
566 dev->trans_start = jiffies;
567 dev_kfree_skb(skb);
568#endif
569 spin_lock_irqsave(&lp->lock, flags);
570 if (!lp->tx_throttle) {
571 netif_wake_queue(dev);
572 }
573 spin_unlock_irqrestore(&lp->lock, flags);
574 SMC_ENABLE_INT(INT_EN_TDFA_EN_ | INT_EN_TSFL_EN_);
575}
576
577/*
578 * Since I am not sure if I will have enough room in the chip's ram
579 * to store the packet, I call this routine which either sends it
580 * now, or set the card to generates an interrupt when ready
581 * for the packet.
582 */
583static int smc911x_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
584{
585 struct smc911x_local *lp = netdev_priv(dev);
586 unsigned long ioaddr = dev->base_addr;
587 unsigned int free;
588 unsigned long flags;
589
590 DBG(SMC_DEBUG_FUNC | SMC_DEBUG_TX, "%s: --> %s\n",
591 dev->name, __FUNCTION__);
592
593 BUG_ON(lp->pending_tx_skb != NULL);
594
595 free = SMC_GET_TX_FIFO_INF() & TX_FIFO_INF_TDFREE_;
596 DBG(SMC_DEBUG_TX, "%s: TX free space %d\n", dev->name, free);
597
598 /* Turn off the flow when running out of space in FIFO */
599 if (free <= SMC911X_TX_FIFO_LOW_THRESHOLD) {
600 DBG(SMC_DEBUG_TX, "%s: Disabling data flow due to low FIFO space (%d)\n",
601 dev->name, free);
602 spin_lock_irqsave(&lp->lock, flags);
603 /* Reenable when at least 1 packet of size MTU present */
604 SMC_SET_FIFO_TDA((SMC911X_TX_FIFO_LOW_THRESHOLD)/64);
605 lp->tx_throttle = 1;
606 netif_stop_queue(dev);
607 spin_unlock_irqrestore(&lp->lock, flags);
608 }
609
610 /* Drop packets when we run out of space in TX FIFO
611 * Account for overhead required for:
612 *
613 * Tx command words 8 bytes
614 * Start offset 15 bytes
615 * End padding 15 bytes
616 */
617 if (unlikely(free < (skb->len + 8 + 15 + 15))) {
618 printk("%s: No Tx free space %d < %d\n",
619 dev->name, free, skb->len);
620 lp->pending_tx_skb = NULL;
621 lp->stats.tx_errors++;
622 lp->stats.tx_dropped++;
623 dev_kfree_skb(skb);
624 return 0;
625 }
626
627#ifdef SMC_USE_DMA
628 {
629 /* If the DMA is already running then defer this packet Tx until
630 * the DMA IRQ starts it
631 */
632 spin_lock_irqsave(&lp->lock, flags);
633 if (lp->txdma_active) {
634 DBG(SMC_DEBUG_TX | SMC_DEBUG_DMA, "%s: Tx DMA running, deferring packet\n", dev->name);
635 lp->pending_tx_skb = skb;
636 netif_stop_queue(dev);
637 spin_unlock_irqrestore(&lp->lock, flags);
638 return 0;
639 } else {
640 DBG(SMC_DEBUG_TX | SMC_DEBUG_DMA, "%s: Activating Tx DMA\n", dev->name);
641 lp->txdma_active = 1;
642 }
643 spin_unlock_irqrestore(&lp->lock, flags);
644 }
645#endif
646 lp->pending_tx_skb = skb;
647 smc911x_hardware_send_pkt(dev);
648
649 return 0;
650}
651
652/*
653 * This handles a TX status interrupt, which is only called when:
654 * - a TX error occurred, or
655 * - TX of a packet completed.
656 */
657static void smc911x_tx(struct net_device *dev)
658{
659 unsigned long ioaddr = dev->base_addr;
660 struct smc911x_local *lp = netdev_priv(dev);
661 unsigned int tx_status;
662
663 DBG(SMC_DEBUG_FUNC | SMC_DEBUG_TX, "%s: --> %s\n",
664 dev->name, __FUNCTION__);
665
666 /* Collect the TX status */
667 while (((SMC_GET_TX_FIFO_INF() & TX_FIFO_INF_TSUSED_) >> 16) != 0) {
668 DBG(SMC_DEBUG_TX, "%s: Tx stat FIFO used 0x%04x\n",
669 dev->name,
670 (SMC_GET_TX_FIFO_INF() & TX_FIFO_INF_TSUSED_) >> 16);
671 tx_status = SMC_GET_TX_STS_FIFO();
672 lp->stats.tx_packets++;
673 lp->stats.tx_bytes+=tx_status>>16;
674 DBG(SMC_DEBUG_TX, "%s: Tx FIFO tag 0x%04x status 0x%04x\n",
675 dev->name, (tx_status & 0xffff0000) >> 16,
676 tx_status & 0x0000ffff);
677 /* count Tx errors, but ignore lost carrier errors when in
678 * full-duplex mode */
679 if ((tx_status & TX_STS_ES_) && !(lp->ctl_rfduplx &&
680 !(tx_status & 0x00000306))) {
681 lp->stats.tx_errors++;
682 }
683 if (tx_status & TX_STS_MANY_COLL_) {
684 lp->stats.collisions+=16;
685 lp->stats.tx_aborted_errors++;
686 } else {
687 lp->stats.collisions+=(tx_status & TX_STS_COLL_CNT_) >> 3;
688 }
689 /* carrier error only has meaning for half-duplex communication */
690 if ((tx_status & (TX_STS_LOC_ | TX_STS_NO_CARR_)) &&
691 !lp->ctl_rfduplx) {
692 lp->stats.tx_carrier_errors++;
693 }
694 if (tx_status & TX_STS_LATE_COLL_) {
695 lp->stats.collisions++;
696 lp->stats.tx_aborted_errors++;
697 }
698 }
699}
700
701
702/*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
703/*
704 * Reads a register from the MII Management serial interface
705 */
706
707static int smc911x_phy_read(struct net_device *dev, int phyaddr, int phyreg)
708{
709 unsigned long ioaddr = dev->base_addr;
710 unsigned int phydata;
711
712 SMC_GET_MII(phyreg, phyaddr, phydata);
713
714 DBG(SMC_DEBUG_MISC, "%s: phyaddr=0x%x, phyreg=0x%02x, phydata=0x%04x\n",
715 __FUNCTION__, phyaddr, phyreg, phydata);
716 return phydata;
717}
718
719
720/*
721 * Writes a register to the MII Management serial interface
722 */
723static void smc911x_phy_write(struct net_device *dev, int phyaddr, int phyreg,
724 int phydata)
725{
726 unsigned long ioaddr = dev->base_addr;
727
728 DBG(SMC_DEBUG_MISC, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
729 __FUNCTION__, phyaddr, phyreg, phydata);
730
731 SMC_SET_MII(phyreg, phyaddr, phydata);
732}
733
734/*
735 * Finds and reports the PHY address (115 and 117 have external
736 * PHY interface 118 has internal only
737 */
738static void smc911x_phy_detect(struct net_device *dev)
739{
740 unsigned long ioaddr = dev->base_addr;
741 struct smc911x_local *lp = netdev_priv(dev);
742 int phyaddr;
743 unsigned int cfg, id1, id2;
744
745 DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
746
747 lp->phy_type = 0;
748
749 /*
750 * Scan all 32 PHY addresses if necessary, starting at
751 * PHY#1 to PHY#31, and then PHY#0 last.
752 */
753 switch(lp->version) {
754 case 0x115:
755 case 0x117:
756 cfg = SMC_GET_HW_CFG();
757 if (cfg & HW_CFG_EXT_PHY_DET_) {
758 cfg &= ~HW_CFG_PHY_CLK_SEL_;
759 cfg |= HW_CFG_PHY_CLK_SEL_CLK_DIS_;
760 SMC_SET_HW_CFG(cfg);
761 udelay(10); /* Wait for clocks to stop */
762
763 cfg |= HW_CFG_EXT_PHY_EN_;
764 SMC_SET_HW_CFG(cfg);
765 udelay(10); /* Wait for clocks to stop */
766
767 cfg &= ~HW_CFG_PHY_CLK_SEL_;
768 cfg |= HW_CFG_PHY_CLK_SEL_EXT_PHY_;
769 SMC_SET_HW_CFG(cfg);
770 udelay(10); /* Wait for clocks to stop */
771
772 cfg |= HW_CFG_SMI_SEL_;
773 SMC_SET_HW_CFG(cfg);
774
775 for (phyaddr = 1; phyaddr < 32; ++phyaddr) {
776
777 /* Read the PHY identifiers */
778 SMC_GET_PHY_ID1(phyaddr & 31, id1);
779 SMC_GET_PHY_ID2(phyaddr & 31, id2);
780
781 /* Make sure it is a valid identifier */
782 if (id1 != 0x0000 && id1 != 0xffff &&
783 id1 != 0x8000 && id2 != 0x0000 &&
784 id2 != 0xffff && id2 != 0x8000) {
785 /* Save the PHY's address */
786 lp->mii.phy_id = phyaddr & 31;
787 lp->phy_type = id1 << 16 | id2;
788 break;
789 }
790 }
791 }
792 default:
793 /* Internal media only */
794 SMC_GET_PHY_ID1(1, id1);
795 SMC_GET_PHY_ID2(1, id2);
796 /* Save the PHY's address */
797 lp->mii.phy_id = 1;
798 lp->phy_type = id1 << 16 | id2;
799 }
800
801 DBG(SMC_DEBUG_MISC, "%s: phy_id1=0x%x, phy_id2=0x%x phyaddr=0x%d\n",
802 dev->name, id1, id2, lp->mii.phy_id);
803}
804
805/*
806 * Sets the PHY to a configuration as determined by the user.
807 * Called with spin_lock held.
808 */
809static int smc911x_phy_fixed(struct net_device *dev)
810{
811 struct smc911x_local *lp = netdev_priv(dev);
812 unsigned long ioaddr = dev->base_addr;
813 int phyaddr = lp->mii.phy_id;
814 int bmcr;
815
816 DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
817
818 /* Enter Link Disable state */
819 SMC_GET_PHY_BMCR(phyaddr, bmcr);
820 bmcr |= BMCR_PDOWN;
821 SMC_SET_PHY_BMCR(phyaddr, bmcr);
822
823 /*
824 * Set our fixed capabilities
825 * Disable auto-negotiation
826 */
827 bmcr &= ~BMCR_ANENABLE;
828 if (lp->ctl_rfduplx)
829 bmcr |= BMCR_FULLDPLX;
830
831 if (lp->ctl_rspeed == 100)
832 bmcr |= BMCR_SPEED100;
833
834 /* Write our capabilities to the phy control register */
835 SMC_SET_PHY_BMCR(phyaddr, bmcr);
836
837 /* Re-Configure the Receive/Phy Control register */
838 bmcr &= ~BMCR_PDOWN;
839 SMC_SET_PHY_BMCR(phyaddr, bmcr);
840
841 return 1;
842}
843
844/*
845 * smc911x_phy_reset - reset the phy
846 * @dev: net device
847 * @phy: phy address
848 *
849 * Issue a software reset for the specified PHY and
850 * wait up to 100ms for the reset to complete. We should
851 * not access the PHY for 50ms after issuing the reset.
852 *
853 * The time to wait appears to be dependent on the PHY.
854 *
855 */
856static int smc911x_phy_reset(struct net_device *dev, int phy)
857{
858 struct smc911x_local *lp = netdev_priv(dev);
859 unsigned long ioaddr = dev->base_addr;
860 int timeout;
861 unsigned long flags;
862 unsigned int reg;
863
864 DBG(SMC_DEBUG_FUNC, "%s: --> %s()\n", dev->name, __FUNCTION__);
865
866 spin_lock_irqsave(&lp->lock, flags);
867 reg = SMC_GET_PMT_CTRL();
868 reg &= ~0xfffff030;
869 reg |= PMT_CTRL_PHY_RST_;
870 SMC_SET_PMT_CTRL(reg);
871 spin_unlock_irqrestore(&lp->lock, flags);
872 for (timeout = 2; timeout; timeout--) {
873 msleep(50);
874 spin_lock_irqsave(&lp->lock, flags);
875 reg = SMC_GET_PMT_CTRL();
876 spin_unlock_irqrestore(&lp->lock, flags);
877 if (!(reg & PMT_CTRL_PHY_RST_)) {
878 /* extra delay required because the phy may
879 * not be completed with its reset
880 * when PHY_BCR_RESET_ is cleared. 256us
881 * should suffice, but use 500us to be safe
882 */
883 udelay(500);
884 break;
885 }
886 }
887
888 return reg & PMT_CTRL_PHY_RST_;
889}
890
891/*
892 * smc911x_phy_powerdown - powerdown phy
893 * @dev: net device
894 * @phy: phy address
895 *
896 * Power down the specified PHY
897 */
898static void smc911x_phy_powerdown(struct net_device *dev, int phy)
899{
900 unsigned long ioaddr = dev->base_addr;
901 unsigned int bmcr;
902
903 /* Enter Link Disable state */
904 SMC_GET_PHY_BMCR(phy, bmcr);
905 bmcr |= BMCR_PDOWN;
906 SMC_SET_PHY_BMCR(phy, bmcr);
907}
908
909/*
910 * smc911x_phy_check_media - check the media status and adjust BMCR
911 * @dev: net device
912 * @init: set true for initialisation
913 *
914 * Select duplex mode depending on negotiation state. This
915 * also updates our carrier state.
916 */
917static void smc911x_phy_check_media(struct net_device *dev, int init)
918{
919 struct smc911x_local *lp = netdev_priv(dev);
920 unsigned long ioaddr = dev->base_addr;
921 int phyaddr = lp->mii.phy_id;
922 unsigned int bmcr, cr;
923
924 DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
925
926 if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
927 /* duplex state has changed */
928 SMC_GET_PHY_BMCR(phyaddr, bmcr);
929 SMC_GET_MAC_CR(cr);
930 if (lp->mii.full_duplex) {
931 DBG(SMC_DEBUG_MISC, "%s: Configuring for full-duplex mode\n", dev->name);
932 bmcr |= BMCR_FULLDPLX;
933 cr |= MAC_CR_RCVOWN_;
934 } else {
935 DBG(SMC_DEBUG_MISC, "%s: Configuring for half-duplex mode\n", dev->name);
936 bmcr &= ~BMCR_FULLDPLX;
937 cr &= ~MAC_CR_RCVOWN_;
938 }
939 SMC_SET_PHY_BMCR(phyaddr, bmcr);
940 SMC_SET_MAC_CR(cr);
941 }
942}
943
944/*
945 * Configures the specified PHY through the MII management interface
946 * using Autonegotiation.
947 * Calls smc911x_phy_fixed() if the user has requested a certain config.
948 * If RPC ANEG bit is set, the media selection is dependent purely on
949 * the selection by the MII (either in the MII BMCR reg or the result
950 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection
951 * is controlled by the RPC SPEED and RPC DPLX bits.
952 */
953static void smc911x_phy_configure(void *data)
954{
955 struct net_device *dev = data;
956 struct smc911x_local *lp = netdev_priv(dev);
957 unsigned long ioaddr = dev->base_addr;
958 int phyaddr = lp->mii.phy_id;
959 int my_phy_caps; /* My PHY capabilities */
960 int my_ad_caps; /* My Advertised capabilities */
961 int status;
962 unsigned long flags;
963
964 DBG(SMC_DEBUG_FUNC, "%s: --> %s()\n", dev->name, __FUNCTION__);
965
966 /*
967 * We should not be called if phy_type is zero.
968 */
969 if (lp->phy_type == 0)
970 goto smc911x_phy_configure_exit;
971
972 if (smc911x_phy_reset(dev, phyaddr)) {
973 printk("%s: PHY reset timed out\n", dev->name);
974 goto smc911x_phy_configure_exit;
975 }
976 spin_lock_irqsave(&lp->lock, flags);
977
978 /*
979 * Enable PHY Interrupts (for register 18)
980 * Interrupts listed here are enabled
981 */
982 SMC_SET_PHY_INT_MASK(phyaddr, PHY_INT_MASK_ENERGY_ON_ |
983 PHY_INT_MASK_ANEG_COMP_ | PHY_INT_MASK_REMOTE_FAULT_ |
984 PHY_INT_MASK_LINK_DOWN_);
985
986 /* If the user requested no auto neg, then go set his request */
987 if (lp->mii.force_media) {
988 smc911x_phy_fixed(dev);
989 goto smc911x_phy_configure_exit;
990 }
991
992 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
993 SMC_GET_PHY_BMSR(phyaddr, my_phy_caps);
994 if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
995 printk(KERN_INFO "Auto negotiation NOT supported\n");
996 smc911x_phy_fixed(dev);
997 goto smc911x_phy_configure_exit;
998 }
999
1000 /* CSMA capable w/ both pauses */
1001 my_ad_caps = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1002
1003 if (my_phy_caps & BMSR_100BASE4)
1004 my_ad_caps |= ADVERTISE_100BASE4;
1005 if (my_phy_caps & BMSR_100FULL)
1006 my_ad_caps |= ADVERTISE_100FULL;
1007 if (my_phy_caps & BMSR_100HALF)
1008 my_ad_caps |= ADVERTISE_100HALF;
1009 if (my_phy_caps & BMSR_10FULL)
1010 my_ad_caps |= ADVERTISE_10FULL;
1011 if (my_phy_caps & BMSR_10HALF)
1012 my_ad_caps |= ADVERTISE_10HALF;
1013
1014 /* Disable capabilities not selected by our user */
1015 if (lp->ctl_rspeed != 100)
1016 my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1017
1018 if (!lp->ctl_rfduplx)
1019 my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1020
1021 /* Update our Auto-Neg Advertisement Register */
1022 SMC_SET_PHY_MII_ADV(phyaddr, my_ad_caps);
1023 lp->mii.advertising = my_ad_caps;
1024
1025 /*
1026 * Read the register back. Without this, it appears that when
1027 * auto-negotiation is restarted, sometimes it isn't ready and
1028 * the link does not come up.
1029 */
1030 udelay(10);
1031 SMC_GET_PHY_MII_ADV(phyaddr, status);
1032
1033 DBG(SMC_DEBUG_MISC, "%s: phy caps=0x%04x\n", dev->name, my_phy_caps);
1034 DBG(SMC_DEBUG_MISC, "%s: phy advertised caps=0x%04x\n", dev->name, my_ad_caps);
1035
1036 /* Restart auto-negotiation process in order to advertise my caps */
1037 SMC_SET_PHY_BMCR(phyaddr, BMCR_ANENABLE | BMCR_ANRESTART);
1038
1039 smc911x_phy_check_media(dev, 1);
1040
1041smc911x_phy_configure_exit:
1042 spin_unlock_irqrestore(&lp->lock, flags);
1043 lp->work_pending = 0;
1044}
1045
1046/*
1047 * smc911x_phy_interrupt
1048 *
1049 * Purpose: Handle interrupts relating to PHY register 18. This is
1050 * called from the "hard" interrupt handler under our private spinlock.
1051 */
1052static void smc911x_phy_interrupt(struct net_device *dev)
1053{
1054 struct smc911x_local *lp = netdev_priv(dev);
1055 unsigned long ioaddr = dev->base_addr;
1056 int phyaddr = lp->mii.phy_id;
1057 int status;
1058
1059 DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
1060
1061 if (lp->phy_type == 0)
1062 return;
1063
1064 smc911x_phy_check_media(dev, 0);
1065 /* read to clear status bits */
1066 SMC_GET_PHY_INT_SRC(phyaddr,status);
1067 DBG(SMC_DEBUG_MISC, "%s: PHY interrupt status 0x%04x\n",
1068 dev->name, status & 0xffff);
1069 DBG(SMC_DEBUG_MISC, "%s: AFC_CFG 0x%08x\n",
1070 dev->name, SMC_GET_AFC_CFG());
1071}
1072
1073/*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1074
1075/*
1076 * This is the main routine of the driver, to handle the device when
1077 * it needs some attention.
1078 */
1079static irqreturn_t smc911x_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1080{
1081 struct net_device *dev = dev_id;
1082 unsigned long ioaddr = dev->base_addr;
1083 struct smc911x_local *lp = netdev_priv(dev);
1084 unsigned int status, mask, timeout;
1085 unsigned int rx_overrun=0, cr, pkts;
1086 unsigned long flags;
1087
1088 DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
1089
1090 spin_lock_irqsave(&lp->lock, flags);
1091
1092 /* Spurious interrupt check */
1093 if ((SMC_GET_IRQ_CFG() & (INT_CFG_IRQ_INT_ | INT_CFG_IRQ_EN_)) !=
1094 (INT_CFG_IRQ_INT_ | INT_CFG_IRQ_EN_)) {
1095 return IRQ_NONE;
1096 }
1097
1098 mask = SMC_GET_INT_EN();
1099 SMC_SET_INT_EN(0);
1100
1101 /* set a timeout value, so I don't stay here forever */
1102 timeout = 8;
1103
1104
1105 do {
1106 status = SMC_GET_INT();
1107
1108 DBG(SMC_DEBUG_MISC, "%s: INT 0x%08x MASK 0x%08x OUTSIDE MASK 0x%08x\n",
1109 dev->name, status, mask, status & ~mask);
1110
1111 status &= mask;
1112 if (!status)
1113 break;
1114
1115 /* Handle SW interrupt condition */
1116 if (status & INT_STS_SW_INT_) {
1117 SMC_ACK_INT(INT_STS_SW_INT_);
1118 mask &= ~INT_EN_SW_INT_EN_;
1119 }
1120 /* Handle various error conditions */
1121 if (status & INT_STS_RXE_) {
1122 SMC_ACK_INT(INT_STS_RXE_);
1123 lp->stats.rx_errors++;
1124 }
1125 if (status & INT_STS_RXDFH_INT_) {
1126 SMC_ACK_INT(INT_STS_RXDFH_INT_);
1127 lp->stats.rx_dropped+=SMC_GET_RX_DROP();
1128 }
1129 /* Undocumented interrupt-what is the right thing to do here? */
1130 if (status & INT_STS_RXDF_INT_) {
1131 SMC_ACK_INT(INT_STS_RXDF_INT_);
1132 }
1133
1134 /* Rx Data FIFO exceeds set level */
1135 if (status & INT_STS_RDFL_) {
1136 if (IS_REV_A(lp->revision)) {
1137 rx_overrun=1;
1138 SMC_GET_MAC_CR(cr);
1139 cr &= ~MAC_CR_RXEN_;
1140 SMC_SET_MAC_CR(cr);
1141 DBG(SMC_DEBUG_RX, "%s: RX overrun\n", dev->name);
1142 lp->stats.rx_errors++;
1143 lp->stats.rx_fifo_errors++;
1144 }
1145 SMC_ACK_INT(INT_STS_RDFL_);
1146 }
1147 if (status & INT_STS_RDFO_) {
1148 if (!IS_REV_A(lp->revision)) {
1149 SMC_GET_MAC_CR(cr);
1150 cr &= ~MAC_CR_RXEN_;
1151 SMC_SET_MAC_CR(cr);
1152 rx_overrun=1;
1153 DBG(SMC_DEBUG_RX, "%s: RX overrun\n", dev->name);
1154 lp->stats.rx_errors++;
1155 lp->stats.rx_fifo_errors++;
1156 }
1157 SMC_ACK_INT(INT_STS_RDFO_);
1158 }
1159 /* Handle receive condition */
1160 if ((status & INT_STS_RSFL_) || rx_overrun) {
1161 unsigned int fifo;
1162 DBG(SMC_DEBUG_RX, "%s: RX irq\n", dev->name);
1163 fifo = SMC_GET_RX_FIFO_INF();
1164 pkts = (fifo & RX_FIFO_INF_RXSUSED_) >> 16;
1165 DBG(SMC_DEBUG_RX, "%s: Rx FIFO pkts %d, bytes %d\n",
1166 dev->name, pkts, fifo & 0xFFFF );
1167 if (pkts != 0) {
1168#ifdef SMC_USE_DMA
1169 unsigned int fifo;
1170 if (lp->rxdma_active){
1171 DBG(SMC_DEBUG_RX | SMC_DEBUG_DMA,
1172 "%s: RX DMA active\n", dev->name);
1173 /* The DMA is already running so up the IRQ threshold */
1174 fifo = SMC_GET_FIFO_INT() & ~0xFF;
1175 fifo |= pkts & 0xFF;
1176 DBG(SMC_DEBUG_RX,
1177 "%s: Setting RX stat FIFO threshold to %d\n",
1178 dev->name, fifo & 0xff);
1179 SMC_SET_FIFO_INT(fifo);
1180 } else
1181#endif
1182 smc911x_rcv(dev);
1183 }
1184 SMC_ACK_INT(INT_STS_RSFL_);
1185 }
1186 /* Handle transmit FIFO available */
1187 if (status & INT_STS_TDFA_) {
1188 DBG(SMC_DEBUG_TX, "%s: TX data FIFO space available irq\n", dev->name);
1189 SMC_SET_FIFO_TDA(0xFF);
1190 lp->tx_throttle = 0;
1191#ifdef SMC_USE_DMA
1192 if (!lp->txdma_active)
1193#endif
1194 netif_wake_queue(dev);
1195 SMC_ACK_INT(INT_STS_TDFA_);
1196 }
1197 /* Handle transmit done condition */
1198#if 1
1199 if (status & (INT_STS_TSFL_ | INT_STS_GPT_INT_)) {
1200 DBG(SMC_DEBUG_TX | SMC_DEBUG_MISC,
1201 "%s: Tx stat FIFO limit (%d) /GPT irq\n",
1202 dev->name, (SMC_GET_FIFO_INT() & 0x00ff0000) >> 16);
1203 smc911x_tx(dev);
1204 SMC_SET_GPT_CFG(GPT_CFG_TIMER_EN_ | 10000);
1205 SMC_ACK_INT(INT_STS_TSFL_);
1206 SMC_ACK_INT(INT_STS_TSFL_ | INT_STS_GPT_INT_);
1207 }
1208#else
1209 if (status & INT_STS_TSFL_) {
1210 DBG(SMC_DEBUG_TX, "%s: TX status FIFO limit (%d) irq \n", dev->name, );
1211 smc911x_tx(dev);
1212 SMC_ACK_INT(INT_STS_TSFL_);
1213 }
1214
1215 if (status & INT_STS_GPT_INT_) {
1216 DBG(SMC_DEBUG_RX, "%s: IRQ_CFG 0x%08x FIFO_INT 0x%08x RX_CFG 0x%08x\n",
1217 dev->name,
1218 SMC_GET_IRQ_CFG(),
1219 SMC_GET_FIFO_INT(),
1220 SMC_GET_RX_CFG());
1221 DBG(SMC_DEBUG_RX, "%s: Rx Stat FIFO Used 0x%02x "
1222 "Data FIFO Used 0x%04x Stat FIFO 0x%08x\n",
1223 dev->name,
1224 (SMC_GET_RX_FIFO_INF() & 0x00ff0000) >> 16,
1225 SMC_GET_RX_FIFO_INF() & 0xffff,
1226 SMC_GET_RX_STS_FIFO_PEEK());
1227 SMC_SET_GPT_CFG(GPT_CFG_TIMER_EN_ | 10000);
1228 SMC_ACK_INT(INT_STS_GPT_INT_);
1229 }
1230#endif
1231
1232 /* Handle PHY interupt condition */
1233 if (status & INT_STS_PHY_INT_) {
1234 DBG(SMC_DEBUG_MISC, "%s: PHY irq\n", dev->name);
1235 smc911x_phy_interrupt(dev);
1236 SMC_ACK_INT(INT_STS_PHY_INT_);
1237 }
1238 } while (--timeout);
1239
1240 /* restore mask state */
1241 SMC_SET_INT_EN(mask);
1242
1243 DBG(SMC_DEBUG_MISC, "%s: Interrupt done (%d loops)\n",
1244 dev->name, 8-timeout);
1245
1246 spin_unlock_irqrestore(&lp->lock, flags);
1247
1248 DBG(3, "%s: Interrupt done (%d loops)\n", dev->name, 8-timeout);
1249
1250 return IRQ_HANDLED;
1251}
1252
1253#ifdef SMC_USE_DMA
1254static void
1255smc911x_tx_dma_irq(int dma, void *data, struct pt_regs *regs)
1256{
1257 struct net_device *dev = (struct net_device *)data;
1258 struct smc911x_local *lp = netdev_priv(dev);
1259 struct sk_buff *skb = lp->current_tx_skb;
1260 unsigned long flags;
1261
1262 DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
1263
1264 DBG(SMC_DEBUG_TX | SMC_DEBUG_DMA, "%s: TX DMA irq handler\n", dev->name);
1265 /* Clear the DMA interrupt sources */
1266 SMC_DMA_ACK_IRQ(dev, dma);
1267 BUG_ON(skb == NULL);
1268 dma_unmap_single(NULL, tx_dmabuf, tx_dmalen, DMA_TO_DEVICE);
1269 dev->trans_start = jiffies;
1270 dev_kfree_skb_irq(skb);
1271 lp->current_tx_skb = NULL;
1272 if (lp->pending_tx_skb != NULL)
1273 smc911x_hardware_send_pkt(dev);
1274 else {
1275 DBG(SMC_DEBUG_TX | SMC_DEBUG_DMA,
1276 "%s: No pending Tx packets. DMA disabled\n", dev->name);
1277 spin_lock_irqsave(&lp->lock, flags);
1278 lp->txdma_active = 0;
1279 if (!lp->tx_throttle) {
1280 netif_wake_queue(dev);
1281 }
1282 spin_unlock_irqrestore(&lp->lock, flags);
1283 }
1284
1285 DBG(SMC_DEBUG_TX | SMC_DEBUG_DMA,
1286 "%s: TX DMA irq completed\n", dev->name);
1287}
1288static void
1289smc911x_rx_dma_irq(int dma, void *data, struct pt_regs *regs)
1290{
1291 struct net_device *dev = (struct net_device *)data;
1292 unsigned long ioaddr = dev->base_addr;
1293 struct smc911x_local *lp = netdev_priv(dev);
1294 struct sk_buff *skb = lp->current_rx_skb;
1295 unsigned long flags;
1296 unsigned int pkts;
1297
1298 DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
1299 DBG(SMC_DEBUG_RX | SMC_DEBUG_DMA, "%s: RX DMA irq handler\n", dev->name);
1300 /* Clear the DMA interrupt sources */
1301 SMC_DMA_ACK_IRQ(dev, dma);
1302 dma_unmap_single(NULL, rx_dmabuf, rx_dmalen, DMA_FROM_DEVICE);
1303 BUG_ON(skb == NULL);
1304 lp->current_rx_skb = NULL;
1305 PRINT_PKT(skb->data, skb->len);
1306 dev->last_rx = jiffies;
1307 skb->dev = dev;
1308 skb->protocol = eth_type_trans(skb, dev);
1309 netif_rx(skb);
1310 lp->stats.rx_packets++;
1311 lp->stats.rx_bytes += skb->len;
1312
1313 spin_lock_irqsave(&lp->lock, flags);
1314 pkts = (SMC_GET_RX_FIFO_INF() & RX_FIFO_INF_RXSUSED_) >> 16;
1315 if (pkts != 0) {
1316 smc911x_rcv(dev);
1317 }else {
1318 lp->rxdma_active = 0;
1319 }
1320 spin_unlock_irqrestore(&lp->lock, flags);
1321 DBG(SMC_DEBUG_RX | SMC_DEBUG_DMA,
1322 "%s: RX DMA irq completed. DMA RX FIFO PKTS %d\n",
1323 dev->name, pkts);
1324}
1325#endif /* SMC_USE_DMA */
1326
1327#ifdef CONFIG_NET_POLL_CONTROLLER
1328/*
1329 * Polling receive - used by netconsole and other diagnostic tools
1330 * to allow network i/o with interrupts disabled.
1331 */
1332static void smc911x_poll_controller(struct net_device *dev)
1333{
1334 disable_irq(dev->irq);
1335 smc911x_interrupt(dev->irq, dev, NULL);
1336 enable_irq(dev->irq);
1337}
1338#endif
1339
1340/* Our watchdog timed out. Called by the networking layer */
1341static void smc911x_timeout(struct net_device *dev)
1342{
1343 struct smc911x_local *lp = netdev_priv(dev);
1344 unsigned long ioaddr = dev->base_addr;
1345 int status, mask;
1346 unsigned long flags;
1347
1348 DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
1349
1350 spin_lock_irqsave(&lp->lock, flags);
1351 status = SMC_GET_INT();
1352 mask = SMC_GET_INT_EN();
1353 spin_unlock_irqrestore(&lp->lock, flags);
1354 DBG(SMC_DEBUG_MISC, "%s: INT 0x%02x MASK 0x%02x \n",
1355 dev->name, status, mask);
1356
1357 /* Dump the current TX FIFO contents and restart */
1358 mask = SMC_GET_TX_CFG();
1359 SMC_SET_TX_CFG(mask | TX_CFG_TXS_DUMP_ | TX_CFG_TXD_DUMP_);
1360 /*
1361 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1362 * smc911x_phy_configure() calls msleep() which calls schedule_timeout()
1363 * which calls schedule(). Hence we use a work queue.
1364 */
1365 if (lp->phy_type != 0) {
1366 if (schedule_work(&lp->phy_configure)) {
1367 lp->work_pending = 1;
1368 }
1369 }
1370
1371 /* We can accept TX packets again */
1372 dev->trans_start = jiffies;
1373 netif_wake_queue(dev);
1374}
1375
1376/*
1377 * This routine will, depending on the values passed to it,
1378 * either make it accept multicast packets, go into
1379 * promiscuous mode (for TCPDUMP and cousins) or accept
1380 * a select set of multicast packets
1381 */
1382static void smc911x_set_multicast_list(struct net_device *dev)
1383{
1384 struct smc911x_local *lp = netdev_priv(dev);
1385 unsigned long ioaddr = dev->base_addr;
1386 unsigned int multicast_table[2];
1387 unsigned int mcr, update_multicast = 0;
1388 unsigned long flags;
1389 /* table for flipping the order of 5 bits */
1390 static const unsigned char invert5[] =
1391 {0x00, 0x10, 0x08, 0x18, 0x04, 0x14, 0x0C, 0x1C,
1392 0x02, 0x12, 0x0A, 0x1A, 0x06, 0x16, 0x0E, 0x1E,
1393 0x01, 0x11, 0x09, 0x19, 0x05, 0x15, 0x0D, 0x1D,
1394 0x03, 0x13, 0x0B, 0x1B, 0x07, 0x17, 0x0F, 0x1F};
1395
1396
1397 DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
1398
1399 spin_lock_irqsave(&lp->lock, flags);
1400 SMC_GET_MAC_CR(mcr);
1401 spin_unlock_irqrestore(&lp->lock, flags);
1402
1403 if (dev->flags & IFF_PROMISC) {
1404
1405 DBG(SMC_DEBUG_MISC, "%s: RCR_PRMS\n", dev->name);
1406 mcr |= MAC_CR_PRMS_;
1407 }
1408 /*
1409 * Here, I am setting this to accept all multicast packets.
1410 * I don't need to zero the multicast table, because the flag is
1411 * checked before the table is
1412 */
1413 else if (dev->flags & IFF_ALLMULTI || dev->mc_count > 16) {
1414 DBG(SMC_DEBUG_MISC, "%s: RCR_ALMUL\n", dev->name);
1415 mcr |= MAC_CR_MCPAS_;
1416 }
1417
1418 /*
1419 * This sets the internal hardware table to filter out unwanted
1420 * multicast packets before they take up memory.
1421 *
1422 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1423 * address are the offset into the table. If that bit is 1, then the
1424 * multicast packet is accepted. Otherwise, it's dropped silently.
1425 *
1426 * To use the 6 bits as an offset into the table, the high 1 bit is
1427 * the number of the 32 bit register, while the low 5 bits are the bit
1428 * within that register.
1429 */
1430 else if (dev->mc_count) {
1431 int i;
1432 struct dev_mc_list *cur_addr;
1433
1434 /* Set the Hash perfec mode */
1435 mcr |= MAC_CR_HPFILT_;
1436
1437 /* start with a table of all zeros: reject all */
1438 memset(multicast_table, 0, sizeof(multicast_table));
1439
1440 cur_addr = dev->mc_list;
1441 for (i = 0; i < dev->mc_count; i++, cur_addr = cur_addr->next) {
1442 int position;
1443
1444 /* do we have a pointer here? */
1445 if (!cur_addr)
1446 break;
1447 /* make sure this is a multicast address -
1448 shouldn't this be a given if we have it here ? */
1449 if (!(*cur_addr->dmi_addr & 1))
1450 continue;
1451
1452 /* only use the low order bits */
1453 position = crc32_le(~0, cur_addr->dmi_addr, 6) & 0x3f;
1454
1455 /* do some messy swapping to put the bit in the right spot */
1456 multicast_table[invert5[position&0x1F]&0x1] |=
1457 (1<<invert5[(position>>1)&0x1F]);
1458 }
1459
1460 /* be sure I get rid of flags I might have set */
1461 mcr &= ~(MAC_CR_PRMS_ | MAC_CR_MCPAS_);
1462
1463 /* now, the table can be loaded into the chipset */
1464 update_multicast = 1;
1465 } else {
1466 DBG(SMC_DEBUG_MISC, "%s: ~(MAC_CR_PRMS_|MAC_CR_MCPAS_)\n",
1467 dev->name);
1468 mcr &= ~(MAC_CR_PRMS_ | MAC_CR_MCPAS_);
1469
1470 /*
1471 * since I'm disabling all multicast entirely, I need to
1472 * clear the multicast list
1473 */
1474 memset(multicast_table, 0, sizeof(multicast_table));
1475 update_multicast = 1;
1476 }
1477
1478 spin_lock_irqsave(&lp->lock, flags);
1479 SMC_SET_MAC_CR(mcr);
1480 if (update_multicast) {
1481 DBG(SMC_DEBUG_MISC,
1482 "%s: update mcast hash table 0x%08x 0x%08x\n",
1483 dev->name, multicast_table[0], multicast_table[1]);
1484 SMC_SET_HASHL(multicast_table[0]);
1485 SMC_SET_HASHH(multicast_table[1]);
1486 }
1487 spin_unlock_irqrestore(&lp->lock, flags);
1488}
1489
1490
1491/*
1492 * Open and Initialize the board
1493 *
1494 * Set up everything, reset the card, etc..
1495 */
1496static int
1497smc911x_open(struct net_device *dev)
1498{
1499 DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
1500
1501 /*
1502 * Check that the address is valid. If its not, refuse
1503 * to bring the device up. The user must specify an
1504 * address using ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx
1505 */
1506 if (!is_valid_ether_addr(dev->dev_addr)) {
1507 PRINTK("%s: no valid ethernet hw addr\n", __FUNCTION__);
1508 return -EINVAL;
1509 }
1510
1511 /* reset the hardware */
1512 smc911x_reset(dev);
1513
1514 /* Configure the PHY, initialize the link state */
1515 smc911x_phy_configure(dev);
1516
1517 /* Turn on Tx + Rx */
1518 smc911x_enable(dev);
1519
1520 netif_start_queue(dev);
1521
1522 return 0;
1523}
1524
1525/*
1526 * smc911x_close
1527 *
1528 * this makes the board clean up everything that it can
1529 * and not talk to the outside world. Caused by
1530 * an 'ifconfig ethX down'
1531 */
1532static int smc911x_close(struct net_device *dev)
1533{
1534 struct smc911x_local *lp = netdev_priv(dev);
1535
1536 DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
1537
1538 netif_stop_queue(dev);
1539 netif_carrier_off(dev);
1540
1541 /* clear everything */
1542 smc911x_shutdown(dev);
1543
1544 if (lp->phy_type != 0) {
1545 /* We need to ensure that no calls to
1546 * smc911x_phy_configure are pending.
1547
1548 * flush_scheduled_work() cannot be called because we
1549 * are running with the netlink semaphore held (from
1550 * devinet_ioctl()) and the pending work queue
1551 * contains linkwatch_event() (scheduled by
1552 * netif_carrier_off() above). linkwatch_event() also
1553 * wants the netlink semaphore.
1554 */
1555 while (lp->work_pending)
1556 schedule();
1557 smc911x_phy_powerdown(dev, lp->mii.phy_id);
1558 }
1559
1560 if (lp->pending_tx_skb) {
1561 dev_kfree_skb(lp->pending_tx_skb);
1562 lp->pending_tx_skb = NULL;
1563 }
1564
1565 return 0;
1566}
1567
1568/*
1569 * Get the current statistics.
1570 * This may be called with the card open or closed.
1571 */
1572static struct net_device_stats *smc911x_query_statistics(struct net_device *dev)
1573{
1574 struct smc911x_local *lp = netdev_priv(dev);
1575 DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
1576
1577
1578 return &lp->stats;
1579}
1580
1581/*
1582 * Ethtool support
1583 */
1584static int
1585smc911x_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1586{
1587 struct smc911x_local *lp = netdev_priv(dev);
1588 unsigned long ioaddr = dev->base_addr;
1589 int ret, status;
1590 unsigned long flags;
1591
1592 DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
1593 cmd->maxtxpkt = 1;
1594 cmd->maxrxpkt = 1;
1595
1596 if (lp->phy_type != 0) {
1597 spin_lock_irqsave(&lp->lock, flags);
1598 ret = mii_ethtool_gset(&lp->mii, cmd);
1599 spin_unlock_irqrestore(&lp->lock, flags);
1600 } else {
1601 cmd->supported = SUPPORTED_10baseT_Half |
1602 SUPPORTED_10baseT_Full |
1603 SUPPORTED_TP | SUPPORTED_AUI;
1604
1605 if (lp->ctl_rspeed == 10)
1606 cmd->speed = SPEED_10;
1607 else if (lp->ctl_rspeed == 100)
1608 cmd->speed = SPEED_100;
1609
1610 cmd->autoneg = AUTONEG_DISABLE;
1611 if (lp->mii.phy_id==1)
1612 cmd->transceiver = XCVR_INTERNAL;
1613 else
1614 cmd->transceiver = XCVR_EXTERNAL;
1615 cmd->port = 0;
1616 SMC_GET_PHY_SPECIAL(lp->mii.phy_id, status);
1617 cmd->duplex =
1618 (status & (PHY_SPECIAL_SPD_10FULL_ | PHY_SPECIAL_SPD_100FULL_)) ?
1619 DUPLEX_FULL : DUPLEX_HALF;
1620 ret = 0;
1621 }
1622
1623 return ret;
1624}
1625
1626static int
1627smc911x_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1628{
1629 struct smc911x_local *lp = netdev_priv(dev);
1630 int ret;
1631 unsigned long flags;
1632
1633 if (lp->phy_type != 0) {
1634 spin_lock_irqsave(&lp->lock, flags);
1635 ret = mii_ethtool_sset(&lp->mii, cmd);
1636 spin_unlock_irqrestore(&lp->lock, flags);
1637 } else {
1638 if (cmd->autoneg != AUTONEG_DISABLE ||
1639 cmd->speed != SPEED_10 ||
1640 (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1641 (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1642 return -EINVAL;
1643
1644 lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1645
1646 ret = 0;
1647 }
1648
1649 return ret;
1650}
1651
1652static void
1653smc911x_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1654{
1655 strncpy(info->driver, CARDNAME, sizeof(info->driver));
1656 strncpy(info->version, version, sizeof(info->version));
1657 strncpy(info->bus_info, dev->class_dev.dev->bus_id, sizeof(info->bus_info));
1658}
1659
1660static int smc911x_ethtool_nwayreset(struct net_device *dev)
1661{
1662 struct smc911x_local *lp = netdev_priv(dev);
1663 int ret = -EINVAL;
1664 unsigned long flags;
1665
1666 if (lp->phy_type != 0) {
1667 spin_lock_irqsave(&lp->lock, flags);
1668 ret = mii_nway_restart(&lp->mii);
1669 spin_unlock_irqrestore(&lp->lock, flags);
1670 }
1671
1672 return ret;
1673}
1674
1675static u32 smc911x_ethtool_getmsglevel(struct net_device *dev)
1676{
1677 struct smc911x_local *lp = netdev_priv(dev);
1678 return lp->msg_enable;
1679}
1680
1681static void smc911x_ethtool_setmsglevel(struct net_device *dev, u32 level)
1682{
1683 struct smc911x_local *lp = netdev_priv(dev);
1684 lp->msg_enable = level;
1685}
1686
1687static int smc911x_ethtool_getregslen(struct net_device *dev)
1688{
1689 /* System regs + MAC regs + PHY regs */
1690 return (((E2P_CMD - ID_REV)/4 + 1) +
1691 (WUCSR - MAC_CR)+1 + 32) * sizeof(u32);
1692}
1693
1694static void smc911x_ethtool_getregs(struct net_device *dev,
1695 struct ethtool_regs* regs, void *buf)
1696{
1697 unsigned long ioaddr = dev->base_addr;
1698 struct smc911x_local *lp = netdev_priv(dev);
1699 unsigned long flags;
1700 u32 reg,i,j=0;
1701 u32 *data = (u32*)buf;
1702
1703 regs->version = lp->version;
1704 for(i=ID_REV;i<=E2P_CMD;i+=4) {
1705 data[j++] = SMC_inl(ioaddr,i);
1706 }
1707 for(i=MAC_CR;i<=WUCSR;i++) {
1708 spin_lock_irqsave(&lp->lock, flags);
1709 SMC_GET_MAC_CSR(i, reg);
1710 spin_unlock_irqrestore(&lp->lock, flags);
1711 data[j++] = reg;
1712 }
1713 for(i=0;i<=31;i++) {
1714 spin_lock_irqsave(&lp->lock, flags);
1715 SMC_GET_MII(i, lp->mii.phy_id, reg);
1716 spin_unlock_irqrestore(&lp->lock, flags);
1717 data[j++] = reg & 0xFFFF;
1718 }
1719}
1720
1721static int smc911x_ethtool_wait_eeprom_ready(struct net_device *dev)
1722{
1723 unsigned long ioaddr = dev->base_addr;
1724 unsigned int timeout;
1725 int e2p_cmd;
1726
1727 e2p_cmd = SMC_GET_E2P_CMD();
1728 for(timeout=10;(e2p_cmd & E2P_CMD_EPC_BUSY_) && timeout; timeout--) {
1729 if (e2p_cmd & E2P_CMD_EPC_TIMEOUT_) {
1730 PRINTK("%s: %s timeout waiting for EEPROM to respond\n",
1731 dev->name, __FUNCTION__);
1732 return -EFAULT;
1733 }
1734 mdelay(1);
1735 e2p_cmd = SMC_GET_E2P_CMD();
1736 }
1737 if (timeout == 0) {
1738 PRINTK("%s: %s timeout waiting for EEPROM CMD not busy\n",
1739 dev->name, __FUNCTION__);
1740 return -ETIMEDOUT;
1741 }
1742 return 0;
1743}
1744
1745static inline int smc911x_ethtool_write_eeprom_cmd(struct net_device *dev,
1746 int cmd, int addr)
1747{
1748 unsigned long ioaddr = dev->base_addr;
1749 int ret;
1750
1751 if ((ret = smc911x_ethtool_wait_eeprom_ready(dev))!=0)
1752 return ret;
1753 SMC_SET_E2P_CMD(E2P_CMD_EPC_BUSY_ |
1754 ((cmd) & (0x7<<28)) |
1755 ((addr) & 0xFF));
1756 return 0;
1757}
1758
1759static inline int smc911x_ethtool_read_eeprom_byte(struct net_device *dev,
1760 u8 *data)
1761{
1762 unsigned long ioaddr = dev->base_addr;
1763 int ret;
1764
1765 if ((ret = smc911x_ethtool_wait_eeprom_ready(dev))!=0)
1766 return ret;
1767 *data = SMC_GET_E2P_DATA();
1768 return 0;
1769}
1770
1771static inline int smc911x_ethtool_write_eeprom_byte(struct net_device *dev,
1772 u8 data)
1773{
1774 unsigned long ioaddr = dev->base_addr;
1775 int ret;
1776
1777 if ((ret = smc911x_ethtool_wait_eeprom_ready(dev))!=0)
1778 return ret;
1779 SMC_SET_E2P_DATA(data);
1780 return 0;
1781}
1782
1783static int smc911x_ethtool_geteeprom(struct net_device *dev,
1784 struct ethtool_eeprom *eeprom, u8 *data)
1785{
1786 u8 eebuf[SMC911X_EEPROM_LEN];
1787 int i, ret;
1788
1789 for(i=0;i<SMC911X_EEPROM_LEN;i++) {
1790 if ((ret=smc911x_ethtool_write_eeprom_cmd(dev, E2P_CMD_EPC_CMD_READ_, i ))!=0)
1791 return ret;
1792 if ((ret=smc911x_ethtool_read_eeprom_byte(dev, &eebuf[i]))!=0)
1793 return ret;
1794 }
1795 memcpy(data, eebuf+eeprom->offset, eeprom->len);
1796 return 0;
1797}
1798
1799static int smc911x_ethtool_seteeprom(struct net_device *dev,
1800 struct ethtool_eeprom *eeprom, u8 *data)
1801{
1802 int i, ret;
1803
1804 /* Enable erase */
1805 if ((ret=smc911x_ethtool_write_eeprom_cmd(dev, E2P_CMD_EPC_CMD_EWEN_, 0 ))!=0)
1806 return ret;
1807 for(i=eeprom->offset;i<(eeprom->offset+eeprom->len);i++) {
1808 /* erase byte */
1809 if ((ret=smc911x_ethtool_write_eeprom_cmd(dev, E2P_CMD_EPC_CMD_ERASE_, i ))!=0)
1810 return ret;
1811 /* write byte */
1812 if ((ret=smc911x_ethtool_write_eeprom_byte(dev, *data))!=0)
1813 return ret;
1814 if ((ret=smc911x_ethtool_write_eeprom_cmd(dev, E2P_CMD_EPC_CMD_WRITE_, i ))!=0)
1815 return ret;
1816 }
1817 return 0;
1818}
1819
1820static int smc911x_ethtool_geteeprom_len(struct net_device *dev)
1821{
1822 return SMC911X_EEPROM_LEN;
1823}
1824
1825static struct ethtool_ops smc911x_ethtool_ops = {
1826 .get_settings = smc911x_ethtool_getsettings,
1827 .set_settings = smc911x_ethtool_setsettings,
1828 .get_drvinfo = smc911x_ethtool_getdrvinfo,
1829 .get_msglevel = smc911x_ethtool_getmsglevel,
1830 .set_msglevel = smc911x_ethtool_setmsglevel,
1831 .nway_reset = smc911x_ethtool_nwayreset,
1832 .get_link = ethtool_op_get_link,
1833 .get_regs_len = smc911x_ethtool_getregslen,
1834 .get_regs = smc911x_ethtool_getregs,
1835 .get_eeprom_len = smc911x_ethtool_geteeprom_len,
1836 .get_eeprom = smc911x_ethtool_geteeprom,
1837 .set_eeprom = smc911x_ethtool_seteeprom,
1838};
1839
1840/*
1841 * smc911x_findirq
1842 *
1843 * This routine has a simple purpose -- make the SMC chip generate an
1844 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1845 */
1846static int __init smc911x_findirq(unsigned long ioaddr)
1847{
1848 int timeout = 20;
1849 unsigned long cookie;
1850
1851 DBG(SMC_DEBUG_FUNC, "--> %s\n", __FUNCTION__);
1852
1853 cookie = probe_irq_on();
1854
1855 /*
1856 * Force a SW interrupt
1857 */
1858
1859 SMC_SET_INT_EN(INT_EN_SW_INT_EN_);
1860
1861 /*
1862 * Wait until positive that the interrupt has been generated
1863 */
1864 do {
1865 int int_status;
1866 udelay(10);
1867 int_status = SMC_GET_INT_EN();
1868 if (int_status & INT_EN_SW_INT_EN_)
1869 break; /* got the interrupt */
1870 } while (--timeout);
1871
1872 /*
1873 * there is really nothing that I can do here if timeout fails,
1874 * as autoirq_report will return a 0 anyway, which is what I
1875 * want in this case. Plus, the clean up is needed in both
1876 * cases.
1877 */
1878
1879 /* and disable all interrupts again */
1880 SMC_SET_INT_EN(0);
1881
1882 /* and return what I found */
1883 return probe_irq_off(cookie);
1884}
1885
1886/*
1887 * Function: smc911x_probe(unsigned long ioaddr)
1888 *
1889 * Purpose:
1890 * Tests to see if a given ioaddr points to an SMC911x chip.
1891 * Returns a 0 on success
1892 *
1893 * Algorithm:
1894 * (1) see if the endian word is OK
1895 * (1) see if I recognize the chip ID in the appropriate register
1896 *
1897 * Here I do typical initialization tasks.
1898 *
1899 * o Initialize the structure if needed
1900 * o print out my vanity message if not done so already
1901 * o print out what type of hardware is detected
1902 * o print out the ethernet address
1903 * o find the IRQ
1904 * o set up my private data
1905 * o configure the dev structure with my subroutines
1906 * o actually GRAB the irq.
1907 * o GRAB the region
1908 */
1909static int __init smc911x_probe(struct net_device *dev, unsigned long ioaddr)
1910{
1911 struct smc911x_local *lp = netdev_priv(dev);
1912 int i, retval;
1913 unsigned int val, chip_id, revision;
1914 const char *version_string;
1915
1916 DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
1917
1918 /* First, see if the endian word is recognized */
1919 val = SMC_GET_BYTE_TEST();
1920 DBG(SMC_DEBUG_MISC, "%s: endian probe returned 0x%04x\n", CARDNAME, val);
1921 if (val != 0x87654321) {
1922 printk(KERN_ERR "Invalid chip endian 0x08%x\n",val);
1923 retval = -ENODEV;
1924 goto err_out;
1925 }
1926
1927 /*
1928 * check if the revision register is something that I
1929 * recognize. These might need to be added to later,
1930 * as future revisions could be added.
1931 */
1932 chip_id = SMC_GET_PN();
1933 DBG(SMC_DEBUG_MISC, "%s: id probe returned 0x%04x\n", CARDNAME, chip_id);
1934 for(i=0;chip_ids[i].id != 0; i++) {
1935 if (chip_ids[i].id == chip_id) break;
1936 }
1937 if (!chip_ids[i].id) {
1938 printk(KERN_ERR "Unknown chip ID %04x\n", chip_id);
1939 retval = -ENODEV;
1940 goto err_out;
1941 }
1942 version_string = chip_ids[i].name;
1943
1944 revision = SMC_GET_REV();
1945 DBG(SMC_DEBUG_MISC, "%s: revision = 0x%04x\n", CARDNAME, revision);
1946
1947 /* At this point I'll assume that the chip is an SMC911x. */
1948 DBG(SMC_DEBUG_MISC, "%s: Found a %s\n", CARDNAME, chip_ids[i].name);
1949
1950 /* Validate the TX FIFO size requested */
1951 if ((tx_fifo_kb < 2) || (tx_fifo_kb > 14)) {
1952 printk(KERN_ERR "Invalid TX FIFO size requested %d\n", tx_fifo_kb);
1953 retval = -EINVAL;
1954 goto err_out;
1955 }
1956
1957 /* fill in some of the fields */
1958 dev->base_addr = ioaddr;
1959 lp->version = chip_ids[i].id;
1960 lp->revision = revision;
1961 lp->tx_fifo_kb = tx_fifo_kb;
1962 /* Reverse calculate the RX FIFO size from the TX */
1963 lp->tx_fifo_size=(lp->tx_fifo_kb<<10) - 512;
1964 lp->rx_fifo_size= ((0x4000 - 512 - lp->tx_fifo_size) / 16) * 15;
1965
1966 /* Set the automatic flow control values */
1967 switch(lp->tx_fifo_kb) {
1968 /*
1969 * AFC_HI is about ((Rx Data Fifo Size)*2/3)/64
1970 * AFC_LO is AFC_HI/2
1971 * BACK_DUR is about 5uS*(AFC_LO) rounded down
1972 */
1973 case 2:/* 13440 Rx Data Fifo Size */
1974 lp->afc_cfg=0x008C46AF;break;
1975 case 3:/* 12480 Rx Data Fifo Size */
1976 lp->afc_cfg=0x0082419F;break;
1977 case 4:/* 11520 Rx Data Fifo Size */
1978 lp->afc_cfg=0x00783C9F;break;
1979 case 5:/* 10560 Rx Data Fifo Size */
1980 lp->afc_cfg=0x006E374F;break;
1981 case 6:/* 9600 Rx Data Fifo Size */
1982 lp->afc_cfg=0x0064328F;break;
1983 case 7:/* 8640 Rx Data Fifo Size */
1984 lp->afc_cfg=0x005A2D7F;break;
1985 case 8:/* 7680 Rx Data Fifo Size */
1986 lp->afc_cfg=0x0050287F;break;
1987 case 9:/* 6720 Rx Data Fifo Size */
1988 lp->afc_cfg=0x0046236F;break;
1989 case 10:/* 5760 Rx Data Fifo Size */
1990 lp->afc_cfg=0x003C1E6F;break;
1991 case 11:/* 4800 Rx Data Fifo Size */
1992 lp->afc_cfg=0x0032195F;break;
1993 /*
1994 * AFC_HI is ~1520 bytes less than RX Data Fifo Size
1995 * AFC_LO is AFC_HI/2
1996 * BACK_DUR is about 5uS*(AFC_LO) rounded down
1997 */
1998 case 12:/* 3840 Rx Data Fifo Size */
1999 lp->afc_cfg=0x0024124F;break;
2000 case 13:/* 2880 Rx Data Fifo Size */
2001 lp->afc_cfg=0x0015073F;break;
2002 case 14:/* 1920 Rx Data Fifo Size */
2003 lp->afc_cfg=0x0006032F;break;
2004 default:
2005 PRINTK("%s: ERROR -- no AFC_CFG setting found",
2006 dev->name);
2007 break;
2008 }
2009
2010 DBG(SMC_DEBUG_MISC | SMC_DEBUG_TX | SMC_DEBUG_RX,
2011 "%s: tx_fifo %d rx_fifo %d afc_cfg 0x%08x\n", CARDNAME,
2012 lp->tx_fifo_size, lp->rx_fifo_size, lp->afc_cfg);
2013
2014 spin_lock_init(&lp->lock);
2015
2016 /* Get the MAC address */
2017 SMC_GET_MAC_ADDR(dev->dev_addr);
2018
2019 /* now, reset the chip, and put it into a known state */
2020 smc911x_reset(dev);
2021
2022 /*
2023 * If dev->irq is 0, then the device has to be banged on to see
2024 * what the IRQ is.
2025 *
2026 * Specifying an IRQ is done with the assumption that the user knows
2027 * what (s)he is doing. No checking is done!!!!
2028 */
2029 if (dev->irq < 1) {
2030 int trials;
2031
2032 trials = 3;
2033 while (trials--) {
2034 dev->irq = smc911x_findirq(ioaddr);
2035 if (dev->irq)
2036 break;
2037 /* kick the card and try again */
2038 smc911x_reset(dev);
2039 }
2040 }
2041 if (dev->irq == 0) {
2042 printk("%s: Couldn't autodetect your IRQ. Use irq=xx.\n",
2043 dev->name);
2044 retval = -ENODEV;
2045 goto err_out;
2046 }
2047 dev->irq = irq_canonicalize(dev->irq);
2048
2049 /* Fill in the fields of the device structure with ethernet values. */
2050 ether_setup(dev);
2051
2052 dev->open = smc911x_open;
2053 dev->stop = smc911x_close;
2054 dev->hard_start_xmit = smc911x_hard_start_xmit;
2055 dev->tx_timeout = smc911x_timeout;
2056 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
2057 dev->get_stats = smc911x_query_statistics;
2058 dev->set_multicast_list = smc911x_set_multicast_list;
2059 dev->ethtool_ops = &smc911x_ethtool_ops;
2060#ifdef CONFIG_NET_POLL_CONTROLLER
2061 dev->poll_controller = smc911x_poll_controller;
2062#endif
2063
2064 INIT_WORK(&lp->phy_configure, smc911x_phy_configure, dev);
2065 lp->mii.phy_id_mask = 0x1f;
2066 lp->mii.reg_num_mask = 0x1f;
2067 lp->mii.force_media = 0;
2068 lp->mii.full_duplex = 0;
2069 lp->mii.dev = dev;
2070 lp->mii.mdio_read = smc911x_phy_read;
2071 lp->mii.mdio_write = smc911x_phy_write;
2072
2073 /*
2074 * Locate the phy, if any.
2075 */
2076 smc911x_phy_detect(dev);
2077
2078 /* Set default parameters */
2079 lp->msg_enable = NETIF_MSG_LINK;
2080 lp->ctl_rfduplx = 1;
2081 lp->ctl_rspeed = 100;
2082
2083 /* Grab the IRQ */
2084 retval = request_irq(dev->irq, &smc911x_interrupt, SA_SHIRQ, dev->name, dev);
2085 if (retval)
2086 goto err_out;
2087
2088 set_irq_type(dev->irq, IRQT_FALLING);
2089
2090#ifdef SMC_USE_DMA
2091 lp->rxdma = SMC_DMA_REQUEST(dev, smc911x_rx_dma_irq);
2092 lp->txdma = SMC_DMA_REQUEST(dev, smc911x_tx_dma_irq);
2093 lp->rxdma_active = 0;
2094 lp->txdma_active = 0;
2095 dev->dma = lp->rxdma;
2096#endif
2097
2098 retval = register_netdev(dev);
2099 if (retval == 0) {
2100 /* now, print out the card info, in a short format.. */
2101 printk("%s: %s (rev %d) at %#lx IRQ %d",
2102 dev->name, version_string, lp->revision,
2103 dev->base_addr, dev->irq);
2104
2105#ifdef SMC_USE_DMA
2106 if (lp->rxdma != -1)
2107 printk(" RXDMA %d ", lp->rxdma);
2108
2109 if (lp->txdma != -1)
2110 printk("TXDMA %d", lp->txdma);
2111#endif
2112 printk("\n");
2113 if (!is_valid_ether_addr(dev->dev_addr)) {
2114 printk("%s: Invalid ethernet MAC address. Please "
2115 "set using ifconfig\n", dev->name);
2116 } else {
2117 /* Print the Ethernet address */
2118 printk("%s: Ethernet addr: ", dev->name);
2119 for (i = 0; i < 5; i++)
2120 printk("%2.2x:", dev->dev_addr[i]);
2121 printk("%2.2x\n", dev->dev_addr[5]);
2122 }
2123
2124 if (lp->phy_type == 0) {
2125 PRINTK("%s: No PHY found\n", dev->name);
2126 } else if ((lp->phy_type & ~0xff) == LAN911X_INTERNAL_PHY_ID) {
2127 PRINTK("%s: LAN911x Internal PHY\n", dev->name);
2128 } else {
2129 PRINTK("%s: External PHY 0x%08x\n", dev->name, lp->phy_type);
2130 }
2131 }
2132
2133err_out:
2134#ifdef SMC_USE_DMA
2135 if (retval) {
2136 if (lp->rxdma != -1) {
2137 SMC_DMA_FREE(dev, lp->rxdma);
2138 }
2139 if (lp->txdma != -1) {
2140 SMC_DMA_FREE(dev, lp->txdma);
2141 }
2142 }
2143#endif
2144 return retval;
2145}
2146
2147/*
2148 * smc911x_init(void)
2149 *
2150 * Output:
2151 * 0 --> there is a device
2152 * anything else, error
2153 */
2154static int smc911x_drv_probe(struct platform_device *pdev)
2155{
2156 struct net_device *ndev;
2157 struct resource *res;
2158 unsigned int *addr;
2159 int ret;
2160
2161 DBG(SMC_DEBUG_FUNC, "--> %s\n", __FUNCTION__);
2162 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2163 if (!res) {
2164 ret = -ENODEV;
2165 goto out;
2166 }
2167
2168 /*
2169 * Request the regions.
2170 */
2171 if (!request_mem_region(res->start, SMC911X_IO_EXTENT, CARDNAME)) {
2172 ret = -EBUSY;
2173 goto out;
2174 }
2175
2176 ndev = alloc_etherdev(sizeof(struct smc911x_local));
2177 if (!ndev) {
2178 printk("%s: could not allocate device.\n", CARDNAME);
2179 ret = -ENOMEM;
2180 goto release_1;
2181 }
2182 SET_MODULE_OWNER(ndev);
2183 SET_NETDEV_DEV(ndev, &pdev->dev);
2184
2185 ndev->dma = (unsigned char)-1;
2186 ndev->irq = platform_get_irq(pdev, 0);
2187
2188 addr = ioremap(res->start, SMC911X_IO_EXTENT);
2189 if (!addr) {
2190 ret = -ENOMEM;
2191 goto release_both;
2192 }
2193
2194 platform_set_drvdata(pdev, ndev);
2195 ret = smc911x_probe(ndev, (unsigned long)addr);
2196 if (ret != 0) {
2197 platform_set_drvdata(pdev, NULL);
2198 iounmap(addr);
2199release_both:
2200 free_netdev(ndev);
2201release_1:
2202 release_mem_region(res->start, SMC911X_IO_EXTENT);
2203out:
2204 printk("%s: not found (%d).\n", CARDNAME, ret);
2205 }
2206#ifdef SMC_USE_DMA
2207 else {
2208 struct smc911x_local *lp = netdev_priv(ndev);
2209 lp->physaddr = res->start;
2210 lp->dev = &pdev->dev;
2211 }
2212#endif
2213
2214 return ret;
2215}
2216
2217static int smc911x_drv_remove(struct platform_device *pdev)
2218{
2219 struct net_device *ndev = platform_get_drvdata(pdev);
2220 struct resource *res;
2221
2222 DBG(SMC_DEBUG_FUNC, "--> %s\n", __FUNCTION__);
2223 platform_set_drvdata(pdev, NULL);
2224
2225 unregister_netdev(ndev);
2226
2227 free_irq(ndev->irq, ndev);
2228
2229#ifdef SMC_USE_DMA
2230 {
2231 struct smc911x_local *lp = netdev_priv(ndev);
2232 if (lp->rxdma != -1) {
2233 SMC_DMA_FREE(dev, lp->rxdma);
2234 }
2235 if (lp->txdma != -1) {
2236 SMC_DMA_FREE(dev, lp->txdma);
2237 }
2238 }
2239#endif
2240 iounmap((void *)ndev->base_addr);
2241 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2242 release_mem_region(res->start, SMC911X_IO_EXTENT);
2243
2244 free_netdev(ndev);
2245 return 0;
2246}
2247
2248static int smc911x_drv_suspend(struct platform_device *dev, pm_message_t state)
2249{
2250 struct net_device *ndev = platform_get_drvdata(dev);
2251 unsigned long ioaddr = ndev->base_addr;
2252
2253 DBG(SMC_DEBUG_FUNC, "--> %s\n", __FUNCTION__);
2254 if (ndev) {
2255 if (netif_running(ndev)) {
2256 netif_device_detach(ndev);
2257 smc911x_shutdown(ndev);
2258#if POWER_DOWN
2259 /* Set D2 - Energy detect only setting */
2260 SMC_SET_PMT_CTRL(2<<12);
2261#endif
2262 }
2263 }
2264 return 0;
2265}
2266
2267static int smc911x_drv_resume(struct platform_device *dev)
2268{
2269 struct net_device *ndev = platform_get_drvdata(dev);
2270
2271 DBG(SMC_DEBUG_FUNC, "--> %s\n", __FUNCTION__);
2272 if (ndev) {
2273 struct smc911x_local *lp = netdev_priv(ndev);
2274
2275 if (netif_running(ndev)) {
2276 smc911x_reset(ndev);
2277 smc911x_enable(ndev);
2278 if (lp->phy_type != 0)
2279 smc911x_phy_configure(ndev);
2280 netif_device_attach(ndev);
2281 }
2282 }
2283 return 0;
2284}
2285
2286static struct platform_driver smc911x_driver = {
2287 .probe = smc911x_drv_probe,
2288 .remove = smc911x_drv_remove,
2289 .suspend = smc911x_drv_suspend,
2290 .resume = smc911x_drv_resume,
2291 .driver = {
2292 .name = CARDNAME,
2293 },
2294};
2295
2296static int __init smc911x_init(void)
2297{
2298 return platform_driver_register(&smc911x_driver);
2299}
2300
2301static void __exit smc911x_cleanup(void)
2302{
2303 platform_driver_unregister(&smc911x_driver);
2304}
2305
2306module_init(smc911x_init);
2307module_exit(smc911x_cleanup);
diff --git a/drivers/net/smc911x.h b/drivers/net/smc911x.h
new file mode 100644
index 000000000000..962a710459fc
--- /dev/null
+++ b/drivers/net/smc911x.h
@@ -0,0 +1,835 @@
1/*------------------------------------------------------------------------
2 . smc911x.h - macros for SMSC's LAN911{5,6,7,8} single-chip Ethernet device.
3 .
4 . Copyright (C) 2005 Sensoria Corp.
5 . Derived from the unified SMC91x driver by Nicolas Pitre
6 .
7 . This program is free software; you can redistribute it and/or modify
8 . it under the terms of the GNU General Public License as published by
9 . the Free Software Foundation; either version 2 of the License, or
10 . (at your option) any later version.
11 .
12 . This program is distributed in the hope that it will be useful,
13 . but WITHOUT ANY WARRANTY; without even the implied warranty of
14 . MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 . GNU General Public License for more details.
16 .
17 . You should have received a copy of the GNU General Public License
18 . along with this program; if not, write to the Free Software
19 . Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 .
21 . Information contained in this file was obtained from the LAN9118
22 . manual from SMC. To get a copy, if you really want one, you can find
23 . information under www.smsc.com.
24 .
25 . Authors
26 . Dustin McIntire <dustin@sensoria.com>
27 .
28 ---------------------------------------------------------------------------*/
29#ifndef _SMC911X_H_
30#define _SMC911X_H_
31
32/*
33 * Use the DMA feature on PXA chips
34 */
35#ifdef CONFIG_ARCH_PXA
36 #define SMC_USE_PXA_DMA 1
37 #define SMC_USE_16BIT 0
38 #define SMC_USE_32BIT 1
39#endif
40
41
42/*
43 * Define the bus width specific IO macros
44 */
45
46#if SMC_USE_16BIT
47#define SMC_inb(a, r) readb((a) + (r))
48#define SMC_inw(a, r) readw((a) + (r))
49#define SMC_inl(a, r) ((SMC_inw(a, r) & 0xFFFF)+(SMC_inw(a+2, r)<<16))
50#define SMC_outb(v, a, r) writeb(v, (a) + (r))
51#define SMC_outw(v, a, r) writew(v, (a) + (r))
52#define SMC_outl(v, a, r) \
53 do{ \
54 writel(v & 0xFFFF, (a) + (r)); \
55 writel(v >> 16, (a) + (r) + 2); \
56 } while (0)
57#define SMC_insl(a, r, p, l) readsw((short*)((a) + (r)), p, l*2)
58#define SMC_outsl(a, r, p, l) writesw((short*)((a) + (r)), p, l*2)
59
60#elif SMC_USE_32BIT
61#define SMC_inb(a, r) readb((a) + (r))
62#define SMC_inw(a, r) readw((a) + (r))
63#define SMC_inl(a, r) readl((a) + (r))
64#define SMC_outb(v, a, r) writeb(v, (a) + (r))
65#define SMC_outl(v, a, r) writel(v, (a) + (r))
66#define SMC_insl(a, r, p, l) readsl((int*)((a) + (r)), p, l)
67#define SMC_outsl(a, r, p, l) writesl((int*)((a) + (r)), p, l)
68
69#endif /* SMC_USE_16BIT */
70
71
72
73#if SMC_USE_PXA_DMA
74#define SMC_USE_DMA
75
76/*
77 * Define the request and free functions
78 * These are unfortunately architecture specific as no generic allocation
79 * mechanism exits
80 */
81#define SMC_DMA_REQUEST(dev, handler) \
82 pxa_request_dma(dev->name, DMA_PRIO_LOW, handler, dev)
83
84#define SMC_DMA_FREE(dev, dma) \
85 pxa_free_dma(dma)
86
87#define SMC_DMA_ACK_IRQ(dev, dma) \
88{ \
89 if (DCSR(dma) & DCSR_BUSERR) { \
90 printk("%s: DMA %d bus error!\n", dev->name, dma); \
91 } \
92 DCSR(dma) = DCSR_STARTINTR|DCSR_ENDINTR|DCSR_BUSERR; \
93}
94
95/*
96 * Use a DMA for RX and TX packets.
97 */
98#include <linux/dma-mapping.h>
99#include <asm/dma.h>
100#include <asm/arch/pxa-regs.h>
101
102static dma_addr_t rx_dmabuf, tx_dmabuf;
103static int rx_dmalen, tx_dmalen;
104
105#ifdef SMC_insl
106#undef SMC_insl
107#define SMC_insl(a, r, p, l) \
108 smc_pxa_dma_insl(lp->dev, a, lp->physaddr, r, lp->rxdma, p, l)
109
110static inline void
111smc_pxa_dma_insl(struct device *dev, u_long ioaddr, u_long physaddr,
112 int reg, int dma, u_char *buf, int len)
113{
114 /* 64 bit alignment is required for memory to memory DMA */
115 if ((long)buf & 4) {
116 *((u32 *)buf) = SMC_inl(ioaddr, reg);
117 buf += 4;
118 len--;
119 }
120
121 len *= 4;
122 rx_dmabuf = dma_map_single(dev, buf, len, DMA_FROM_DEVICE);
123 rx_dmalen = len;
124 DCSR(dma) = DCSR_NODESC;
125 DTADR(dma) = rx_dmabuf;
126 DSADR(dma) = physaddr + reg;
127 DCMD(dma) = (DCMD_INCTRGADDR | DCMD_BURST32 |
128 DCMD_WIDTH4 | DCMD_ENDIRQEN | (DCMD_LENGTH & rx_dmalen));
129 DCSR(dma) = DCSR_NODESC | DCSR_RUN;
130}
131#endif
132
133#ifdef SMC_insw
134#undef SMC_insw
135#define SMC_insw(a, r, p, l) \
136 smc_pxa_dma_insw(lp->dev, a, lp->physaddr, r, lp->rxdma, p, l)
137
138static inline void
139smc_pxa_dma_insw(struct device *dev, u_long ioaddr, u_long physaddr,
140 int reg, int dma, u_char *buf, int len)
141{
142 /* 64 bit alignment is required for memory to memory DMA */
143 while ((long)buf & 6) {
144 *((u16 *)buf) = SMC_inw(ioaddr, reg);
145 buf += 2;
146 len--;
147 }
148
149 len *= 2;
150 rx_dmabuf = dma_map_single(dev, buf, len, DMA_FROM_DEVICE);
151 rx_dmalen = len;
152 DCSR(dma) = DCSR_NODESC;
153 DTADR(dma) = rx_dmabuf;
154 DSADR(dma) = physaddr + reg;
155 DCMD(dma) = (DCMD_INCTRGADDR | DCMD_BURST32 |
156 DCMD_WIDTH2 | DCMD_ENDIRQEN | (DCMD_LENGTH & rx_dmalen));
157 DCSR(dma) = DCSR_NODESC | DCSR_RUN;
158}
159#endif
160
161#ifdef SMC_outsl
162#undef SMC_outsl
163#define SMC_outsl(a, r, p, l) \
164 smc_pxa_dma_outsl(lp->dev, a, lp->physaddr, r, lp->txdma, p, l)
165
166static inline void
167smc_pxa_dma_outsl(struct device *dev, u_long ioaddr, u_long physaddr,
168 int reg, int dma, u_char *buf, int len)
169{
170 /* 64 bit alignment is required for memory to memory DMA */
171 if ((long)buf & 4) {
172 SMC_outl(*((u32 *)buf), ioaddr, reg);
173 buf += 4;
174 len--;
175 }
176
177 len *= 4;
178 tx_dmabuf = dma_map_single(dev, buf, len, DMA_TO_DEVICE);
179 tx_dmalen = len;
180 DCSR(dma) = DCSR_NODESC;
181 DSADR(dma) = tx_dmabuf;
182 DTADR(dma) = physaddr + reg;
183 DCMD(dma) = (DCMD_INCSRCADDR | DCMD_BURST32 |
184 DCMD_WIDTH4 | DCMD_ENDIRQEN | (DCMD_LENGTH & tx_dmalen));
185 DCSR(dma) = DCSR_NODESC | DCSR_RUN;
186}
187#endif
188
189#ifdef SMC_outsw
190#undef SMC_outsw
191#define SMC_outsw(a, r, p, l) \
192 smc_pxa_dma_outsw(lp->dev, a, lp->physaddr, r, lp->txdma, p, l)
193
194static inline void
195smc_pxa_dma_outsw(struct device *dev, u_long ioaddr, u_long physaddr,
196 int reg, int dma, u_char *buf, int len)
197{
198 /* 64 bit alignment is required for memory to memory DMA */
199 while ((long)buf & 6) {
200 SMC_outw(*((u16 *)buf), ioaddr, reg);
201 buf += 2;
202 len--;
203 }
204
205 len *= 2;
206 tx_dmabuf = dma_map_single(dev, buf, len, DMA_TO_DEVICE);
207 tx_dmalen = len;
208 DCSR(dma) = DCSR_NODESC;
209 DSADR(dma) = tx_dmabuf;
210 DTADR(dma) = physaddr + reg;
211 DCMD(dma) = (DCMD_INCSRCADDR | DCMD_BURST32 |
212 DCMD_WIDTH2 | DCMD_ENDIRQEN | (DCMD_LENGTH & tx_dmalen));
213 DCSR(dma) = DCSR_NODESC | DCSR_RUN;
214}
215#endif
216
217#endif /* SMC_USE_PXA_DMA */
218
219
220/* Chip Parameters and Register Definitions */
221
222#define SMC911X_TX_FIFO_LOW_THRESHOLD (1536*2)
223
224#define SMC911X_IO_EXTENT 0x100
225
226#define SMC911X_EEPROM_LEN 7
227
228/* Below are the register offsets and bit definitions
229 * of the Lan911x memory space
230 */
231#define RX_DATA_FIFO (0x00)
232
233#define TX_DATA_FIFO (0x20)
234#define TX_CMD_A_INT_ON_COMP_ (0x80000000)
235#define TX_CMD_A_INT_BUF_END_ALGN_ (0x03000000)
236#define TX_CMD_A_INT_4_BYTE_ALGN_ (0x00000000)
237#define TX_CMD_A_INT_16_BYTE_ALGN_ (0x01000000)
238#define TX_CMD_A_INT_32_BYTE_ALGN_ (0x02000000)
239#define TX_CMD_A_INT_DATA_OFFSET_ (0x001F0000)
240#define TX_CMD_A_INT_FIRST_SEG_ (0x00002000)
241#define TX_CMD_A_INT_LAST_SEG_ (0x00001000)
242#define TX_CMD_A_BUF_SIZE_ (0x000007FF)
243#define TX_CMD_B_PKT_TAG_ (0xFFFF0000)
244#define TX_CMD_B_ADD_CRC_DISABLE_ (0x00002000)
245#define TX_CMD_B_DISABLE_PADDING_ (0x00001000)
246#define TX_CMD_B_PKT_BYTE_LENGTH_ (0x000007FF)
247
248#define RX_STATUS_FIFO (0x40)
249#define RX_STS_PKT_LEN_ (0x3FFF0000)
250#define RX_STS_ES_ (0x00008000)
251#define RX_STS_BCST_ (0x00002000)
252#define RX_STS_LEN_ERR_ (0x00001000)
253#define RX_STS_RUNT_ERR_ (0x00000800)
254#define RX_STS_MCAST_ (0x00000400)
255#define RX_STS_TOO_LONG_ (0x00000080)
256#define RX_STS_COLL_ (0x00000040)
257#define RX_STS_ETH_TYPE_ (0x00000020)
258#define RX_STS_WDOG_TMT_ (0x00000010)
259#define RX_STS_MII_ERR_ (0x00000008)
260#define RX_STS_DRIBBLING_ (0x00000004)
261#define RX_STS_CRC_ERR_ (0x00000002)
262#define RX_STATUS_FIFO_PEEK (0x44)
263#define TX_STATUS_FIFO (0x48)
264#define TX_STS_TAG_ (0xFFFF0000)
265#define TX_STS_ES_ (0x00008000)
266#define TX_STS_LOC_ (0x00000800)
267#define TX_STS_NO_CARR_ (0x00000400)
268#define TX_STS_LATE_COLL_ (0x00000200)
269#define TX_STS_MANY_COLL_ (0x00000100)
270#define TX_STS_COLL_CNT_ (0x00000078)
271#define TX_STS_MANY_DEFER_ (0x00000004)
272#define TX_STS_UNDERRUN_ (0x00000002)
273#define TX_STS_DEFERRED_ (0x00000001)
274#define TX_STATUS_FIFO_PEEK (0x4C)
275#define ID_REV (0x50)
276#define ID_REV_CHIP_ID_ (0xFFFF0000) /* RO */
277#define ID_REV_REV_ID_ (0x0000FFFF) /* RO */
278
279#define INT_CFG (0x54)
280#define INT_CFG_INT_DEAS_ (0xFF000000) /* R/W */
281#define INT_CFG_INT_DEAS_CLR_ (0x00004000)
282#define INT_CFG_INT_DEAS_STS_ (0x00002000)
283#define INT_CFG_IRQ_INT_ (0x00001000) /* RO */
284#define INT_CFG_IRQ_EN_ (0x00000100) /* R/W */
285#define INT_CFG_IRQ_POL_ (0x00000010) /* R/W Not Affected by SW Reset */
286#define INT_CFG_IRQ_TYPE_ (0x00000001) /* R/W Not Affected by SW Reset */
287
288#define INT_STS (0x58)
289#define INT_STS_SW_INT_ (0x80000000) /* R/WC */
290#define INT_STS_TXSTOP_INT_ (0x02000000) /* R/WC */
291#define INT_STS_RXSTOP_INT_ (0x01000000) /* R/WC */
292#define INT_STS_RXDFH_INT_ (0x00800000) /* R/WC */
293#define INT_STS_RXDF_INT_ (0x00400000) /* R/WC */
294#define INT_STS_TX_IOC_ (0x00200000) /* R/WC */
295#define INT_STS_RXD_INT_ (0x00100000) /* R/WC */
296#define INT_STS_GPT_INT_ (0x00080000) /* R/WC */
297#define INT_STS_PHY_INT_ (0x00040000) /* RO */
298#define INT_STS_PME_INT_ (0x00020000) /* R/WC */
299#define INT_STS_TXSO_ (0x00010000) /* R/WC */
300#define INT_STS_RWT_ (0x00008000) /* R/WC */
301#define INT_STS_RXE_ (0x00004000) /* R/WC */
302#define INT_STS_TXE_ (0x00002000) /* R/WC */
303//#define INT_STS_ERX_ (0x00001000) /* R/WC */
304#define INT_STS_TDFU_ (0x00000800) /* R/WC */
305#define INT_STS_TDFO_ (0x00000400) /* R/WC */
306#define INT_STS_TDFA_ (0x00000200) /* R/WC */
307#define INT_STS_TSFF_ (0x00000100) /* R/WC */
308#define INT_STS_TSFL_ (0x00000080) /* R/WC */
309//#define INT_STS_RXDF_ (0x00000040) /* R/WC */
310#define INT_STS_RDFO_ (0x00000040) /* R/WC */
311#define INT_STS_RDFL_ (0x00000020) /* R/WC */
312#define INT_STS_RSFF_ (0x00000010) /* R/WC */
313#define INT_STS_RSFL_ (0x00000008) /* R/WC */
314#define INT_STS_GPIO2_INT_ (0x00000004) /* R/WC */
315#define INT_STS_GPIO1_INT_ (0x00000002) /* R/WC */
316#define INT_STS_GPIO0_INT_ (0x00000001) /* R/WC */
317
318#define INT_EN (0x5C)
319#define INT_EN_SW_INT_EN_ (0x80000000) /* R/W */
320#define INT_EN_TXSTOP_INT_EN_ (0x02000000) /* R/W */
321#define INT_EN_RXSTOP_INT_EN_ (0x01000000) /* R/W */
322#define INT_EN_RXDFH_INT_EN_ (0x00800000) /* R/W */
323//#define INT_EN_RXDF_INT_EN_ (0x00400000) /* R/W */
324#define INT_EN_TIOC_INT_EN_ (0x00200000) /* R/W */
325#define INT_EN_RXD_INT_EN_ (0x00100000) /* R/W */
326#define INT_EN_GPT_INT_EN_ (0x00080000) /* R/W */
327#define INT_EN_PHY_INT_EN_ (0x00040000) /* R/W */
328#define INT_EN_PME_INT_EN_ (0x00020000) /* R/W */
329#define INT_EN_TXSO_EN_ (0x00010000) /* R/W */
330#define INT_EN_RWT_EN_ (0x00008000) /* R/W */
331#define INT_EN_RXE_EN_ (0x00004000) /* R/W */
332#define INT_EN_TXE_EN_ (0x00002000) /* R/W */
333//#define INT_EN_ERX_EN_ (0x00001000) /* R/W */
334#define INT_EN_TDFU_EN_ (0x00000800) /* R/W */
335#define INT_EN_TDFO_EN_ (0x00000400) /* R/W */
336#define INT_EN_TDFA_EN_ (0x00000200) /* R/W */
337#define INT_EN_TSFF_EN_ (0x00000100) /* R/W */
338#define INT_EN_TSFL_EN_ (0x00000080) /* R/W */
339//#define INT_EN_RXDF_EN_ (0x00000040) /* R/W */
340#define INT_EN_RDFO_EN_ (0x00000040) /* R/W */
341#define INT_EN_RDFL_EN_ (0x00000020) /* R/W */
342#define INT_EN_RSFF_EN_ (0x00000010) /* R/W */
343#define INT_EN_RSFL_EN_ (0x00000008) /* R/W */
344#define INT_EN_GPIO2_INT_ (0x00000004) /* R/W */
345#define INT_EN_GPIO1_INT_ (0x00000002) /* R/W */
346#define INT_EN_GPIO0_INT_ (0x00000001) /* R/W */
347
348#define BYTE_TEST (0x64)
349#define FIFO_INT (0x68)
350#define FIFO_INT_TX_AVAIL_LEVEL_ (0xFF000000) /* R/W */
351#define FIFO_INT_TX_STS_LEVEL_ (0x00FF0000) /* R/W */
352#define FIFO_INT_RX_AVAIL_LEVEL_ (0x0000FF00) /* R/W */
353#define FIFO_INT_RX_STS_LEVEL_ (0x000000FF) /* R/W */
354
355#define RX_CFG (0x6C)
356#define RX_CFG_RX_END_ALGN_ (0xC0000000) /* R/W */
357#define RX_CFG_RX_END_ALGN4_ (0x00000000) /* R/W */
358#define RX_CFG_RX_END_ALGN16_ (0x40000000) /* R/W */
359#define RX_CFG_RX_END_ALGN32_ (0x80000000) /* R/W */
360#define RX_CFG_RX_DMA_CNT_ (0x0FFF0000) /* R/W */
361#define RX_CFG_RX_DUMP_ (0x00008000) /* R/W */
362#define RX_CFG_RXDOFF_ (0x00001F00) /* R/W */
363//#define RX_CFG_RXBAD_ (0x00000001) /* R/W */
364
365#define TX_CFG (0x70)
366//#define TX_CFG_TX_DMA_LVL_ (0xE0000000) /* R/W */
367//#define TX_CFG_TX_DMA_CNT_ (0x0FFF0000) /* R/W Self Clearing */
368#define TX_CFG_TXS_DUMP_ (0x00008000) /* Self Clearing */
369#define TX_CFG_TXD_DUMP_ (0x00004000) /* Self Clearing */
370#define TX_CFG_TXSAO_ (0x00000004) /* R/W */
371#define TX_CFG_TX_ON_ (0x00000002) /* R/W */
372#define TX_CFG_STOP_TX_ (0x00000001) /* Self Clearing */
373
374#define HW_CFG (0x74)
375#define HW_CFG_TTM_ (0x00200000) /* R/W */
376#define HW_CFG_SF_ (0x00100000) /* R/W */
377#define HW_CFG_TX_FIF_SZ_ (0x000F0000) /* R/W */
378#define HW_CFG_TR_ (0x00003000) /* R/W */
379#define HW_CFG_PHY_CLK_SEL_ (0x00000060) /* R/W */
380#define HW_CFG_PHY_CLK_SEL_INT_PHY_ (0x00000000) /* R/W */
381#define HW_CFG_PHY_CLK_SEL_EXT_PHY_ (0x00000020) /* R/W */
382#define HW_CFG_PHY_CLK_SEL_CLK_DIS_ (0x00000040) /* R/W */
383#define HW_CFG_SMI_SEL_ (0x00000010) /* R/W */
384#define HW_CFG_EXT_PHY_DET_ (0x00000008) /* RO */
385#define HW_CFG_EXT_PHY_EN_ (0x00000004) /* R/W */
386#define HW_CFG_32_16_BIT_MODE_ (0x00000004) /* RO */
387#define HW_CFG_SRST_TO_ (0x00000002) /* RO */
388#define HW_CFG_SRST_ (0x00000001) /* Self Clearing */
389
390#define RX_DP_CTRL (0x78)
391#define RX_DP_CTRL_RX_FFWD_ (0x80000000) /* R/W */
392#define RX_DP_CTRL_FFWD_BUSY_ (0x80000000) /* RO */
393
394#define RX_FIFO_INF (0x7C)
395#define RX_FIFO_INF_RXSUSED_ (0x00FF0000) /* RO */
396#define RX_FIFO_INF_RXDUSED_ (0x0000FFFF) /* RO */
397
398#define TX_FIFO_INF (0x80)
399#define TX_FIFO_INF_TSUSED_ (0x00FF0000) /* RO */
400#define TX_FIFO_INF_TDFREE_ (0x0000FFFF) /* RO */
401
402#define PMT_CTRL (0x84)
403#define PMT_CTRL_PM_MODE_ (0x00003000) /* Self Clearing */
404#define PMT_CTRL_PHY_RST_ (0x00000400) /* Self Clearing */
405#define PMT_CTRL_WOL_EN_ (0x00000200) /* R/W */
406#define PMT_CTRL_ED_EN_ (0x00000100) /* R/W */
407#define PMT_CTRL_PME_TYPE_ (0x00000040) /* R/W Not Affected by SW Reset */
408#define PMT_CTRL_WUPS_ (0x00000030) /* R/WC */
409#define PMT_CTRL_WUPS_NOWAKE_ (0x00000000) /* R/WC */
410#define PMT_CTRL_WUPS_ED_ (0x00000010) /* R/WC */
411#define PMT_CTRL_WUPS_WOL_ (0x00000020) /* R/WC */
412#define PMT_CTRL_WUPS_MULTI_ (0x00000030) /* R/WC */
413#define PMT_CTRL_PME_IND_ (0x00000008) /* R/W */
414#define PMT_CTRL_PME_POL_ (0x00000004) /* R/W */
415#define PMT_CTRL_PME_EN_ (0x00000002) /* R/W Not Affected by SW Reset */
416#define PMT_CTRL_READY_ (0x00000001) /* RO */
417
418#define GPIO_CFG (0x88)
419#define GPIO_CFG_LED3_EN_ (0x40000000) /* R/W */
420#define GPIO_CFG_LED2_EN_ (0x20000000) /* R/W */
421#define GPIO_CFG_LED1_EN_ (0x10000000) /* R/W */
422#define GPIO_CFG_GPIO2_INT_POL_ (0x04000000) /* R/W */
423#define GPIO_CFG_GPIO1_INT_POL_ (0x02000000) /* R/W */
424#define GPIO_CFG_GPIO0_INT_POL_ (0x01000000) /* R/W */
425#define GPIO_CFG_EEPR_EN_ (0x00700000) /* R/W */
426#define GPIO_CFG_GPIOBUF2_ (0x00040000) /* R/W */
427#define GPIO_CFG_GPIOBUF1_ (0x00020000) /* R/W */
428#define GPIO_CFG_GPIOBUF0_ (0x00010000) /* R/W */
429#define GPIO_CFG_GPIODIR2_ (0x00000400) /* R/W */
430#define GPIO_CFG_GPIODIR1_ (0x00000200) /* R/W */
431#define GPIO_CFG_GPIODIR0_ (0x00000100) /* R/W */
432#define GPIO_CFG_GPIOD4_ (0x00000010) /* R/W */
433#define GPIO_CFG_GPIOD3_ (0x00000008) /* R/W */
434#define GPIO_CFG_GPIOD2_ (0x00000004) /* R/W */
435#define GPIO_CFG_GPIOD1_ (0x00000002) /* R/W */
436#define GPIO_CFG_GPIOD0_ (0x00000001) /* R/W */
437
438#define GPT_CFG (0x8C)
439#define GPT_CFG_TIMER_EN_ (0x20000000) /* R/W */
440#define GPT_CFG_GPT_LOAD_ (0x0000FFFF) /* R/W */
441
442#define GPT_CNT (0x90)
443#define GPT_CNT_GPT_CNT_ (0x0000FFFF) /* RO */
444
445#define ENDIAN (0x98)
446#define FREE_RUN (0x9C)
447#define RX_DROP (0xA0)
448#define MAC_CSR_CMD (0xA4)
449#define MAC_CSR_CMD_CSR_BUSY_ (0x80000000) /* Self Clearing */
450#define MAC_CSR_CMD_R_NOT_W_ (0x40000000) /* R/W */
451#define MAC_CSR_CMD_CSR_ADDR_ (0x000000FF) /* R/W */
452
453#define MAC_CSR_DATA (0xA8)
454#define AFC_CFG (0xAC)
455#define AFC_CFG_AFC_HI_ (0x00FF0000) /* R/W */
456#define AFC_CFG_AFC_LO_ (0x0000FF00) /* R/W */
457#define AFC_CFG_BACK_DUR_ (0x000000F0) /* R/W */
458#define AFC_CFG_FCMULT_ (0x00000008) /* R/W */
459#define AFC_CFG_FCBRD_ (0x00000004) /* R/W */
460#define AFC_CFG_FCADD_ (0x00000002) /* R/W */
461#define AFC_CFG_FCANY_ (0x00000001) /* R/W */
462
463#define E2P_CMD (0xB0)
464#define E2P_CMD_EPC_BUSY_ (0x80000000) /* Self Clearing */
465#define E2P_CMD_EPC_CMD_ (0x70000000) /* R/W */
466#define E2P_CMD_EPC_CMD_READ_ (0x00000000) /* R/W */
467#define E2P_CMD_EPC_CMD_EWDS_ (0x10000000) /* R/W */
468#define E2P_CMD_EPC_CMD_EWEN_ (0x20000000) /* R/W */
469#define E2P_CMD_EPC_CMD_WRITE_ (0x30000000) /* R/W */
470#define E2P_CMD_EPC_CMD_WRAL_ (0x40000000) /* R/W */
471#define E2P_CMD_EPC_CMD_ERASE_ (0x50000000) /* R/W */
472#define E2P_CMD_EPC_CMD_ERAL_ (0x60000000) /* R/W */
473#define E2P_CMD_EPC_CMD_RELOAD_ (0x70000000) /* R/W */
474#define E2P_CMD_EPC_TIMEOUT_ (0x00000200) /* RO */
475#define E2P_CMD_MAC_ADDR_LOADED_ (0x00000100) /* RO */
476#define E2P_CMD_EPC_ADDR_ (0x000000FF) /* R/W */
477
478#define E2P_DATA (0xB4)
479#define E2P_DATA_EEPROM_DATA_ (0x000000FF) /* R/W */
480/* end of LAN register offsets and bit definitions */
481
482/*
483 ****************************************************************************
484 ****************************************************************************
485 * MAC Control and Status Register (Indirect Address)
486 * Offset (through the MAC_CSR CMD and DATA port)
487 ****************************************************************************
488 ****************************************************************************
489 *
490 */
491#define MAC_CR (0x01) /* R/W */
492
493/* MAC_CR - MAC Control Register */
494#define MAC_CR_RXALL_ (0x80000000)
495// TODO: delete this bit? It is not described in the data sheet.
496#define MAC_CR_HBDIS_ (0x10000000)
497#define MAC_CR_RCVOWN_ (0x00800000)
498#define MAC_CR_LOOPBK_ (0x00200000)
499#define MAC_CR_FDPX_ (0x00100000)
500#define MAC_CR_MCPAS_ (0x00080000)
501#define MAC_CR_PRMS_ (0x00040000)
502#define MAC_CR_INVFILT_ (0x00020000)
503#define MAC_CR_PASSBAD_ (0x00010000)
504#define MAC_CR_HFILT_ (0x00008000)
505#define MAC_CR_HPFILT_ (0x00002000)
506#define MAC_CR_LCOLL_ (0x00001000)
507#define MAC_CR_BCAST_ (0x00000800)
508#define MAC_CR_DISRTY_ (0x00000400)
509#define MAC_CR_PADSTR_ (0x00000100)
510#define MAC_CR_BOLMT_MASK_ (0x000000C0)
511#define MAC_CR_DFCHK_ (0x00000020)
512#define MAC_CR_TXEN_ (0x00000008)
513#define MAC_CR_RXEN_ (0x00000004)
514
515#define ADDRH (0x02) /* R/W mask 0x0000FFFFUL */
516#define ADDRL (0x03) /* R/W mask 0xFFFFFFFFUL */
517#define HASHH (0x04) /* R/W */
518#define HASHL (0x05) /* R/W */
519
520#define MII_ACC (0x06) /* R/W */
521#define MII_ACC_PHY_ADDR_ (0x0000F800)
522#define MII_ACC_MIIRINDA_ (0x000007C0)
523#define MII_ACC_MII_WRITE_ (0x00000002)
524#define MII_ACC_MII_BUSY_ (0x00000001)
525
526#define MII_DATA (0x07) /* R/W mask 0x0000FFFFUL */
527
528#define FLOW (0x08) /* R/W */
529#define FLOW_FCPT_ (0xFFFF0000)
530#define FLOW_FCPASS_ (0x00000004)
531#define FLOW_FCEN_ (0x00000002)
532#define FLOW_FCBSY_ (0x00000001)
533
534#define VLAN1 (0x09) /* R/W mask 0x0000FFFFUL */
535#define VLAN1_VTI1_ (0x0000ffff)
536
537#define VLAN2 (0x0A) /* R/W mask 0x0000FFFFUL */
538#define VLAN2_VTI2_ (0x0000ffff)
539
540#define WUFF (0x0B) /* WO */
541
542#define WUCSR (0x0C) /* R/W */
543#define WUCSR_GUE_ (0x00000200)
544#define WUCSR_WUFR_ (0x00000040)
545#define WUCSR_MPR_ (0x00000020)
546#define WUCSR_WAKE_EN_ (0x00000004)
547#define WUCSR_MPEN_ (0x00000002)
548
549/*
550 ****************************************************************************
551 * Chip Specific MII Defines
552 ****************************************************************************
553 *
554 * Phy register offsets and bit definitions
555 *
556 */
557
558#define PHY_MODE_CTRL_STS ((u32)17) /* Mode Control/Status Register */
559//#define MODE_CTRL_STS_FASTRIP_ ((u16)0x4000)
560#define MODE_CTRL_STS_EDPWRDOWN_ ((u16)0x2000)
561//#define MODE_CTRL_STS_LOWSQEN_ ((u16)0x0800)
562//#define MODE_CTRL_STS_MDPREBP_ ((u16)0x0400)
563//#define MODE_CTRL_STS_FARLOOPBACK_ ((u16)0x0200)
564//#define MODE_CTRL_STS_FASTEST_ ((u16)0x0100)
565//#define MODE_CTRL_STS_REFCLKEN_ ((u16)0x0010)
566//#define MODE_CTRL_STS_PHYADBP_ ((u16)0x0008)
567//#define MODE_CTRL_STS_FORCE_G_LINK_ ((u16)0x0004)
568#define MODE_CTRL_STS_ENERGYON_ ((u16)0x0002)
569
570#define PHY_INT_SRC ((u32)29)
571#define PHY_INT_SRC_ENERGY_ON_ ((u16)0x0080)
572#define PHY_INT_SRC_ANEG_COMP_ ((u16)0x0040)
573#define PHY_INT_SRC_REMOTE_FAULT_ ((u16)0x0020)
574#define PHY_INT_SRC_LINK_DOWN_ ((u16)0x0010)
575#define PHY_INT_SRC_ANEG_LP_ACK_ ((u16)0x0008)
576#define PHY_INT_SRC_PAR_DET_FAULT_ ((u16)0x0004)
577#define PHY_INT_SRC_ANEG_PGRX_ ((u16)0x0002)
578
579#define PHY_INT_MASK ((u32)30)
580#define PHY_INT_MASK_ENERGY_ON_ ((u16)0x0080)
581#define PHY_INT_MASK_ANEG_COMP_ ((u16)0x0040)
582#define PHY_INT_MASK_REMOTE_FAULT_ ((u16)0x0020)
583#define PHY_INT_MASK_LINK_DOWN_ ((u16)0x0010)
584#define PHY_INT_MASK_ANEG_LP_ACK_ ((u16)0x0008)
585#define PHY_INT_MASK_PAR_DET_FAULT_ ((u16)0x0004)
586#define PHY_INT_MASK_ANEG_PGRX_ ((u16)0x0002)
587
588#define PHY_SPECIAL ((u32)31)
589#define PHY_SPECIAL_ANEG_DONE_ ((u16)0x1000)
590#define PHY_SPECIAL_RES_ ((u16)0x0040)
591#define PHY_SPECIAL_RES_MASK_ ((u16)0x0FE1)
592#define PHY_SPECIAL_SPD_ ((u16)0x001C)
593#define PHY_SPECIAL_SPD_10HALF_ ((u16)0x0004)
594#define PHY_SPECIAL_SPD_10FULL_ ((u16)0x0014)
595#define PHY_SPECIAL_SPD_100HALF_ ((u16)0x0008)
596#define PHY_SPECIAL_SPD_100FULL_ ((u16)0x0018)
597
598#define LAN911X_INTERNAL_PHY_ID (0x0007C000)
599
600/* Chip ID values */
601#define CHIP_9115 0x115
602#define CHIP_9116 0x116
603#define CHIP_9117 0x117
604#define CHIP_9118 0x118
605
606struct chip_id {
607 u16 id;
608 char *name;
609};
610
611static const struct chip_id chip_ids[] = {
612 { CHIP_9115, "LAN9115" },
613 { CHIP_9116, "LAN9116" },
614 { CHIP_9117, "LAN9117" },
615 { CHIP_9118, "LAN9118" },
616 { 0, NULL },
617};
618
619#define IS_REV_A(x) ((x & 0xFFFF)==0)
620
621/*
622 * Macros to abstract register access according to the data bus
623 * capabilities. Please use those and not the in/out primitives.
624 */
625/* FIFO read/write macros */
626#define SMC_PUSH_DATA(p, l) SMC_outsl( ioaddr, TX_DATA_FIFO, p, (l) >> 2 )
627#define SMC_PULL_DATA(p, l) SMC_insl ( ioaddr, RX_DATA_FIFO, p, (l) >> 2 )
628#define SMC_SET_TX_FIFO(x) SMC_outl( x, ioaddr, TX_DATA_FIFO )
629#define SMC_GET_RX_FIFO() SMC_inl( ioaddr, RX_DATA_FIFO )
630
631
632/* I/O mapped register read/write macros */
633#define SMC_GET_TX_STS_FIFO() SMC_inl( ioaddr, TX_STATUS_FIFO )
634#define SMC_GET_RX_STS_FIFO() SMC_inl( ioaddr, RX_STATUS_FIFO )
635#define SMC_GET_RX_STS_FIFO_PEEK() SMC_inl( ioaddr, RX_STATUS_FIFO_PEEK )
636#define SMC_GET_PN() (SMC_inl( ioaddr, ID_REV ) >> 16)
637#define SMC_GET_REV() (SMC_inl( ioaddr, ID_REV ) & 0xFFFF)
638#define SMC_GET_IRQ_CFG() SMC_inl( ioaddr, INT_CFG )
639#define SMC_SET_IRQ_CFG(x) SMC_outl( x, ioaddr, INT_CFG )
640#define SMC_GET_INT() SMC_inl( ioaddr, INT_STS )
641#define SMC_ACK_INT(x) SMC_outl( x, ioaddr, INT_STS )
642#define SMC_GET_INT_EN() SMC_inl( ioaddr, INT_EN )
643#define SMC_SET_INT_EN(x) SMC_outl( x, ioaddr, INT_EN )
644#define SMC_GET_BYTE_TEST() SMC_inl( ioaddr, BYTE_TEST )
645#define SMC_SET_BYTE_TEST(x) SMC_outl( x, ioaddr, BYTE_TEST )
646#define SMC_GET_FIFO_INT() SMC_inl( ioaddr, FIFO_INT )
647#define SMC_SET_FIFO_INT(x) SMC_outl( x, ioaddr, FIFO_INT )
648#define SMC_SET_FIFO_TDA(x) \
649 do { \
650 unsigned long __flags; \
651 int __mask; \
652 local_irq_save(__flags); \
653 __mask = SMC_GET_FIFO_INT() & ~(0xFF<<24); \
654 SMC_SET_FIFO_INT( __mask | (x)<<24 ); \
655 local_irq_restore(__flags); \
656 } while (0)
657#define SMC_SET_FIFO_TSL(x) \
658 do { \
659 unsigned long __flags; \
660 int __mask; \
661 local_irq_save(__flags); \
662 __mask = SMC_GET_FIFO_INT() & ~(0xFF<<16); \
663 SMC_SET_FIFO_INT( __mask | (((x) & 0xFF)<<16)); \
664 local_irq_restore(__flags); \
665 } while (0)
666#define SMC_SET_FIFO_RSA(x) \
667 do { \
668 unsigned long __flags; \
669 int __mask; \
670 local_irq_save(__flags); \
671 __mask = SMC_GET_FIFO_INT() & ~(0xFF<<8); \
672 SMC_SET_FIFO_INT( __mask | (((x) & 0xFF)<<8)); \
673 local_irq_restore(__flags); \
674 } while (0)
675#define SMC_SET_FIFO_RSL(x) \
676 do { \
677 unsigned long __flags; \
678 int __mask; \
679 local_irq_save(__flags); \
680 __mask = SMC_GET_FIFO_INT() & ~0xFF; \
681 SMC_SET_FIFO_INT( __mask | ((x) & 0xFF)); \
682 local_irq_restore(__flags); \
683 } while (0)
684#define SMC_GET_RX_CFG() SMC_inl( ioaddr, RX_CFG )
685#define SMC_SET_RX_CFG(x) SMC_outl( x, ioaddr, RX_CFG )
686#define SMC_GET_TX_CFG() SMC_inl( ioaddr, TX_CFG )
687#define SMC_SET_TX_CFG(x) SMC_outl( x, ioaddr, TX_CFG )
688#define SMC_GET_HW_CFG() SMC_inl( ioaddr, HW_CFG )
689#define SMC_SET_HW_CFG(x) SMC_outl( x, ioaddr, HW_CFG )
690#define SMC_GET_RX_DP_CTRL() SMC_inl( ioaddr, RX_DP_CTRL )
691#define SMC_SET_RX_DP_CTRL(x) SMC_outl( x, ioaddr, RX_DP_CTRL )
692#define SMC_GET_PMT_CTRL() SMC_inl( ioaddr, PMT_CTRL )
693#define SMC_SET_PMT_CTRL(x) SMC_outl( x, ioaddr, PMT_CTRL )
694#define SMC_GET_GPIO_CFG() SMC_inl( ioaddr, GPIO_CFG )
695#define SMC_SET_GPIO_CFG(x) SMC_outl( x, ioaddr, GPIO_CFG )
696#define SMC_GET_RX_FIFO_INF() SMC_inl( ioaddr, RX_FIFO_INF )
697#define SMC_SET_RX_FIFO_INF(x) SMC_outl( x, ioaddr, RX_FIFO_INF )
698#define SMC_GET_TX_FIFO_INF() SMC_inl( ioaddr, TX_FIFO_INF )
699#define SMC_SET_TX_FIFO_INF(x) SMC_outl( x, ioaddr, TX_FIFO_INF )
700#define SMC_GET_GPT_CFG() SMC_inl( ioaddr, GPT_CFG )
701#define SMC_SET_GPT_CFG(x) SMC_outl( x, ioaddr, GPT_CFG )
702#define SMC_GET_RX_DROP() SMC_inl( ioaddr, RX_DROP )
703#define SMC_SET_RX_DROP(x) SMC_outl( x, ioaddr, RX_DROP )
704#define SMC_GET_MAC_CMD() SMC_inl( ioaddr, MAC_CSR_CMD )
705#define SMC_SET_MAC_CMD(x) SMC_outl( x, ioaddr, MAC_CSR_CMD )
706#define SMC_GET_MAC_DATA() SMC_inl( ioaddr, MAC_CSR_DATA )
707#define SMC_SET_MAC_DATA(x) SMC_outl( x, ioaddr, MAC_CSR_DATA )
708#define SMC_GET_AFC_CFG() SMC_inl( ioaddr, AFC_CFG )
709#define SMC_SET_AFC_CFG(x) SMC_outl( x, ioaddr, AFC_CFG )
710#define SMC_GET_E2P_CMD() SMC_inl( ioaddr, E2P_CMD )
711#define SMC_SET_E2P_CMD(x) SMC_outl( x, ioaddr, E2P_CMD )
712#define SMC_GET_E2P_DATA() SMC_inl( ioaddr, E2P_DATA )
713#define SMC_SET_E2P_DATA(x) SMC_outl( x, ioaddr, E2P_DATA )
714
715/* MAC register read/write macros */
716#define SMC_GET_MAC_CSR(a,v) \
717 do { \
718 while (SMC_GET_MAC_CMD() & MAC_CSR_CMD_CSR_BUSY_); \
719 SMC_SET_MAC_CMD(MAC_CSR_CMD_CSR_BUSY_ | \
720 MAC_CSR_CMD_R_NOT_W_ | (a) ); \
721 while (SMC_GET_MAC_CMD() & MAC_CSR_CMD_CSR_BUSY_); \
722 v = SMC_GET_MAC_DATA(); \
723 } while (0)
724#define SMC_SET_MAC_CSR(a,v) \
725 do { \
726 while (SMC_GET_MAC_CMD() & MAC_CSR_CMD_CSR_BUSY_); \
727 SMC_SET_MAC_DATA(v); \
728 SMC_SET_MAC_CMD(MAC_CSR_CMD_CSR_BUSY_ | (a) ); \
729 while (SMC_GET_MAC_CMD() & MAC_CSR_CMD_CSR_BUSY_); \
730 } while (0)
731#define SMC_GET_MAC_CR(x) SMC_GET_MAC_CSR( MAC_CR, x )
732#define SMC_SET_MAC_CR(x) SMC_SET_MAC_CSR( MAC_CR, x )
733#define SMC_GET_ADDRH(x) SMC_GET_MAC_CSR( ADDRH, x )
734#define SMC_SET_ADDRH(x) SMC_SET_MAC_CSR( ADDRH, x )
735#define SMC_GET_ADDRL(x) SMC_GET_MAC_CSR( ADDRL, x )
736#define SMC_SET_ADDRL(x) SMC_SET_MAC_CSR( ADDRL, x )
737#define SMC_GET_HASHH(x) SMC_GET_MAC_CSR( HASHH, x )
738#define SMC_SET_HASHH(x) SMC_SET_MAC_CSR( HASHH, x )
739#define SMC_GET_HASHL(x) SMC_GET_MAC_CSR( HASHL, x )
740#define SMC_SET_HASHL(x) SMC_SET_MAC_CSR( HASHL, x )
741#define SMC_GET_MII_ACC(x) SMC_GET_MAC_CSR( MII_ACC, x )
742#define SMC_SET_MII_ACC(x) SMC_SET_MAC_CSR( MII_ACC, x )
743#define SMC_GET_MII_DATA(x) SMC_GET_MAC_CSR( MII_DATA, x )
744#define SMC_SET_MII_DATA(x) SMC_SET_MAC_CSR( MII_DATA, x )
745#define SMC_GET_FLOW(x) SMC_GET_MAC_CSR( FLOW, x )
746#define SMC_SET_FLOW(x) SMC_SET_MAC_CSR( FLOW, x )
747#define SMC_GET_VLAN1(x) SMC_GET_MAC_CSR( VLAN1, x )
748#define SMC_SET_VLAN1(x) SMC_SET_MAC_CSR( VLAN1, x )
749#define SMC_GET_VLAN2(x) SMC_GET_MAC_CSR( VLAN2, x )
750#define SMC_SET_VLAN2(x) SMC_SET_MAC_CSR( VLAN2, x )
751#define SMC_SET_WUFF(x) SMC_SET_MAC_CSR( WUFF, x )
752#define SMC_GET_WUCSR(x) SMC_GET_MAC_CSR( WUCSR, x )
753#define SMC_SET_WUCSR(x) SMC_SET_MAC_CSR( WUCSR, x )
754
755/* PHY register read/write macros */
756#define SMC_GET_MII(a,phy,v) \
757 do { \
758 u32 __v; \
759 do { \
760 SMC_GET_MII_ACC(__v); \
761 } while ( __v & MII_ACC_MII_BUSY_ ); \
762 SMC_SET_MII_ACC( ((phy)<<11) | ((a)<<6) | \
763 MII_ACC_MII_BUSY_); \
764 do { \
765 SMC_GET_MII_ACC(__v); \
766 } while ( __v & MII_ACC_MII_BUSY_ ); \
767 SMC_GET_MII_DATA(v); \
768 } while (0)
769#define SMC_SET_MII(a,phy,v) \
770 do { \
771 u32 __v; \
772 do { \
773 SMC_GET_MII_ACC(__v); \
774 } while ( __v & MII_ACC_MII_BUSY_ ); \
775 SMC_SET_MII_DATA(v); \
776 SMC_SET_MII_ACC( ((phy)<<11) | ((a)<<6) | \
777 MII_ACC_MII_BUSY_ | \
778 MII_ACC_MII_WRITE_ ); \
779 do { \
780 SMC_GET_MII_ACC(__v); \
781 } while ( __v & MII_ACC_MII_BUSY_ ); \
782 } while (0)
783#define SMC_GET_PHY_BMCR(phy,x) SMC_GET_MII( MII_BMCR, phy, x )
784#define SMC_SET_PHY_BMCR(phy,x) SMC_SET_MII( MII_BMCR, phy, x )
785#define SMC_GET_PHY_BMSR(phy,x) SMC_GET_MII( MII_BMSR, phy, x )
786#define SMC_GET_PHY_ID1(phy,x) SMC_GET_MII( MII_PHYSID1, phy, x )
787#define SMC_GET_PHY_ID2(phy,x) SMC_GET_MII( MII_PHYSID2, phy, x )
788#define SMC_GET_PHY_MII_ADV(phy,x) SMC_GET_MII( MII_ADVERTISE, phy, x )
789#define SMC_SET_PHY_MII_ADV(phy,x) SMC_SET_MII( MII_ADVERTISE, phy, x )
790#define SMC_GET_PHY_MII_LPA(phy,x) SMC_GET_MII( MII_LPA, phy, x )
791#define SMC_SET_PHY_MII_LPA(phy,x) SMC_SET_MII( MII_LPA, phy, x )
792#define SMC_GET_PHY_CTRL_STS(phy,x) SMC_GET_MII( PHY_MODE_CTRL_STS, phy, x )
793#define SMC_SET_PHY_CTRL_STS(phy,x) SMC_SET_MII( PHY_MODE_CTRL_STS, phy, x )
794#define SMC_GET_PHY_INT_SRC(phy,x) SMC_GET_MII( PHY_INT_SRC, phy, x )
795#define SMC_SET_PHY_INT_SRC(phy,x) SMC_SET_MII( PHY_INT_SRC, phy, x )
796#define SMC_GET_PHY_INT_MASK(phy,x) SMC_GET_MII( PHY_INT_MASK, phy, x )
797#define SMC_SET_PHY_INT_MASK(phy,x) SMC_SET_MII( PHY_INT_MASK, phy, x )
798#define SMC_GET_PHY_SPECIAL(phy,x) SMC_GET_MII( PHY_SPECIAL, phy, x )
799
800
801
802/* Misc read/write macros */
803
804#ifndef SMC_GET_MAC_ADDR
805#define SMC_GET_MAC_ADDR(addr) \
806 do { \
807 unsigned int __v; \
808 \
809 SMC_GET_MAC_CSR(ADDRL, __v); \
810 addr[0] = __v; addr[1] = __v >> 8; \
811 addr[2] = __v >> 16; addr[3] = __v >> 24; \
812 SMC_GET_MAC_CSR(ADDRH, __v); \
813 addr[4] = __v; addr[5] = __v >> 8; \
814 } while (0)
815#endif
816
817#define SMC_SET_MAC_ADDR(addr) \
818 do { \
819 SMC_SET_MAC_CSR(ADDRL, \
820 addr[0] | \
821 (addr[1] << 8) | \
822 (addr[2] << 16) | \
823 (addr[3] << 24)); \
824 SMC_SET_MAC_CSR(ADDRH, addr[4]|(addr[5] << 8));\
825 } while (0)
826
827
828#define SMC_WRITE_EEPROM_CMD(cmd, addr) \
829 do { \
830 while (SMC_GET_E2P_CMD() & MAC_CSR_CMD_CSR_BUSY_); \
831 SMC_SET_MAC_CMD(MAC_CSR_CMD_R_NOT_W_ | a ); \
832 while (SMC_GET_MAC_CMD() & MAC_CSR_CMD_CSR_BUSY_); \
833 } while (0)
834
835#endif /* _SMC911X_H_ */
diff --git a/drivers/net/smc91x.h b/drivers/net/smc91x.h
index e1be1af51201..f72a4f57905a 100644
--- a/drivers/net/smc91x.h
+++ b/drivers/net/smc91x.h
@@ -129,6 +129,24 @@
129#define SMC_insb(a, r, p, l) readsb((a) + (r), p, (l)) 129#define SMC_insb(a, r, p, l) readsb((a) + (r), p, (l))
130#define SMC_outsb(a, r, p, l) writesb((a) + (r), p, (l)) 130#define SMC_outsb(a, r, p, l) writesb((a) + (r), p, (l))
131 131
132#elif defined(CONFIG_MACH_LOGICPD_PXA270)
133
134#define SMC_CAN_USE_8BIT 0
135#define SMC_CAN_USE_16BIT 1
136#define SMC_CAN_USE_32BIT 0
137#define SMC_IO_SHIFT 0
138#define SMC_NOWAIT 1
139#define SMC_USE_PXA_DMA 1
140
141#define SMC_inb(a, r) readb((a) + (r))
142#define SMC_inw(a, r) readw((a) + (r))
143#define SMC_inl(a, r) readl((a) + (r))
144#define SMC_outb(v, a, r) writeb(v, (a) + (r))
145#define SMC_outw(v, a, r) writew(v, (a) + (r))
146#define SMC_outl(v, a, r) writel(v, (a) + (r))
147#define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
148#define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
149
132#elif defined(CONFIG_ARCH_INNOKOM) || \ 150#elif defined(CONFIG_ARCH_INNOKOM) || \
133 defined(CONFIG_MACH_MAINSTONE) || \ 151 defined(CONFIG_MACH_MAINSTONE) || \
134 defined(CONFIG_ARCH_PXA_IDP) || \ 152 defined(CONFIG_ARCH_PXA_IDP) || \
diff --git a/drivers/net/sungem_phy.c b/drivers/net/sungem_phy.c
index b2ddd5e79303..9282b4b0c022 100644
--- a/drivers/net/sungem_phy.c
+++ b/drivers/net/sungem_phy.c
@@ -345,9 +345,9 @@ static int bcm5421_enable_fiber(struct mii_phy* phy)
345 345
346static int bcm5461_enable_fiber(struct mii_phy* phy) 346static int bcm5461_enable_fiber(struct mii_phy* phy)
347{ 347{
348 phy_write(phy, MII_NCONFIG, 0xfc0c); 348 phy_write(phy, MII_NCONFIG, 0xfc0c);
349 phy_write(phy, MII_BMCR, 0x4140); 349 phy_write(phy, MII_BMCR, 0x4140);
350 phy_write(phy, MII_NCONFIG, 0xfc0b); 350 phy_write(phy, MII_NCONFIG, 0xfc0b);
351 phy_write(phy, MII_BMCR, 0x0140); 351 phy_write(phy, MII_BMCR, 0x0140);
352 352
353 return 0; 353 return 0;
diff --git a/drivers/net/tulip/de2104x.c b/drivers/net/tulip/de2104x.c
index e3dd144d326b..5f743b972949 100644
--- a/drivers/net/tulip/de2104x.c
+++ b/drivers/net/tulip/de2104x.c
@@ -227,12 +227,12 @@ enum {
227 SROMC0InfoLeaf = 27, 227 SROMC0InfoLeaf = 27,
228 MediaBlockMask = 0x3f, 228 MediaBlockMask = 0x3f,
229 MediaCustomCSRs = (1 << 6), 229 MediaCustomCSRs = (1 << 6),
230 230
231 /* PCIPM bits */ 231 /* PCIPM bits */
232 PM_Sleep = (1 << 31), 232 PM_Sleep = (1 << 31),
233 PM_Snooze = (1 << 30), 233 PM_Snooze = (1 << 30),
234 PM_Mask = PM_Sleep | PM_Snooze, 234 PM_Mask = PM_Sleep | PM_Snooze,
235 235
236 /* SIAStatus bits */ 236 /* SIAStatus bits */
237 NWayState = (1 << 14) | (1 << 13) | (1 << 12), 237 NWayState = (1 << 14) | (1 << 13) | (1 << 12),
238 NWayRestart = (1 << 12), 238 NWayRestart = (1 << 12),
@@ -858,7 +858,7 @@ static void de_stop_rxtx (struct de_private *de)
858 return; 858 return;
859 cpu_relax(); 859 cpu_relax();
860 } 860 }
861 861
862 printk(KERN_WARNING "%s: timeout expired stopping DMA\n", de->dev->name); 862 printk(KERN_WARNING "%s: timeout expired stopping DMA\n", de->dev->name);
863} 863}
864 864
@@ -931,7 +931,7 @@ static void de_set_media (struct de_private *de)
931 macmode |= FullDuplex; 931 macmode |= FullDuplex;
932 else 932 else
933 macmode &= ~FullDuplex; 933 macmode &= ~FullDuplex;
934 934
935 if (netif_msg_link(de)) { 935 if (netif_msg_link(de)) {
936 printk(KERN_INFO "%s: set link %s\n" 936 printk(KERN_INFO "%s: set link %s\n"
937 KERN_INFO "%s: mode 0x%x, sia 0x%x,0x%x,0x%x,0x%x\n" 937 KERN_INFO "%s: mode 0x%x, sia 0x%x,0x%x,0x%x,0x%x\n"
@@ -966,9 +966,9 @@ static void de21040_media_timer (unsigned long data)
966 u32 status = dr32(SIAStatus); 966 u32 status = dr32(SIAStatus);
967 unsigned int carrier; 967 unsigned int carrier;
968 unsigned long flags; 968 unsigned long flags;
969 969
970 carrier = (status & NetCxnErr) ? 0 : 1; 970 carrier = (status & NetCxnErr) ? 0 : 1;
971 971
972 if (carrier) { 972 if (carrier) {
973 if (de->media_type != DE_MEDIA_AUI && (status & LinkFailStatus)) 973 if (de->media_type != DE_MEDIA_AUI && (status & LinkFailStatus))
974 goto no_link_yet; 974 goto no_link_yet;
@@ -985,7 +985,7 @@ static void de21040_media_timer (unsigned long data)
985 return; 985 return;
986 } 986 }
987 987
988 de_link_down(de); 988 de_link_down(de);
989 989
990 if (de->media_lock) 990 if (de->media_lock)
991 return; 991 return;
@@ -1039,7 +1039,7 @@ static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media)
1039 return 0; 1039 return 0;
1040 break; 1040 break;
1041 } 1041 }
1042 1042
1043 return 1; 1043 return 1;
1044} 1044}
1045 1045
@@ -1050,9 +1050,9 @@ static void de21041_media_timer (unsigned long data)
1050 u32 status = dr32(SIAStatus); 1050 u32 status = dr32(SIAStatus);
1051 unsigned int carrier; 1051 unsigned int carrier;
1052 unsigned long flags; 1052 unsigned long flags;
1053 1053
1054 carrier = (status & NetCxnErr) ? 0 : 1; 1054 carrier = (status & NetCxnErr) ? 0 : 1;
1055 1055
1056 if (carrier) { 1056 if (carrier) {
1057 if ((de->media_type == DE_MEDIA_TP_AUTO || 1057 if ((de->media_type == DE_MEDIA_TP_AUTO ||
1058 de->media_type == DE_MEDIA_TP || 1058 de->media_type == DE_MEDIA_TP ||
@@ -1072,7 +1072,7 @@ static void de21041_media_timer (unsigned long data)
1072 return; 1072 return;
1073 } 1073 }
1074 1074
1075 de_link_down(de); 1075 de_link_down(de);
1076 1076
1077 /* if media type locked, don't switch media */ 1077 /* if media type locked, don't switch media */
1078 if (de->media_lock) 1078 if (de->media_lock)
@@ -1124,7 +1124,7 @@ static void de21041_media_timer (unsigned long data)
1124 u32 next_states[] = { DE_MEDIA_AUI, DE_MEDIA_BNC, DE_MEDIA_TP_AUTO }; 1124 u32 next_states[] = { DE_MEDIA_AUI, DE_MEDIA_BNC, DE_MEDIA_TP_AUTO };
1125 de_next_media(de, next_states, ARRAY_SIZE(next_states)); 1125 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1126 } 1126 }
1127 1127
1128set_media: 1128set_media:
1129 spin_lock_irqsave(&de->lock, flags); 1129 spin_lock_irqsave(&de->lock, flags);
1130 de_stop_rxtx(de); 1130 de_stop_rxtx(de);
@@ -1148,7 +1148,7 @@ static void de_media_interrupt (struct de_private *de, u32 status)
1148 mod_timer(&de->media_timer, jiffies + DE_TIMER_LINK); 1148 mod_timer(&de->media_timer, jiffies + DE_TIMER_LINK);
1149 return; 1149 return;
1150 } 1150 }
1151 1151
1152 BUG_ON(!(status & LinkFail)); 1152 BUG_ON(!(status & LinkFail));
1153 1153
1154 if (netif_carrier_ok(de->dev)) { 1154 if (netif_carrier_ok(de->dev)) {
@@ -1227,7 +1227,7 @@ static int de_init_hw (struct de_private *de)
1227 int rc; 1227 int rc;
1228 1228
1229 de_adapter_wake(de); 1229 de_adapter_wake(de);
1230 1230
1231 macmode = dr32(MacMode) & ~MacModeClear; 1231 macmode = dr32(MacMode) & ~MacModeClear;
1232 1232
1233 rc = de_reset_mac(de); 1233 rc = de_reset_mac(de);
@@ -1413,7 +1413,7 @@ static int de_close (struct net_device *dev)
1413 netif_stop_queue(dev); 1413 netif_stop_queue(dev);
1414 netif_carrier_off(dev); 1414 netif_carrier_off(dev);
1415 spin_unlock_irqrestore(&de->lock, flags); 1415 spin_unlock_irqrestore(&de->lock, flags);
1416 1416
1417 free_irq(dev->irq, dev); 1417 free_irq(dev->irq, dev);
1418 1418
1419 de_free_rings(de); 1419 de_free_rings(de);
@@ -1441,7 +1441,7 @@ static void de_tx_timeout (struct net_device *dev)
1441 1441
1442 spin_unlock_irq(&de->lock); 1442 spin_unlock_irq(&de->lock);
1443 enable_irq(dev->irq); 1443 enable_irq(dev->irq);
1444 1444
1445 /* Update the error counts. */ 1445 /* Update the error counts. */
1446 __de_get_stats(de); 1446 __de_get_stats(de);
1447 1447
@@ -1451,7 +1451,7 @@ static void de_tx_timeout (struct net_device *dev)
1451 de_init_rings(de); 1451 de_init_rings(de);
1452 1452
1453 de_init_hw(de); 1453 de_init_hw(de);
1454 1454
1455 netif_wake_queue(dev); 1455 netif_wake_queue(dev);
1456} 1456}
1457 1457
@@ -1459,7 +1459,7 @@ static void __de_get_regs(struct de_private *de, u8 *buf)
1459{ 1459{
1460 int i; 1460 int i;
1461 u32 *rbuf = (u32 *)buf; 1461 u32 *rbuf = (u32 *)buf;
1462 1462
1463 /* read all CSRs */ 1463 /* read all CSRs */
1464 for (i = 0; i < DE_NUM_REGS; i++) 1464 for (i = 0; i < DE_NUM_REGS; i++)
1465 rbuf[i] = dr32(i * 8); 1465 rbuf[i] = dr32(i * 8);
@@ -1474,7 +1474,7 @@ static int __de_get_settings(struct de_private *de, struct ethtool_cmd *ecmd)
1474 ecmd->transceiver = XCVR_INTERNAL; 1474 ecmd->transceiver = XCVR_INTERNAL;
1475 ecmd->phy_address = 0; 1475 ecmd->phy_address = 0;
1476 ecmd->advertising = de->media_advertise; 1476 ecmd->advertising = de->media_advertise;
1477 1477
1478 switch (de->media_type) { 1478 switch (de->media_type) {
1479 case DE_MEDIA_AUI: 1479 case DE_MEDIA_AUI:
1480 ecmd->port = PORT_AUI; 1480 ecmd->port = PORT_AUI;
@@ -1489,7 +1489,7 @@ static int __de_get_settings(struct de_private *de, struct ethtool_cmd *ecmd)
1489 ecmd->speed = SPEED_10; 1489 ecmd->speed = SPEED_10;
1490 break; 1490 break;
1491 } 1491 }
1492 1492
1493 if (dr32(MacMode) & FullDuplex) 1493 if (dr32(MacMode) & FullDuplex)
1494 ecmd->duplex = DUPLEX_FULL; 1494 ecmd->duplex = DUPLEX_FULL;
1495 else 1495 else
@@ -1529,7 +1529,7 @@ static int __de_set_settings(struct de_private *de, struct ethtool_cmd *ecmd)
1529 if (ecmd->autoneg == AUTONEG_ENABLE && 1529 if (ecmd->autoneg == AUTONEG_ENABLE &&
1530 (!(ecmd->advertising & ADVERTISED_Autoneg))) 1530 (!(ecmd->advertising & ADVERTISED_Autoneg)))
1531 return -EINVAL; 1531 return -EINVAL;
1532 1532
1533 switch (ecmd->port) { 1533 switch (ecmd->port) {
1534 case PORT_AUI: 1534 case PORT_AUI:
1535 new_media = DE_MEDIA_AUI; 1535 new_media = DE_MEDIA_AUI;
@@ -1554,22 +1554,22 @@ static int __de_set_settings(struct de_private *de, struct ethtool_cmd *ecmd)
1554 return -EINVAL; 1554 return -EINVAL;
1555 break; 1555 break;
1556 } 1556 }
1557 1557
1558 media_lock = (ecmd->autoneg == AUTONEG_ENABLE) ? 0 : 1; 1558 media_lock = (ecmd->autoneg == AUTONEG_ENABLE) ? 0 : 1;
1559 1559
1560 if ((new_media == de->media_type) && 1560 if ((new_media == de->media_type) &&
1561 (media_lock == de->media_lock) && 1561 (media_lock == de->media_lock) &&
1562 (ecmd->advertising == de->media_advertise)) 1562 (ecmd->advertising == de->media_advertise))
1563 return 0; /* nothing to change */ 1563 return 0; /* nothing to change */
1564 1564
1565 de_link_down(de); 1565 de_link_down(de);
1566 de_stop_rxtx(de); 1566 de_stop_rxtx(de);
1567 1567
1568 de->media_type = new_media; 1568 de->media_type = new_media;
1569 de->media_lock = media_lock; 1569 de->media_lock = media_lock;
1570 de->media_advertise = ecmd->advertising; 1570 de->media_advertise = ecmd->advertising;
1571 de_set_media(de); 1571 de_set_media(de);
1572 1572
1573 return 0; 1573 return 0;
1574} 1574}
1575 1575
@@ -1817,7 +1817,7 @@ static void __init de21041_get_srom_info (struct de_private *de)
1817 case 0x0204: de->media_type = DE_MEDIA_TP_FD; break; 1817 case 0x0204: de->media_type = DE_MEDIA_TP_FD; break;
1818 default: de->media_type = DE_MEDIA_TP_AUTO; break; 1818 default: de->media_type = DE_MEDIA_TP_AUTO; break;
1819 } 1819 }
1820 1820
1821 if (netif_msg_probe(de)) 1821 if (netif_msg_probe(de))
1822 printk(KERN_INFO "de%d: SROM leaf offset %u, default media %s\n", 1822 printk(KERN_INFO "de%d: SROM leaf offset %u, default media %s\n",
1823 de->board_idx, ofs, 1823 de->board_idx, ofs,
@@ -1886,7 +1886,7 @@ static void __init de21041_get_srom_info (struct de_private *de)
1886 de->media[idx].csr13, 1886 de->media[idx].csr13,
1887 de->media[idx].csr14, 1887 de->media[idx].csr14,
1888 de->media[idx].csr15); 1888 de->media[idx].csr15);
1889 1889
1890 } else if (netif_msg_probe(de)) 1890 } else if (netif_msg_probe(de))
1891 printk("\n"); 1891 printk("\n");
1892 1892
@@ -2118,7 +2118,7 @@ static int de_suspend (struct pci_dev *pdev, pm_message_t state)
2118 2118
2119 spin_unlock_irq(&de->lock); 2119 spin_unlock_irq(&de->lock);
2120 enable_irq(dev->irq); 2120 enable_irq(dev->irq);
2121 2121
2122 /* Update the error counts. */ 2122 /* Update the error counts. */
2123 __de_get_stats(de); 2123 __de_get_stats(de);
2124 2124
diff --git a/drivers/net/tulip/de4x5.c b/drivers/net/tulip/de4x5.c
index f56094102042..da8bd0d62a3f 100644
--- a/drivers/net/tulip/de4x5.c
+++ b/drivers/net/tulip/de4x5.c
@@ -41,11 +41,11 @@
41 Digital Semiconductor SROM Specification. The driver currently 41 Digital Semiconductor SROM Specification. The driver currently
42 recognises the following chips: 42 recognises the following chips:
43 43
44 DC21040 (no SROM) 44 DC21040 (no SROM)
45 DC21041[A] 45 DC21041[A]
46 DC21140[A] 46 DC21140[A]
47 DC21142 47 DC21142
48 DC21143 48 DC21143
49 49
50 So far the driver is known to work with the following cards: 50 So far the driver is known to work with the following cards:
51 51
@@ -55,7 +55,7 @@
55 SMC8432 55 SMC8432
56 SMC9332 (w/new SROM) 56 SMC9332 (w/new SROM)
57 ZNYX31[45] 57 ZNYX31[45]
58 ZNYX346 10/100 4 port (can act as a 10/100 bridge!) 58 ZNYX346 10/100 4 port (can act as a 10/100 bridge!)
59 59
60 The driver has been tested on a relatively busy network using the DE425, 60 The driver has been tested on a relatively busy network using the DE425,
61 DE434, DE435 and DE500 cards and benchmarked with 'ttcp': it transferred 61 DE434, DE435 and DE500 cards and benchmarked with 'ttcp': it transferred
@@ -106,7 +106,7 @@
106 loading by: 106 loading by:
107 107
108 insmod de4x5 io=0xghh where g = bus number 108 insmod de4x5 io=0xghh where g = bus number
109 hh = device number 109 hh = device number
110 110
111 NB: autoprobing for modules is now supported by default. You may just 111 NB: autoprobing for modules is now supported by default. You may just
112 use: 112 use:
@@ -120,11 +120,11 @@
120 4) if you are wanting to add a new card, goto 5. Otherwise, recompile a 120 4) if you are wanting to add a new card, goto 5. Otherwise, recompile a
121 kernel with the de4x5 configuration turned off and reboot. 121 kernel with the de4x5 configuration turned off and reboot.
122 5) insmod de4x5 [io=0xghh] 122 5) insmod de4x5 [io=0xghh]
123 6) run the net startup bits for your new eth?? interface(s) manually 123 6) run the net startup bits for your new eth?? interface(s) manually
124 (usually /etc/rc.inet[12] at boot time). 124 (usually /etc/rc.inet[12] at boot time).
125 7) enjoy! 125 7) enjoy!
126 126
127 To unload a module, turn off the associated interface(s) 127 To unload a module, turn off the associated interface(s)
128 'ifconfig eth?? down' then 'rmmod de4x5'. 128 'ifconfig eth?? down' then 'rmmod de4x5'.
129 129
130 Automedia detection is included so that in principal you can disconnect 130 Automedia detection is included so that in principal you can disconnect
@@ -135,7 +135,7 @@
135 By default, the driver will now autodetect any DECchip based card. 135 By default, the driver will now autodetect any DECchip based card.
136 Should you have a need to restrict the driver to DIGITAL only cards, you 136 Should you have a need to restrict the driver to DIGITAL only cards, you
137 can compile with a DEC_ONLY define, or if loading as a module, use the 137 can compile with a DEC_ONLY define, or if loading as a module, use the
138 'dec_only=1' parameter. 138 'dec_only=1' parameter.
139 139
140 I've changed the timing routines to use the kernel timer and scheduling 140 I've changed the timing routines to use the kernel timer and scheduling
141 functions so that the hangs and other assorted problems that occurred 141 functions so that the hangs and other assorted problems that occurred
@@ -204,7 +204,7 @@
204 following parameters are allowed: 204 following parameters are allowed:
205 205
206 fdx for full duplex 206 fdx for full duplex
207 autosense to set the media/speed; with the following 207 autosense to set the media/speed; with the following
208 sub-parameters: 208 sub-parameters:
209 TP, TP_NW, BNC, AUI, BNC_AUI, 100Mb, 10Mb, AUTO 209 TP, TP_NW, BNC, AUI, BNC_AUI, 100Mb, 10Mb, AUTO
210 210
@@ -235,14 +235,14 @@
235 this automatically or include #define DE4X5_FORCE_EISA on or before 235 this automatically or include #define DE4X5_FORCE_EISA on or before
236 line 1040 in the driver. 236 line 1040 in the driver.
237 237
238 TO DO: 238 TO DO:
239 ------ 239 ------
240 240
241 Revision History 241 Revision History
242 ---------------- 242 ----------------
243 243
244 Version Date Description 244 Version Date Description
245 245
246 0.1 17-Nov-94 Initial writing. ALPHA code release. 246 0.1 17-Nov-94 Initial writing. ALPHA code release.
247 0.2 13-Jan-95 Added PCI support for DE435's. 247 0.2 13-Jan-95 Added PCI support for DE435's.
248 0.21 19-Jan-95 Added auto media detection. 248 0.21 19-Jan-95 Added auto media detection.
@@ -251,7 +251,7 @@
251 Add request/release_region code. 251 Add request/release_region code.
252 Add loadable modules support for PCI. 252 Add loadable modules support for PCI.
253 Clean up loadable modules support. 253 Clean up loadable modules support.
254 0.23 28-Feb-95 Added DC21041 and DC21140 support. 254 0.23 28-Feb-95 Added DC21041 and DC21140 support.
255 Fix missed frame counter value and initialisation. 255 Fix missed frame counter value and initialisation.
256 Fixed EISA probe. 256 Fixed EISA probe.
257 0.24 11-Apr-95 Change delay routine to use <linux/udelay>. 257 0.24 11-Apr-95 Change delay routine to use <linux/udelay>.
@@ -280,7 +280,7 @@
280 Add kernel timer code (h/w is too flaky). 280 Add kernel timer code (h/w is too flaky).
281 Add MII based PHY autosense. 281 Add MII based PHY autosense.
282 Add new multicasting code. 282 Add new multicasting code.
283 Add new autosense algorithms for media/mode 283 Add new autosense algorithms for media/mode
284 selection using kernel scheduling/timing. 284 selection using kernel scheduling/timing.
285 Re-formatted. 285 Re-formatted.
286 Made changes suggested by <jeff@router.patch.net>: 286 Made changes suggested by <jeff@router.patch.net>:
@@ -307,10 +307,10 @@
307 Add Accton to the list of broken cards. 307 Add Accton to the list of broken cards.
308 Fix TX under-run bug for non DC21140 chips. 308 Fix TX under-run bug for non DC21140 chips.
309 Fix boot command probe bug in alloc_device() as 309 Fix boot command probe bug in alloc_device() as
310 reported by <koen.gadeyne@barco.com> and 310 reported by <koen.gadeyne@barco.com> and
311 <orava@nether.tky.hut.fi>. 311 <orava@nether.tky.hut.fi>.
312 Add cache locks to prevent a race condition as 312 Add cache locks to prevent a race condition as
313 reported by <csd@microplex.com> and 313 reported by <csd@microplex.com> and
314 <baba@beckman.uiuc.edu>. 314 <baba@beckman.uiuc.edu>.
315 Upgraded alloc_device() code. 315 Upgraded alloc_device() code.
316 0.431 28-Jun-96 Fix potential bug in queue_pkt() from discussion 316 0.431 28-Jun-96 Fix potential bug in queue_pkt() from discussion
@@ -322,7 +322,7 @@
322 with a loopback packet. 322 with a loopback packet.
323 0.442 9-Sep-96 Include AUI in dc21041 media printout. Bug reported 323 0.442 9-Sep-96 Include AUI in dc21041 media printout. Bug reported
324 by <bhat@mundook.cs.mu.OZ.AU> 324 by <bhat@mundook.cs.mu.OZ.AU>
325 0.45 8-Dec-96 Include endian functions for PPC use, from work 325 0.45 8-Dec-96 Include endian functions for PPC use, from work
326 by <cort@cs.nmt.edu> and <g.thomas@opengroup.org>. 326 by <cort@cs.nmt.edu> and <g.thomas@opengroup.org>.
327 0.451 28-Dec-96 Added fix to allow autoprobe for modules after 327 0.451 28-Dec-96 Added fix to allow autoprobe for modules after
328 suggestion from <mjacob@feral.com>. 328 suggestion from <mjacob@feral.com>.
@@ -346,14 +346,14 @@
346 <paubert@iram.es>. 346 <paubert@iram.es>.
347 0.52 26-Apr-97 Some changes may not credit the right people - 347 0.52 26-Apr-97 Some changes may not credit the right people -
348 a disk crash meant I lost some mail. 348 a disk crash meant I lost some mail.
349 Change RX interrupt routine to drop rather than 349 Change RX interrupt routine to drop rather than
350 defer packets to avoid hang reported by 350 defer packets to avoid hang reported by
351 <g.thomas@opengroup.org>. 351 <g.thomas@opengroup.org>.
352 Fix srom_exec() to return for COMPACT and type 1 352 Fix srom_exec() to return for COMPACT and type 1
353 infoblocks. 353 infoblocks.
354 Added DC21142 and DC21143 functions. 354 Added DC21142 and DC21143 functions.
355 Added byte counters from <phil@tazenda.demon.co.uk> 355 Added byte counters from <phil@tazenda.demon.co.uk>
356 Added SA_INTERRUPT temporary fix from 356 Added SA_INTERRUPT temporary fix from
357 <mjacob@feral.com>. 357 <mjacob@feral.com>.
358 0.53 12-Nov-97 Fix the *_probe() to include 'eth??' name during 358 0.53 12-Nov-97 Fix the *_probe() to include 'eth??' name during
359 module load: bug reported by 359 module load: bug reported by
@@ -363,10 +363,10 @@
363 Make above search independent of BIOS device scan 363 Make above search independent of BIOS device scan
364 direction. 364 direction.
365 Completed DC2114[23] autosense functions. 365 Completed DC2114[23] autosense functions.
366 0.531 21-Dec-97 Fix DE500-XA 100Mb/s bug reported by 366 0.531 21-Dec-97 Fix DE500-XA 100Mb/s bug reported by
367 <robin@intercore.com 367 <robin@intercore.com
368 Fix type1_infoblock() bug introduced in 0.53, from 368 Fix type1_infoblock() bug introduced in 0.53, from
369 problem reports by 369 problem reports by
370 <parmee@postecss.ncrfran.france.ncr.com> and 370 <parmee@postecss.ncrfran.france.ncr.com> and
371 <jo@ice.dillingen.baynet.de>. 371 <jo@ice.dillingen.baynet.de>.
372 Added argument list to set up each board from either 372 Added argument list to set up each board from either
@@ -374,7 +374,7 @@
374 Added generic MII PHY functionality to deal with 374 Added generic MII PHY functionality to deal with
375 newer PHY chips. 375 newer PHY chips.
376 Fix the mess in 2.1.67. 376 Fix the mess in 2.1.67.
377 0.532 5-Jan-98 Fix bug in mii_get_phy() reported by 377 0.532 5-Jan-98 Fix bug in mii_get_phy() reported by
378 <redhat@cococo.net>. 378 <redhat@cococo.net>.
379 Fix bug in pci_probe() for 64 bit systems reported 379 Fix bug in pci_probe() for 64 bit systems reported
380 by <belliott@accessone.com>. 380 by <belliott@accessone.com>.
@@ -398,7 +398,7 @@
398 version. I hope nothing is broken... 398 version. I hope nothing is broken...
399 Add TX done interrupt modification from suggestion 399 Add TX done interrupt modification from suggestion
400 by <Austin.Donnelly@cl.cam.ac.uk>. 400 by <Austin.Donnelly@cl.cam.ac.uk>.
401 Fix is_anc_capable() bug reported by 401 Fix is_anc_capable() bug reported by
402 <Austin.Donnelly@cl.cam.ac.uk>. 402 <Austin.Donnelly@cl.cam.ac.uk>.
403 Fix type[13]_infoblock() bug: during MII search, PHY 403 Fix type[13]_infoblock() bug: during MII search, PHY
404 lp->rst not run because lp->ibn not initialised - 404 lp->rst not run because lp->ibn not initialised -
@@ -413,7 +413,7 @@
413 Add an_exception() for old ZYNX346 and fix compile 413 Add an_exception() for old ZYNX346 and fix compile
414 warning on PPC & SPARC, from <ecd@skynet.be>. 414 warning on PPC & SPARC, from <ecd@skynet.be>.
415 Fix lastPCI to correctly work with compiled in 415 Fix lastPCI to correctly work with compiled in
416 kernels and modules from bug report by 416 kernels and modules from bug report by
417 <Zlatko.Calusic@CARNet.hr> et al. 417 <Zlatko.Calusic@CARNet.hr> et al.
418 0.542 15-Sep-98 Fix dc2114x_autoconf() to stop multiple messages 418 0.542 15-Sep-98 Fix dc2114x_autoconf() to stop multiple messages
419 when media is unconnected. 419 when media is unconnected.
@@ -425,7 +425,7 @@
425 0.544 8-May-99 Fix for buggy SROM in Motorola embedded boards using 425 0.544 8-May-99 Fix for buggy SROM in Motorola embedded boards using
426 a 21143 by <mmporter@home.com>. 426 a 21143 by <mmporter@home.com>.
427 Change PCI/EISA bus probing order. 427 Change PCI/EISA bus probing order.
428 0.545 28-Nov-99 Further Moto SROM bug fix from 428 0.545 28-Nov-99 Further Moto SROM bug fix from
429 <mporter@eng.mcd.mot.com> 429 <mporter@eng.mcd.mot.com>
430 Remove double checking for DEBUG_RX in de4x5_dbg_rx() 430 Remove double checking for DEBUG_RX in de4x5_dbg_rx()
431 from report by <geert@linux-m68k.org> 431 from report by <geert@linux-m68k.org>
@@ -434,8 +434,8 @@
434 variable 'pb', on a non de4x5 PCI device, in this 434 variable 'pb', on a non de4x5 PCI device, in this
435 case a PCI bridge (DEC chip 21152). The value of 435 case a PCI bridge (DEC chip 21152). The value of
436 'pb' is now only initialized if a de4x5 chip is 436 'pb' is now only initialized if a de4x5 chip is
437 present. 437 present.
438 <france@handhelds.org> 438 <france@handhelds.org>
439 0.547 08-Nov-01 Use library crc32 functions by <Matt_Domsch@dell.com> 439 0.547 08-Nov-01 Use library crc32 functions by <Matt_Domsch@dell.com>
440 0.548 30-Aug-03 Big 2.6 cleanup. Ported to PCI/EISA probing and 440 0.548 30-Aug-03 Big 2.6 cleanup. Ported to PCI/EISA probing and
441 generic DMA APIs. Fixed DE425 support on Alpha. 441 generic DMA APIs. Fixed DE425 support on Alpha.
@@ -584,7 +584,7 @@ static int de4x5_debug = (DEBUG_MEDIA | DEBUG_VERSION);
584 584
585/* 585/*
586** Allow per adapter set up. For modules this is simply a command line 586** Allow per adapter set up. For modules this is simply a command line
587** parameter, e.g.: 587** parameter, e.g.:
588** insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'. 588** insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
589** 589**
590** For a compiled in driver, place e.g. 590** For a compiled in driver, place e.g.
@@ -655,7 +655,7 @@ static c_char *de4x5_signatures[] = DE4X5_SIGNATURE;
655** Memory Alignment. Each descriptor is 4 longwords long. To force a 655** Memory Alignment. Each descriptor is 4 longwords long. To force a
656** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and 656** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and
657** DESC_ALIGN. ALIGN aligns the start address of the private memory area 657** DESC_ALIGN. ALIGN aligns the start address of the private memory area
658** and hence the RX descriptor ring's first entry. 658** and hence the RX descriptor ring's first entry.
659*/ 659*/
660#define DE4X5_ALIGN4 ((u_long)4 - 1) /* 1 longword align */ 660#define DE4X5_ALIGN4 ((u_long)4 - 1) /* 1 longword align */
661#define DE4X5_ALIGN8 ((u_long)8 - 1) /* 2 longword align */ 661#define DE4X5_ALIGN8 ((u_long)8 - 1) /* 2 longword align */
@@ -1081,8 +1081,8 @@ static int (*dc_infoblock[])(struct net_device *dev, u_char, u_char *) = {
1081 mdelay(2); /* Wait for 2ms */\ 1081 mdelay(2); /* Wait for 2ms */\
1082} 1082}
1083 1083
1084 1084
1085static int __devinit 1085static int __devinit
1086de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev) 1086de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1087{ 1087{
1088 char name[DE4X5_NAME_LENGTH + 1]; 1088 char name[DE4X5_NAME_LENGTH + 1];
@@ -1102,12 +1102,12 @@ de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1102 mdelay(10); 1102 mdelay(10);
1103 1103
1104 RESET_DE4X5; 1104 RESET_DE4X5;
1105 1105
1106 if ((inl(DE4X5_STS) & (STS_TS | STS_RS)) != 0) { 1106 if ((inl(DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
1107 return -ENXIO; /* Hardware could not reset */ 1107 return -ENXIO; /* Hardware could not reset */
1108 } 1108 }
1109 1109
1110 /* 1110 /*
1111 ** Now find out what kind of DC21040/DC21041/DC21140 board we have. 1111 ** Now find out what kind of DC21040/DC21041/DC21140 board we have.
1112 */ 1112 */
1113 lp->useSROM = FALSE; 1113 lp->useSROM = FALSE;
@@ -1116,21 +1116,21 @@ de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1116 } else { 1116 } else {
1117 EISA_signature(name, gendev); 1117 EISA_signature(name, gendev);
1118 } 1118 }
1119 1119
1120 if (*name == '\0') { /* Not found a board signature */ 1120 if (*name == '\0') { /* Not found a board signature */
1121 return -ENXIO; 1121 return -ENXIO;
1122 } 1122 }
1123 1123
1124 dev->base_addr = iobase; 1124 dev->base_addr = iobase;
1125 printk ("%s: %s at 0x%04lx", gendev->bus_id, name, iobase); 1125 printk ("%s: %s at 0x%04lx", gendev->bus_id, name, iobase);
1126 1126
1127 printk(", h/w address "); 1127 printk(", h/w address ");
1128 status = get_hw_addr(dev); 1128 status = get_hw_addr(dev);
1129 for (i = 0; i < ETH_ALEN - 1; i++) { /* get the ethernet addr. */ 1129 for (i = 0; i < ETH_ALEN - 1; i++) { /* get the ethernet addr. */
1130 printk("%2.2x:", dev->dev_addr[i]); 1130 printk("%2.2x:", dev->dev_addr[i]);
1131 } 1131 }
1132 printk("%2.2x,\n", dev->dev_addr[i]); 1132 printk("%2.2x,\n", dev->dev_addr[i]);
1133 1133
1134 if (status != 0) { 1134 if (status != 0) {
1135 printk(" which has an Ethernet PROM CRC error.\n"); 1135 printk(" which has an Ethernet PROM CRC error.\n");
1136 return -ENXIO; 1136 return -ENXIO;
@@ -1171,10 +1171,10 @@ de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1171 } 1171 }
1172 1172
1173 lp->tx_ring = lp->rx_ring + NUM_RX_DESC; 1173 lp->tx_ring = lp->rx_ring + NUM_RX_DESC;
1174 1174
1175 /* 1175 /*
1176 ** Set up the RX descriptor ring (Intels) 1176 ** Set up the RX descriptor ring (Intels)
1177 ** Allocate contiguous receive buffers, long word aligned (Alphas) 1177 ** Allocate contiguous receive buffers, long word aligned (Alphas)
1178 */ 1178 */
1179#if !defined(__alpha__) && !defined(__powerpc__) && !defined(__sparc_v9__) && !defined(DE4X5_DO_MEMCPY) 1179#if !defined(__alpha__) && !defined(__powerpc__) && !defined(__sparc_v9__) && !defined(DE4X5_DO_MEMCPY)
1180 for (i=0; i<NUM_RX_DESC; i++) { 1180 for (i=0; i<NUM_RX_DESC; i++) {
@@ -1210,7 +1210,7 @@ de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1210 1210
1211 lp->rxRingSize = NUM_RX_DESC; 1211 lp->rxRingSize = NUM_RX_DESC;
1212 lp->txRingSize = NUM_TX_DESC; 1212 lp->txRingSize = NUM_TX_DESC;
1213 1213
1214 /* Write the end of list marker to the descriptor lists */ 1214 /* Write the end of list marker to the descriptor lists */
1215 lp->rx_ring[lp->rxRingSize - 1].des1 |= cpu_to_le32(RD_RER); 1215 lp->rx_ring[lp->rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
1216 lp->tx_ring[lp->txRingSize - 1].des1 |= cpu_to_le32(TD_TER); 1216 lp->tx_ring[lp->txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
@@ -1219,7 +1219,7 @@ de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1219 outl(lp->dma_rings, DE4X5_RRBA); 1219 outl(lp->dma_rings, DE4X5_RRBA);
1220 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc), 1220 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1221 DE4X5_TRBA); 1221 DE4X5_TRBA);
1222 1222
1223 /* Initialise the IRQ mask and Enable/Disable */ 1223 /* Initialise the IRQ mask and Enable/Disable */
1224 lp->irq_mask = IMR_RIM | IMR_TIM | IMR_TUM | IMR_UNM; 1224 lp->irq_mask = IMR_RIM | IMR_TIM | IMR_TUM | IMR_UNM;
1225 lp->irq_en = IMR_NIM | IMR_AIM; 1225 lp->irq_en = IMR_NIM | IMR_AIM;
@@ -1252,7 +1252,7 @@ de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1252 if ((lp->chipset != DC21040) && (lp->chipset != DC21041)) { 1252 if ((lp->chipset != DC21040) && (lp->chipset != DC21041)) {
1253 mii_get_phy(dev); 1253 mii_get_phy(dev);
1254 } 1254 }
1255 1255
1256#ifndef __sparc_v9__ 1256#ifndef __sparc_v9__
1257 printk(" and requires IRQ%d (provided by %s).\n", dev->irq, 1257 printk(" and requires IRQ%d (provided by %s).\n", dev->irq,
1258#else 1258#else
@@ -1260,11 +1260,11 @@ de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1260#endif 1260#endif
1261 ((lp->bus == PCI) ? "PCI BIOS" : "EISA CNFG")); 1261 ((lp->bus == PCI) ? "PCI BIOS" : "EISA CNFG"));
1262 } 1262 }
1263 1263
1264 if (de4x5_debug & DEBUG_VERSION) { 1264 if (de4x5_debug & DEBUG_VERSION) {
1265 printk(version); 1265 printk(version);
1266 } 1266 }
1267 1267
1268 /* The DE4X5-specific entries in the device structure. */ 1268 /* The DE4X5-specific entries in the device structure. */
1269 SET_MODULE_OWNER(dev); 1269 SET_MODULE_OWNER(dev);
1270 SET_NETDEV_DEV(dev, gendev); 1270 SET_NETDEV_DEV(dev, gendev);
@@ -1274,23 +1274,23 @@ de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1274 dev->get_stats = &de4x5_get_stats; 1274 dev->get_stats = &de4x5_get_stats;
1275 dev->set_multicast_list = &set_multicast_list; 1275 dev->set_multicast_list = &set_multicast_list;
1276 dev->do_ioctl = &de4x5_ioctl; 1276 dev->do_ioctl = &de4x5_ioctl;
1277 1277
1278 dev->mem_start = 0; 1278 dev->mem_start = 0;
1279 1279
1280 /* Fill in the generic fields of the device structure. */ 1280 /* Fill in the generic fields of the device structure. */
1281 if ((status = register_netdev (dev))) { 1281 if ((status = register_netdev (dev))) {
1282 dma_free_coherent (gendev, lp->dma_size, 1282 dma_free_coherent (gendev, lp->dma_size,
1283 lp->rx_ring, lp->dma_rings); 1283 lp->rx_ring, lp->dma_rings);
1284 return status; 1284 return status;
1285 } 1285 }
1286 1286
1287 /* Let the adapter sleep to save power */ 1287 /* Let the adapter sleep to save power */
1288 yawn(dev, SLEEP); 1288 yawn(dev, SLEEP);
1289 1289
1290 return status; 1290 return status;
1291} 1291}
1292 1292
1293 1293
1294static int 1294static int
1295de4x5_open(struct net_device *dev) 1295de4x5_open(struct net_device *dev)
1296{ 1296{
@@ -1312,15 +1312,15 @@ de4x5_open(struct net_device *dev)
1312 */ 1312 */
1313 yawn(dev, WAKEUP); 1313 yawn(dev, WAKEUP);
1314 1314
1315 /* 1315 /*
1316 ** Re-initialize the DE4X5... 1316 ** Re-initialize the DE4X5...
1317 */ 1317 */
1318 status = de4x5_init(dev); 1318 status = de4x5_init(dev);
1319 spin_lock_init(&lp->lock); 1319 spin_lock_init(&lp->lock);
1320 lp->state = OPEN; 1320 lp->state = OPEN;
1321 de4x5_dbg_open(dev); 1321 de4x5_dbg_open(dev);
1322 1322
1323 if (request_irq(dev->irq, (void *)de4x5_interrupt, SA_SHIRQ, 1323 if (request_irq(dev->irq, (void *)de4x5_interrupt, SA_SHIRQ,
1324 lp->adapter_name, dev)) { 1324 lp->adapter_name, dev)) {
1325 printk("de4x5_open(): Requested IRQ%d is busy - attemping FAST/SHARE...", dev->irq); 1325 printk("de4x5_open(): Requested IRQ%d is busy - attemping FAST/SHARE...", dev->irq);
1326 if (request_irq(dev->irq, de4x5_interrupt, SA_INTERRUPT | SA_SHIRQ, 1326 if (request_irq(dev->irq, de4x5_interrupt, SA_INTERRUPT | SA_SHIRQ,
@@ -1340,11 +1340,11 @@ de4x5_open(struct net_device *dev)
1340 1340
1341 lp->interrupt = UNMASK_INTERRUPTS; 1341 lp->interrupt = UNMASK_INTERRUPTS;
1342 dev->trans_start = jiffies; 1342 dev->trans_start = jiffies;
1343 1343
1344 START_DE4X5; 1344 START_DE4X5;
1345 1345
1346 de4x5_setup_intr(dev); 1346 de4x5_setup_intr(dev);
1347 1347
1348 if (de4x5_debug & DEBUG_OPEN) { 1348 if (de4x5_debug & DEBUG_OPEN) {
1349 printk("\tsts: 0x%08x\n", inl(DE4X5_STS)); 1349 printk("\tsts: 0x%08x\n", inl(DE4X5_STS));
1350 printk("\tbmr: 0x%08x\n", inl(DE4X5_BMR)); 1350 printk("\tbmr: 0x%08x\n", inl(DE4X5_BMR));
@@ -1355,7 +1355,7 @@ de4x5_open(struct net_device *dev)
1355 printk("\tstrr: 0x%08x\n", inl(DE4X5_STRR)); 1355 printk("\tstrr: 0x%08x\n", inl(DE4X5_STRR));
1356 printk("\tsigr: 0x%08x\n", inl(DE4X5_SIGR)); 1356 printk("\tsigr: 0x%08x\n", inl(DE4X5_SIGR));
1357 } 1357 }
1358 1358
1359 return status; 1359 return status;
1360} 1360}
1361 1361
@@ -1369,15 +1369,15 @@ de4x5_open(struct net_device *dev)
1369*/ 1369*/
1370static int 1370static int
1371de4x5_init(struct net_device *dev) 1371de4x5_init(struct net_device *dev)
1372{ 1372{
1373 /* Lock out other processes whilst setting up the hardware */ 1373 /* Lock out other processes whilst setting up the hardware */
1374 netif_stop_queue(dev); 1374 netif_stop_queue(dev);
1375 1375
1376 de4x5_sw_reset(dev); 1376 de4x5_sw_reset(dev);
1377 1377
1378 /* Autoconfigure the connected port */ 1378 /* Autoconfigure the connected port */
1379 autoconf_media(dev); 1379 autoconf_media(dev);
1380 1380
1381 return 0; 1381 return 0;
1382} 1382}
1383 1383
@@ -1388,7 +1388,7 @@ de4x5_sw_reset(struct net_device *dev)
1388 u_long iobase = dev->base_addr; 1388 u_long iobase = dev->base_addr;
1389 int i, j, status = 0; 1389 int i, j, status = 0;
1390 s32 bmr, omr; 1390 s32 bmr, omr;
1391 1391
1392 /* Select the MII or SRL port now and RESET the MAC */ 1392 /* Select the MII or SRL port now and RESET the MAC */
1393 if (!lp->useSROM) { 1393 if (!lp->useSROM) {
1394 if (lp->phy[lp->active].id != 0) { 1394 if (lp->phy[lp->active].id != 0) {
@@ -1399,7 +1399,7 @@ de4x5_sw_reset(struct net_device *dev)
1399 de4x5_switch_mac_port(dev); 1399 de4x5_switch_mac_port(dev);
1400 } 1400 }
1401 1401
1402 /* 1402 /*
1403 ** Set the programmable burst length to 8 longwords for all the DC21140 1403 ** Set the programmable burst length to 8 longwords for all the DC21140
1404 ** Fasternet chips and 4 longwords for all others: DMA errors result 1404 ** Fasternet chips and 4 longwords for all others: DMA errors result
1405 ** without these values. Cache align 16 long. 1405 ** without these values. Cache align 16 long.
@@ -1416,23 +1416,23 @@ de4x5_sw_reset(struct net_device *dev)
1416 outl(lp->dma_rings, DE4X5_RRBA); 1416 outl(lp->dma_rings, DE4X5_RRBA);
1417 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc), 1417 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1418 DE4X5_TRBA); 1418 DE4X5_TRBA);
1419 1419
1420 lp->rx_new = lp->rx_old = 0; 1420 lp->rx_new = lp->rx_old = 0;
1421 lp->tx_new = lp->tx_old = 0; 1421 lp->tx_new = lp->tx_old = 0;
1422 1422
1423 for (i = 0; i < lp->rxRingSize; i++) { 1423 for (i = 0; i < lp->rxRingSize; i++) {
1424 lp->rx_ring[i].status = cpu_to_le32(R_OWN); 1424 lp->rx_ring[i].status = cpu_to_le32(R_OWN);
1425 } 1425 }
1426 1426
1427 for (i = 0; i < lp->txRingSize; i++) { 1427 for (i = 0; i < lp->txRingSize; i++) {
1428 lp->tx_ring[i].status = cpu_to_le32(0); 1428 lp->tx_ring[i].status = cpu_to_le32(0);
1429 } 1429 }
1430 1430
1431 barrier(); 1431 barrier();
1432 1432
1433 /* Build the setup frame depending on filtering mode */ 1433 /* Build the setup frame depending on filtering mode */
1434 SetMulticastFilter(dev); 1434 SetMulticastFilter(dev);
1435 1435
1436 load_packet(dev, lp->setup_frame, PERFECT_F|TD_SET|SETUP_FRAME_LEN, (struct sk_buff *)1); 1436 load_packet(dev, lp->setup_frame, PERFECT_F|TD_SET|SETUP_FRAME_LEN, (struct sk_buff *)1);
1437 outl(omr|OMR_ST, DE4X5_OMR); 1437 outl(omr|OMR_ST, DE4X5_OMR);
1438 1438
@@ -1445,18 +1445,18 @@ de4x5_sw_reset(struct net_device *dev)
1445 outl(omr, DE4X5_OMR); /* Stop everything! */ 1445 outl(omr, DE4X5_OMR); /* Stop everything! */
1446 1446
1447 if (j == 0) { 1447 if (j == 0) {
1448 printk("%s: Setup frame timed out, status %08x\n", dev->name, 1448 printk("%s: Setup frame timed out, status %08x\n", dev->name,
1449 inl(DE4X5_STS)); 1449 inl(DE4X5_STS));
1450 status = -EIO; 1450 status = -EIO;
1451 } 1451 }
1452 1452
1453 lp->tx_new = (++lp->tx_new) % lp->txRingSize; 1453 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
1454 lp->tx_old = lp->tx_new; 1454 lp->tx_old = lp->tx_new;
1455 1455
1456 return status; 1456 return status;
1457} 1457}
1458 1458
1459/* 1459/*
1460** Writes a socket buffer address to the next available transmit descriptor. 1460** Writes a socket buffer address to the next available transmit descriptor.
1461*/ 1461*/
1462static int 1462static int
@@ -1469,9 +1469,9 @@ de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev)
1469 1469
1470 netif_stop_queue(dev); 1470 netif_stop_queue(dev);
1471 if (lp->tx_enable == NO) { /* Cannot send for now */ 1471 if (lp->tx_enable == NO) { /* Cannot send for now */
1472 return -1; 1472 return -1;
1473 } 1473 }
1474 1474
1475 /* 1475 /*
1476 ** Clean out the TX ring asynchronously to interrupts - sometimes the 1476 ** Clean out the TX ring asynchronously to interrupts - sometimes the
1477 ** interrupts are lost by delayed descriptor status updates relative to 1477 ** interrupts are lost by delayed descriptor status updates relative to
@@ -1482,7 +1482,7 @@ de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev)
1482 spin_unlock_irqrestore(&lp->lock, flags); 1482 spin_unlock_irqrestore(&lp->lock, flags);
1483 1483
1484 /* Test if cache is already locked - requeue skb if so */ 1484 /* Test if cache is already locked - requeue skb if so */
1485 if (test_and_set_bit(0, (void *)&lp->cache.lock) && !lp->interrupt) 1485 if (test_and_set_bit(0, (void *)&lp->cache.lock) && !lp->interrupt)
1486 return -1; 1486 return -1;
1487 1487
1488 /* Transmit descriptor ring full or stale skb */ 1488 /* Transmit descriptor ring full or stale skb */
@@ -1509,10 +1509,10 @@ de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev)
1509 load_packet(dev, skb->data, TD_IC | TD_LS | TD_FS | skb->len, skb); 1509 load_packet(dev, skb->data, TD_IC | TD_LS | TD_FS | skb->len, skb);
1510 lp->stats.tx_bytes += skb->len; 1510 lp->stats.tx_bytes += skb->len;
1511 outl(POLL_DEMAND, DE4X5_TPD);/* Start the TX */ 1511 outl(POLL_DEMAND, DE4X5_TPD);/* Start the TX */
1512 1512
1513 lp->tx_new = (++lp->tx_new) % lp->txRingSize; 1513 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
1514 dev->trans_start = jiffies; 1514 dev->trans_start = jiffies;
1515 1515
1516 if (TX_BUFFS_AVAIL) { 1516 if (TX_BUFFS_AVAIL) {
1517 netif_start_queue(dev); /* Another pkt may be queued */ 1517 netif_start_queue(dev); /* Another pkt may be queued */
1518 } 1518 }
@@ -1521,15 +1521,15 @@ de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev)
1521 } 1521 }
1522 if (skb) de4x5_putb_cache(dev, skb); 1522 if (skb) de4x5_putb_cache(dev, skb);
1523 } 1523 }
1524 1524
1525 lp->cache.lock = 0; 1525 lp->cache.lock = 0;
1526 1526
1527 return status; 1527 return status;
1528} 1528}
1529 1529
1530/* 1530/*
1531** The DE4X5 interrupt handler. 1531** The DE4X5 interrupt handler.
1532** 1532**
1533** I/O Read/Writes through intermediate PCI bridges are never 'posted', 1533** I/O Read/Writes through intermediate PCI bridges are never 'posted',
1534** so that the asserted interrupt always has some real data to work with - 1534** so that the asserted interrupt always has some real data to work with -
1535** if these I/O accesses are ever changed to memory accesses, ensure the 1535** if these I/O accesses are ever changed to memory accesses, ensure the
@@ -1546,7 +1546,7 @@ de4x5_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1546 s32 imr, omr, sts, limit; 1546 s32 imr, omr, sts, limit;
1547 u_long iobase; 1547 u_long iobase;
1548 unsigned int handled = 0; 1548 unsigned int handled = 0;
1549 1549
1550 if (dev == NULL) { 1550 if (dev == NULL) {
1551 printk ("de4x5_interrupt(): irq %d for unknown device.\n", irq); 1551 printk ("de4x5_interrupt(): irq %d for unknown device.\n", irq);
1552 return IRQ_NONE; 1552 return IRQ_NONE;
@@ -1554,35 +1554,35 @@ de4x5_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1554 lp = netdev_priv(dev); 1554 lp = netdev_priv(dev);
1555 spin_lock(&lp->lock); 1555 spin_lock(&lp->lock);
1556 iobase = dev->base_addr; 1556 iobase = dev->base_addr;
1557 1557
1558 DISABLE_IRQs; /* Ensure non re-entrancy */ 1558 DISABLE_IRQs; /* Ensure non re-entrancy */
1559 1559
1560 if (test_and_set_bit(MASK_INTERRUPTS, (void*) &lp->interrupt)) 1560 if (test_and_set_bit(MASK_INTERRUPTS, (void*) &lp->interrupt))
1561 printk("%s: Re-entering the interrupt handler.\n", dev->name); 1561 printk("%s: Re-entering the interrupt handler.\n", dev->name);
1562 1562
1563 synchronize_irq(dev->irq); 1563 synchronize_irq(dev->irq);
1564 1564
1565 for (limit=0; limit<8; limit++) { 1565 for (limit=0; limit<8; limit++) {
1566 sts = inl(DE4X5_STS); /* Read IRQ status */ 1566 sts = inl(DE4X5_STS); /* Read IRQ status */
1567 outl(sts, DE4X5_STS); /* Reset the board interrupts */ 1567 outl(sts, DE4X5_STS); /* Reset the board interrupts */
1568 1568
1569 if (!(sts & lp->irq_mask)) break;/* All done */ 1569 if (!(sts & lp->irq_mask)) break;/* All done */
1570 handled = 1; 1570 handled = 1;
1571 1571
1572 if (sts & (STS_RI | STS_RU)) /* Rx interrupt (packet[s] arrived) */ 1572 if (sts & (STS_RI | STS_RU)) /* Rx interrupt (packet[s] arrived) */
1573 de4x5_rx(dev); 1573 de4x5_rx(dev);
1574 1574
1575 if (sts & (STS_TI | STS_TU)) /* Tx interrupt (packet sent) */ 1575 if (sts & (STS_TI | STS_TU)) /* Tx interrupt (packet sent) */
1576 de4x5_tx(dev); 1576 de4x5_tx(dev);
1577 1577
1578 if (sts & STS_LNF) { /* TP Link has failed */ 1578 if (sts & STS_LNF) { /* TP Link has failed */
1579 lp->irq_mask &= ~IMR_LFM; 1579 lp->irq_mask &= ~IMR_LFM;
1580 } 1580 }
1581 1581
1582 if (sts & STS_UNF) { /* Transmit underrun */ 1582 if (sts & STS_UNF) { /* Transmit underrun */
1583 de4x5_txur(dev); 1583 de4x5_txur(dev);
1584 } 1584 }
1585 1585
1586 if (sts & STS_SE) { /* Bus Error */ 1586 if (sts & STS_SE) { /* Bus Error */
1587 STOP_DE4X5; 1587 STOP_DE4X5;
1588 printk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n", 1588 printk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n",
@@ -1603,7 +1603,7 @@ de4x5_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1603 lp->interrupt = UNMASK_INTERRUPTS; 1603 lp->interrupt = UNMASK_INTERRUPTS;
1604 ENABLE_IRQs; 1604 ENABLE_IRQs;
1605 spin_unlock(&lp->lock); 1605 spin_unlock(&lp->lock);
1606 1606
1607 return IRQ_RETVAL(handled); 1607 return IRQ_RETVAL(handled);
1608} 1608}
1609 1609
@@ -1614,11 +1614,11 @@ de4x5_rx(struct net_device *dev)
1614 u_long iobase = dev->base_addr; 1614 u_long iobase = dev->base_addr;
1615 int entry; 1615 int entry;
1616 s32 status; 1616 s32 status;
1617 1617
1618 for (entry=lp->rx_new; (s32)le32_to_cpu(lp->rx_ring[entry].status)>=0; 1618 for (entry=lp->rx_new; (s32)le32_to_cpu(lp->rx_ring[entry].status)>=0;
1619 entry=lp->rx_new) { 1619 entry=lp->rx_new) {
1620 status = (s32)le32_to_cpu(lp->rx_ring[entry].status); 1620 status = (s32)le32_to_cpu(lp->rx_ring[entry].status);
1621 1621
1622 if (lp->rx_ovf) { 1622 if (lp->rx_ovf) {
1623 if (inl(DE4X5_MFC) & MFC_FOCM) { 1623 if (inl(DE4X5_MFC) & MFC_FOCM) {
1624 de4x5_rx_ovfc(dev); 1624 de4x5_rx_ovfc(dev);
@@ -1629,7 +1629,7 @@ de4x5_rx(struct net_device *dev)
1629 if (status & RD_FS) { /* Remember the start of frame */ 1629 if (status & RD_FS) { /* Remember the start of frame */
1630 lp->rx_old = entry; 1630 lp->rx_old = entry;
1631 } 1631 }
1632 1632
1633 if (status & RD_LS) { /* Valid frame status */ 1633 if (status & RD_LS) { /* Valid frame status */
1634 if (lp->tx_enable) lp->linkOK++; 1634 if (lp->tx_enable) lp->linkOK++;
1635 if (status & RD_ES) { /* There was an error. */ 1635 if (status & RD_ES) { /* There was an error. */
@@ -1646,9 +1646,9 @@ de4x5_rx(struct net_device *dev)
1646 struct sk_buff *skb; 1646 struct sk_buff *skb;
1647 short pkt_len = (short)(le32_to_cpu(lp->rx_ring[entry].status) 1647 short pkt_len = (short)(le32_to_cpu(lp->rx_ring[entry].status)
1648 >> 16) - 4; 1648 >> 16) - 4;
1649 1649
1650 if ((skb = de4x5_alloc_rx_buff(dev, entry, pkt_len)) == NULL) { 1650 if ((skb = de4x5_alloc_rx_buff(dev, entry, pkt_len)) == NULL) {
1651 printk("%s: Insufficient memory; nuking packet.\n", 1651 printk("%s: Insufficient memory; nuking packet.\n",
1652 dev->name); 1652 dev->name);
1653 lp->stats.rx_dropped++; 1653 lp->stats.rx_dropped++;
1654 } else { 1654 } else {
@@ -1658,14 +1658,14 @@ de4x5_rx(struct net_device *dev)
1658 skb->protocol=eth_type_trans(skb,dev); 1658 skb->protocol=eth_type_trans(skb,dev);
1659 de4x5_local_stats(dev, skb->data, pkt_len); 1659 de4x5_local_stats(dev, skb->data, pkt_len);
1660 netif_rx(skb); 1660 netif_rx(skb);
1661 1661
1662 /* Update stats */ 1662 /* Update stats */
1663 dev->last_rx = jiffies; 1663 dev->last_rx = jiffies;
1664 lp->stats.rx_packets++; 1664 lp->stats.rx_packets++;
1665 lp->stats.rx_bytes += pkt_len; 1665 lp->stats.rx_bytes += pkt_len;
1666 } 1666 }
1667 } 1667 }
1668 1668
1669 /* Change buffer ownership for this frame, back to the adapter */ 1669 /* Change buffer ownership for this frame, back to the adapter */
1670 for (;lp->rx_old!=entry;lp->rx_old=(++lp->rx_old)%lp->rxRingSize) { 1670 for (;lp->rx_old!=entry;lp->rx_old=(++lp->rx_old)%lp->rxRingSize) {
1671 lp->rx_ring[lp->rx_old].status = cpu_to_le32(R_OWN); 1671 lp->rx_ring[lp->rx_old].status = cpu_to_le32(R_OWN);
@@ -1674,13 +1674,13 @@ de4x5_rx(struct net_device *dev)
1674 lp->rx_ring[entry].status = cpu_to_le32(R_OWN); 1674 lp->rx_ring[entry].status = cpu_to_le32(R_OWN);
1675 barrier(); 1675 barrier();
1676 } 1676 }
1677 1677
1678 /* 1678 /*
1679 ** Update entry information 1679 ** Update entry information
1680 */ 1680 */
1681 lp->rx_new = (++lp->rx_new) % lp->rxRingSize; 1681 lp->rx_new = (++lp->rx_new) % lp->rxRingSize;
1682 } 1682 }
1683 1683
1684 return 0; 1684 return 0;
1685} 1685}
1686 1686
@@ -1705,20 +1705,20 @@ de4x5_tx(struct net_device *dev)
1705 u_long iobase = dev->base_addr; 1705 u_long iobase = dev->base_addr;
1706 int entry; 1706 int entry;
1707 s32 status; 1707 s32 status;
1708 1708
1709 for (entry = lp->tx_old; entry != lp->tx_new; entry = lp->tx_old) { 1709 for (entry = lp->tx_old; entry != lp->tx_new; entry = lp->tx_old) {
1710 status = (s32)le32_to_cpu(lp->tx_ring[entry].status); 1710 status = (s32)le32_to_cpu(lp->tx_ring[entry].status);
1711 if (status < 0) { /* Buffer not sent yet */ 1711 if (status < 0) { /* Buffer not sent yet */
1712 break; 1712 break;
1713 } else if (status != 0x7fffffff) { /* Not setup frame */ 1713 } else if (status != 0x7fffffff) { /* Not setup frame */
1714 if (status & TD_ES) { /* An error happened */ 1714 if (status & TD_ES) { /* An error happened */
1715 lp->stats.tx_errors++; 1715 lp->stats.tx_errors++;
1716 if (status & TD_NC) lp->stats.tx_carrier_errors++; 1716 if (status & TD_NC) lp->stats.tx_carrier_errors++;
1717 if (status & TD_LC) lp->stats.tx_window_errors++; 1717 if (status & TD_LC) lp->stats.tx_window_errors++;
1718 if (status & TD_UF) lp->stats.tx_fifo_errors++; 1718 if (status & TD_UF) lp->stats.tx_fifo_errors++;
1719 if (status & TD_EC) lp->pktStats.excessive_collisions++; 1719 if (status & TD_EC) lp->pktStats.excessive_collisions++;
1720 if (status & TD_DE) lp->stats.tx_aborted_errors++; 1720 if (status & TD_DE) lp->stats.tx_aborted_errors++;
1721 1721
1722 if (TX_PKT_PENDING) { 1722 if (TX_PKT_PENDING) {
1723 outl(POLL_DEMAND, DE4X5_TPD);/* Restart a stalled TX */ 1723 outl(POLL_DEMAND, DE4X5_TPD);/* Restart a stalled TX */
1724 } 1724 }
@@ -1727,14 +1727,14 @@ de4x5_tx(struct net_device *dev)
1727 if (lp->tx_enable) lp->linkOK++; 1727 if (lp->tx_enable) lp->linkOK++;
1728 } 1728 }
1729 /* Update the collision counter */ 1729 /* Update the collision counter */
1730 lp->stats.collisions += ((status & TD_EC) ? 16 : 1730 lp->stats.collisions += ((status & TD_EC) ? 16 :
1731 ((status & TD_CC) >> 3)); 1731 ((status & TD_CC) >> 3));
1732 1732
1733 /* Free the buffer. */ 1733 /* Free the buffer. */
1734 if (lp->tx_skb[entry] != NULL) 1734 if (lp->tx_skb[entry] != NULL)
1735 de4x5_free_tx_buff(lp, entry); 1735 de4x5_free_tx_buff(lp, entry);
1736 } 1736 }
1737 1737
1738 /* Update all the pointers */ 1738 /* Update all the pointers */
1739 lp->tx_old = (++lp->tx_old) % lp->txRingSize; 1739 lp->tx_old = (++lp->tx_old) % lp->txRingSize;
1740 } 1740 }
@@ -1746,7 +1746,7 @@ de4x5_tx(struct net_device *dev)
1746 else 1746 else
1747 netif_start_queue(dev); 1747 netif_start_queue(dev);
1748 } 1748 }
1749 1749
1750 return 0; 1750 return 0;
1751} 1751}
1752 1752
@@ -1755,9 +1755,9 @@ de4x5_ast(struct net_device *dev)
1755{ 1755{
1756 struct de4x5_private *lp = netdev_priv(dev); 1756 struct de4x5_private *lp = netdev_priv(dev);
1757 int next_tick = DE4X5_AUTOSENSE_MS; 1757 int next_tick = DE4X5_AUTOSENSE_MS;
1758 1758
1759 disable_ast(dev); 1759 disable_ast(dev);
1760 1760
1761 if (lp->useSROM) { 1761 if (lp->useSROM) {
1762 next_tick = srom_autoconf(dev); 1762 next_tick = srom_autoconf(dev);
1763 } else if (lp->chipset == DC21140) { 1763 } else if (lp->chipset == DC21140) {
@@ -1769,7 +1769,7 @@ de4x5_ast(struct net_device *dev)
1769 } 1769 }
1770 lp->linkOK = 0; 1770 lp->linkOK = 0;
1771 enable_ast(dev, next_tick); 1771 enable_ast(dev, next_tick);
1772 1772
1773 return 0; 1773 return 0;
1774} 1774}
1775 1775
@@ -1792,11 +1792,11 @@ de4x5_txur(struct net_device *dev)
1792 } 1792 }
1793 outl(omr | OMR_ST | OMR_SR, DE4X5_OMR); 1793 outl(omr | OMR_ST | OMR_SR, DE4X5_OMR);
1794 } 1794 }
1795 1795
1796 return 0; 1796 return 0;
1797} 1797}
1798 1798
1799static int 1799static int
1800de4x5_rx_ovfc(struct net_device *dev) 1800de4x5_rx_ovfc(struct net_device *dev)
1801{ 1801{
1802 struct de4x5_private *lp = netdev_priv(dev); 1802 struct de4x5_private *lp = netdev_priv(dev);
@@ -1813,7 +1813,7 @@ de4x5_rx_ovfc(struct net_device *dev)
1813 } 1813 }
1814 1814
1815 outl(omr, DE4X5_OMR); 1815 outl(omr, DE4X5_OMR);
1816 1816
1817 return 0; 1817 return 0;
1818} 1818}
1819 1819
@@ -1823,22 +1823,22 @@ de4x5_close(struct net_device *dev)
1823 struct de4x5_private *lp = netdev_priv(dev); 1823 struct de4x5_private *lp = netdev_priv(dev);
1824 u_long iobase = dev->base_addr; 1824 u_long iobase = dev->base_addr;
1825 s32 imr, omr; 1825 s32 imr, omr;
1826 1826
1827 disable_ast(dev); 1827 disable_ast(dev);
1828 1828
1829 netif_stop_queue(dev); 1829 netif_stop_queue(dev);
1830 1830
1831 if (de4x5_debug & DEBUG_CLOSE) { 1831 if (de4x5_debug & DEBUG_CLOSE) {
1832 printk("%s: Shutting down ethercard, status was %8.8x.\n", 1832 printk("%s: Shutting down ethercard, status was %8.8x.\n",
1833 dev->name, inl(DE4X5_STS)); 1833 dev->name, inl(DE4X5_STS));
1834 } 1834 }
1835 1835
1836 /* 1836 /*
1837 ** We stop the DE4X5 here... mask interrupts and stop TX & RX 1837 ** We stop the DE4X5 here... mask interrupts and stop TX & RX
1838 */ 1838 */
1839 DISABLE_IRQs; 1839 DISABLE_IRQs;
1840 STOP_DE4X5; 1840 STOP_DE4X5;
1841 1841
1842 /* Free the associated irq */ 1842 /* Free the associated irq */
1843 free_irq(dev->irq, dev); 1843 free_irq(dev->irq, dev);
1844 lp->state = CLOSED; 1844 lp->state = CLOSED;
@@ -1846,10 +1846,10 @@ de4x5_close(struct net_device *dev)
1846 /* Free any socket buffers */ 1846 /* Free any socket buffers */
1847 de4x5_free_rx_buffs(dev); 1847 de4x5_free_rx_buffs(dev);
1848 de4x5_free_tx_buffs(dev); 1848 de4x5_free_tx_buffs(dev);
1849 1849
1850 /* Put the adapter to sleep to save power */ 1850 /* Put the adapter to sleep to save power */
1851 yawn(dev, SLEEP); 1851 yawn(dev, SLEEP);
1852 1852
1853 return 0; 1853 return 0;
1854} 1854}
1855 1855
@@ -1858,9 +1858,9 @@ de4x5_get_stats(struct net_device *dev)
1858{ 1858{
1859 struct de4x5_private *lp = netdev_priv(dev); 1859 struct de4x5_private *lp = netdev_priv(dev);
1860 u_long iobase = dev->base_addr; 1860 u_long iobase = dev->base_addr;
1861 1861
1862 lp->stats.rx_missed_errors = (int)(inl(DE4X5_MFC) & (MFC_OVFL | MFC_CNTR)); 1862 lp->stats.rx_missed_errors = (int)(inl(DE4X5_MFC) & (MFC_OVFL | MFC_CNTR));
1863 1863
1864 return &lp->stats; 1864 return &lp->stats;
1865} 1865}
1866 1866
@@ -1886,7 +1886,7 @@ de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len)
1886 (*(s16 *)&buf[4] == *(s16 *)&dev->dev_addr[4])) { 1886 (*(s16 *)&buf[4] == *(s16 *)&dev->dev_addr[4])) {
1887 lp->pktStats.unicast++; 1887 lp->pktStats.unicast++;
1888 } 1888 }
1889 1889
1890 lp->pktStats.bins[0]++; /* Duplicates stats.rx_packets */ 1890 lp->pktStats.bins[0]++; /* Duplicates stats.rx_packets */
1891 if (lp->pktStats.bins[0] == 0) { /* Reset counters */ 1891 if (lp->pktStats.bins[0] == 0) { /* Reset counters */
1892 memset((char *)&lp->pktStats, 0, sizeof(lp->pktStats)); 1892 memset((char *)&lp->pktStats, 0, sizeof(lp->pktStats));
@@ -1937,11 +1937,11 @@ set_multicast_list(struct net_device *dev)
1937 omr = inl(DE4X5_OMR); 1937 omr = inl(DE4X5_OMR);
1938 omr |= OMR_PR; 1938 omr |= OMR_PR;
1939 outl(omr, DE4X5_OMR); 1939 outl(omr, DE4X5_OMR);
1940 } else { 1940 } else {
1941 SetMulticastFilter(dev); 1941 SetMulticastFilter(dev);
1942 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET | 1942 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
1943 SETUP_FRAME_LEN, (struct sk_buff *)1); 1943 SETUP_FRAME_LEN, (struct sk_buff *)1);
1944 1944
1945 lp->tx_new = (++lp->tx_new) % lp->txRingSize; 1945 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
1946 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */ 1946 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
1947 dev->trans_start = jiffies; 1947 dev->trans_start = jiffies;
@@ -1969,20 +1969,20 @@ SetMulticastFilter(struct net_device *dev)
1969 omr = inl(DE4X5_OMR); 1969 omr = inl(DE4X5_OMR);
1970 omr &= ~(OMR_PR | OMR_PM); 1970 omr &= ~(OMR_PR | OMR_PM);
1971 pa = build_setup_frame(dev, ALL); /* Build the basic frame */ 1971 pa = build_setup_frame(dev, ALL); /* Build the basic frame */
1972 1972
1973 if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 14)) { 1973 if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 14)) {
1974 omr |= OMR_PM; /* Pass all multicasts */ 1974 omr |= OMR_PM; /* Pass all multicasts */
1975 } else if (lp->setup_f == HASH_PERF) { /* Hash Filtering */ 1975 } else if (lp->setup_f == HASH_PERF) { /* Hash Filtering */
1976 for (i=0;i<dev->mc_count;i++) { /* for each address in the list */ 1976 for (i=0;i<dev->mc_count;i++) { /* for each address in the list */
1977 addrs=dmi->dmi_addr; 1977 addrs=dmi->dmi_addr;
1978 dmi=dmi->next; 1978 dmi=dmi->next;
1979 if ((*addrs & 0x01) == 1) { /* multicast address? */ 1979 if ((*addrs & 0x01) == 1) { /* multicast address? */
1980 crc = ether_crc_le(ETH_ALEN, addrs); 1980 crc = ether_crc_le(ETH_ALEN, addrs);
1981 hashcode = crc & HASH_BITS; /* hashcode is 9 LSb of CRC */ 1981 hashcode = crc & HASH_BITS; /* hashcode is 9 LSb of CRC */
1982 1982
1983 byte = hashcode >> 3; /* bit[3-8] -> byte in filter */ 1983 byte = hashcode >> 3; /* bit[3-8] -> byte in filter */
1984 bit = 1 << (hashcode & 0x07);/* bit[0-2] -> bit in byte */ 1984 bit = 1 << (hashcode & 0x07);/* bit[0-2] -> bit in byte */
1985 1985
1986 byte <<= 1; /* calc offset into setup frame */ 1986 byte <<= 1; /* calc offset into setup frame */
1987 if (byte & 0x02) { 1987 if (byte & 0x02) {
1988 byte -= 1; 1988 byte -= 1;
@@ -1994,14 +1994,14 @@ SetMulticastFilter(struct net_device *dev)
1994 for (j=0; j<dev->mc_count; j++) { 1994 for (j=0; j<dev->mc_count; j++) {
1995 addrs=dmi->dmi_addr; 1995 addrs=dmi->dmi_addr;
1996 dmi=dmi->next; 1996 dmi=dmi->next;
1997 for (i=0; i<ETH_ALEN; i++) { 1997 for (i=0; i<ETH_ALEN; i++) {
1998 *(pa + (i&1)) = *addrs++; 1998 *(pa + (i&1)) = *addrs++;
1999 if (i & 0x01) pa += 4; 1999 if (i & 0x01) pa += 4;
2000 } 2000 }
2001 } 2001 }
2002 } 2002 }
2003 outl(omr, DE4X5_OMR); 2003 outl(omr, DE4X5_OMR);
2004 2004
2005 return; 2005 return;
2006} 2006}
2007 2007
@@ -2031,18 +2031,18 @@ static int __init de4x5_eisa_probe (struct device *gendev)
2031 status = -EBUSY; 2031 status = -EBUSY;
2032 goto release_reg_1; 2032 goto release_reg_1;
2033 } 2033 }
2034 2034
2035 if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) { 2035 if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2036 status = -ENOMEM; 2036 status = -ENOMEM;
2037 goto release_reg_2; 2037 goto release_reg_2;
2038 } 2038 }
2039 lp = netdev_priv(dev); 2039 lp = netdev_priv(dev);
2040 2040
2041 cfid = (u32) inl(PCI_CFID); 2041 cfid = (u32) inl(PCI_CFID);
2042 lp->cfrv = (u_short) inl(PCI_CFRV); 2042 lp->cfrv = (u_short) inl(PCI_CFRV);
2043 device = (cfid >> 8) & 0x00ffff00; 2043 device = (cfid >> 8) & 0x00ffff00;
2044 vendor = (u_short) cfid; 2044 vendor = (u_short) cfid;
2045 2045
2046 /* Read the EISA Configuration Registers */ 2046 /* Read the EISA Configuration Registers */
2047 regval = inb(EISA_REG0) & (ER0_INTL | ER0_INTT); 2047 regval = inb(EISA_REG0) & (ER0_INTL | ER0_INTT);
2048#ifdef CONFIG_ALPHA 2048#ifdef CONFIG_ALPHA
@@ -2050,7 +2050,7 @@ static int __init de4x5_eisa_probe (struct device *gendev)
2050 * care about the EISA configuration, and thus doesn't 2050 * care about the EISA configuration, and thus doesn't
2051 * configure the PLX bridge properly. Oh well... Simply mimic 2051 * configure the PLX bridge properly. Oh well... Simply mimic
2052 * the EISA config file to sort it out. */ 2052 * the EISA config file to sort it out. */
2053 2053
2054 /* EISA REG1: Assert DecChip 21040 HW Reset */ 2054 /* EISA REG1: Assert DecChip 21040 HW Reset */
2055 outb (ER1_IAM | 1, EISA_REG1); 2055 outb (ER1_IAM | 1, EISA_REG1);
2056 mdelay (1); 2056 mdelay (1);
@@ -2061,12 +2061,12 @@ static int __init de4x5_eisa_probe (struct device *gendev)
2061 2061
2062 /* EISA REG3: R/W Burst Transfer Enable */ 2062 /* EISA REG3: R/W Burst Transfer Enable */
2063 outb (ER3_BWE | ER3_BRE, EISA_REG3); 2063 outb (ER3_BWE | ER3_BRE, EISA_REG3);
2064 2064
2065 /* 32_bit slave/master, Preempt Time=23 bclks, Unlatched Interrupt */ 2065 /* 32_bit slave/master, Preempt Time=23 bclks, Unlatched Interrupt */
2066 outb (ER0_BSW | ER0_BMW | ER0_EPT | regval, EISA_REG0); 2066 outb (ER0_BSW | ER0_BMW | ER0_EPT | regval, EISA_REG0);
2067#endif 2067#endif
2068 irq = de4x5_irq[(regval >> 1) & 0x03]; 2068 irq = de4x5_irq[(regval >> 1) & 0x03];
2069 2069
2070 if (is_DC2114x) { 2070 if (is_DC2114x) {
2071 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143); 2071 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2072 } 2072 }
@@ -2077,7 +2077,7 @@ static int __init de4x5_eisa_probe (struct device *gendev)
2077 outl(PCI_COMMAND_IO | PCI_COMMAND_MASTER, PCI_CFCS); 2077 outl(PCI_COMMAND_IO | PCI_COMMAND_MASTER, PCI_CFCS);
2078 outl(0x00006000, PCI_CFLT); 2078 outl(0x00006000, PCI_CFLT);
2079 outl(iobase, PCI_CBIO); 2079 outl(iobase, PCI_CBIO);
2080 2080
2081 DevicePresent(dev, EISA_APROM); 2081 DevicePresent(dev, EISA_APROM);
2082 2082
2083 dev->irq = irq; 2083 dev->irq = irq;
@@ -2102,7 +2102,7 @@ static int __devexit de4x5_eisa_remove (struct device *device)
2102 2102
2103 dev = device->driver_data; 2103 dev = device->driver_data;
2104 iobase = dev->base_addr; 2104 iobase = dev->base_addr;
2105 2105
2106 unregister_netdev (dev); 2106 unregister_netdev (dev);
2107 free_netdev (dev); 2107 free_netdev (dev);
2108 release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE); 2108 release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
@@ -2131,11 +2131,11 @@ MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2131 2131
2132/* 2132/*
2133** This function searches the current bus (which is >0) for a DECchip with an 2133** This function searches the current bus (which is >0) for a DECchip with an
2134** SROM, so that in multiport cards that have one SROM shared between multiple 2134** SROM, so that in multiport cards that have one SROM shared between multiple
2135** DECchips, we can find the base SROM irrespective of the BIOS scan direction. 2135** DECchips, we can find the base SROM irrespective of the BIOS scan direction.
2136** For single port cards this is a time waster... 2136** For single port cards this is a time waster...
2137*/ 2137*/
2138static void __devinit 2138static void __devinit
2139srom_search(struct net_device *dev, struct pci_dev *pdev) 2139srom_search(struct net_device *dev, struct pci_dev *pdev)
2140{ 2140{
2141 u_char pb; 2141 u_char pb;
@@ -2163,7 +2163,7 @@ srom_search(struct net_device *dev, struct pci_dev *pdev)
2163 /* Set the device number information */ 2163 /* Set the device number information */
2164 lp->device = PCI_SLOT(this_dev->devfn); 2164 lp->device = PCI_SLOT(this_dev->devfn);
2165 lp->bus_num = pb; 2165 lp->bus_num = pb;
2166 2166
2167 /* Set the chipset information */ 2167 /* Set the chipset information */
2168 if (is_DC2114x) { 2168 if (is_DC2114x) {
2169 device = ((cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143); 2169 device = ((cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
@@ -2176,7 +2176,7 @@ srom_search(struct net_device *dev, struct pci_dev *pdev)
2176 /* Fetch the IRQ to be used */ 2176 /* Fetch the IRQ to be used */
2177 irq = this_dev->irq; 2177 irq = this_dev->irq;
2178 if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) continue; 2178 if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) continue;
2179 2179
2180 /* Check if I/O accesses are enabled */ 2180 /* Check if I/O accesses are enabled */
2181 pci_read_config_word(this_dev, PCI_COMMAND, &status); 2181 pci_read_config_word(this_dev, PCI_COMMAND, &status);
2182 if (!(status & PCI_COMMAND_IO)) continue; 2182 if (!(status & PCI_COMMAND_IO)) continue;
@@ -2254,7 +2254,7 @@ static int __devinit de4x5_pci_probe (struct pci_dev *pdev,
2254 lp = netdev_priv(dev); 2254 lp = netdev_priv(dev);
2255 lp->bus = PCI; 2255 lp->bus = PCI;
2256 lp->bus_num = 0; 2256 lp->bus_num = 0;
2257 2257
2258 /* Search for an SROM on this bus */ 2258 /* Search for an SROM on this bus */
2259 if (lp->bus_num != pb) { 2259 if (lp->bus_num != pb) {
2260 lp->bus_num = pb; 2260 lp->bus_num = pb;
@@ -2267,7 +2267,7 @@ static int __devinit de4x5_pci_probe (struct pci_dev *pdev,
2267 /* Set the device number information */ 2267 /* Set the device number information */
2268 lp->device = dev_num; 2268 lp->device = dev_num;
2269 lp->bus_num = pb; 2269 lp->bus_num = pb;
2270 2270
2271 /* Set the chipset information */ 2271 /* Set the chipset information */
2272 if (is_DC2114x) { 2272 if (is_DC2114x) {
2273 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143); 2273 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
@@ -2283,7 +2283,7 @@ static int __devinit de4x5_pci_probe (struct pci_dev *pdev,
2283 error = -ENODEV; 2283 error = -ENODEV;
2284 goto free_dev; 2284 goto free_dev;
2285 } 2285 }
2286 2286
2287 /* Check if I/O accesses and Bus Mastering are enabled */ 2287 /* Check if I/O accesses and Bus Mastering are enabled */
2288 pci_read_config_word(pdev, PCI_COMMAND, &status); 2288 pci_read_config_word(pdev, PCI_COMMAND, &status);
2289#ifdef __powerpc__ 2289#ifdef __powerpc__
@@ -2322,7 +2322,7 @@ static int __devinit de4x5_pci_probe (struct pci_dev *pdev,
2322 } 2322 }
2323 2323
2324 dev->irq = irq; 2324 dev->irq = irq;
2325 2325
2326 if ((error = de4x5_hw_init(dev, iobase, &pdev->dev))) { 2326 if ((error = de4x5_hw_init(dev, iobase, &pdev->dev))) {
2327 goto release; 2327 goto release;
2328 } 2328 }
@@ -2377,7 +2377,7 @@ static struct pci_driver de4x5_pci_driver = {
2377** Auto configure the media here rather than setting the port at compile 2377** Auto configure the media here rather than setting the port at compile
2378** time. This routine is called by de4x5_init() and when a loss of media is 2378** time. This routine is called by de4x5_init() and when a loss of media is
2379** detected (excessive collisions, loss of carrier, no carrier or link fail 2379** detected (excessive collisions, loss of carrier, no carrier or link fail
2380** [TP] or no recent receive activity) to check whether the user has been 2380** [TP] or no recent receive activity) to check whether the user has been
2381** sneaky and changed the port on us. 2381** sneaky and changed the port on us.
2382*/ 2382*/
2383static int 2383static int
@@ -2405,7 +2405,7 @@ autoconf_media(struct net_device *dev)
2405 } 2405 }
2406 2406
2407 enable_ast(dev, next_tick); 2407 enable_ast(dev, next_tick);
2408 2408
2409 return (lp->media); 2409 return (lp->media);
2410} 2410}
2411 2411
@@ -2428,7 +2428,7 @@ dc21040_autoconf(struct net_device *dev)
2428 u_long iobase = dev->base_addr; 2428 u_long iobase = dev->base_addr;
2429 int next_tick = DE4X5_AUTOSENSE_MS; 2429 int next_tick = DE4X5_AUTOSENSE_MS;
2430 s32 imr; 2430 s32 imr;
2431 2431
2432 switch (lp->media) { 2432 switch (lp->media) {
2433 case INIT: 2433 case INIT:
2434 DISABLE_IRQs; 2434 DISABLE_IRQs;
@@ -2447,36 +2447,36 @@ dc21040_autoconf(struct net_device *dev)
2447 lp->local_state = 0; 2447 lp->local_state = 0;
2448 next_tick = dc21040_autoconf(dev); 2448 next_tick = dc21040_autoconf(dev);
2449 break; 2449 break;
2450 2450
2451 case TP: 2451 case TP:
2452 next_tick = dc21040_state(dev, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI, 2452 next_tick = dc21040_state(dev, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI,
2453 TP_SUSPECT, test_tp); 2453 TP_SUSPECT, test_tp);
2454 break; 2454 break;
2455 2455
2456 case TP_SUSPECT: 2456 case TP_SUSPECT:
2457 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21040_autoconf); 2457 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21040_autoconf);
2458 break; 2458 break;
2459 2459
2460 case BNC: 2460 case BNC:
2461 case AUI: 2461 case AUI:
2462 case BNC_AUI: 2462 case BNC_AUI:
2463 next_tick = dc21040_state(dev, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA, 2463 next_tick = dc21040_state(dev, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA,
2464 BNC_AUI_SUSPECT, ping_media); 2464 BNC_AUI_SUSPECT, ping_media);
2465 break; 2465 break;
2466 2466
2467 case BNC_AUI_SUSPECT: 2467 case BNC_AUI_SUSPECT:
2468 next_tick = de4x5_suspect_state(dev, 1000, BNC_AUI, ping_media, dc21040_autoconf); 2468 next_tick = de4x5_suspect_state(dev, 1000, BNC_AUI, ping_media, dc21040_autoconf);
2469 break; 2469 break;
2470 2470
2471 case EXT_SIA: 2471 case EXT_SIA:
2472 next_tick = dc21040_state(dev, 0x3041, 0x0000, 0x0006, 3000, 2472 next_tick = dc21040_state(dev, 0x3041, 0x0000, 0x0006, 3000,
2473 NC, EXT_SIA_SUSPECT, ping_media); 2473 NC, EXT_SIA_SUSPECT, ping_media);
2474 break; 2474 break;
2475 2475
2476 case EXT_SIA_SUSPECT: 2476 case EXT_SIA_SUSPECT:
2477 next_tick = de4x5_suspect_state(dev, 1000, EXT_SIA, ping_media, dc21040_autoconf); 2477 next_tick = de4x5_suspect_state(dev, 1000, EXT_SIA, ping_media, dc21040_autoconf);
2478 break; 2478 break;
2479 2479
2480 case NC: 2480 case NC:
2481 /* default to TP for all */ 2481 /* default to TP for all */
2482 reset_init_sia(dev, 0x8f01, 0xffff, 0x0000); 2482 reset_init_sia(dev, 0x8f01, 0xffff, 0x0000);
@@ -2488,13 +2488,13 @@ dc21040_autoconf(struct net_device *dev)
2488 lp->tx_enable = NO; 2488 lp->tx_enable = NO;
2489 break; 2489 break;
2490 } 2490 }
2491 2491
2492 return next_tick; 2492 return next_tick;
2493} 2493}
2494 2494
2495static int 2495static int
2496dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout, 2496dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout,
2497 int next_state, int suspect_state, 2497 int next_state, int suspect_state,
2498 int (*fn)(struct net_device *, int)) 2498 int (*fn)(struct net_device *, int))
2499{ 2499{
2500 struct de4x5_private *lp = netdev_priv(dev); 2500 struct de4x5_private *lp = netdev_priv(dev);
@@ -2507,7 +2507,7 @@ dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeo
2507 lp->local_state++; 2507 lp->local_state++;
2508 next_tick = 500; 2508 next_tick = 500;
2509 break; 2509 break;
2510 2510
2511 case 1: 2511 case 1:
2512 if (!lp->tx_enable) { 2512 if (!lp->tx_enable) {
2513 linkBad = fn(dev, timeout); 2513 linkBad = fn(dev, timeout);
@@ -2527,7 +2527,7 @@ dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeo
2527 } 2527 }
2528 break; 2528 break;
2529 } 2529 }
2530 2530
2531 return next_tick; 2531 return next_tick;
2532} 2532}
2533 2533
@@ -2582,7 +2582,7 @@ dc21041_autoconf(struct net_device *dev)
2582 u_long iobase = dev->base_addr; 2582 u_long iobase = dev->base_addr;
2583 s32 sts, irqs, irq_mask, imr, omr; 2583 s32 sts, irqs, irq_mask, imr, omr;
2584 int next_tick = DE4X5_AUTOSENSE_MS; 2584 int next_tick = DE4X5_AUTOSENSE_MS;
2585 2585
2586 switch (lp->media) { 2586 switch (lp->media) {
2587 case INIT: 2587 case INIT:
2588 DISABLE_IRQs; 2588 DISABLE_IRQs;
@@ -2603,7 +2603,7 @@ dc21041_autoconf(struct net_device *dev)
2603 lp->local_state = 0; 2603 lp->local_state = 0;
2604 next_tick = dc21041_autoconf(dev); 2604 next_tick = dc21041_autoconf(dev);
2605 break; 2605 break;
2606 2606
2607 case TP_NW: 2607 case TP_NW:
2608 if (lp->timeout < 0) { 2608 if (lp->timeout < 0) {
2609 omr = inl(DE4X5_OMR);/* Set up full duplex for the autonegotiate */ 2609 omr = inl(DE4X5_OMR);/* Set up full duplex for the autonegotiate */
@@ -2623,7 +2623,7 @@ dc21041_autoconf(struct net_device *dev)
2623 next_tick = dc21041_autoconf(dev); 2623 next_tick = dc21041_autoconf(dev);
2624 } 2624 }
2625 break; 2625 break;
2626 2626
2627 case ANS: 2627 case ANS:
2628 if (!lp->tx_enable) { 2628 if (!lp->tx_enable) {
2629 irqs = STS_LNP; 2629 irqs = STS_LNP;
@@ -2645,11 +2645,11 @@ dc21041_autoconf(struct net_device *dev)
2645 next_tick = 3000; 2645 next_tick = 3000;
2646 } 2646 }
2647 break; 2647 break;
2648 2648
2649 case ANS_SUSPECT: 2649 case ANS_SUSPECT:
2650 next_tick = de4x5_suspect_state(dev, 1000, ANS, test_tp, dc21041_autoconf); 2650 next_tick = de4x5_suspect_state(dev, 1000, ANS, test_tp, dc21041_autoconf);
2651 break; 2651 break;
2652 2652
2653 case TP: 2653 case TP:
2654 if (!lp->tx_enable) { 2654 if (!lp->tx_enable) {
2655 if (lp->timeout < 0) { 2655 if (lp->timeout < 0) {
@@ -2679,11 +2679,11 @@ dc21041_autoconf(struct net_device *dev)
2679 next_tick = 3000; 2679 next_tick = 3000;
2680 } 2680 }
2681 break; 2681 break;
2682 2682
2683 case TP_SUSPECT: 2683 case TP_SUSPECT:
2684 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21041_autoconf); 2684 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21041_autoconf);
2685 break; 2685 break;
2686 2686
2687 case AUI: 2687 case AUI:
2688 if (!lp->tx_enable) { 2688 if (!lp->tx_enable) {
2689 if (lp->timeout < 0) { 2689 if (lp->timeout < 0) {
@@ -2709,11 +2709,11 @@ dc21041_autoconf(struct net_device *dev)
2709 next_tick = 3000; 2709 next_tick = 3000;
2710 } 2710 }
2711 break; 2711 break;
2712 2712
2713 case AUI_SUSPECT: 2713 case AUI_SUSPECT:
2714 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc21041_autoconf); 2714 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc21041_autoconf);
2715 break; 2715 break;
2716 2716
2717 case BNC: 2717 case BNC:
2718 switch (lp->local_state) { 2718 switch (lp->local_state) {
2719 case 0: 2719 case 0:
@@ -2731,7 +2731,7 @@ dc21041_autoconf(struct net_device *dev)
2731 next_tick = dc21041_autoconf(dev); 2731 next_tick = dc21041_autoconf(dev);
2732 } 2732 }
2733 break; 2733 break;
2734 2734
2735 case 1: 2735 case 1:
2736 if (!lp->tx_enable) { 2736 if (!lp->tx_enable) {
2737 if ((sts = ping_media(dev, 3000)) < 0) { 2737 if ((sts = ping_media(dev, 3000)) < 0) {
@@ -2751,11 +2751,11 @@ dc21041_autoconf(struct net_device *dev)
2751 break; 2751 break;
2752 } 2752 }
2753 break; 2753 break;
2754 2754
2755 case BNC_SUSPECT: 2755 case BNC_SUSPECT:
2756 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc21041_autoconf); 2756 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc21041_autoconf);
2757 break; 2757 break;
2758 2758
2759 case NC: 2759 case NC:
2760 omr = inl(DE4X5_OMR); /* Set up full duplex for the autonegotiate */ 2760 omr = inl(DE4X5_OMR); /* Set up full duplex for the autonegotiate */
2761 outl(omr | OMR_FDX, DE4X5_OMR); 2761 outl(omr | OMR_FDX, DE4X5_OMR);
@@ -2768,7 +2768,7 @@ dc21041_autoconf(struct net_device *dev)
2768 lp->tx_enable = NO; 2768 lp->tx_enable = NO;
2769 break; 2769 break;
2770 } 2770 }
2771 2771
2772 return next_tick; 2772 return next_tick;
2773} 2773}
2774 2774
@@ -2784,9 +2784,9 @@ dc21140m_autoconf(struct net_device *dev)
2784 int ana, anlpa, cap, cr, slnk, sr; 2784 int ana, anlpa, cap, cr, slnk, sr;
2785 int next_tick = DE4X5_AUTOSENSE_MS; 2785 int next_tick = DE4X5_AUTOSENSE_MS;
2786 u_long imr, omr, iobase = dev->base_addr; 2786 u_long imr, omr, iobase = dev->base_addr;
2787 2787
2788 switch(lp->media) { 2788 switch(lp->media) {
2789 case INIT: 2789 case INIT:
2790 if (lp->timeout < 0) { 2790 if (lp->timeout < 0) {
2791 DISABLE_IRQs; 2791 DISABLE_IRQs;
2792 lp->tx_enable = FALSE; 2792 lp->tx_enable = FALSE;
@@ -2813,7 +2813,7 @@ dc21140m_autoconf(struct net_device *dev)
2813 lp->media = _100Mb; 2813 lp->media = _100Mb;
2814 } else if (lp->autosense == _10Mb) { 2814 } else if (lp->autosense == _10Mb) {
2815 lp->media = _10Mb; 2815 lp->media = _10Mb;
2816 } else if ((lp->autosense == AUTO) && 2816 } else if ((lp->autosense == AUTO) &&
2817 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) { 2817 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2818 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA); 2818 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2819 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM); 2819 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
@@ -2831,7 +2831,7 @@ dc21140m_autoconf(struct net_device *dev)
2831 next_tick = dc21140m_autoconf(dev); 2831 next_tick = dc21140m_autoconf(dev);
2832 } 2832 }
2833 break; 2833 break;
2834 2834
2835 case ANS: 2835 case ANS:
2836 switch (lp->local_state) { 2836 switch (lp->local_state) {
2837 case 0: 2837 case 0:
@@ -2851,7 +2851,7 @@ dc21140m_autoconf(struct net_device *dev)
2851 next_tick = dc21140m_autoconf(dev); 2851 next_tick = dc21140m_autoconf(dev);
2852 } 2852 }
2853 break; 2853 break;
2854 2854
2855 case 1: 2855 case 1:
2856 if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, TRUE, 2000)) < 0) { 2856 if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, TRUE, 2000)) < 0) {
2857 next_tick = sr & ~TIMER_CB; 2857 next_tick = sr & ~TIMER_CB;
@@ -2862,7 +2862,7 @@ dc21140m_autoconf(struct net_device *dev)
2862 lp->tmp = MII_SR_ASSC; 2862 lp->tmp = MII_SR_ASSC;
2863 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII); 2863 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
2864 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII); 2864 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2865 if (!(anlpa & MII_ANLPA_RF) && 2865 if (!(anlpa & MII_ANLPA_RF) &&
2866 (cap = anlpa & MII_ANLPA_TAF & ana)) { 2866 (cap = anlpa & MII_ANLPA_TAF & ana)) {
2867 if (cap & MII_ANA_100M) { 2867 if (cap & MII_ANA_100M) {
2868 lp->fdx = ((ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) ? TRUE : FALSE); 2868 lp->fdx = ((ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) ? TRUE : FALSE);
@@ -2879,10 +2879,10 @@ dc21140m_autoconf(struct net_device *dev)
2879 break; 2879 break;
2880 } 2880 }
2881 break; 2881 break;
2882 2882
2883 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */ 2883 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
2884 if (lp->timeout < 0) { 2884 if (lp->timeout < 0) {
2885 lp->tmp = (lp->phy[lp->active].id ? MII_SR_LKS : 2885 lp->tmp = (lp->phy[lp->active].id ? MII_SR_LKS :
2886 (~gep_rd(dev) & GEP_LNP)); 2886 (~gep_rd(dev) & GEP_LNP));
2887 SET_100Mb_PDET; 2887 SET_100Mb_PDET;
2888 } 2888 }
@@ -2899,7 +2899,7 @@ dc21140m_autoconf(struct net_device *dev)
2899 next_tick = dc21140m_autoconf(dev); 2899 next_tick = dc21140m_autoconf(dev);
2900 } 2900 }
2901 break; 2901 break;
2902 2902
2903 case _100Mb: /* Set 100Mb/s */ 2903 case _100Mb: /* Set 100Mb/s */
2904 next_tick = 3000; 2904 next_tick = 3000;
2905 if (!lp->tx_enable) { 2905 if (!lp->tx_enable) {
@@ -2933,7 +2933,7 @@ dc21140m_autoconf(struct net_device *dev)
2933 } 2933 }
2934 } 2934 }
2935 break; 2935 break;
2936 2936
2937 case NC: 2937 case NC:
2938 if (lp->media != lp->c_media) { 2938 if (lp->media != lp->c_media) {
2939 de4x5_dbg_media(dev); 2939 de4x5_dbg_media(dev);
@@ -2943,7 +2943,7 @@ dc21140m_autoconf(struct net_device *dev)
2943 lp->tx_enable = FALSE; 2943 lp->tx_enable = FALSE;
2944 break; 2944 break;
2945 } 2945 }
2946 2946
2947 return next_tick; 2947 return next_tick;
2948} 2948}
2949 2949
@@ -3002,7 +3002,7 @@ dc2114x_autoconf(struct net_device *dev)
3002 lp->media = AUI; 3002 lp->media = AUI;
3003 } else { 3003 } else {
3004 lp->media = SPD_DET; 3004 lp->media = SPD_DET;
3005 if ((lp->infoblock_media == ANS) && 3005 if ((lp->infoblock_media == ANS) &&
3006 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) { 3006 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
3007 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA); 3007 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
3008 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM); 3008 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
@@ -3014,7 +3014,7 @@ dc2114x_autoconf(struct net_device *dev)
3014 next_tick = dc2114x_autoconf(dev); 3014 next_tick = dc2114x_autoconf(dev);
3015 } 3015 }
3016 break; 3016 break;
3017 3017
3018 case ANS: 3018 case ANS:
3019 switch (lp->local_state) { 3019 switch (lp->local_state) {
3020 case 0: 3020 case 0:
@@ -3034,7 +3034,7 @@ dc2114x_autoconf(struct net_device *dev)
3034 next_tick = dc2114x_autoconf(dev); 3034 next_tick = dc2114x_autoconf(dev);
3035 } 3035 }
3036 break; 3036 break;
3037 3037
3038 case 1: 3038 case 1:
3039 if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, TRUE, 2000)) < 0) { 3039 if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, TRUE, 2000)) < 0) {
3040 next_tick = sr & ~TIMER_CB; 3040 next_tick = sr & ~TIMER_CB;
@@ -3045,7 +3045,7 @@ dc2114x_autoconf(struct net_device *dev)
3045 lp->tmp = MII_SR_ASSC; 3045 lp->tmp = MII_SR_ASSC;
3046 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII); 3046 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
3047 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII); 3047 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
3048 if (!(anlpa & MII_ANLPA_RF) && 3048 if (!(anlpa & MII_ANLPA_RF) &&
3049 (cap = anlpa & MII_ANLPA_TAF & ana)) { 3049 (cap = anlpa & MII_ANLPA_TAF & ana)) {
3050 if (cap & MII_ANA_100M) { 3050 if (cap & MII_ANA_100M) {
3051 lp->fdx = ((ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) ? TRUE : FALSE); 3051 lp->fdx = ((ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) ? TRUE : FALSE);
@@ -3087,11 +3087,11 @@ dc2114x_autoconf(struct net_device *dev)
3087 next_tick = 3000; 3087 next_tick = 3000;
3088 } 3088 }
3089 break; 3089 break;
3090 3090
3091 case AUI_SUSPECT: 3091 case AUI_SUSPECT:
3092 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc2114x_autoconf); 3092 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc2114x_autoconf);
3093 break; 3093 break;
3094 3094
3095 case BNC: 3095 case BNC:
3096 switch (lp->local_state) { 3096 switch (lp->local_state) {
3097 case 0: 3097 case 0:
@@ -3109,7 +3109,7 @@ dc2114x_autoconf(struct net_device *dev)
3109 next_tick = dc2114x_autoconf(dev); 3109 next_tick = dc2114x_autoconf(dev);
3110 } 3110 }
3111 break; 3111 break;
3112 3112
3113 case 1: 3113 case 1:
3114 if (!lp->tx_enable) { 3114 if (!lp->tx_enable) {
3115 if ((sts = ping_media(dev, 3000)) < 0) { 3115 if ((sts = ping_media(dev, 3000)) < 0) {
@@ -3130,11 +3130,11 @@ dc2114x_autoconf(struct net_device *dev)
3130 break; 3130 break;
3131 } 3131 }
3132 break; 3132 break;
3133 3133
3134 case BNC_SUSPECT: 3134 case BNC_SUSPECT:
3135 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc2114x_autoconf); 3135 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc2114x_autoconf);
3136 break; 3136 break;
3137 3137
3138 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */ 3138 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
3139 if (srom_map_media(dev) < 0) { 3139 if (srom_map_media(dev) < 0) {
3140 lp->tcount++; 3140 lp->tcount++;
@@ -3161,7 +3161,7 @@ dc2114x_autoconf(struct net_device *dev)
3161 next_tick = dc2114x_autoconf(dev); 3161 next_tick = dc2114x_autoconf(dev);
3162 } else if (((lp->media == _100Mb) && is_100_up(dev)) || 3162 } else if (((lp->media == _100Mb) && is_100_up(dev)) ||
3163 (((lp->media == _10Mb) || (lp->media == TP) || 3163 (((lp->media == _10Mb) || (lp->media == TP) ||
3164 (lp->media == BNC) || (lp->media == AUI)) && 3164 (lp->media == BNC) || (lp->media == AUI)) &&
3165 is_10_up(dev))) { 3165 is_10_up(dev))) {
3166 next_tick = dc2114x_autoconf(dev); 3166 next_tick = dc2114x_autoconf(dev);
3167 } else { 3167 } else {
@@ -3169,7 +3169,7 @@ dc2114x_autoconf(struct net_device *dev)
3169 lp->media = INIT; 3169 lp->media = INIT;
3170 } 3170 }
3171 break; 3171 break;
3172 3172
3173 case _10Mb: 3173 case _10Mb:
3174 next_tick = 3000; 3174 next_tick = 3000;
3175 if (!lp->tx_enable) { 3175 if (!lp->tx_enable) {
@@ -3208,7 +3208,7 @@ printk("Huh?: media:%02x\n", lp->media);
3208 lp->media = INIT; 3208 lp->media = INIT;
3209 break; 3209 break;
3210 } 3210 }
3211 3211
3212 return next_tick; 3212 return next_tick;
3213} 3213}
3214 3214
@@ -3231,7 +3231,7 @@ srom_map_media(struct net_device *dev)
3231 struct de4x5_private *lp = netdev_priv(dev); 3231 struct de4x5_private *lp = netdev_priv(dev);
3232 3232
3233 lp->fdx = 0; 3233 lp->fdx = 0;
3234 if (lp->infoblock_media == lp->media) 3234 if (lp->infoblock_media == lp->media)
3235 return 0; 3235 return 0;
3236 3236
3237 switch(lp->infoblock_media) { 3237 switch(lp->infoblock_media) {
@@ -3270,7 +3270,7 @@ srom_map_media(struct net_device *dev)
3270 case SROM_100BASEFF: 3270 case SROM_100BASEFF:
3271 if (!lp->params.fdx) return -1; 3271 if (!lp->params.fdx) return -1;
3272 lp->fdx = TRUE; 3272 lp->fdx = TRUE;
3273 case SROM_100BASEF: 3273 case SROM_100BASEF:
3274 if (lp->params.fdx && !lp->fdx) return -1; 3274 if (lp->params.fdx && !lp->fdx) return -1;
3275 lp->media = _100Mb; 3275 lp->media = _100Mb;
3276 break; 3276 break;
@@ -3280,8 +3280,8 @@ srom_map_media(struct net_device *dev)
3280 lp->fdx = lp->params.fdx; 3280 lp->fdx = lp->params.fdx;
3281 break; 3281 break;
3282 3282
3283 default: 3283 default:
3284 printk("%s: Bad media code [%d] detected in SROM!\n", dev->name, 3284 printk("%s: Bad media code [%d] detected in SROM!\n", dev->name,
3285 lp->infoblock_media); 3285 lp->infoblock_media);
3286 return -1; 3286 return -1;
3287 break; 3287 break;
@@ -3359,7 +3359,7 @@ test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14,
3359 struct de4x5_private *lp = netdev_priv(dev); 3359 struct de4x5_private *lp = netdev_priv(dev);
3360 u_long iobase = dev->base_addr; 3360 u_long iobase = dev->base_addr;
3361 s32 sts, csr12; 3361 s32 sts, csr12;
3362 3362
3363 if (lp->timeout < 0) { 3363 if (lp->timeout < 0) {
3364 lp->timeout = msec/100; 3364 lp->timeout = msec/100;
3365 if (!lp->useSROM) { /* Already done if by SROM, else dc2104[01] */ 3365 if (!lp->useSROM) { /* Already done if by SROM, else dc2104[01] */
@@ -3372,22 +3372,22 @@ test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14,
3372 /* clear all pending interrupts */ 3372 /* clear all pending interrupts */
3373 sts = inl(DE4X5_STS); 3373 sts = inl(DE4X5_STS);
3374 outl(sts, DE4X5_STS); 3374 outl(sts, DE4X5_STS);
3375 3375
3376 /* clear csr12 NRA and SRA bits */ 3376 /* clear csr12 NRA and SRA bits */
3377 if ((lp->chipset == DC21041) || lp->useSROM) { 3377 if ((lp->chipset == DC21041) || lp->useSROM) {
3378 csr12 = inl(DE4X5_SISR); 3378 csr12 = inl(DE4X5_SISR);
3379 outl(csr12, DE4X5_SISR); 3379 outl(csr12, DE4X5_SISR);
3380 } 3380 }
3381 } 3381 }
3382 3382
3383 sts = inl(DE4X5_STS) & ~TIMER_CB; 3383 sts = inl(DE4X5_STS) & ~TIMER_CB;
3384 3384
3385 if (!(sts & irqs) && --lp->timeout) { 3385 if (!(sts & irqs) && --lp->timeout) {
3386 sts = 100 | TIMER_CB; 3386 sts = 100 | TIMER_CB;
3387 } else { 3387 } else {
3388 lp->timeout = -1; 3388 lp->timeout = -1;
3389 } 3389 }
3390 3390
3391 return sts; 3391 return sts;
3392} 3392}
3393 3393
@@ -3397,11 +3397,11 @@ test_tp(struct net_device *dev, s32 msec)
3397 struct de4x5_private *lp = netdev_priv(dev); 3397 struct de4x5_private *lp = netdev_priv(dev);
3398 u_long iobase = dev->base_addr; 3398 u_long iobase = dev->base_addr;
3399 int sisr; 3399 int sisr;
3400 3400
3401 if (lp->timeout < 0) { 3401 if (lp->timeout < 0) {
3402 lp->timeout = msec/100; 3402 lp->timeout = msec/100;
3403 } 3403 }
3404 3404
3405 sisr = (inl(DE4X5_SISR) & ~TIMER_CB) & (SISR_LKF | SISR_NCR); 3405 sisr = (inl(DE4X5_SISR) & ~TIMER_CB) & (SISR_LKF | SISR_NCR);
3406 3406
3407 if (sisr && --lp->timeout) { 3407 if (sisr && --lp->timeout) {
@@ -3409,7 +3409,7 @@ test_tp(struct net_device *dev, s32 msec)
3409 } else { 3409 } else {
3410 lp->timeout = -1; 3410 lp->timeout = -1;
3411 } 3411 }
3412 3412
3413 return sisr; 3413 return sisr;
3414} 3414}
3415 3415
@@ -3436,7 +3436,7 @@ test_for_100Mb(struct net_device *dev, int msec)
3436 lp->timeout = msec/SAMPLE_INTERVAL; 3436 lp->timeout = msec/SAMPLE_INTERVAL;
3437 } 3437 }
3438 } 3438 }
3439 3439
3440 if (lp->phy[lp->active].id || lp->useSROM) { 3440 if (lp->phy[lp->active].id || lp->useSROM) {
3441 gep = is_100_up(dev) | is_spd_100(dev); 3441 gep = is_100_up(dev) | is_spd_100(dev);
3442 } else { 3442 } else {
@@ -3447,7 +3447,7 @@ test_for_100Mb(struct net_device *dev, int msec)
3447 } else { 3447 } else {
3448 lp->timeout = -1; 3448 lp->timeout = -1;
3449 } 3449 }
3450 3450
3451 return gep; 3451 return gep;
3452} 3452}
3453 3453
@@ -3459,13 +3459,13 @@ wait_for_link(struct net_device *dev)
3459 if (lp->timeout < 0) { 3459 if (lp->timeout < 0) {
3460 lp->timeout = 1; 3460 lp->timeout = 1;
3461 } 3461 }
3462 3462
3463 if (lp->timeout--) { 3463 if (lp->timeout--) {
3464 return TIMER_CB; 3464 return TIMER_CB;
3465 } else { 3465 } else {
3466 lp->timeout = -1; 3466 lp->timeout = -1;
3467 } 3467 }
3468 3468
3469 return 0; 3469 return 0;
3470} 3470}
3471 3471
@@ -3479,21 +3479,21 @@ test_mii_reg(struct net_device *dev, int reg, int mask, int pol, long msec)
3479 struct de4x5_private *lp = netdev_priv(dev); 3479 struct de4x5_private *lp = netdev_priv(dev);
3480 int test; 3480 int test;
3481 u_long iobase = dev->base_addr; 3481 u_long iobase = dev->base_addr;
3482 3482
3483 if (lp->timeout < 0) { 3483 if (lp->timeout < 0) {
3484 lp->timeout = msec/100; 3484 lp->timeout = msec/100;
3485 } 3485 }
3486 3486
3487 if (pol) pol = ~0; 3487 if (pol) pol = ~0;
3488 reg = mii_rd((u_char)reg, lp->phy[lp->active].addr, DE4X5_MII) & mask; 3488 reg = mii_rd((u_char)reg, lp->phy[lp->active].addr, DE4X5_MII) & mask;
3489 test = (reg ^ pol) & mask; 3489 test = (reg ^ pol) & mask;
3490 3490
3491 if (test && --lp->timeout) { 3491 if (test && --lp->timeout) {
3492 reg = 100 | TIMER_CB; 3492 reg = 100 | TIMER_CB;
3493 } else { 3493 } else {
3494 lp->timeout = -1; 3494 lp->timeout = -1;
3495 } 3495 }
3496 3496
3497 return reg; 3497 return reg;
3498} 3498}
3499 3499
@@ -3503,7 +3503,7 @@ is_spd_100(struct net_device *dev)
3503 struct de4x5_private *lp = netdev_priv(dev); 3503 struct de4x5_private *lp = netdev_priv(dev);
3504 u_long iobase = dev->base_addr; 3504 u_long iobase = dev->base_addr;
3505 int spd; 3505 int spd;
3506 3506
3507 if (lp->useMII) { 3507 if (lp->useMII) {
3508 spd = mii_rd(lp->phy[lp->active].spd.reg, lp->phy[lp->active].addr, DE4X5_MII); 3508 spd = mii_rd(lp->phy[lp->active].spd.reg, lp->phy[lp->active].addr, DE4X5_MII);
3509 spd = ~(spd ^ lp->phy[lp->active].spd.value); 3509 spd = ~(spd ^ lp->phy[lp->active].spd.value);
@@ -3517,7 +3517,7 @@ is_spd_100(struct net_device *dev)
3517 spd = (lp->asBitValid & (lp->asPolarity ^ (gep_rd(dev) & lp->asBit))) | 3517 spd = (lp->asBitValid & (lp->asPolarity ^ (gep_rd(dev) & lp->asBit))) |
3518 (lp->linkOK & ~lp->asBitValid); 3518 (lp->linkOK & ~lp->asBitValid);
3519 } 3519 }
3520 3520
3521 return spd; 3521 return spd;
3522} 3522}
3523 3523
@@ -3526,7 +3526,7 @@ is_100_up(struct net_device *dev)
3526{ 3526{
3527 struct de4x5_private *lp = netdev_priv(dev); 3527 struct de4x5_private *lp = netdev_priv(dev);
3528 u_long iobase = dev->base_addr; 3528 u_long iobase = dev->base_addr;
3529 3529
3530 if (lp->useMII) { 3530 if (lp->useMII) {
3531 /* Double read for sticky bits & temporary drops */ 3531 /* Double read for sticky bits & temporary drops */
3532 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII); 3532 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
@@ -3547,7 +3547,7 @@ is_10_up(struct net_device *dev)
3547{ 3547{
3548 struct de4x5_private *lp = netdev_priv(dev); 3548 struct de4x5_private *lp = netdev_priv(dev);
3549 u_long iobase = dev->base_addr; 3549 u_long iobase = dev->base_addr;
3550 3550
3551 if (lp->useMII) { 3551 if (lp->useMII) {
3552 /* Double read for sticky bits & temporary drops */ 3552 /* Double read for sticky bits & temporary drops */
3553 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII); 3553 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
@@ -3570,7 +3570,7 @@ is_anc_capable(struct net_device *dev)
3570{ 3570{
3571 struct de4x5_private *lp = netdev_priv(dev); 3571 struct de4x5_private *lp = netdev_priv(dev);
3572 u_long iobase = dev->base_addr; 3572 u_long iobase = dev->base_addr;
3573 3573
3574 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) { 3574 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
3575 return (mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII)); 3575 return (mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII));
3576 } else if ((lp->chipset & ~0x00ff) == DC2114x) { 3576 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
@@ -3590,24 +3590,24 @@ ping_media(struct net_device *dev, int msec)
3590 struct de4x5_private *lp = netdev_priv(dev); 3590 struct de4x5_private *lp = netdev_priv(dev);
3591 u_long iobase = dev->base_addr; 3591 u_long iobase = dev->base_addr;
3592 int sisr; 3592 int sisr;
3593 3593
3594 if (lp->timeout < 0) { 3594 if (lp->timeout < 0) {
3595 lp->timeout = msec/100; 3595 lp->timeout = msec/100;
3596 3596
3597 lp->tmp = lp->tx_new; /* Remember the ring position */ 3597 lp->tmp = lp->tx_new; /* Remember the ring position */
3598 load_packet(dev, lp->frame, TD_LS | TD_FS | sizeof(lp->frame), (struct sk_buff *)1); 3598 load_packet(dev, lp->frame, TD_LS | TD_FS | sizeof(lp->frame), (struct sk_buff *)1);
3599 lp->tx_new = (++lp->tx_new) % lp->txRingSize; 3599 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
3600 outl(POLL_DEMAND, DE4X5_TPD); 3600 outl(POLL_DEMAND, DE4X5_TPD);
3601 } 3601 }
3602 3602
3603 sisr = inl(DE4X5_SISR); 3603 sisr = inl(DE4X5_SISR);
3604 3604
3605 if ((!(sisr & SISR_NCR)) && 3605 if ((!(sisr & SISR_NCR)) &&
3606 ((s32)le32_to_cpu(lp->tx_ring[lp->tmp].status) < 0) && 3606 ((s32)le32_to_cpu(lp->tx_ring[lp->tmp].status) < 0) &&
3607 (--lp->timeout)) { 3607 (--lp->timeout)) {
3608 sisr = 100 | TIMER_CB; 3608 sisr = 100 | TIMER_CB;
3609 } else { 3609 } else {
3610 if ((!(sisr & SISR_NCR)) && 3610 if ((!(sisr & SISR_NCR)) &&
3611 !(le32_to_cpu(lp->tx_ring[lp->tmp].status) & (T_OWN | TD_ES)) && 3611 !(le32_to_cpu(lp->tx_ring[lp->tmp].status) & (T_OWN | TD_ES)) &&
3612 lp->timeout) { 3612 lp->timeout) {
3613 sisr = 0; 3613 sisr = 0;
@@ -3616,7 +3616,7 @@ ping_media(struct net_device *dev, int msec)
3616 } 3616 }
3617 lp->timeout = -1; 3617 lp->timeout = -1;
3618 } 3618 }
3619 3619
3620 return sisr; 3620 return sisr;
3621} 3621}
3622 3622
@@ -3668,7 +3668,7 @@ de4x5_alloc_rx_buff(struct net_device *dev, int index, int len)
3668 } else { /* Linear buffer */ 3668 } else { /* Linear buffer */
3669 memcpy(skb_put(p,len),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,len); 3669 memcpy(skb_put(p,len),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,len);
3670 } 3670 }
3671 3671
3672 return p; 3672 return p;
3673#endif 3673#endif
3674} 3674}
@@ -3751,23 +3751,23 @@ de4x5_rst_desc_ring(struct net_device *dev)
3751 outl(lp->dma_rings, DE4X5_RRBA); 3751 outl(lp->dma_rings, DE4X5_RRBA);
3752 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc), 3752 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
3753 DE4X5_TRBA); 3753 DE4X5_TRBA);
3754 3754
3755 lp->rx_new = lp->rx_old = 0; 3755 lp->rx_new = lp->rx_old = 0;
3756 lp->tx_new = lp->tx_old = 0; 3756 lp->tx_new = lp->tx_old = 0;
3757 3757
3758 for (i = 0; i < lp->rxRingSize; i++) { 3758 for (i = 0; i < lp->rxRingSize; i++) {
3759 lp->rx_ring[i].status = cpu_to_le32(R_OWN); 3759 lp->rx_ring[i].status = cpu_to_le32(R_OWN);
3760 } 3760 }
3761 3761
3762 for (i = 0; i < lp->txRingSize; i++) { 3762 for (i = 0; i < lp->txRingSize; i++) {
3763 lp->tx_ring[i].status = cpu_to_le32(0); 3763 lp->tx_ring[i].status = cpu_to_le32(0);
3764 } 3764 }
3765 3765
3766 barrier(); 3766 barrier();
3767 lp->cache.save_cnt--; 3767 lp->cache.save_cnt--;
3768 START_DE4X5; 3768 START_DE4X5;
3769 } 3769 }
3770 3770
3771 return; 3771 return;
3772} 3772}
3773 3773
@@ -3792,7 +3792,7 @@ de4x5_cache_state(struct net_device *dev, int flag)
3792 gep_wr(lp->cache.gepc, dev); 3792 gep_wr(lp->cache.gepc, dev);
3793 gep_wr(lp->cache.gep, dev); 3793 gep_wr(lp->cache.gep, dev);
3794 } else { 3794 } else {
3795 reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14, 3795 reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14,
3796 lp->cache.csr15); 3796 lp->cache.csr15);
3797 } 3797 }
3798 break; 3798 break;
@@ -3854,25 +3854,25 @@ test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec)
3854 struct de4x5_private *lp = netdev_priv(dev); 3854 struct de4x5_private *lp = netdev_priv(dev);
3855 u_long iobase = dev->base_addr; 3855 u_long iobase = dev->base_addr;
3856 s32 sts, ans; 3856 s32 sts, ans;
3857 3857
3858 if (lp->timeout < 0) { 3858 if (lp->timeout < 0) {
3859 lp->timeout = msec/100; 3859 lp->timeout = msec/100;
3860 outl(irq_mask, DE4X5_IMR); 3860 outl(irq_mask, DE4X5_IMR);
3861 3861
3862 /* clear all pending interrupts */ 3862 /* clear all pending interrupts */
3863 sts = inl(DE4X5_STS); 3863 sts = inl(DE4X5_STS);
3864 outl(sts, DE4X5_STS); 3864 outl(sts, DE4X5_STS);
3865 } 3865 }
3866 3866
3867 ans = inl(DE4X5_SISR) & SISR_ANS; 3867 ans = inl(DE4X5_SISR) & SISR_ANS;
3868 sts = inl(DE4X5_STS) & ~TIMER_CB; 3868 sts = inl(DE4X5_STS) & ~TIMER_CB;
3869 3869
3870 if (!(sts & irqs) && (ans ^ ANS_NWOK) && --lp->timeout) { 3870 if (!(sts & irqs) && (ans ^ ANS_NWOK) && --lp->timeout) {
3871 sts = 100 | TIMER_CB; 3871 sts = 100 | TIMER_CB;
3872 } else { 3872 } else {
3873 lp->timeout = -1; 3873 lp->timeout = -1;
3874 } 3874 }
3875 3875
3876 return sts; 3876 return sts;
3877} 3877}
3878 3878
@@ -3882,7 +3882,7 @@ de4x5_setup_intr(struct net_device *dev)
3882 struct de4x5_private *lp = netdev_priv(dev); 3882 struct de4x5_private *lp = netdev_priv(dev);
3883 u_long iobase = dev->base_addr; 3883 u_long iobase = dev->base_addr;
3884 s32 imr, sts; 3884 s32 imr, sts;
3885 3885
3886 if (inl(DE4X5_OMR) & OMR_SR) { /* Only unmask if TX/RX is enabled */ 3886 if (inl(DE4X5_OMR) & OMR_SR) { /* Only unmask if TX/RX is enabled */
3887 imr = 0; 3887 imr = 0;
3888 UNMASK_IRQs; 3888 UNMASK_IRQs;
@@ -3890,7 +3890,7 @@ de4x5_setup_intr(struct net_device *dev)
3890 outl(sts, DE4X5_STS); 3890 outl(sts, DE4X5_STS);
3891 ENABLE_IRQs; 3891 ENABLE_IRQs;
3892 } 3892 }
3893 3893
3894 return; 3894 return;
3895} 3895}
3896 3896
@@ -3936,17 +3936,17 @@ create_packet(struct net_device *dev, char *frame, int len)
3936{ 3936{
3937 int i; 3937 int i;
3938 char *buf = frame; 3938 char *buf = frame;
3939 3939
3940 for (i=0; i<ETH_ALEN; i++) { /* Use this source address */ 3940 for (i=0; i<ETH_ALEN; i++) { /* Use this source address */
3941 *buf++ = dev->dev_addr[i]; 3941 *buf++ = dev->dev_addr[i];
3942 } 3942 }
3943 for (i=0; i<ETH_ALEN; i++) { /* Use this destination address */ 3943 for (i=0; i<ETH_ALEN; i++) { /* Use this destination address */
3944 *buf++ = dev->dev_addr[i]; 3944 *buf++ = dev->dev_addr[i];
3945 } 3945 }
3946 3946
3947 *buf++ = 0; /* Packet length (2 bytes) */ 3947 *buf++ = 0; /* Packet length (2 bytes) */
3948 *buf++ = 1; 3948 *buf++ = 1;
3949 3949
3950 return; 3950 return;
3951} 3951}
3952 3952
@@ -3978,7 +3978,7 @@ static int
3978PCI_signature(char *name, struct de4x5_private *lp) 3978PCI_signature(char *name, struct de4x5_private *lp)
3979{ 3979{
3980 int i, status = 0, siglen = sizeof(de4x5_signatures)/sizeof(c_char *); 3980 int i, status = 0, siglen = sizeof(de4x5_signatures)/sizeof(c_char *);
3981 3981
3982 if (lp->chipset == DC21040) { 3982 if (lp->chipset == DC21040) {
3983 strcpy(name, "DE434/5"); 3983 strcpy(name, "DE434/5");
3984 return status; 3984 return status;
@@ -4007,7 +4007,7 @@ PCI_signature(char *name, struct de4x5_private *lp)
4007 } else if ((lp->chipset & ~0x00ff) == DC2114x) { 4007 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
4008 lp->useSROM = TRUE; 4008 lp->useSROM = TRUE;
4009 } 4009 }
4010 4010
4011 return status; 4011 return status;
4012} 4012}
4013 4013
@@ -4024,7 +4024,7 @@ DevicePresent(struct net_device *dev, u_long aprom_addr)
4024{ 4024{
4025 int i, j=0; 4025 int i, j=0;
4026 struct de4x5_private *lp = netdev_priv(dev); 4026 struct de4x5_private *lp = netdev_priv(dev);
4027 4027
4028 if (lp->chipset == DC21040) { 4028 if (lp->chipset == DC21040) {
4029 if (lp->bus == EISA) { 4029 if (lp->bus == EISA) {
4030 enet_addr_rst(aprom_addr); /* Reset Ethernet Address ROM Pointer */ 4030 enet_addr_rst(aprom_addr); /* Reset Ethernet Address ROM Pointer */
@@ -4049,7 +4049,7 @@ DevicePresent(struct net_device *dev, u_long aprom_addr)
4049 } 4049 }
4050 de4x5_dbg_srom((struct de4x5_srom *)&lp->srom); 4050 de4x5_dbg_srom((struct de4x5_srom *)&lp->srom);
4051 } 4051 }
4052 4052
4053 return; 4053 return;
4054} 4054}
4055 4055
@@ -4071,11 +4071,11 @@ enet_addr_rst(u_long aprom_addr)
4071 short sigLength=0; 4071 short sigLength=0;
4072 s8 data; 4072 s8 data;
4073 int i, j; 4073 int i, j;
4074 4074
4075 dev.llsig.a = ETH_PROM_SIG; 4075 dev.llsig.a = ETH_PROM_SIG;
4076 dev.llsig.b = ETH_PROM_SIG; 4076 dev.llsig.b = ETH_PROM_SIG;
4077 sigLength = sizeof(u32) << 1; 4077 sigLength = sizeof(u32) << 1;
4078 4078
4079 for (i=0,j=0;j<sigLength && i<PROBE_LENGTH+sigLength-1;i++) { 4079 for (i=0,j=0;j<sigLength && i<PROBE_LENGTH+sigLength-1;i++) {
4080 data = inb(aprom_addr); 4080 data = inb(aprom_addr);
4081 if (dev.Sig[j] == data) { /* track signature */ 4081 if (dev.Sig[j] == data) { /* track signature */
@@ -4088,7 +4088,7 @@ enet_addr_rst(u_long aprom_addr)
4088 } 4088 }
4089 } 4089 }
4090 } 4090 }
4091 4091
4092 return; 4092 return;
4093} 4093}
4094 4094
@@ -4111,7 +4111,7 @@ get_hw_addr(struct net_device *dev)
4111 for (i=0,k=0,j=0;j<3;j++) { 4111 for (i=0,k=0,j=0;j<3;j++) {
4112 k <<= 1; 4112 k <<= 1;
4113 if (k > 0xffff) k-=0xffff; 4113 if (k > 0xffff) k-=0xffff;
4114 4114
4115 if (lp->bus == PCI) { 4115 if (lp->bus == PCI) {
4116 if (lp->chipset == DC21040) { 4116 if (lp->chipset == DC21040) {
4117 while ((tmp = inl(DE4X5_APROM)) < 0); 4117 while ((tmp = inl(DE4X5_APROM)) < 0);
@@ -4133,11 +4133,11 @@ get_hw_addr(struct net_device *dev)
4133 k += (u_short) ((tmp = inb(EISA_APROM)) << 8); 4133 k += (u_short) ((tmp = inb(EISA_APROM)) << 8);
4134 dev->dev_addr[i++] = (u_char) tmp; 4134 dev->dev_addr[i++] = (u_char) tmp;
4135 } 4135 }
4136 4136
4137 if (k > 0xffff) k-=0xffff; 4137 if (k > 0xffff) k-=0xffff;
4138 } 4138 }
4139 if (k == 0xffff) k=0; 4139 if (k == 0xffff) k=0;
4140 4140
4141 if (lp->bus == PCI) { 4141 if (lp->bus == PCI) {
4142 if (lp->chipset == DC21040) { 4142 if (lp->chipset == DC21040) {
4143 while ((tmp = inl(DE4X5_APROM)) < 0); 4143 while ((tmp = inl(DE4X5_APROM)) < 0);
@@ -4156,7 +4156,7 @@ get_hw_addr(struct net_device *dev)
4156 srom_repair(dev, broken); 4156 srom_repair(dev, broken);
4157 4157
4158#ifdef CONFIG_PPC_MULTIPLATFORM 4158#ifdef CONFIG_PPC_MULTIPLATFORM
4159 /* 4159 /*
4160 ** If the address starts with 00 a0, we have to bit-reverse 4160 ** If the address starts with 00 a0, we have to bit-reverse
4161 ** each byte of the address. 4161 ** each byte of the address.
4162 */ 4162 */
@@ -4245,7 +4245,7 @@ test_bad_enet(struct net_device *dev, int status)
4245 4245
4246 for (tmp=0,i=0; i<ETH_ALEN; i++) tmp += (u_char)dev->dev_addr[i]; 4246 for (tmp=0,i=0; i<ETH_ALEN; i++) tmp += (u_char)dev->dev_addr[i];
4247 if ((tmp == 0) || (tmp == 0x5fa)) { 4247 if ((tmp == 0) || (tmp == 0x5fa)) {
4248 if ((lp->chipset == last.chipset) && 4248 if ((lp->chipset == last.chipset) &&
4249 (lp->bus_num == last.bus) && (lp->bus_num > 0)) { 4249 (lp->bus_num == last.bus) && (lp->bus_num > 0)) {
4250 for (i=0; i<ETH_ALEN; i++) dev->dev_addr[i] = last.addr[i]; 4250 for (i=0; i<ETH_ALEN; i++) dev->dev_addr[i] = last.addr[i];
4251 for (i=ETH_ALEN-1; i>2; --i) { 4251 for (i=ETH_ALEN-1; i>2; --i) {
@@ -4275,7 +4275,7 @@ test_bad_enet(struct net_device *dev, int status)
4275static int 4275static int
4276an_exception(struct de4x5_private *lp) 4276an_exception(struct de4x5_private *lp)
4277{ 4277{
4278 if ((*(u_short *)lp->srom.sub_vendor_id == 0x00c0) && 4278 if ((*(u_short *)lp->srom.sub_vendor_id == 0x00c0) &&
4279 (*(u_short *)lp->srom.sub_system_id == 0x95e0)) { 4279 (*(u_short *)lp->srom.sub_system_id == 0x95e0)) {
4280 return -1; 4280 return -1;
4281 } 4281 }
@@ -4290,11 +4290,11 @@ static short
4290srom_rd(u_long addr, u_char offset) 4290srom_rd(u_long addr, u_char offset)
4291{ 4291{
4292 sendto_srom(SROM_RD | SROM_SR, addr); 4292 sendto_srom(SROM_RD | SROM_SR, addr);
4293 4293
4294 srom_latch(SROM_RD | SROM_SR | DT_CS, addr); 4294 srom_latch(SROM_RD | SROM_SR | DT_CS, addr);
4295 srom_command(SROM_RD | SROM_SR | DT_IN | DT_CS, addr); 4295 srom_command(SROM_RD | SROM_SR | DT_IN | DT_CS, addr);
4296 srom_address(SROM_RD | SROM_SR | DT_CS, addr, offset); 4296 srom_address(SROM_RD | SROM_SR | DT_CS, addr, offset);
4297 4297
4298 return srom_data(SROM_RD | SROM_SR | DT_CS, addr); 4298 return srom_data(SROM_RD | SROM_SR | DT_CS, addr);
4299} 4299}
4300 4300
@@ -4304,7 +4304,7 @@ srom_latch(u_int command, u_long addr)
4304 sendto_srom(command, addr); 4304 sendto_srom(command, addr);
4305 sendto_srom(command | DT_CLK, addr); 4305 sendto_srom(command | DT_CLK, addr);
4306 sendto_srom(command, addr); 4306 sendto_srom(command, addr);
4307 4307
4308 return; 4308 return;
4309} 4309}
4310 4310
@@ -4314,7 +4314,7 @@ srom_command(u_int command, u_long addr)
4314 srom_latch(command, addr); 4314 srom_latch(command, addr);
4315 srom_latch(command, addr); 4315 srom_latch(command, addr);
4316 srom_latch((command & 0x0000ff00) | DT_CS, addr); 4316 srom_latch((command & 0x0000ff00) | DT_CS, addr);
4317 4317
4318 return; 4318 return;
4319} 4319}
4320 4320
@@ -4322,15 +4322,15 @@ static void
4322srom_address(u_int command, u_long addr, u_char offset) 4322srom_address(u_int command, u_long addr, u_char offset)
4323{ 4323{
4324 int i, a; 4324 int i, a;
4325 4325
4326 a = offset << 2; 4326 a = offset << 2;
4327 for (i=0; i<6; i++, a <<= 1) { 4327 for (i=0; i<6; i++, a <<= 1) {
4328 srom_latch(command | ((a & 0x80) ? DT_IN : 0), addr); 4328 srom_latch(command | ((a & 0x80) ? DT_IN : 0), addr);
4329 } 4329 }
4330 udelay(1); 4330 udelay(1);
4331 4331
4332 i = (getfrom_srom(addr) >> 3) & 0x01; 4332 i = (getfrom_srom(addr) >> 3) & 0x01;
4333 4333
4334 return; 4334 return;
4335} 4335}
4336 4336
@@ -4340,17 +4340,17 @@ srom_data(u_int command, u_long addr)
4340 int i; 4340 int i;
4341 short word = 0; 4341 short word = 0;
4342 s32 tmp; 4342 s32 tmp;
4343 4343
4344 for (i=0; i<16; i++) { 4344 for (i=0; i<16; i++) {
4345 sendto_srom(command | DT_CLK, addr); 4345 sendto_srom(command | DT_CLK, addr);
4346 tmp = getfrom_srom(addr); 4346 tmp = getfrom_srom(addr);
4347 sendto_srom(command, addr); 4347 sendto_srom(command, addr);
4348 4348
4349 word = (word << 1) | ((tmp >> 3) & 0x01); 4349 word = (word << 1) | ((tmp >> 3) & 0x01);
4350 } 4350 }
4351 4351
4352 sendto_srom(command & 0x0000ff00, addr); 4352 sendto_srom(command & 0x0000ff00, addr);
4353 4353
4354 return word; 4354 return word;
4355} 4355}
4356 4356
@@ -4359,13 +4359,13 @@ static void
4359srom_busy(u_int command, u_long addr) 4359srom_busy(u_int command, u_long addr)
4360{ 4360{
4361 sendto_srom((command & 0x0000ff00) | DT_CS, addr); 4361 sendto_srom((command & 0x0000ff00) | DT_CS, addr);
4362 4362
4363 while (!((getfrom_srom(addr) >> 3) & 0x01)) { 4363 while (!((getfrom_srom(addr) >> 3) & 0x01)) {
4364 mdelay(1); 4364 mdelay(1);
4365 } 4365 }
4366 4366
4367 sendto_srom(command & 0x0000ff00, addr); 4367 sendto_srom(command & 0x0000ff00, addr);
4368 4368
4369 return; 4369 return;
4370} 4370}
4371*/ 4371*/
@@ -4375,7 +4375,7 @@ sendto_srom(u_int command, u_long addr)
4375{ 4375{
4376 outl(command, addr); 4376 outl(command, addr);
4377 udelay(1); 4377 udelay(1);
4378 4378
4379 return; 4379 return;
4380} 4380}
4381 4381
@@ -4383,10 +4383,10 @@ static int
4383getfrom_srom(u_long addr) 4383getfrom_srom(u_long addr)
4384{ 4384{
4385 s32 tmp; 4385 s32 tmp;
4386 4386
4387 tmp = inl(addr); 4387 tmp = inl(addr);
4388 udelay(1); 4388 udelay(1);
4389 4389
4390 return tmp; 4390 return tmp;
4391} 4391}
4392 4392
@@ -4403,7 +4403,7 @@ srom_infoleaf_info(struct net_device *dev)
4403 } 4403 }
4404 if (i == INFOLEAF_SIZE) { 4404 if (i == INFOLEAF_SIZE) {
4405 lp->useSROM = FALSE; 4405 lp->useSROM = FALSE;
4406 printk("%s: Cannot find correct chipset for SROM decoding!\n", 4406 printk("%s: Cannot find correct chipset for SROM decoding!\n",
4407 dev->name); 4407 dev->name);
4408 return -ENXIO; 4408 return -ENXIO;
4409 } 4409 }
@@ -4420,7 +4420,7 @@ srom_infoleaf_info(struct net_device *dev)
4420 } 4420 }
4421 if (i == 0) { 4421 if (i == 0) {
4422 lp->useSROM = FALSE; 4422 lp->useSROM = FALSE;
4423 printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n", 4423 printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n",
4424 dev->name, lp->device); 4424 dev->name, lp->device);
4425 return -ENXIO; 4425 return -ENXIO;
4426 } 4426 }
@@ -4494,9 +4494,9 @@ srom_exec(struct net_device *dev, u_char *p)
4494 if (((lp->ibn != 1) && (lp->ibn != 3) && (lp->ibn != 5)) || !count) return; 4494 if (((lp->ibn != 1) && (lp->ibn != 3) && (lp->ibn != 5)) || !count) return;
4495 4495
4496 if (lp->chipset != DC21140) RESET_SIA; 4496 if (lp->chipset != DC21140) RESET_SIA;
4497 4497
4498 while (count--) { 4498 while (count--) {
4499 gep_wr(((lp->chipset==DC21140) && (lp->ibn!=5) ? 4499 gep_wr(((lp->chipset==DC21140) && (lp->ibn!=5) ?
4500 *p++ : TWIDDLE(w++)), dev); 4500 *p++ : TWIDDLE(w++)), dev);
4501 mdelay(2); /* 2ms per action */ 4501 mdelay(2); /* 2ms per action */
4502 } 4502 }
@@ -4514,13 +4514,13 @@ srom_exec(struct net_device *dev, u_char *p)
4514** unless I implement the DC21041 SROM functions. There's no need 4514** unless I implement the DC21041 SROM functions. There's no need
4515** since the existing code will be satisfactory for all boards. 4515** since the existing code will be satisfactory for all boards.
4516*/ 4516*/
4517static int 4517static int
4518dc21041_infoleaf(struct net_device *dev) 4518dc21041_infoleaf(struct net_device *dev)
4519{ 4519{
4520 return DE4X5_AUTOSENSE_MS; 4520 return DE4X5_AUTOSENSE_MS;
4521} 4521}
4522 4522
4523static int 4523static int
4524dc21140_infoleaf(struct net_device *dev) 4524dc21140_infoleaf(struct net_device *dev)
4525{ 4525{
4526 struct de4x5_private *lp = netdev_priv(dev); 4526 struct de4x5_private *lp = netdev_priv(dev);
@@ -4558,7 +4558,7 @@ dc21140_infoleaf(struct net_device *dev)
4558 return next_tick & ~TIMER_CB; 4558 return next_tick & ~TIMER_CB;
4559} 4559}
4560 4560
4561static int 4561static int
4562dc21142_infoleaf(struct net_device *dev) 4562dc21142_infoleaf(struct net_device *dev)
4563{ 4563{
4564 struct de4x5_private *lp = netdev_priv(dev); 4564 struct de4x5_private *lp = netdev_priv(dev);
@@ -4593,7 +4593,7 @@ dc21142_infoleaf(struct net_device *dev)
4593 return next_tick & ~TIMER_CB; 4593 return next_tick & ~TIMER_CB;
4594} 4594}
4595 4595
4596static int 4596static int
4597dc21143_infoleaf(struct net_device *dev) 4597dc21143_infoleaf(struct net_device *dev)
4598{ 4598{
4599 struct de4x5_private *lp = netdev_priv(dev); 4599 struct de4x5_private *lp = netdev_priv(dev);
@@ -4631,7 +4631,7 @@ dc21143_infoleaf(struct net_device *dev)
4631** The compact infoblock is only designed for DC21140[A] chips, so 4631** The compact infoblock is only designed for DC21140[A] chips, so
4632** we'll reuse the dc21140m_autoconf function. Non MII media only. 4632** we'll reuse the dc21140m_autoconf function. Non MII media only.
4633*/ 4633*/
4634static int 4634static int
4635compact_infoblock(struct net_device *dev, u_char count, u_char *p) 4635compact_infoblock(struct net_device *dev, u_char count, u_char *p)
4636{ 4636{
4637 struct de4x5_private *lp = netdev_priv(dev); 4637 struct de4x5_private *lp = netdev_priv(dev);
@@ -4671,7 +4671,7 @@ compact_infoblock(struct net_device *dev, u_char count, u_char *p)
4671/* 4671/*
4672** This block describes non MII media for the DC21140[A] only. 4672** This block describes non MII media for the DC21140[A] only.
4673*/ 4673*/
4674static int 4674static int
4675type0_infoblock(struct net_device *dev, u_char count, u_char *p) 4675type0_infoblock(struct net_device *dev, u_char count, u_char *p)
4676{ 4676{
4677 struct de4x5_private *lp = netdev_priv(dev); 4677 struct de4x5_private *lp = netdev_priv(dev);
@@ -4711,7 +4711,7 @@ type0_infoblock(struct net_device *dev, u_char count, u_char *p)
4711 4711
4712/* These functions are under construction! */ 4712/* These functions are under construction! */
4713 4713
4714static int 4714static int
4715type1_infoblock(struct net_device *dev, u_char count, u_char *p) 4715type1_infoblock(struct net_device *dev, u_char count, u_char *p)
4716{ 4716{
4717 struct de4x5_private *lp = netdev_priv(dev); 4717 struct de4x5_private *lp = netdev_priv(dev);
@@ -4750,7 +4750,7 @@ type1_infoblock(struct net_device *dev, u_char count, u_char *p)
4750 return dc21140m_autoconf(dev); 4750 return dc21140m_autoconf(dev);
4751} 4751}
4752 4752
4753static int 4753static int
4754type2_infoblock(struct net_device *dev, u_char count, u_char *p) 4754type2_infoblock(struct net_device *dev, u_char count, u_char *p)
4755{ 4755{
4756 struct de4x5_private *lp = netdev_priv(dev); 4756 struct de4x5_private *lp = netdev_priv(dev);
@@ -4791,7 +4791,7 @@ type2_infoblock(struct net_device *dev, u_char count, u_char *p)
4791 return dc2114x_autoconf(dev); 4791 return dc2114x_autoconf(dev);
4792} 4792}
4793 4793
4794static int 4794static int
4795type3_infoblock(struct net_device *dev, u_char count, u_char *p) 4795type3_infoblock(struct net_device *dev, u_char count, u_char *p)
4796{ 4796{
4797 struct de4x5_private *lp = netdev_priv(dev); 4797 struct de4x5_private *lp = netdev_priv(dev);
@@ -4833,7 +4833,7 @@ type3_infoblock(struct net_device *dev, u_char count, u_char *p)
4833 return dc2114x_autoconf(dev); 4833 return dc2114x_autoconf(dev);
4834} 4834}
4835 4835
4836static int 4836static int
4837type4_infoblock(struct net_device *dev, u_char count, u_char *p) 4837type4_infoblock(struct net_device *dev, u_char count, u_char *p)
4838{ 4838{
4839 struct de4x5_private *lp = netdev_priv(dev); 4839 struct de4x5_private *lp = netdev_priv(dev);
@@ -4878,7 +4878,7 @@ type4_infoblock(struct net_device *dev, u_char count, u_char *p)
4878** This block type provides information for resetting external devices 4878** This block type provides information for resetting external devices
4879** (chips) through the General Purpose Register. 4879** (chips) through the General Purpose Register.
4880*/ 4880*/
4881static int 4881static int
4882type5_infoblock(struct net_device *dev, u_char count, u_char *p) 4882type5_infoblock(struct net_device *dev, u_char count, u_char *p)
4883{ 4883{
4884 struct de4x5_private *lp = netdev_priv(dev); 4884 struct de4x5_private *lp = netdev_priv(dev);
@@ -4916,7 +4916,7 @@ mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr)
4916 mii_address(phyaddr, ioaddr); /* PHY address to be accessed */ 4916 mii_address(phyaddr, ioaddr); /* PHY address to be accessed */
4917 mii_address(phyreg, ioaddr); /* PHY Register to read */ 4917 mii_address(phyreg, ioaddr); /* PHY Register to read */
4918 mii_ta(MII_STRD, ioaddr); /* Turn around time - 2 MDC */ 4918 mii_ta(MII_STRD, ioaddr); /* Turn around time - 2 MDC */
4919 4919
4920 return mii_rdata(ioaddr); /* Read data */ 4920 return mii_rdata(ioaddr); /* Read data */
4921} 4921}
4922 4922
@@ -4931,7 +4931,7 @@ mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr)
4931 mii_ta(MII_STWR, ioaddr); /* Turn around time - 2 MDC */ 4931 mii_ta(MII_STWR, ioaddr); /* Turn around time - 2 MDC */
4932 data = mii_swap(data, 16); /* Swap data bit ordering */ 4932 data = mii_swap(data, 16); /* Swap data bit ordering */
4933 mii_wdata(data, 16, ioaddr); /* Write data */ 4933 mii_wdata(data, 16, ioaddr); /* Write data */
4934 4934
4935 return; 4935 return;
4936} 4936}
4937 4937
@@ -4940,12 +4940,12 @@ mii_rdata(u_long ioaddr)
4940{ 4940{
4941 int i; 4941 int i;
4942 s32 tmp = 0; 4942 s32 tmp = 0;
4943 4943
4944 for (i=0; i<16; i++) { 4944 for (i=0; i<16; i++) {
4945 tmp <<= 1; 4945 tmp <<= 1;
4946 tmp |= getfrom_mii(MII_MRD | MII_RD, ioaddr); 4946 tmp |= getfrom_mii(MII_MRD | MII_RD, ioaddr);
4947 } 4947 }
4948 4948
4949 return tmp; 4949 return tmp;
4950} 4950}
4951 4951
@@ -4953,12 +4953,12 @@ static void
4953mii_wdata(int data, int len, u_long ioaddr) 4953mii_wdata(int data, int len, u_long ioaddr)
4954{ 4954{
4955 int i; 4955 int i;
4956 4956
4957 for (i=0; i<len; i++) { 4957 for (i=0; i<len; i++) {
4958 sendto_mii(MII_MWR | MII_WR, data, ioaddr); 4958 sendto_mii(MII_MWR | MII_WR, data, ioaddr);
4959 data >>= 1; 4959 data >>= 1;
4960 } 4960 }
4961 4961
4962 return; 4962 return;
4963} 4963}
4964 4964
@@ -4966,13 +4966,13 @@ static void
4966mii_address(u_char addr, u_long ioaddr) 4966mii_address(u_char addr, u_long ioaddr)
4967{ 4967{
4968 int i; 4968 int i;
4969 4969
4970 addr = mii_swap(addr, 5); 4970 addr = mii_swap(addr, 5);
4971 for (i=0; i<5; i++) { 4971 for (i=0; i<5; i++) {
4972 sendto_mii(MII_MWR | MII_WR, addr, ioaddr); 4972 sendto_mii(MII_MWR | MII_WR, addr, ioaddr);
4973 addr >>= 1; 4973 addr >>= 1;
4974 } 4974 }
4975 4975
4976 return; 4976 return;
4977} 4977}
4978 4978
@@ -4980,12 +4980,12 @@ static void
4980mii_ta(u_long rw, u_long ioaddr) 4980mii_ta(u_long rw, u_long ioaddr)
4981{ 4981{
4982 if (rw == MII_STWR) { 4982 if (rw == MII_STWR) {
4983 sendto_mii(MII_MWR | MII_WR, 1, ioaddr); 4983 sendto_mii(MII_MWR | MII_WR, 1, ioaddr);
4984 sendto_mii(MII_MWR | MII_WR, 0, ioaddr); 4984 sendto_mii(MII_MWR | MII_WR, 0, ioaddr);
4985 } else { 4985 } else {
4986 getfrom_mii(MII_MRD | MII_RD, ioaddr); /* Tri-state MDIO */ 4986 getfrom_mii(MII_MRD | MII_RD, ioaddr); /* Tri-state MDIO */
4987 } 4987 }
4988 4988
4989 return; 4989 return;
4990} 4990}
4991 4991
@@ -4993,13 +4993,13 @@ static int
4993mii_swap(int data, int len) 4993mii_swap(int data, int len)
4994{ 4994{
4995 int i, tmp = 0; 4995 int i, tmp = 0;
4996 4996
4997 for (i=0; i<len; i++) { 4997 for (i=0; i<len; i++) {
4998 tmp <<= 1; 4998 tmp <<= 1;
4999 tmp |= (data & 1); 4999 tmp |= (data & 1);
5000 data >>= 1; 5000 data >>= 1;
5001 } 5001 }
5002 5002
5003 return tmp; 5003 return tmp;
5004} 5004}
5005 5005
@@ -5007,13 +5007,13 @@ static void
5007sendto_mii(u32 command, int data, u_long ioaddr) 5007sendto_mii(u32 command, int data, u_long ioaddr)
5008{ 5008{
5009 u32 j; 5009 u32 j;
5010 5010
5011 j = (data & 1) << 17; 5011 j = (data & 1) << 17;
5012 outl(command | j, ioaddr); 5012 outl(command | j, ioaddr);
5013 udelay(1); 5013 udelay(1);
5014 outl(command | MII_MDC | j, ioaddr); 5014 outl(command | MII_MDC | j, ioaddr);
5015 udelay(1); 5015 udelay(1);
5016 5016
5017 return; 5017 return;
5018} 5018}
5019 5019
@@ -5024,7 +5024,7 @@ getfrom_mii(u32 command, u_long ioaddr)
5024 udelay(1); 5024 udelay(1);
5025 outl(command | MII_MDC, ioaddr); 5025 outl(command | MII_MDC, ioaddr);
5026 udelay(1); 5026 udelay(1);
5027 5027
5028 return ((inl(ioaddr) >> 19) & 1); 5028 return ((inl(ioaddr) >> 19) & 1);
5029} 5029}
5030 5030
@@ -5085,7 +5085,7 @@ mii_get_phy(struct net_device *dev)
5085 u_long iobase = dev->base_addr; 5085 u_long iobase = dev->base_addr;
5086 int i, j, k, n, limit=sizeof(phy_info)/sizeof(struct phy_table); 5086 int i, j, k, n, limit=sizeof(phy_info)/sizeof(struct phy_table);
5087 int id; 5087 int id;
5088 5088
5089 lp->active = 0; 5089 lp->active = 0;
5090 lp->useMII = TRUE; 5090 lp->useMII = TRUE;
5091 5091
@@ -5094,7 +5094,7 @@ mii_get_phy(struct net_device *dev)
5094 lp->phy[lp->active].addr = i; 5094 lp->phy[lp->active].addr = i;
5095 if (i==0) n++; /* Count cycles */ 5095 if (i==0) n++; /* Count cycles */
5096 while (de4x5_reset_phy(dev)<0) udelay(100);/* Wait for reset */ 5096 while (de4x5_reset_phy(dev)<0) udelay(100);/* Wait for reset */
5097 id = mii_get_oui(i, DE4X5_MII); 5097 id = mii_get_oui(i, DE4X5_MII);
5098 if ((id == 0) || (id == 65535)) continue; /* Valid ID? */ 5098 if ((id == 0) || (id == 65535)) continue; /* Valid ID? */
5099 for (j=0; j<limit; j++) { /* Search PHY table */ 5099 for (j=0; j<limit; j++) { /* Search PHY table */
5100 if (id != phy_info[j].id) continue; /* ID match? */ 5100 if (id != phy_info[j].id) continue; /* ID match? */
@@ -5133,7 +5133,7 @@ mii_get_phy(struct net_device *dev)
5133 for (k=0; lp->phy[k].id && (k < DE4X5_MAX_PHY); k++) { /*For each PHY*/ 5133 for (k=0; lp->phy[k].id && (k < DE4X5_MAX_PHY); k++) { /*For each PHY*/
5134 mii_wr(MII_CR_RST, MII_CR, lp->phy[k].addr, DE4X5_MII); 5134 mii_wr(MII_CR_RST, MII_CR, lp->phy[k].addr, DE4X5_MII);
5135 while (mii_rd(MII_CR, lp->phy[k].addr, DE4X5_MII) & MII_CR_RST); 5135 while (mii_rd(MII_CR, lp->phy[k].addr, DE4X5_MII) & MII_CR_RST);
5136 5136
5137 de4x5_dbg_mii(dev, k); 5137 de4x5_dbg_mii(dev, k);
5138 } 5138 }
5139 } 5139 }
@@ -5148,12 +5148,12 @@ build_setup_frame(struct net_device *dev, int mode)
5148 struct de4x5_private *lp = netdev_priv(dev); 5148 struct de4x5_private *lp = netdev_priv(dev);
5149 int i; 5149 int i;
5150 char *pa = lp->setup_frame; 5150 char *pa = lp->setup_frame;
5151 5151
5152 /* Initialise the setup frame */ 5152 /* Initialise the setup frame */
5153 if (mode == ALL) { 5153 if (mode == ALL) {
5154 memset(lp->setup_frame, 0, SETUP_FRAME_LEN); 5154 memset(lp->setup_frame, 0, SETUP_FRAME_LEN);
5155 } 5155 }
5156 5156
5157 if (lp->setup_f == HASH_PERF) { 5157 if (lp->setup_f == HASH_PERF) {
5158 for (pa=lp->setup_frame+IMPERF_PA_OFFSET, i=0; i<ETH_ALEN; i++) { 5158 for (pa=lp->setup_frame+IMPERF_PA_OFFSET, i=0; i<ETH_ALEN; i++) {
5159 *(pa + i) = dev->dev_addr[i]; /* Host address */ 5159 *(pa + i) = dev->dev_addr[i]; /* Host address */
@@ -5170,7 +5170,7 @@ build_setup_frame(struct net_device *dev, int mode)
5170 if (i & 0x01) pa += 4; 5170 if (i & 0x01) pa += 4;
5171 } 5171 }
5172 } 5172 }
5173 5173
5174 return pa; /* Points to the next entry */ 5174 return pa; /* Points to the next entry */
5175} 5175}
5176 5176
@@ -5178,7 +5178,7 @@ static void
5178enable_ast(struct net_device *dev, u32 time_out) 5178enable_ast(struct net_device *dev, u32 time_out)
5179{ 5179{
5180 timeout(dev, (void *)&de4x5_ast, (u_long)dev, time_out); 5180 timeout(dev, (void *)&de4x5_ast, (u_long)dev, time_out);
5181 5181
5182 return; 5182 return;
5183} 5183}
5184 5184
@@ -5186,9 +5186,9 @@ static void
5186disable_ast(struct net_device *dev) 5186disable_ast(struct net_device *dev)
5187{ 5187{
5188 struct de4x5_private *lp = netdev_priv(dev); 5188 struct de4x5_private *lp = netdev_priv(dev);
5189 5189
5190 del_timer(&lp->timer); 5190 del_timer(&lp->timer);
5191 5191
5192 return; 5192 return;
5193} 5193}
5194 5194
@@ -5207,10 +5207,10 @@ de4x5_switch_mac_port(struct net_device *dev)
5207 omr |= lp->infoblock_csr6; 5207 omr |= lp->infoblock_csr6;
5208 if (omr & OMR_PS) omr |= OMR_HBD; 5208 if (omr & OMR_PS) omr |= OMR_HBD;
5209 outl(omr, DE4X5_OMR); 5209 outl(omr, DE4X5_OMR);
5210 5210
5211 /* Soft Reset */ 5211 /* Soft Reset */
5212 RESET_DE4X5; 5212 RESET_DE4X5;
5213 5213
5214 /* Restore the GEP - especially for COMPACT and Type 0 Infoblocks */ 5214 /* Restore the GEP - especially for COMPACT and Type 0 Infoblocks */
5215 if (lp->chipset == DC21140) { 5215 if (lp->chipset == DC21140) {
5216 gep_wr(lp->cache.gepc, dev); 5216 gep_wr(lp->cache.gepc, dev);
@@ -5263,21 +5263,21 @@ timeout(struct net_device *dev, void (*fn)(u_long data), u_long data, u_long mse
5263{ 5263{
5264 struct de4x5_private *lp = netdev_priv(dev); 5264 struct de4x5_private *lp = netdev_priv(dev);
5265 int dt; 5265 int dt;
5266 5266
5267 /* First, cancel any pending timer events */ 5267 /* First, cancel any pending timer events */
5268 del_timer(&lp->timer); 5268 del_timer(&lp->timer);
5269 5269
5270 /* Convert msec to ticks */ 5270 /* Convert msec to ticks */
5271 dt = (msec * HZ) / 1000; 5271 dt = (msec * HZ) / 1000;
5272 if (dt==0) dt=1; 5272 if (dt==0) dt=1;
5273 5273
5274 /* Set up timer */ 5274 /* Set up timer */
5275 init_timer(&lp->timer); 5275 init_timer(&lp->timer);
5276 lp->timer.expires = jiffies + dt; 5276 lp->timer.expires = jiffies + dt;
5277 lp->timer.function = fn; 5277 lp->timer.function = fn;
5278 lp->timer.data = data; 5278 lp->timer.data = data;
5279 add_timer(&lp->timer); 5279 add_timer(&lp->timer);
5280 5280
5281 return; 5281 return;
5282} 5282}
5283 5283
@@ -5375,7 +5375,7 @@ de4x5_dbg_open(struct net_device *dev)
5375{ 5375{
5376 struct de4x5_private *lp = netdev_priv(dev); 5376 struct de4x5_private *lp = netdev_priv(dev);
5377 int i; 5377 int i;
5378 5378
5379 if (de4x5_debug & DEBUG_OPEN) { 5379 if (de4x5_debug & DEBUG_OPEN) {
5380 printk("%s: de4x5 opening with irq %d\n",dev->name,dev->irq); 5380 printk("%s: de4x5 opening with irq %d\n",dev->name,dev->irq);
5381 printk("\tphysical address: "); 5381 printk("\tphysical address: ");
@@ -5413,11 +5413,11 @@ de4x5_dbg_open(struct net_device *dev)
5413 } 5413 }
5414 } 5414 }
5415 printk("...0x%8.8x\n", le32_to_cpu(lp->tx_ring[i].buf)); 5415 printk("...0x%8.8x\n", le32_to_cpu(lp->tx_ring[i].buf));
5416 printk("Ring size: \nRX: %d\nTX: %d\n", 5416 printk("Ring size: \nRX: %d\nTX: %d\n",
5417 (short)lp->rxRingSize, 5417 (short)lp->rxRingSize,
5418 (short)lp->txRingSize); 5418 (short)lp->txRingSize);
5419 } 5419 }
5420 5420
5421 return; 5421 return;
5422} 5422}
5423 5423
@@ -5426,7 +5426,7 @@ de4x5_dbg_mii(struct net_device *dev, int k)
5426{ 5426{
5427 struct de4x5_private *lp = netdev_priv(dev); 5427 struct de4x5_private *lp = netdev_priv(dev);
5428 u_long iobase = dev->base_addr; 5428 u_long iobase = dev->base_addr;
5429 5429
5430 if (de4x5_debug & DEBUG_MII) { 5430 if (de4x5_debug & DEBUG_MII) {
5431 printk("\nMII device address: %d\n", lp->phy[k].addr); 5431 printk("\nMII device address: %d\n", lp->phy[k].addr);
5432 printk("MII CR: %x\n",mii_rd(MII_CR,lp->phy[k].addr,DE4X5_MII)); 5432 printk("MII CR: %x\n",mii_rd(MII_CR,lp->phy[k].addr,DE4X5_MII));
@@ -5445,7 +5445,7 @@ de4x5_dbg_mii(struct net_device *dev, int k)
5445 printk("MII 20: %x\n",mii_rd(0x14,lp->phy[k].addr,DE4X5_MII)); 5445 printk("MII 20: %x\n",mii_rd(0x14,lp->phy[k].addr,DE4X5_MII));
5446 } 5446 }
5447 } 5447 }
5448 5448
5449 return; 5449 return;
5450} 5450}
5451 5451
@@ -5453,17 +5453,17 @@ static void
5453de4x5_dbg_media(struct net_device *dev) 5453de4x5_dbg_media(struct net_device *dev)
5454{ 5454{
5455 struct de4x5_private *lp = netdev_priv(dev); 5455 struct de4x5_private *lp = netdev_priv(dev);
5456 5456
5457 if (lp->media != lp->c_media) { 5457 if (lp->media != lp->c_media) {
5458 if (de4x5_debug & DEBUG_MEDIA) { 5458 if (de4x5_debug & DEBUG_MEDIA) {
5459 printk("%s: media is %s%s\n", dev->name, 5459 printk("%s: media is %s%s\n", dev->name,
5460 (lp->media == NC ? "unconnected, link down or incompatible connection" : 5460 (lp->media == NC ? "unconnected, link down or incompatible connection" :
5461 (lp->media == TP ? "TP" : 5461 (lp->media == TP ? "TP" :
5462 (lp->media == ANS ? "TP/Nway" : 5462 (lp->media == ANS ? "TP/Nway" :
5463 (lp->media == BNC ? "BNC" : 5463 (lp->media == BNC ? "BNC" :
5464 (lp->media == AUI ? "AUI" : 5464 (lp->media == AUI ? "AUI" :
5465 (lp->media == BNC_AUI ? "BNC/AUI" : 5465 (lp->media == BNC_AUI ? "BNC/AUI" :
5466 (lp->media == EXT_SIA ? "EXT SIA" : 5466 (lp->media == EXT_SIA ? "EXT SIA" :
5467 (lp->media == _100Mb ? "100Mb/s" : 5467 (lp->media == _100Mb ? "100Mb/s" :
5468 (lp->media == _10Mb ? "10Mb/s" : 5468 (lp->media == _10Mb ? "10Mb/s" :
5469 "???" 5469 "???"
@@ -5471,7 +5471,7 @@ de4x5_dbg_media(struct net_device *dev)
5471 } 5471 }
5472 lp->c_media = lp->media; 5472 lp->c_media = lp->media;
5473 } 5473 }
5474 5474
5475 return; 5475 return;
5476} 5476}
5477 5477
@@ -5554,7 +5554,7 @@ de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5554 u32 lval[36]; 5554 u32 lval[36];
5555 } tmp; 5555 } tmp;
5556 u_long flags = 0; 5556 u_long flags = 0;
5557 5557
5558 switch(ioc->cmd) { 5558 switch(ioc->cmd) {
5559 case DE4X5_GET_HWADDR: /* Get the hardware address */ 5559 case DE4X5_GET_HWADDR: /* Get the hardware address */
5560 ioc->len = ETH_ALEN; 5560 ioc->len = ETH_ALEN;
@@ -5575,7 +5575,7 @@ de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5575 } 5575 }
5576 build_setup_frame(dev, PHYS_ADDR_ONLY); 5576 build_setup_frame(dev, PHYS_ADDR_ONLY);
5577 /* Set up the descriptor and give ownership to the card */ 5577 /* Set up the descriptor and give ownership to the card */
5578 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET | 5578 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
5579 SETUP_FRAME_LEN, (struct sk_buff *)1); 5579 SETUP_FRAME_LEN, (struct sk_buff *)1);
5580 lp->tx_new = (++lp->tx_new) % lp->txRingSize; 5580 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
5581 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */ 5581 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
@@ -5617,8 +5617,8 @@ de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5617 spin_lock_irqsave(&lp->lock, flags); 5617 spin_lock_irqsave(&lp->lock, flags);
5618 memcpy(&statbuf, &lp->pktStats, ioc->len); 5618 memcpy(&statbuf, &lp->pktStats, ioc->len);
5619 spin_unlock_irqrestore(&lp->lock, flags); 5619 spin_unlock_irqrestore(&lp->lock, flags);
5620 if (copy_to_user(ioc->data, &statbuf, ioc->len)) 5620 if (copy_to_user(ioc->data, &statbuf, ioc->len))
5621 return -EFAULT; 5621 return -EFAULT;
5622 break; 5622 break;
5623 } 5623 }
5624 case DE4X5_CLR_STATS: /* Zero out the driver statistics */ 5624 case DE4X5_CLR_STATS: /* Zero out the driver statistics */
@@ -5652,9 +5652,9 @@ de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5652 ioc->len = j; 5652 ioc->len = j;
5653 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT; 5653 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5654 break; 5654 break;
5655 5655
5656#define DE4X5_DUMP 0x0f /* Dump the DE4X5 Status */ 5656#define DE4X5_DUMP 0x0f /* Dump the DE4X5 Status */
5657/* 5657/*
5658 case DE4X5_DUMP: 5658 case DE4X5_DUMP:
5659 j = 0; 5659 j = 0;
5660 tmp.addr[j++] = dev->irq; 5660 tmp.addr[j++] = dev->irq;
@@ -5664,7 +5664,7 @@ de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5664 tmp.addr[j++] = lp->rxRingSize; 5664 tmp.addr[j++] = lp->rxRingSize;
5665 tmp.lval[j>>2] = (long)lp->rx_ring; j+=4; 5665 tmp.lval[j>>2] = (long)lp->rx_ring; j+=4;
5666 tmp.lval[j>>2] = (long)lp->tx_ring; j+=4; 5666 tmp.lval[j>>2] = (long)lp->tx_ring; j+=4;
5667 5667
5668 for (i=0;i<lp->rxRingSize-1;i++){ 5668 for (i=0;i<lp->rxRingSize-1;i++){
5669 if (i < 3) { 5669 if (i < 3) {
5670 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4; 5670 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
@@ -5677,7 +5677,7 @@ de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5677 } 5677 }
5678 } 5678 }
5679 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4; 5679 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5680 5680
5681 for (i=0;i<lp->rxRingSize-1;i++){ 5681 for (i=0;i<lp->rxRingSize-1;i++){
5682 if (i < 3) { 5682 if (i < 3) {
5683 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4; 5683 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
@@ -5690,14 +5690,14 @@ de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5690 } 5690 }
5691 } 5691 }
5692 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4; 5692 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5693 5693
5694 for (i=0;i<lp->rxRingSize;i++){ 5694 for (i=0;i<lp->rxRingSize;i++){
5695 tmp.lval[j>>2] = le32_to_cpu(lp->rx_ring[i].status); j+=4; 5695 tmp.lval[j>>2] = le32_to_cpu(lp->rx_ring[i].status); j+=4;
5696 } 5696 }
5697 for (i=0;i<lp->txRingSize;i++){ 5697 for (i=0;i<lp->txRingSize;i++){
5698 tmp.lval[j>>2] = le32_to_cpu(lp->tx_ring[i].status); j+=4; 5698 tmp.lval[j>>2] = le32_to_cpu(lp->tx_ring[i].status); j+=4;
5699 } 5699 }
5700 5700
5701 tmp.lval[j>>2] = inl(DE4X5_BMR); j+=4; 5701 tmp.lval[j>>2] = inl(DE4X5_BMR); j+=4;
5702 tmp.lval[j>>2] = inl(DE4X5_TPD); j+=4; 5702 tmp.lval[j>>2] = inl(DE4X5_TPD); j+=4;
5703 tmp.lval[j>>2] = inl(DE4X5_RPD); j+=4; 5703 tmp.lval[j>>2] = inl(DE4X5_RPD); j+=4;
@@ -5706,18 +5706,18 @@ de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5706 tmp.lval[j>>2] = inl(DE4X5_STS); j+=4; 5706 tmp.lval[j>>2] = inl(DE4X5_STS); j+=4;
5707 tmp.lval[j>>2] = inl(DE4X5_OMR); j+=4; 5707 tmp.lval[j>>2] = inl(DE4X5_OMR); j+=4;
5708 tmp.lval[j>>2] = inl(DE4X5_IMR); j+=4; 5708 tmp.lval[j>>2] = inl(DE4X5_IMR); j+=4;
5709 tmp.lval[j>>2] = lp->chipset; j+=4; 5709 tmp.lval[j>>2] = lp->chipset; j+=4;
5710 if (lp->chipset == DC21140) { 5710 if (lp->chipset == DC21140) {
5711 tmp.lval[j>>2] = gep_rd(dev); j+=4; 5711 tmp.lval[j>>2] = gep_rd(dev); j+=4;
5712 } else { 5712 } else {
5713 tmp.lval[j>>2] = inl(DE4X5_SISR); j+=4; 5713 tmp.lval[j>>2] = inl(DE4X5_SISR); j+=4;
5714 tmp.lval[j>>2] = inl(DE4X5_SICR); j+=4; 5714 tmp.lval[j>>2] = inl(DE4X5_SICR); j+=4;
5715 tmp.lval[j>>2] = inl(DE4X5_STRR); j+=4; 5715 tmp.lval[j>>2] = inl(DE4X5_STRR); j+=4;
5716 tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4; 5716 tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4;
5717 } 5717 }
5718 tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4; 5718 tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4;
5719 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) { 5719 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
5720 tmp.lval[j>>2] = lp->active; j+=4; 5720 tmp.lval[j>>2] = lp->active; j+=4;
5721 tmp.lval[j>>2]=mii_rd(MII_CR,lp->phy[lp->active].addr,DE4X5_MII); j+=4; 5721 tmp.lval[j>>2]=mii_rd(MII_CR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5722 tmp.lval[j>>2]=mii_rd(MII_SR,lp->phy[lp->active].addr,DE4X5_MII); j+=4; 5722 tmp.lval[j>>2]=mii_rd(MII_SR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5723 tmp.lval[j>>2]=mii_rd(MII_ID0,lp->phy[lp->active].addr,DE4X5_MII); j+=4; 5723 tmp.lval[j>>2]=mii_rd(MII_ID0,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
@@ -5734,10 +5734,10 @@ de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5734 tmp.lval[j>>2]=mii_rd(0x14,lp->phy[lp->active].addr,DE4X5_MII); j+=4; 5734 tmp.lval[j>>2]=mii_rd(0x14,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5735 } 5735 }
5736 } 5736 }
5737 5737
5738 tmp.addr[j++] = lp->txRingSize; 5738 tmp.addr[j++] = lp->txRingSize;
5739 tmp.addr[j++] = netif_queue_stopped(dev); 5739 tmp.addr[j++] = netif_queue_stopped(dev);
5740 5740
5741 ioc->len = j; 5741 ioc->len = j;
5742 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT; 5742 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5743 break; 5743 break;
@@ -5746,7 +5746,7 @@ de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5746 default: 5746 default:
5747 return -EOPNOTSUPP; 5747 return -EOPNOTSUPP;
5748 } 5748 }
5749 5749
5750 return status; 5750 return status;
5751} 5751}
5752 5752
diff --git a/drivers/net/tulip/de4x5.h b/drivers/net/tulip/de4x5.h
index ad37a4074302..57226e5eb8a6 100644
--- a/drivers/net/tulip/de4x5.h
+++ b/drivers/net/tulip/de4x5.h
@@ -38,11 +38,11 @@
38/* 38/*
39** EISA Register Address Map 39** EISA Register Address Map
40*/ 40*/
41#define EISA_ID iobase+0x0c80 /* EISA ID Registers */ 41#define EISA_ID iobase+0x0c80 /* EISA ID Registers */
42#define EISA_ID0 iobase+0x0c80 /* EISA ID Register 0 */ 42#define EISA_ID0 iobase+0x0c80 /* EISA ID Register 0 */
43#define EISA_ID1 iobase+0x0c81 /* EISA ID Register 1 */ 43#define EISA_ID1 iobase+0x0c81 /* EISA ID Register 1 */
44#define EISA_ID2 iobase+0x0c82 /* EISA ID Register 2 */ 44#define EISA_ID2 iobase+0x0c82 /* EISA ID Register 2 */
45#define EISA_ID3 iobase+0x0c83 /* EISA ID Register 3 */ 45#define EISA_ID3 iobase+0x0c83 /* EISA ID Register 3 */
46#define EISA_CR iobase+0x0c84 /* EISA Control Register */ 46#define EISA_CR iobase+0x0c84 /* EISA Control Register */
47#define EISA_REG0 iobase+0x0c88 /* EISA Configuration Register 0 */ 47#define EISA_REG0 iobase+0x0c88 /* EISA Configuration Register 0 */
48#define EISA_REG1 iobase+0x0c89 /* EISA Configuration Register 1 */ 48#define EISA_REG1 iobase+0x0c89 /* EISA Configuration Register 1 */
@@ -1008,8 +1008,8 @@ struct de4x5_ioctl {
1008 unsigned char __user *data; /* Pointer to the data buffer */ 1008 unsigned char __user *data; /* Pointer to the data buffer */
1009}; 1009};
1010 1010
1011/* 1011/*
1012** Recognised commands for the driver 1012** Recognised commands for the driver
1013*/ 1013*/
1014#define DE4X5_GET_HWADDR 0x01 /* Get the hardware address */ 1014#define DE4X5_GET_HWADDR 0x01 /* Get the hardware address */
1015#define DE4X5_SET_HWADDR 0x02 /* Set the hardware address */ 1015#define DE4X5_SET_HWADDR 0x02 /* Set the hardware address */
diff --git a/drivers/net/tulip/dmfe.c b/drivers/net/tulip/dmfe.c
index 74e9075d9c48..ba5b112093f4 100644
--- a/drivers/net/tulip/dmfe.c
+++ b/drivers/net/tulip/dmfe.c
@@ -50,7 +50,7 @@
50 forget to unmap PCI mapped skbs. 50 forget to unmap PCI mapped skbs.
51 51
52 Alan Cox <alan@redhat.com> 52 Alan Cox <alan@redhat.com>
53 Added new PCI identifiers provided by Clear Zhang at ALi 53 Added new PCI identifiers provided by Clear Zhang at ALi
54 for their 1563 ethernet device. 54 for their 1563 ethernet device.
55 55
56 TODO 56 TODO
diff --git a/drivers/net/tulip/eeprom.c b/drivers/net/tulip/eeprom.c
index fbd9ab60b052..5ffbd5b300c0 100644
--- a/drivers/net/tulip/eeprom.c
+++ b/drivers/net/tulip/eeprom.c
@@ -96,11 +96,11 @@ static const char *block_name[] __devinitdata = {
96 * tulip_build_fake_mediatable - Build a fake mediatable entry. 96 * tulip_build_fake_mediatable - Build a fake mediatable entry.
97 * @tp: Ptr to the tulip private data. 97 * @tp: Ptr to the tulip private data.
98 * 98 *
99 * Some cards like the 3x5 HSC cards (J3514A) do not have a standard 99 * Some cards like the 3x5 HSC cards (J3514A) do not have a standard
100 * srom and can not be handled under the fixup routine. These cards 100 * srom and can not be handled under the fixup routine. These cards
101 * still need a valid mediatable entry for correct csr12 setup and 101 * still need a valid mediatable entry for correct csr12 setup and
102 * mii handling. 102 * mii handling.
103 * 103 *
104 * Since this is currently a parisc-linux specific function, the 104 * Since this is currently a parisc-linux specific function, the
105 * #ifdef __hppa__ should completely optimize this function away for 105 * #ifdef __hppa__ should completely optimize this function away for
106 * non-parisc hardware. 106 * non-parisc hardware.
@@ -140,7 +140,7 @@ static void __devinit tulip_build_fake_mediatable(struct tulip_private *tp)
140 tp->flags |= HAS_PHY_IRQ; 140 tp->flags |= HAS_PHY_IRQ;
141 tp->csr12_shadow = -1; 141 tp->csr12_shadow = -1;
142 } 142 }
143#endif 143#endif
144} 144}
145 145
146void __devinit tulip_parse_eeprom(struct net_device *dev) 146void __devinit tulip_parse_eeprom(struct net_device *dev)
diff --git a/drivers/net/tulip/interrupt.c b/drivers/net/tulip/interrupt.c
index bb3558164a5b..da4f7593c50f 100644
--- a/drivers/net/tulip/interrupt.c
+++ b/drivers/net/tulip/interrupt.c
@@ -139,22 +139,22 @@ int tulip_poll(struct net_device *dev, int *budget)
139 } 139 }
140 /* Acknowledge current RX interrupt sources. */ 140 /* Acknowledge current RX interrupt sources. */
141 iowrite32((RxIntr | RxNoBuf), tp->base_addr + CSR5); 141 iowrite32((RxIntr | RxNoBuf), tp->base_addr + CSR5);
142 142
143 143
144 /* If we own the next entry, it is a new packet. Send it up. */ 144 /* If we own the next entry, it is a new packet. Send it up. */
145 while ( ! (tp->rx_ring[entry].status & cpu_to_le32(DescOwned))) { 145 while ( ! (tp->rx_ring[entry].status & cpu_to_le32(DescOwned))) {
146 s32 status = le32_to_cpu(tp->rx_ring[entry].status); 146 s32 status = le32_to_cpu(tp->rx_ring[entry].status);
147 147
148 148
149 if (tp->dirty_rx + RX_RING_SIZE == tp->cur_rx) 149 if (tp->dirty_rx + RX_RING_SIZE == tp->cur_rx)
150 break; 150 break;
151 151
152 if (tulip_debug > 5) 152 if (tulip_debug > 5)
153 printk(KERN_DEBUG "%s: In tulip_rx(), entry %d %8.8x.\n", 153 printk(KERN_DEBUG "%s: In tulip_rx(), entry %d %8.8x.\n",
154 dev->name, entry, status); 154 dev->name, entry, status);
155 if (--rx_work_limit < 0) 155 if (--rx_work_limit < 0)
156 goto not_done; 156 goto not_done;
157 157
158 if ((status & 0x38008300) != 0x0300) { 158 if ((status & 0x38008300) != 0x0300) {
159 if ((status & 0x38000300) != 0x0300) { 159 if ((status & 0x38000300) != 0x0300) {
160 /* Ingore earlier buffers. */ 160 /* Ingore earlier buffers. */
@@ -180,7 +180,7 @@ int tulip_poll(struct net_device *dev, int *budget)
180 /* Omit the four octet CRC from the length. */ 180 /* Omit the four octet CRC from the length. */
181 short pkt_len = ((status >> 16) & 0x7ff) - 4; 181 short pkt_len = ((status >> 16) & 0x7ff) - 4;
182 struct sk_buff *skb; 182 struct sk_buff *skb;
183 183
184#ifndef final_version 184#ifndef final_version
185 if (pkt_len > 1518) { 185 if (pkt_len > 1518) {
186 printk(KERN_WARNING "%s: Bogus packet size of %d (%#x).\n", 186 printk(KERN_WARNING "%s: Bogus packet size of %d (%#x).\n",
@@ -213,7 +213,7 @@ int tulip_poll(struct net_device *dev, int *budget)
213 } else { /* Pass up the skb already on the Rx ring. */ 213 } else { /* Pass up the skb already on the Rx ring. */
214 char *temp = skb_put(skb = tp->rx_buffers[entry].skb, 214 char *temp = skb_put(skb = tp->rx_buffers[entry].skb,
215 pkt_len); 215 pkt_len);
216 216
217#ifndef final_version 217#ifndef final_version
218 if (tp->rx_buffers[entry].mapping != 218 if (tp->rx_buffers[entry].mapping !=
219 le32_to_cpu(tp->rx_ring[entry].buffer1)) { 219 le32_to_cpu(tp->rx_ring[entry].buffer1)) {
@@ -225,17 +225,17 @@ int tulip_poll(struct net_device *dev, int *budget)
225 skb->head, temp); 225 skb->head, temp);
226 } 226 }
227#endif 227#endif
228 228
229 pci_unmap_single(tp->pdev, tp->rx_buffers[entry].mapping, 229 pci_unmap_single(tp->pdev, tp->rx_buffers[entry].mapping,
230 PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 230 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
231 231
232 tp->rx_buffers[entry].skb = NULL; 232 tp->rx_buffers[entry].skb = NULL;
233 tp->rx_buffers[entry].mapping = 0; 233 tp->rx_buffers[entry].mapping = 0;
234 } 234 }
235 skb->protocol = eth_type_trans(skb, dev); 235 skb->protocol = eth_type_trans(skb, dev);
236 236
237 netif_receive_skb(skb); 237 netif_receive_skb(skb);
238 238
239 dev->last_rx = jiffies; 239 dev->last_rx = jiffies;
240 tp->stats.rx_packets++; 240 tp->stats.rx_packets++;
241 tp->stats.rx_bytes += pkt_len; 241 tp->stats.rx_bytes += pkt_len;
@@ -245,12 +245,12 @@ int tulip_poll(struct net_device *dev, int *budget)
245 entry = (++tp->cur_rx) % RX_RING_SIZE; 245 entry = (++tp->cur_rx) % RX_RING_SIZE;
246 if (tp->cur_rx - tp->dirty_rx > RX_RING_SIZE/4) 246 if (tp->cur_rx - tp->dirty_rx > RX_RING_SIZE/4)
247 tulip_refill_rx(dev); 247 tulip_refill_rx(dev);
248 248
249 } 249 }
250 250
251 /* New ack strategy... irq does not ack Rx any longer 251 /* New ack strategy... irq does not ack Rx any longer
252 hopefully this helps */ 252 hopefully this helps */
253 253
254 /* Really bad things can happen here... If new packet arrives 254 /* Really bad things can happen here... If new packet arrives
255 * and an irq arrives (tx or just due to occasionally unset 255 * and an irq arrives (tx or just due to occasionally unset
256 * mask), it will be acked by irq handler, but new thread 256 * mask), it will be acked by irq handler, but new thread
@@ -259,28 +259,28 @@ int tulip_poll(struct net_device *dev, int *budget)
259 * tomorrow (night 011029). If it will not fail, we won 259 * tomorrow (night 011029). If it will not fail, we won
260 * finally: amount of IO did not increase at all. */ 260 * finally: amount of IO did not increase at all. */
261 } while ((ioread32(tp->base_addr + CSR5) & RxIntr)); 261 } while ((ioread32(tp->base_addr + CSR5) & RxIntr));
262 262
263done: 263done:
264 264
265 #ifdef CONFIG_TULIP_NAPI_HW_MITIGATION 265 #ifdef CONFIG_TULIP_NAPI_HW_MITIGATION
266 266
267 /* We use this simplistic scheme for IM. It's proven by 267 /* We use this simplistic scheme for IM. It's proven by
268 real life installations. We can have IM enabled 268 real life installations. We can have IM enabled
269 continuesly but this would cause unnecessary latency. 269 continuesly but this would cause unnecessary latency.
270 Unfortunely we can't use all the NET_RX_* feedback here. 270 Unfortunely we can't use all the NET_RX_* feedback here.
271 This would turn on IM for devices that is not contributing 271 This would turn on IM for devices that is not contributing
272 to backlog congestion with unnecessary latency. 272 to backlog congestion with unnecessary latency.
273 273
274 We monitor the the device RX-ring and have: 274 We monitor the the device RX-ring and have:
275 275
276 HW Interrupt Mitigation either ON or OFF. 276 HW Interrupt Mitigation either ON or OFF.
277 277
278 ON: More then 1 pkt received (per intr.) OR we are dropping 278 ON: More then 1 pkt received (per intr.) OR we are dropping
279 OFF: Only 1 pkt received 279 OFF: Only 1 pkt received
280 280
281 Note. We only use min and max (0, 15) settings from mit_table */ 281 Note. We only use min and max (0, 15) settings from mit_table */
282 282
283 283
284 if( tp->flags & HAS_INTR_MITIGATION) { 284 if( tp->flags & HAS_INTR_MITIGATION) {
285 if( received > 1 ) { 285 if( received > 1 ) {
286 if( ! tp->mit_on ) { 286 if( ! tp->mit_on ) {
@@ -297,20 +297,20 @@ done:
297 } 297 }
298 298
299#endif /* CONFIG_TULIP_NAPI_HW_MITIGATION */ 299#endif /* CONFIG_TULIP_NAPI_HW_MITIGATION */
300 300
301 dev->quota -= received; 301 dev->quota -= received;
302 *budget -= received; 302 *budget -= received;
303 303
304 tulip_refill_rx(dev); 304 tulip_refill_rx(dev);
305 305
306 /* If RX ring is not full we are out of memory. */ 306 /* If RX ring is not full we are out of memory. */
307 if (tp->rx_buffers[tp->dirty_rx % RX_RING_SIZE].skb == NULL) goto oom; 307 if (tp->rx_buffers[tp->dirty_rx % RX_RING_SIZE].skb == NULL) goto oom;
308 308
309 /* Remove us from polling list and enable RX intr. */ 309 /* Remove us from polling list and enable RX intr. */
310 310
311 netif_rx_complete(dev); 311 netif_rx_complete(dev);
312 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, tp->base_addr+CSR7); 312 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, tp->base_addr+CSR7);
313 313
314 /* The last op happens after poll completion. Which means the following: 314 /* The last op happens after poll completion. Which means the following:
315 * 1. it can race with disabling irqs in irq handler 315 * 1. it can race with disabling irqs in irq handler
316 * 2. it can race with dise/enabling irqs in other poll threads 316 * 2. it can race with dise/enabling irqs in other poll threads
@@ -321,9 +321,9 @@ done:
321 * due to races in masking and due to too late acking of already 321 * due to races in masking and due to too late acking of already
322 * processed irqs. But it must not result in losing events. 322 * processed irqs. But it must not result in losing events.
323 */ 323 */
324 324
325 return 0; 325 return 0;
326 326
327 not_done: 327 not_done:
328 if (!received) { 328 if (!received) {
329 329
@@ -331,29 +331,29 @@ done:
331 } 331 }
332 dev->quota -= received; 332 dev->quota -= received;
333 *budget -= received; 333 *budget -= received;
334 334
335 if (tp->cur_rx - tp->dirty_rx > RX_RING_SIZE/2 || 335 if (tp->cur_rx - tp->dirty_rx > RX_RING_SIZE/2 ||
336 tp->rx_buffers[tp->dirty_rx % RX_RING_SIZE].skb == NULL) 336 tp->rx_buffers[tp->dirty_rx % RX_RING_SIZE].skb == NULL)
337 tulip_refill_rx(dev); 337 tulip_refill_rx(dev);
338 338
339 if (tp->rx_buffers[tp->dirty_rx % RX_RING_SIZE].skb == NULL) goto oom; 339 if (tp->rx_buffers[tp->dirty_rx % RX_RING_SIZE].skb == NULL) goto oom;
340 340
341 return 1; 341 return 1;
342 342
343 343
344 oom: /* Executed with RX ints disabled */ 344 oom: /* Executed with RX ints disabled */
345 345
346 346
347 /* Start timer, stop polling, but do not enable rx interrupts. */ 347 /* Start timer, stop polling, but do not enable rx interrupts. */
348 mod_timer(&tp->oom_timer, jiffies+1); 348 mod_timer(&tp->oom_timer, jiffies+1);
349 349
350 /* Think: timer_pending() was an explicit signature of bug. 350 /* Think: timer_pending() was an explicit signature of bug.
351 * Timer can be pending now but fired and completed 351 * Timer can be pending now but fired and completed
352 * before we did netif_rx_complete(). See? We would lose it. */ 352 * before we did netif_rx_complete(). See? We would lose it. */
353 353
354 /* remove ourselves from the polling list */ 354 /* remove ourselves from the polling list */
355 netif_rx_complete(dev); 355 netif_rx_complete(dev);
356 356
357 return 0; 357 return 0;
358} 358}
359 359
@@ -521,9 +521,9 @@ irqreturn_t tulip_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
521 /* Let's see whether the interrupt really is for us */ 521 /* Let's see whether the interrupt really is for us */
522 csr5 = ioread32(ioaddr + CSR5); 522 csr5 = ioread32(ioaddr + CSR5);
523 523
524 if (tp->flags & HAS_PHY_IRQ) 524 if (tp->flags & HAS_PHY_IRQ)
525 handled = phy_interrupt (dev); 525 handled = phy_interrupt (dev);
526 526
527 if ((csr5 & (NormalIntr|AbnormalIntr)) == 0) 527 if ((csr5 & (NormalIntr|AbnormalIntr)) == 0)
528 return IRQ_RETVAL(handled); 528 return IRQ_RETVAL(handled);
529 529
@@ -538,17 +538,17 @@ irqreturn_t tulip_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
538 /* Mask RX intrs and add the device to poll list. */ 538 /* Mask RX intrs and add the device to poll list. */
539 iowrite32(tulip_tbl[tp->chip_id].valid_intrs&~RxPollInt, ioaddr + CSR7); 539 iowrite32(tulip_tbl[tp->chip_id].valid_intrs&~RxPollInt, ioaddr + CSR7);
540 netif_rx_schedule(dev); 540 netif_rx_schedule(dev);
541 541
542 if (!(csr5&~(AbnormalIntr|NormalIntr|RxPollInt|TPLnkPass))) 542 if (!(csr5&~(AbnormalIntr|NormalIntr|RxPollInt|TPLnkPass)))
543 break; 543 break;
544 } 544 }
545 545
546 /* Acknowledge the interrupt sources we handle here ASAP 546 /* Acknowledge the interrupt sources we handle here ASAP
547 the poll function does Rx and RxNoBuf acking */ 547 the poll function does Rx and RxNoBuf acking */
548 548
549 iowrite32(csr5 & 0x0001ff3f, ioaddr + CSR5); 549 iowrite32(csr5 & 0x0001ff3f, ioaddr + CSR5);
550 550
551#else 551#else
552 /* Acknowledge all of the current interrupt sources ASAP. */ 552 /* Acknowledge all of the current interrupt sources ASAP. */
553 iowrite32(csr5 & 0x0001ffff, ioaddr + CSR5); 553 iowrite32(csr5 & 0x0001ffff, ioaddr + CSR5);
554 554
@@ -559,11 +559,11 @@ irqreturn_t tulip_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
559 } 559 }
560 560
561#endif /* CONFIG_TULIP_NAPI */ 561#endif /* CONFIG_TULIP_NAPI */
562 562
563 if (tulip_debug > 4) 563 if (tulip_debug > 4)
564 printk(KERN_DEBUG "%s: interrupt csr5=%#8.8x new csr5=%#8.8x.\n", 564 printk(KERN_DEBUG "%s: interrupt csr5=%#8.8x new csr5=%#8.8x.\n",
565 dev->name, csr5, ioread32(ioaddr + CSR5)); 565 dev->name, csr5, ioread32(ioaddr + CSR5));
566 566
567 567
568 if (csr5 & (TxNoBuf | TxDied | TxIntr | TimerInt)) { 568 if (csr5 & (TxNoBuf | TxDied | TxIntr | TimerInt)) {
569 unsigned int dirty_tx; 569 unsigned int dirty_tx;
@@ -737,17 +737,17 @@ irqreturn_t tulip_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
737#ifdef CONFIG_TULIP_NAPI 737#ifdef CONFIG_TULIP_NAPI
738 if (rxd) 738 if (rxd)
739 csr5 &= ~RxPollInt; 739 csr5 &= ~RxPollInt;
740 } while ((csr5 & (TxNoBuf | 740 } while ((csr5 & (TxNoBuf |
741 TxDied | 741 TxDied |
742 TxIntr | 742 TxIntr |
743 TimerInt | 743 TimerInt |
744 /* Abnormal intr. */ 744 /* Abnormal intr. */
745 RxDied | 745 RxDied |
746 TxFIFOUnderflow | 746 TxFIFOUnderflow |
747 TxJabber | 747 TxJabber |
748 TPLnkFail | 748 TPLnkFail |
749 SytemError )) != 0); 749 SytemError )) != 0);
750#else 750#else
751 } while ((csr5 & (NormalIntr|AbnormalIntr)) != 0); 751 } while ((csr5 & (NormalIntr|AbnormalIntr)) != 0);
752 752
753 tulip_refill_rx(dev); 753 tulip_refill_rx(dev);
diff --git a/drivers/net/tulip/media.c b/drivers/net/tulip/media.c
index f53396fe79c9..e9bc2a958c14 100644
--- a/drivers/net/tulip/media.c
+++ b/drivers/net/tulip/media.c
@@ -140,7 +140,7 @@ void tulip_mdio_write(struct net_device *dev, int phy_id, int location, int val)
140 spin_unlock_irqrestore(&tp->mii_lock, flags); 140 spin_unlock_irqrestore(&tp->mii_lock, flags);
141 return; 141 return;
142 } 142 }
143 143
144 /* Establish sync by sending 32 logic ones. */ 144 /* Establish sync by sending 32 logic ones. */
145 for (i = 32; i >= 0; i--) { 145 for (i = 32; i >= 0; i--) {
146 iowrite32(MDIO_ENB | MDIO_DATA_WRITE1, mdio_addr); 146 iowrite32(MDIO_ENB | MDIO_DATA_WRITE1, mdio_addr);
diff --git a/drivers/net/tulip/tulip.h b/drivers/net/tulip/tulip.h
index 05d2d96f7be2..d25020da6798 100644
--- a/drivers/net/tulip/tulip.h
+++ b/drivers/net/tulip/tulip.h
@@ -259,7 +259,7 @@ enum t21143_csr6_bits {
259 There are no ill effects from too-large receive rings. */ 259 There are no ill effects from too-large receive rings. */
260 260
261#define TX_RING_SIZE 32 261#define TX_RING_SIZE 32
262#define RX_RING_SIZE 128 262#define RX_RING_SIZE 128
263#define MEDIA_MASK 31 263#define MEDIA_MASK 31
264 264
265#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer. */ 265#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer. */
diff --git a/drivers/net/tulip/tulip_core.c b/drivers/net/tulip/tulip_core.c
index c67c91251d04..b3cf11d32e24 100644
--- a/drivers/net/tulip/tulip_core.c
+++ b/drivers/net/tulip/tulip_core.c
@@ -1224,7 +1224,7 @@ out:
1224 * Chips that have the MRM/reserved bit quirk and the burst quirk. That 1224 * Chips that have the MRM/reserved bit quirk and the burst quirk. That
1225 * is the DM910X and the on chip ULi devices 1225 * is the DM910X and the on chip ULi devices
1226 */ 1226 */
1227 1227
1228static int tulip_uli_dm_quirk(struct pci_dev *pdev) 1228static int tulip_uli_dm_quirk(struct pci_dev *pdev)
1229{ 1229{
1230 if (pdev->vendor == 0x1282 && pdev->device == 0x9102) 1230 if (pdev->vendor == 0x1282 && pdev->device == 0x9102)
@@ -1297,7 +1297,7 @@ static int __devinit tulip_init_one (struct pci_dev *pdev,
1297 */ 1297 */
1298 1298
1299 /* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache 1299 /* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache
1300 aligned. Aries might need this too. The Saturn errata are not 1300 aligned. Aries might need this too. The Saturn errata are not
1301 pretty reading but thankfully it's an old 486 chipset. 1301 pretty reading but thankfully it's an old 486 chipset.
1302 1302
1303 2. The dreaded SiS496 486 chipset. Same workaround as Intel 1303 2. The dreaded SiS496 486 chipset. Same workaround as Intel
@@ -1500,7 +1500,7 @@ static int __devinit tulip_init_one (struct pci_dev *pdev,
1500 } 1500 }
1501#endif 1501#endif
1502#ifdef CONFIG_MIPS_COBALT 1502#ifdef CONFIG_MIPS_COBALT
1503 if ((pdev->bus->number == 0) && 1503 if ((pdev->bus->number == 0) &&
1504 ((PCI_SLOT(pdev->devfn) == 7) || 1504 ((PCI_SLOT(pdev->devfn) == 7) ||
1505 (PCI_SLOT(pdev->devfn) == 12))) { 1505 (PCI_SLOT(pdev->devfn) == 12))) {
1506 /* Cobalt MAC address in first EEPROM locations. */ 1506 /* Cobalt MAC address in first EEPROM locations. */
diff --git a/drivers/net/tulip/uli526x.c b/drivers/net/tulip/uli526x.c
index 238e9c72cb3a..8b3a28f53c3d 100644
--- a/drivers/net/tulip/uli526x.c
+++ b/drivers/net/tulip/uli526x.c
@@ -9,7 +9,7 @@
9 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 9 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 GNU General Public License for more details. 10 GNU General Public License for more details.
11 11
12 12
13*/ 13*/
14 14
15#define DRV_NAME "uli526x" 15#define DRV_NAME "uli526x"
@@ -185,7 +185,7 @@ struct uli526x_board_info {
185 185
186 /* NIC SROM data */ 186 /* NIC SROM data */
187 unsigned char srom[128]; 187 unsigned char srom[128];
188 u8 init; 188 u8 init;
189}; 189};
190 190
191enum uli526x_offsets { 191enum uli526x_offsets {
@@ -258,7 +258,7 @@ static int __devinit uli526x_init_one (struct pci_dev *pdev,
258 struct uli526x_board_info *db; /* board information structure */ 258 struct uli526x_board_info *db; /* board information structure */
259 struct net_device *dev; 259 struct net_device *dev;
260 int i, err; 260 int i, err;
261 261
262 ULI526X_DBUG(0, "uli526x_init_one()", 0); 262 ULI526X_DBUG(0, "uli526x_init_one()", 0);
263 263
264 if (!printed_version++) 264 if (!printed_version++)
@@ -316,7 +316,7 @@ static int __devinit uli526x_init_one (struct pci_dev *pdev,
316 err = -ENOMEM; 316 err = -ENOMEM;
317 goto err_out_nomem; 317 goto err_out_nomem;
318 } 318 }
319 319
320 db->first_tx_desc = (struct tx_desc *) db->desc_pool_ptr; 320 db->first_tx_desc = (struct tx_desc *) db->desc_pool_ptr;
321 db->first_tx_desc_dma = db->desc_pool_dma_ptr; 321 db->first_tx_desc_dma = db->desc_pool_dma_ptr;
322 db->buf_pool_start = db->buf_pool_ptr; 322 db->buf_pool_start = db->buf_pool_ptr;
@@ -324,14 +324,14 @@ static int __devinit uli526x_init_one (struct pci_dev *pdev,
324 324
325 db->chip_id = ent->driver_data; 325 db->chip_id = ent->driver_data;
326 db->ioaddr = pci_resource_start(pdev, 0); 326 db->ioaddr = pci_resource_start(pdev, 0);
327 327
328 db->pdev = pdev; 328 db->pdev = pdev;
329 db->init = 1; 329 db->init = 1;
330 330
331 dev->base_addr = db->ioaddr; 331 dev->base_addr = db->ioaddr;
332 dev->irq = pdev->irq; 332 dev->irq = pdev->irq;
333 pci_set_drvdata(pdev, dev); 333 pci_set_drvdata(pdev, dev);
334 334
335 /* Register some necessary functions */ 335 /* Register some necessary functions */
336 dev->open = &uli526x_open; 336 dev->open = &uli526x_open;
337 dev->hard_start_xmit = &uli526x_start_xmit; 337 dev->hard_start_xmit = &uli526x_start_xmit;
@@ -341,7 +341,7 @@ static int __devinit uli526x_init_one (struct pci_dev *pdev,
341 dev->ethtool_ops = &netdev_ethtool_ops; 341 dev->ethtool_ops = &netdev_ethtool_ops;
342 spin_lock_init(&db->lock); 342 spin_lock_init(&db->lock);
343 343
344 344
345 /* read 64 word srom data */ 345 /* read 64 word srom data */
346 for (i = 0; i < 64; i++) 346 for (i = 0; i < 64; i++)
347 ((u16 *) db->srom)[i] = cpu_to_le16(read_srom_word(db->ioaddr, i)); 347 ((u16 *) db->srom)[i] = cpu_to_le16(read_srom_word(db->ioaddr, i));
@@ -374,7 +374,7 @@ static int __devinit uli526x_init_one (struct pci_dev *pdev,
374 goto err_out_res; 374 goto err_out_res;
375 375
376 printk(KERN_INFO "%s: ULi M%04lx at pci%s,",dev->name,ent->driver_data >> 16,pci_name(pdev)); 376 printk(KERN_INFO "%s: ULi M%04lx at pci%s,",dev->name,ent->driver_data >> 16,pci_name(pdev));
377 377
378 for (i = 0; i < 6; i++) 378 for (i = 0; i < 6; i++)
379 printk("%c%02x", i ? ':' : ' ', dev->dev_addr[i]); 379 printk("%c%02x", i ? ':' : ' ', dev->dev_addr[i]);
380 printk(", irq %d.\n", dev->irq); 380 printk(", irq %d.\n", dev->irq);
@@ -389,7 +389,7 @@ err_out_nomem:
389 if(db->desc_pool_ptr) 389 if(db->desc_pool_ptr)
390 pci_free_consistent(pdev, sizeof(struct tx_desc) * DESC_ALL_CNT + 0x20, 390 pci_free_consistent(pdev, sizeof(struct tx_desc) * DESC_ALL_CNT + 0x20,
391 db->desc_pool_ptr, db->desc_pool_dma_ptr); 391 db->desc_pool_ptr, db->desc_pool_dma_ptr);
392 392
393 if(db->buf_pool_ptr != NULL) 393 if(db->buf_pool_ptr != NULL)
394 pci_free_consistent(pdev, TX_BUF_ALLOC * TX_DESC_CNT + 4, 394 pci_free_consistent(pdev, TX_BUF_ALLOC * TX_DESC_CNT + 4,
395 db->buf_pool_ptr, db->buf_pool_dma_ptr); 395 db->buf_pool_ptr, db->buf_pool_dma_ptr);
@@ -433,7 +433,7 @@ static int uli526x_open(struct net_device *dev)
433{ 433{
434 int ret; 434 int ret;
435 struct uli526x_board_info *db = netdev_priv(dev); 435 struct uli526x_board_info *db = netdev_priv(dev);
436 436
437 ULI526X_DBUG(0, "uli526x_open", 0); 437 ULI526X_DBUG(0, "uli526x_open", 0);
438 438
439 ret = request_irq(dev->irq, &uli526x_interrupt, SA_SHIRQ, dev->name, dev); 439 ret = request_irq(dev->irq, &uli526x_interrupt, SA_SHIRQ, dev->name, dev);
@@ -454,7 +454,7 @@ static int uli526x_open(struct net_device *dev)
454 /* CR6 operation mode decision */ 454 /* CR6 operation mode decision */
455 db->cr6_data |= ULI526X_TXTH_256; 455 db->cr6_data |= ULI526X_TXTH_256;
456 db->cr0_data = CR0_DEFAULT; 456 db->cr0_data = CR0_DEFAULT;
457 457
458 /* Initialize ULI526X board */ 458 /* Initialize ULI526X board */
459 uli526x_init(dev); 459 uli526x_init(dev);
460 460
@@ -604,7 +604,7 @@ static int uli526x_start_xmit(struct sk_buff *skb, struct net_device *dev)
604 /* Restore CR7 to enable interrupt */ 604 /* Restore CR7 to enable interrupt */
605 spin_unlock_irqrestore(&db->lock, flags); 605 spin_unlock_irqrestore(&db->lock, flags);
606 outl(db->cr7_data, dev->base_addr + DCR7); 606 outl(db->cr7_data, dev->base_addr + DCR7);
607 607
608 /* free this SKB */ 608 /* free this SKB */
609 dev_kfree_skb(skb); 609 dev_kfree_skb(skb);
610 610
@@ -782,7 +782,7 @@ static void uli526x_rx_packet(struct net_device *dev, struct uli526x_board_info
782 struct sk_buff *skb; 782 struct sk_buff *skb;
783 int rxlen; 783 int rxlen;
784 u32 rdes0; 784 u32 rdes0;
785 785
786 rxptr = db->rx_ready_ptr; 786 rxptr = db->rx_ready_ptr;
787 787
788 while(db->rx_avail_cnt) { 788 while(db->rx_avail_cnt) {
@@ -821,7 +821,7 @@ static void uli526x_rx_packet(struct net_device *dev, struct uli526x_board_info
821 if ( !(rdes0 & 0x8000) || 821 if ( !(rdes0 & 0x8000) ||
822 ((db->cr6_data & CR6_PM) && (rxlen>6)) ) { 822 ((db->cr6_data & CR6_PM) && (rxlen>6)) ) {
823 skb = rxptr->rx_skb_ptr; 823 skb = rxptr->rx_skb_ptr;
824 824
825 /* Good packet, send to upper layer */ 825 /* Good packet, send to upper layer */
826 /* Shorst packet used new SKB */ 826 /* Shorst packet used new SKB */
827 if ( (rxlen < RX_COPY_SIZE) && 827 if ( (rxlen < RX_COPY_SIZE) &&
@@ -841,7 +841,7 @@ static void uli526x_rx_packet(struct net_device *dev, struct uli526x_board_info
841 dev->last_rx = jiffies; 841 dev->last_rx = jiffies;
842 db->stats.rx_packets++; 842 db->stats.rx_packets++;
843 db->stats.rx_bytes += rxlen; 843 db->stats.rx_bytes += rxlen;
844 844
845 } else { 845 } else {
846 /* Reuse SKB buffer when the packet is error */ 846 /* Reuse SKB buffer when the packet is error */
847 ULI526X_DBUG(0, "Reuse SK buffer, rdes0", rdes0); 847 ULI526X_DBUG(0, "Reuse SK buffer, rdes0", rdes0);
@@ -911,7 +911,7 @@ ULi_ethtool_gset(struct uli526x_board_info *db, struct ethtool_cmd *ecmd)
911 SUPPORTED_100baseT_Full | 911 SUPPORTED_100baseT_Full |
912 SUPPORTED_Autoneg | 912 SUPPORTED_Autoneg |
913 SUPPORTED_MII); 913 SUPPORTED_MII);
914 914
915 ecmd->advertising = (ADVERTISED_10baseT_Half | 915 ecmd->advertising = (ADVERTISED_10baseT_Half |
916 ADVERTISED_10baseT_Full | 916 ADVERTISED_10baseT_Full |
917 ADVERTISED_100baseT_Half | 917 ADVERTISED_100baseT_Half |
@@ -924,13 +924,13 @@ ULi_ethtool_gset(struct uli526x_board_info *db, struct ethtool_cmd *ecmd)
924 ecmd->phy_address = db->phy_addr; 924 ecmd->phy_address = db->phy_addr;
925 925
926 ecmd->transceiver = XCVR_EXTERNAL; 926 ecmd->transceiver = XCVR_EXTERNAL;
927 927
928 ecmd->speed = 10; 928 ecmd->speed = 10;
929 ecmd->duplex = DUPLEX_HALF; 929 ecmd->duplex = DUPLEX_HALF;
930 930
931 if(db->op_mode==ULI526X_100MHF || db->op_mode==ULI526X_100MFD) 931 if(db->op_mode==ULI526X_100MHF || db->op_mode==ULI526X_100MFD)
932 { 932 {
933 ecmd->speed = 100; 933 ecmd->speed = 100;
934 } 934 }
935 if(db->op_mode==ULI526X_10MFD || db->op_mode==ULI526X_100MFD) 935 if(db->op_mode==ULI526X_10MFD || db->op_mode==ULI526X_100MFD)
936 { 936 {
@@ -939,11 +939,11 @@ ULi_ethtool_gset(struct uli526x_board_info *db, struct ethtool_cmd *ecmd)
939 if(db->link_failed) 939 if(db->link_failed)
940 { 940 {
941 ecmd->speed = -1; 941 ecmd->speed = -1;
942 ecmd->duplex = -1; 942 ecmd->duplex = -1;
943 } 943 }
944 944
945 if (db->media_mode & ULI526X_AUTO) 945 if (db->media_mode & ULI526X_AUTO)
946 { 946 {
947 ecmd->autoneg = AUTONEG_ENABLE; 947 ecmd->autoneg = AUTONEG_ENABLE;
948 } 948 }
949} 949}
@@ -964,15 +964,15 @@ static void netdev_get_drvinfo(struct net_device *dev,
964 964
965static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { 965static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) {
966 struct uli526x_board_info *np = netdev_priv(dev); 966 struct uli526x_board_info *np = netdev_priv(dev);
967 967
968 ULi_ethtool_gset(np, cmd); 968 ULi_ethtool_gset(np, cmd);
969 969
970 return 0; 970 return 0;
971} 971}
972 972
973static u32 netdev_get_link(struct net_device *dev) { 973static u32 netdev_get_link(struct net_device *dev) {
974 struct uli526x_board_info *np = netdev_priv(dev); 974 struct uli526x_board_info *np = netdev_priv(dev);
975 975
976 if(np->link_failed) 976 if(np->link_failed)
977 return 0; 977 return 0;
978 else 978 else
@@ -1005,11 +1005,11 @@ static void uli526x_timer(unsigned long data)
1005 struct uli526x_board_info *db = netdev_priv(dev); 1005 struct uli526x_board_info *db = netdev_priv(dev);
1006 unsigned long flags; 1006 unsigned long flags;
1007 u8 TmpSpeed=10; 1007 u8 TmpSpeed=10;
1008 1008
1009 //ULI526X_DBUG(0, "uli526x_timer()", 0); 1009 //ULI526X_DBUG(0, "uli526x_timer()", 0);
1010 spin_lock_irqsave(&db->lock, flags); 1010 spin_lock_irqsave(&db->lock, flags);
1011 1011
1012 1012
1013 /* Dynamic reset ULI526X : system error or transmit time-out */ 1013 /* Dynamic reset ULI526X : system error or transmit time-out */
1014 tmp_cr8 = inl(db->ioaddr + DCR8); 1014 tmp_cr8 = inl(db->ioaddr + DCR8);
1015 if ( (db->interval_rx_cnt==0) && (tmp_cr8) ) { 1015 if ( (db->interval_rx_cnt==0) && (tmp_cr8) ) {
@@ -1021,9 +1021,9 @@ static void uli526x_timer(unsigned long data)
1021 /* TX polling kick monitor */ 1021 /* TX polling kick monitor */
1022 if ( db->tx_packet_cnt && 1022 if ( db->tx_packet_cnt &&
1023 time_after(jiffies, dev->trans_start + ULI526X_TX_KICK) ) { 1023 time_after(jiffies, dev->trans_start + ULI526X_TX_KICK) ) {
1024 outl(0x1, dev->base_addr + DCR1); // Tx polling again 1024 outl(0x1, dev->base_addr + DCR1); // Tx polling again
1025 1025
1026 // TX Timeout 1026 // TX Timeout
1027 if ( time_after(jiffies, dev->trans_start + ULI526X_TX_TIMEOUT) ) { 1027 if ( time_after(jiffies, dev->trans_start + ULI526X_TX_TIMEOUT) ) {
1028 db->reset_TXtimeout++; 1028 db->reset_TXtimeout++;
1029 db->wait_reset = 1; 1029 db->wait_reset = 1;
@@ -1073,7 +1073,7 @@ static void uli526x_timer(unsigned long data)
1073 uli526x_sense_speed(db) ) 1073 uli526x_sense_speed(db) )
1074 db->link_failed = 1; 1074 db->link_failed = 1;
1075 uli526x_process_mode(db); 1075 uli526x_process_mode(db);
1076 1076
1077 if(db->link_failed==0) 1077 if(db->link_failed==0)
1078 { 1078 {
1079 if(db->op_mode==ULI526X_100MHF || db->op_mode==ULI526X_100MFD) 1079 if(db->op_mode==ULI526X_100MHF || db->op_mode==ULI526X_100MFD)
@@ -1404,7 +1404,7 @@ static u8 uli526x_sense_speed(struct uli526x_board_info * db)
1404 phy_mode = phy_read(db->ioaddr, db->phy_addr, 1, db->chip_id); 1404 phy_mode = phy_read(db->ioaddr, db->phy_addr, 1, db->chip_id);
1405 1405
1406 if ( (phy_mode & 0x24) == 0x24 ) { 1406 if ( (phy_mode & 0x24) == 0x24 ) {
1407 1407
1408 phy_mode = ((phy_read(db->ioaddr, db->phy_addr, 5, db->chip_id) & 0x01e0)<<7); 1408 phy_mode = ((phy_read(db->ioaddr, db->phy_addr, 5, db->chip_id) & 0x01e0)<<7);
1409 if(phy_mode&0x8000) 1409 if(phy_mode&0x8000)
1410 phy_mode = 0x8000; 1410 phy_mode = 0x8000;
@@ -1414,7 +1414,7 @@ static u8 uli526x_sense_speed(struct uli526x_board_info * db)
1414 phy_mode = 0x2000; 1414 phy_mode = 0x2000;
1415 else 1415 else
1416 phy_mode = 0x1000; 1416 phy_mode = 0x1000;
1417 1417
1418 /* printk(DRV_NAME ": Phy_mode %x ",phy_mode); */ 1418 /* printk(DRV_NAME ": Phy_mode %x ",phy_mode); */
1419 switch (phy_mode) { 1419 switch (phy_mode) {
1420 case 0x1000: db->op_mode = ULI526X_10MHF; break; 1420 case 0x1000: db->op_mode = ULI526X_10MHF; break;
@@ -1442,7 +1442,7 @@ static u8 uli526x_sense_speed(struct uli526x_board_info * db)
1442static void uli526x_set_phyxcer(struct uli526x_board_info *db) 1442static void uli526x_set_phyxcer(struct uli526x_board_info *db)
1443{ 1443{
1444 u16 phy_reg; 1444 u16 phy_reg;
1445 1445
1446 /* Phyxcer capability setting */ 1446 /* Phyxcer capability setting */
1447 phy_reg = phy_read(db->ioaddr, db->phy_addr, 4, db->chip_id) & ~0x01e0; 1447 phy_reg = phy_read(db->ioaddr, db->phy_addr, 4, db->chip_id) & ~0x01e0;
1448 1448
@@ -1457,7 +1457,7 @@ static void uli526x_set_phyxcer(struct uli526x_board_info *db)
1457 case ULI526X_100MHF: phy_reg |= 0x80; break; 1457 case ULI526X_100MHF: phy_reg |= 0x80; break;
1458 case ULI526X_100MFD: phy_reg |= 0x100; break; 1458 case ULI526X_100MFD: phy_reg |= 0x100; break;
1459 } 1459 }
1460 1460
1461 } 1461 }
1462 1462
1463 /* Write new capability to Phyxcer Reg4 */ 1463 /* Write new capability to Phyxcer Reg4 */
@@ -1556,7 +1556,7 @@ static void phy_write(unsigned long iobase, u8 phy_addr, u8 offset, u16 phy_data
1556 /* Write a word data to PHY controller */ 1556 /* Write a word data to PHY controller */
1557 for ( i = 0x8000; i > 0; i >>= 1) 1557 for ( i = 0x8000; i > 0; i >>= 1)
1558 phy_write_1bit(ioaddr, phy_data & i ? PHY_DATA_1 : PHY_DATA_0, chip_id); 1558 phy_write_1bit(ioaddr, phy_data & i ? PHY_DATA_1 : PHY_DATA_0, chip_id);
1559 1559
1560} 1560}
1561 1561
1562 1562
@@ -1574,7 +1574,7 @@ static u16 phy_read(unsigned long iobase, u8 phy_addr, u8 offset, u32 chip_id)
1574 return phy_readby_cr10(iobase, phy_addr, offset); 1574 return phy_readby_cr10(iobase, phy_addr, offset);
1575 /* M5261/M5263 Chip */ 1575 /* M5261/M5263 Chip */
1576 ioaddr = iobase + DCR9; 1576 ioaddr = iobase + DCR9;
1577 1577
1578 /* Send 33 synchronization clock to Phy controller */ 1578 /* Send 33 synchronization clock to Phy controller */
1579 for (i = 0; i < 35; i++) 1579 for (i = 0; i < 35; i++)
1580 phy_write_1bit(ioaddr, PHY_DATA_1, chip_id); 1580 phy_write_1bit(ioaddr, PHY_DATA_1, chip_id);
@@ -1610,7 +1610,7 @@ static u16 phy_read(unsigned long iobase, u8 phy_addr, u8 offset, u32 chip_id)
1610static u16 phy_readby_cr10(unsigned long iobase, u8 phy_addr, u8 offset) 1610static u16 phy_readby_cr10(unsigned long iobase, u8 phy_addr, u8 offset)
1611{ 1611{
1612 unsigned long ioaddr,cr10_value; 1612 unsigned long ioaddr,cr10_value;
1613 1613
1614 ioaddr = iobase + DCR10; 1614 ioaddr = iobase + DCR10;
1615 cr10_value = phy_addr; 1615 cr10_value = phy_addr;
1616 cr10_value = (cr10_value<<5) + offset; 1616 cr10_value = (cr10_value<<5) + offset;
@@ -1629,7 +1629,7 @@ static u16 phy_readby_cr10(unsigned long iobase, u8 phy_addr, u8 offset)
1629static void phy_writeby_cr10(unsigned long iobase, u8 phy_addr, u8 offset, u16 phy_data) 1629static void phy_writeby_cr10(unsigned long iobase, u8 phy_addr, u8 offset, u16 phy_data)
1630{ 1630{
1631 unsigned long ioaddr,cr10_value; 1631 unsigned long ioaddr,cr10_value;
1632 1632
1633 ioaddr = iobase + DCR10; 1633 ioaddr = iobase + DCR10;
1634 cr10_value = phy_addr; 1634 cr10_value = phy_addr;
1635 cr10_value = (cr10_value<<5) + offset; 1635 cr10_value = (cr10_value<<5) + offset;
@@ -1659,7 +1659,7 @@ static void phy_write_1bit(unsigned long ioaddr, u32 phy_data, u32 chip_id)
1659static u16 phy_read_1bit(unsigned long ioaddr, u32 chip_id) 1659static u16 phy_read_1bit(unsigned long ioaddr, u32 chip_id)
1660{ 1660{
1661 u16 phy_data; 1661 u16 phy_data;
1662 1662
1663 outl(0x50000 , ioaddr); 1663 outl(0x50000 , ioaddr);
1664 udelay(1); 1664 udelay(1);
1665 phy_data = ( inl(ioaddr) >> 19 ) & 0x1; 1665 phy_data = ( inl(ioaddr) >> 19 ) & 0x1;
diff --git a/drivers/net/tulip/winbond-840.c b/drivers/net/tulip/winbond-840.c
index 136a70c4d5e4..64ecf929d2ac 100644
--- a/drivers/net/tulip/winbond-840.c
+++ b/drivers/net/tulip/winbond-840.c
@@ -38,12 +38,12 @@
38 Copyright (C) 2001 Manfred Spraul 38 Copyright (C) 2001 Manfred Spraul
39 * ethtool support (jgarzik) 39 * ethtool support (jgarzik)
40 * Replace some MII-related magic numbers with constants (jgarzik) 40 * Replace some MII-related magic numbers with constants (jgarzik)
41 41
42 TODO: 42 TODO:
43 * enable pci_power_off 43 * enable pci_power_off
44 * Wake-On-LAN 44 * Wake-On-LAN
45*/ 45*/
46 46
47#define DRV_NAME "winbond-840" 47#define DRV_NAME "winbond-840"
48#define DRV_VERSION "1.01-d" 48#define DRV_VERSION "1.01-d"
49#define DRV_RELDATE "Nov-17-2001" 49#define DRV_RELDATE "Nov-17-2001"
@@ -57,7 +57,7 @@ c-help-name: Winbond W89c840 PCI Ethernet support
57c-help-symbol: CONFIG_WINBOND_840 57c-help-symbol: CONFIG_WINBOND_840
58c-help: This driver is for the Winbond W89c840 chip. It also works with 58c-help: This driver is for the Winbond W89c840 chip. It also works with
59c-help: the TX9882 chip on the Compex RL100-ATX board. 59c-help: the TX9882 chip on the Compex RL100-ATX board.
60c-help: More specific information and updates are available from 60c-help: More specific information and updates are available from
61c-help: http://www.scyld.com/network/drivers.html 61c-help: http://www.scyld.com/network/drivers.html
62*/ 62*/
63 63
@@ -207,7 +207,7 @@ Test with 'ping -s 10000' on a fast computer.
207 207
208*/ 208*/
209 209
210 210
211 211
212/* 212/*
213 PCI probe table. 213 PCI probe table.
@@ -374,7 +374,7 @@ static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
374static struct ethtool_ops netdev_ethtool_ops; 374static struct ethtool_ops netdev_ethtool_ops;
375static int netdev_close(struct net_device *dev); 375static int netdev_close(struct net_device *dev);
376 376
377 377
378 378
379static int __devinit w840_probe1 (struct pci_dev *pdev, 379static int __devinit w840_probe1 (struct pci_dev *pdev,
380 const struct pci_device_id *ent) 380 const struct pci_device_id *ent)
@@ -434,7 +434,7 @@ static int __devinit w840_probe1 (struct pci_dev *pdev,
434 np->mii_if.mdio_read = mdio_read; 434 np->mii_if.mdio_read = mdio_read;
435 np->mii_if.mdio_write = mdio_write; 435 np->mii_if.mdio_write = mdio_write;
436 np->base_addr = ioaddr; 436 np->base_addr = ioaddr;
437 437
438 pci_set_drvdata(pdev, dev); 438 pci_set_drvdata(pdev, dev);
439 439
440 if (dev->mem_start) 440 if (dev->mem_start)
@@ -510,7 +510,7 @@ err_out_netdev:
510 return -ENODEV; 510 return -ENODEV;
511} 511}
512 512
513 513
514/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. These are 514/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. These are
515 often serial bit streams generated by the host processor. 515 often serial bit streams generated by the host processor.
516 The example below is for the common 93c46 EEPROM, 64 16 bit words. */ 516 The example below is for the common 93c46 EEPROM, 64 16 bit words. */
@@ -660,7 +660,7 @@ static void mdio_write(struct net_device *dev, int phy_id, int location, int val
660 return; 660 return;
661} 661}
662 662
663 663
664static int netdev_open(struct net_device *dev) 664static int netdev_open(struct net_device *dev)
665{ 665{
666 struct netdev_private *np = netdev_priv(dev); 666 struct netdev_private *np = netdev_priv(dev);
@@ -731,7 +731,7 @@ static int update_link(struct net_device *dev)
731 dev->name, np->phys[0]); 731 dev->name, np->phys[0]);
732 netif_carrier_on(dev); 732 netif_carrier_on(dev);
733 } 733 }
734 734
735 if ((np->mii & ~0xf) == MII_DAVICOM_DM9101) { 735 if ((np->mii & ~0xf) == MII_DAVICOM_DM9101) {
736 /* If the link partner doesn't support autonegotiation 736 /* If the link partner doesn't support autonegotiation
737 * the MII detects it's abilities with the "parallel detection". 737 * the MII detects it's abilities with the "parallel detection".
@@ -761,7 +761,7 @@ static int update_link(struct net_device *dev)
761 result |= 0x20000000; 761 result |= 0x20000000;
762 if (result != np->csr6 && debug) 762 if (result != np->csr6 && debug)
763 printk(KERN_INFO "%s: Setting %dMBit-%s-duplex based on MII#%d\n", 763 printk(KERN_INFO "%s: Setting %dMBit-%s-duplex based on MII#%d\n",
764 dev->name, fasteth ? 100 : 10, 764 dev->name, fasteth ? 100 : 10,
765 duplex ? "full" : "half", np->phys[0]); 765 duplex ? "full" : "half", np->phys[0]);
766 return result; 766 return result;
767} 767}
@@ -947,7 +947,7 @@ static void init_registers(struct net_device *dev)
947 iowrite32(i, ioaddr + PCIBusCfg); 947 iowrite32(i, ioaddr + PCIBusCfg);
948 948
949 np->csr6 = 0; 949 np->csr6 = 0;
950 /* 128 byte Tx threshold; 950 /* 128 byte Tx threshold;
951 Transmit on; Receive on; */ 951 Transmit on; Receive on; */
952 update_csr6(dev, 0x00022002 | update_link(dev) | __set_rx_mode(dev)); 952 update_csr6(dev, 0x00022002 | update_link(dev) | __set_rx_mode(dev));
953 953
@@ -1584,7 +1584,7 @@ static int netdev_close(struct net_device *dev)
1584static void __devexit w840_remove1 (struct pci_dev *pdev) 1584static void __devexit w840_remove1 (struct pci_dev *pdev)
1585{ 1585{
1586 struct net_device *dev = pci_get_drvdata(pdev); 1586 struct net_device *dev = pci_get_drvdata(pdev);
1587 1587
1588 if (dev) { 1588 if (dev) {
1589 struct netdev_private *np = netdev_priv(dev); 1589 struct netdev_private *np = netdev_priv(dev);
1590 unregister_netdev(dev); 1590 unregister_netdev(dev);
@@ -1640,7 +1640,7 @@ static int w840_suspend (struct pci_dev *pdev, pm_message_t state)
1640 1640
1641 spin_unlock_wait(&dev->xmit_lock); 1641 spin_unlock_wait(&dev->xmit_lock);
1642 synchronize_irq(dev->irq); 1642 synchronize_irq(dev->irq);
1643 1643
1644 np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff; 1644 np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1645 1645
1646 /* no more hardware accesses behind this line. */ 1646 /* no more hardware accesses behind this line. */
diff --git a/drivers/net/tulip/xircom_cb.c b/drivers/net/tulip/xircom_cb.c
index 56344103ac23..63c2175ed138 100644
--- a/drivers/net/tulip/xircom_cb.c
+++ b/drivers/net/tulip/xircom_cb.c
@@ -1,11 +1,11 @@
1/* 1/*
2 * xircom_cb: A driver for the (tulip-like) Xircom Cardbus ethernet cards 2 * xircom_cb: A driver for the (tulip-like) Xircom Cardbus ethernet cards
3 * 3 *
4 * This software is (C) by the respective authors, and licensed under the GPL 4 * This software is (C) by the respective authors, and licensed under the GPL
5 * License. 5 * License.
6 * 6 *
7 * Written by Arjan van de Ven for Red Hat, Inc. 7 * Written by Arjan van de Ven for Red Hat, Inc.
8 * Based on work by Jeff Garzik, Doug Ledford and Donald Becker 8 * Based on work by Jeff Garzik, Doug Ledford and Donald Becker
9 * 9 *
10 * This software may be used and distributed according to the terms 10 * This software may be used and distributed according to the terms
11 * of the GNU General Public License, incorporated herein by reference. 11 * of the GNU General Public License, incorporated herein by reference.
@@ -93,7 +93,7 @@ struct xircom_private {
93 93
94 unsigned long io_port; 94 unsigned long io_port;
95 int open; 95 int open;
96 96
97 /* transmit_used is the rotating counter that indicates which transmit 97 /* transmit_used is the rotating counter that indicates which transmit
98 descriptor has to be used next */ 98 descriptor has to be used next */
99 int transmit_used; 99 int transmit_used;
@@ -153,10 +153,10 @@ static struct pci_device_id xircom_pci_table[] = {
153MODULE_DEVICE_TABLE(pci, xircom_pci_table); 153MODULE_DEVICE_TABLE(pci, xircom_pci_table);
154 154
155static struct pci_driver xircom_ops = { 155static struct pci_driver xircom_ops = {
156 .name = "xircom_cb", 156 .name = "xircom_cb",
157 .id_table = xircom_pci_table, 157 .id_table = xircom_pci_table,
158 .probe = xircom_probe, 158 .probe = xircom_probe,
159 .remove = xircom_remove, 159 .remove = xircom_remove,
160 .suspend =NULL, 160 .suspend =NULL,
161 .resume =NULL 161 .resume =NULL
162}; 162};
@@ -174,7 +174,7 @@ static void print_binary(unsigned int number)
174 buffer[i2++]='1'; 174 buffer[i2++]='1';
175 else 175 else
176 buffer[i2++]='0'; 176 buffer[i2++]='0';
177 if ((i&3)==0) 177 if ((i&3)==0)
178 buffer[i2++]=' '; 178 buffer[i2++]=' ';
179 } 179 }
180 printk("%s\n",buffer); 180 printk("%s\n",buffer);
@@ -196,10 +196,10 @@ static struct ethtool_ops netdev_ethtool_ops = {
196 196
197/* xircom_probe is the code that gets called on device insertion. 197/* xircom_probe is the code that gets called on device insertion.
198 it sets up the hardware and registers the device to the networklayer. 198 it sets up the hardware and registers the device to the networklayer.
199 199
200 TODO: Send 1 or 2 "dummy" packets here as the card seems to discard the 200 TODO: Send 1 or 2 "dummy" packets here as the card seems to discard the
201 first two packets that get send, and pump hates that. 201 first two packets that get send, and pump hates that.
202 202
203 */ 203 */
204static int __devinit xircom_probe(struct pci_dev *pdev, const struct pci_device_id *id) 204static int __devinit xircom_probe(struct pci_dev *pdev, const struct pci_device_id *id)
205{ 205{
@@ -209,7 +209,7 @@ static int __devinit xircom_probe(struct pci_dev *pdev, const struct pci_device_
209 unsigned long flags; 209 unsigned long flags;
210 unsigned short tmp16; 210 unsigned short tmp16;
211 enter("xircom_probe"); 211 enter("xircom_probe");
212 212
213 /* First do the PCI initialisation */ 213 /* First do the PCI initialisation */
214 214
215 if (pci_enable_device(pdev)) 215 if (pci_enable_device(pdev))
@@ -217,24 +217,24 @@ static int __devinit xircom_probe(struct pci_dev *pdev, const struct pci_device_
217 217
218 /* disable all powermanagement */ 218 /* disable all powermanagement */
219 pci_write_config_dword(pdev, PCI_POWERMGMT, 0x0000); 219 pci_write_config_dword(pdev, PCI_POWERMGMT, 0x0000);
220 220
221 pci_set_master(pdev); /* Why isn't this done by pci_enable_device ?*/ 221 pci_set_master(pdev); /* Why isn't this done by pci_enable_device ?*/
222 222
223 /* clear PCI status, if any */ 223 /* clear PCI status, if any */
224 pci_read_config_word (pdev,PCI_STATUS, &tmp16); 224 pci_read_config_word (pdev,PCI_STATUS, &tmp16);
225 pci_write_config_word (pdev, PCI_STATUS,tmp16); 225 pci_write_config_word (pdev, PCI_STATUS,tmp16);
226 226
227 pci_read_config_byte(pdev, PCI_REVISION_ID, &chip_rev); 227 pci_read_config_byte(pdev, PCI_REVISION_ID, &chip_rev);
228 228
229 if (!request_region(pci_resource_start(pdev, 0), 128, "xircom_cb")) { 229 if (!request_region(pci_resource_start(pdev, 0), 128, "xircom_cb")) {
230 printk(KERN_ERR "xircom_probe: failed to allocate io-region\n"); 230 printk(KERN_ERR "xircom_probe: failed to allocate io-region\n");
231 return -ENODEV; 231 return -ENODEV;
232 } 232 }
233 233
234 /* 234 /*
235 Before changing the hardware, allocate the memory. 235 Before changing the hardware, allocate the memory.
236 This way, we can fail gracefully if not enough memory 236 This way, we can fail gracefully if not enough memory
237 is available. 237 is available.
238 */ 238 */
239 dev = alloc_etherdev(sizeof(struct xircom_private)); 239 dev = alloc_etherdev(sizeof(struct xircom_private));
240 if (!dev) { 240 if (!dev) {
@@ -242,13 +242,13 @@ static int __devinit xircom_probe(struct pci_dev *pdev, const struct pci_device_
242 goto device_fail; 242 goto device_fail;
243 } 243 }
244 private = netdev_priv(dev); 244 private = netdev_priv(dev);
245 245
246 /* Allocate the send/receive buffers */ 246 /* Allocate the send/receive buffers */
247 private->rx_buffer = pci_alloc_consistent(pdev,8192,&private->rx_dma_handle); 247 private->rx_buffer = pci_alloc_consistent(pdev,8192,&private->rx_dma_handle);
248 if (private->rx_buffer == NULL) { 248 if (private->rx_buffer == NULL) {
249 printk(KERN_ERR "xircom_probe: no memory for rx buffer \n"); 249 printk(KERN_ERR "xircom_probe: no memory for rx buffer \n");
250 goto rx_buf_fail; 250 goto rx_buf_fail;
251 } 251 }
252 private->tx_buffer = pci_alloc_consistent(pdev,8192,&private->tx_dma_handle); 252 private->tx_buffer = pci_alloc_consistent(pdev,8192,&private->tx_dma_handle);
253 if (private->tx_buffer == NULL) { 253 if (private->tx_buffer == NULL) {
254 printk(KERN_ERR "xircom_probe: no memory for tx buffer \n"); 254 printk(KERN_ERR "xircom_probe: no memory for tx buffer \n");
@@ -265,11 +265,11 @@ static int __devinit xircom_probe(struct pci_dev *pdev, const struct pci_device_
265 spin_lock_init(&private->lock); 265 spin_lock_init(&private->lock);
266 dev->irq = pdev->irq; 266 dev->irq = pdev->irq;
267 dev->base_addr = private->io_port; 267 dev->base_addr = private->io_port;
268 268
269 initialize_card(private); 269 initialize_card(private);
270 read_mac_address(private); 270 read_mac_address(private);
271 setup_descriptors(private); 271 setup_descriptors(private);
272 272
273 dev->open = &xircom_open; 273 dev->open = &xircom_open;
274 dev->hard_start_xmit = &xircom_start_xmit; 274 dev->hard_start_xmit = &xircom_start_xmit;
275 dev->stop = &xircom_close; 275 dev->stop = &xircom_close;
@@ -285,19 +285,19 @@ static int __devinit xircom_probe(struct pci_dev *pdev, const struct pci_device_
285 printk(KERN_ERR "xircom_probe: netdevice registration failed.\n"); 285 printk(KERN_ERR "xircom_probe: netdevice registration failed.\n");
286 goto reg_fail; 286 goto reg_fail;
287 } 287 }
288 288
289 printk(KERN_INFO "%s: Xircom cardbus revision %i at irq %i \n", dev->name, chip_rev, pdev->irq); 289 printk(KERN_INFO "%s: Xircom cardbus revision %i at irq %i \n", dev->name, chip_rev, pdev->irq);
290 /* start the transmitter to get a heartbeat */ 290 /* start the transmitter to get a heartbeat */
291 /* TODO: send 2 dummy packets here */ 291 /* TODO: send 2 dummy packets here */
292 transceiver_voodoo(private); 292 transceiver_voodoo(private);
293 293
294 spin_lock_irqsave(&private->lock,flags); 294 spin_lock_irqsave(&private->lock,flags);
295 activate_transmitter(private); 295 activate_transmitter(private);
296 activate_receiver(private); 296 activate_receiver(private);
297 spin_unlock_irqrestore(&private->lock,flags); 297 spin_unlock_irqrestore(&private->lock,flags);
298 298
299 trigger_receive(private); 299 trigger_receive(private);
300 300
301 leave("xircom_probe"); 301 leave("xircom_probe");
302 return 0; 302 return 0;
303 303
@@ -332,7 +332,7 @@ static void __devexit xircom_remove(struct pci_dev *pdev)
332 free_netdev(dev); 332 free_netdev(dev);
333 pci_set_drvdata(pdev, NULL); 333 pci_set_drvdata(pdev, NULL);
334 leave("xircom_remove"); 334 leave("xircom_remove");
335} 335}
336 336
337static irqreturn_t xircom_interrupt(int irq, void *dev_instance, struct pt_regs *regs) 337static irqreturn_t xircom_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
338{ 338{
@@ -346,11 +346,11 @@ static irqreturn_t xircom_interrupt(int irq, void *dev_instance, struct pt_regs
346 spin_lock(&card->lock); 346 spin_lock(&card->lock);
347 status = inl(card->io_port+CSR5); 347 status = inl(card->io_port+CSR5);
348 348
349#ifdef DEBUG 349#ifdef DEBUG
350 print_binary(status); 350 print_binary(status);
351 printk("tx status 0x%08x 0x%08x \n",card->tx_buffer[0],card->tx_buffer[4]); 351 printk("tx status 0x%08x 0x%08x \n",card->tx_buffer[0],card->tx_buffer[4]);
352 printk("rx status 0x%08x 0x%08x \n",card->rx_buffer[0],card->rx_buffer[4]); 352 printk("rx status 0x%08x 0x%08x \n",card->rx_buffer[0],card->rx_buffer[4]);
353#endif 353#endif
354 /* Handle shared irq and hotplug */ 354 /* Handle shared irq and hotplug */
355 if (status == 0 || status == 0xffffffff) { 355 if (status == 0 || status == 0xffffffff) {
356 spin_unlock(&card->lock); 356 spin_unlock(&card->lock);
@@ -366,21 +366,21 @@ static irqreturn_t xircom_interrupt(int irq, void *dev_instance, struct pt_regs
366 netif_carrier_on(dev); 366 netif_carrier_on(dev);
367 else 367 else
368 netif_carrier_off(dev); 368 netif_carrier_off(dev);
369 369
370 } 370 }
371 371
372 /* Clear all remaining interrupts */ 372 /* Clear all remaining interrupts */
373 status |= 0xffffffff; /* FIXME: make this clear only the 373 status |= 0xffffffff; /* FIXME: make this clear only the
374 real existing bits */ 374 real existing bits */
375 outl(status,card->io_port+CSR5); 375 outl(status,card->io_port+CSR5);
376
377 376
378 for (i=0;i<NUMDESCRIPTORS;i++) 377
378 for (i=0;i<NUMDESCRIPTORS;i++)
379 investigate_write_descriptor(dev,card,i,bufferoffsets[i]); 379 investigate_write_descriptor(dev,card,i,bufferoffsets[i]);
380 for (i=0;i<NUMDESCRIPTORS;i++) 380 for (i=0;i<NUMDESCRIPTORS;i++)
381 investigate_read_descriptor(dev,card,i,bufferoffsets[i]); 381 investigate_read_descriptor(dev,card,i,bufferoffsets[i]);
382 382
383 383
384 spin_unlock(&card->lock); 384 spin_unlock(&card->lock);
385 leave("xircom_interrupt"); 385 leave("xircom_interrupt");
386 return IRQ_HANDLED; 386 return IRQ_HANDLED;
@@ -393,38 +393,38 @@ static int xircom_start_xmit(struct sk_buff *skb, struct net_device *dev)
393 int nextdescriptor; 393 int nextdescriptor;
394 int desc; 394 int desc;
395 enter("xircom_start_xmit"); 395 enter("xircom_start_xmit");
396 396
397 card = netdev_priv(dev); 397 card = netdev_priv(dev);
398 spin_lock_irqsave(&card->lock,flags); 398 spin_lock_irqsave(&card->lock,flags);
399 399
400 /* First see if we can free some descriptors */ 400 /* First see if we can free some descriptors */
401 for (desc=0;desc<NUMDESCRIPTORS;desc++) 401 for (desc=0;desc<NUMDESCRIPTORS;desc++)
402 investigate_write_descriptor(dev,card,desc,bufferoffsets[desc]); 402 investigate_write_descriptor(dev,card,desc,bufferoffsets[desc]);
403 403
404 404
405 nextdescriptor = (card->transmit_used +1) % (NUMDESCRIPTORS); 405 nextdescriptor = (card->transmit_used +1) % (NUMDESCRIPTORS);
406 desc = card->transmit_used; 406 desc = card->transmit_used;
407 407
408 /* only send the packet if the descriptor is free */ 408 /* only send the packet if the descriptor is free */
409 if (card->tx_buffer[4*desc]==0) { 409 if (card->tx_buffer[4*desc]==0) {
410 /* Copy the packet data; zero the memory first as the card 410 /* Copy the packet data; zero the memory first as the card
411 sometimes sends more than you ask it to. */ 411 sometimes sends more than you ask it to. */
412 412
413 memset(&card->tx_buffer[bufferoffsets[desc]/4],0,1536); 413 memset(&card->tx_buffer[bufferoffsets[desc]/4],0,1536);
414 memcpy(&(card->tx_buffer[bufferoffsets[desc]/4]),skb->data,skb->len); 414 memcpy(&(card->tx_buffer[bufferoffsets[desc]/4]),skb->data,skb->len);
415 415
416 416
417 /* FIXME: The specification tells us that the length we send HAS to be a multiple of 417 /* FIXME: The specification tells us that the length we send HAS to be a multiple of
418 4 bytes. */ 418 4 bytes. */
419 419
420 card->tx_buffer[4*desc+1] = skb->len; 420 card->tx_buffer[4*desc+1] = skb->len;
421 if (desc == NUMDESCRIPTORS-1) 421 if (desc == NUMDESCRIPTORS-1)
422 card->tx_buffer[4*desc+1] |= (1<<25); /* bit 25: last descriptor of the ring */ 422 card->tx_buffer[4*desc+1] |= (1<<25); /* bit 25: last descriptor of the ring */
423 423
424 card->tx_buffer[4*desc+1] |= 0xF0000000; 424 card->tx_buffer[4*desc+1] |= 0xF0000000;
425 /* 0xF0... means want interrupts*/ 425 /* 0xF0... means want interrupts*/
426 card->tx_skb[desc] = skb; 426 card->tx_skb[desc] = skb;
427 427
428 wmb(); 428 wmb();
429 /* This gives the descriptor to the card */ 429 /* This gives the descriptor to the card */
430 card->tx_buffer[4*desc] = 0x80000000; 430 card->tx_buffer[4*desc] = 0x80000000;
@@ -433,18 +433,18 @@ static int xircom_start_xmit(struct sk_buff *skb, struct net_device *dev)
433 netif_stop_queue(dev); 433 netif_stop_queue(dev);
434 } 434 }
435 card->transmit_used = nextdescriptor; 435 card->transmit_used = nextdescriptor;
436 leave("xircom-start_xmit - sent"); 436 leave("xircom-start_xmit - sent");
437 spin_unlock_irqrestore(&card->lock,flags); 437 spin_unlock_irqrestore(&card->lock,flags);
438 return 0; 438 return 0;
439 } 439 }
440 440
441 441
442 442
443 /* Uh oh... no free descriptor... drop the packet */ 443 /* Uh oh... no free descriptor... drop the packet */
444 netif_stop_queue(dev); 444 netif_stop_queue(dev);
445 spin_unlock_irqrestore(&card->lock,flags); 445 spin_unlock_irqrestore(&card->lock,flags);
446 trigger_transmit(card); 446 trigger_transmit(card);
447 447
448 return -EIO; 448 return -EIO;
449} 449}
450 450
@@ -462,7 +462,7 @@ static int xircom_open(struct net_device *dev)
462 leave("xircom_open - No IRQ"); 462 leave("xircom_open - No IRQ");
463 return retval; 463 return retval;
464 } 464 }
465 465
466 xircom_up(xp); 466 xircom_up(xp);
467 xp->open = 1; 467 xp->open = 1;
468 leave("xircom_open"); 468 leave("xircom_open");
@@ -473,31 +473,31 @@ static int xircom_close(struct net_device *dev)
473{ 473{
474 struct xircom_private *card; 474 struct xircom_private *card;
475 unsigned long flags; 475 unsigned long flags;
476 476
477 enter("xircom_close"); 477 enter("xircom_close");
478 card = netdev_priv(dev); 478 card = netdev_priv(dev);
479 netif_stop_queue(dev); /* we don't want new packets */ 479 netif_stop_queue(dev); /* we don't want new packets */
480 480
481 481
482 spin_lock_irqsave(&card->lock,flags); 482 spin_lock_irqsave(&card->lock,flags);
483 483
484 disable_all_interrupts(card); 484 disable_all_interrupts(card);
485#if 0 485#if 0
486 /* We can enable this again once we send dummy packets on ifconfig ethX up */ 486 /* We can enable this again once we send dummy packets on ifconfig ethX up */
487 deactivate_receiver(card); 487 deactivate_receiver(card);
488 deactivate_transmitter(card); 488 deactivate_transmitter(card);
489#endif 489#endif
490 remove_descriptors(card); 490 remove_descriptors(card);
491 491
492 spin_unlock_irqrestore(&card->lock,flags); 492 spin_unlock_irqrestore(&card->lock,flags);
493 493
494 card->open = 0; 494 card->open = 0;
495 free_irq(dev->irq,dev); 495 free_irq(dev->irq,dev);
496 496
497 leave("xircom_close"); 497 leave("xircom_close");
498 498
499 return 0; 499 return 0;
500 500
501} 501}
502 502
503 503
@@ -506,8 +506,8 @@ static struct net_device_stats *xircom_get_stats(struct net_device *dev)
506{ 506{
507 struct xircom_private *card = netdev_priv(dev); 507 struct xircom_private *card = netdev_priv(dev);
508 return &card->stats; 508 return &card->stats;
509} 509}
510 510
511 511
512#ifdef CONFIG_NET_POLL_CONTROLLER 512#ifdef CONFIG_NET_POLL_CONTROLLER
513static void xircom_poll_controller(struct net_device *dev) 513static void xircom_poll_controller(struct net_device *dev)
@@ -540,7 +540,7 @@ static void initialize_card(struct xircom_private *card)
540 outl(val, card->io_port + CSR0); 540 outl(val, card->io_port + CSR0);
541 541
542 542
543 val = 0; /* Value 0x00 is a safe and conservative value 543 val = 0; /* Value 0x00 is a safe and conservative value
544 for the PCI configuration settings */ 544 for the PCI configuration settings */
545 outl(val, card->io_port + CSR0); 545 outl(val, card->io_port + CSR0);
546 546
@@ -617,23 +617,23 @@ static void setup_descriptors(struct xircom_private *card)
617 617
618 /* Rx Descr2: address of the buffer 618 /* Rx Descr2: address of the buffer
619 we store the buffer at the 2nd half of the page */ 619 we store the buffer at the 2nd half of the page */
620 620
621 address = (unsigned long) card->rx_dma_handle; 621 address = (unsigned long) card->rx_dma_handle;
622 card->rx_buffer[i*4 + 2] = cpu_to_le32(address + bufferoffsets[i]); 622 card->rx_buffer[i*4 + 2] = cpu_to_le32(address + bufferoffsets[i]);
623 /* Rx Desc3: address of 2nd buffer -> 0 */ 623 /* Rx Desc3: address of 2nd buffer -> 0 */
624 card->rx_buffer[i*4 + 3] = 0; 624 card->rx_buffer[i*4 + 3] = 0;
625 } 625 }
626 626
627 wmb(); 627 wmb();
628 /* Write the receive descriptor ring address to the card */ 628 /* Write the receive descriptor ring address to the card */
629 address = (unsigned long) card->rx_dma_handle; 629 address = (unsigned long) card->rx_dma_handle;
630 val = cpu_to_le32(address); 630 val = cpu_to_le32(address);
631 outl(val, card->io_port + CSR3); /* Receive descr list address */ 631 outl(val, card->io_port + CSR3); /* Receive descr list address */
632 632
633 633
634 /* transmit descriptors */ 634 /* transmit descriptors */
635 memset(card->tx_buffer, 0, 128); /* clear the descriptors */ 635 memset(card->tx_buffer, 0, 128); /* clear the descriptors */
636 636
637 for (i=0;i<NUMDESCRIPTORS;i++ ) { 637 for (i=0;i<NUMDESCRIPTORS;i++ ) {
638 /* Tx Descr0: Empty, we own it, no errors -> 0x00000000 */ 638 /* Tx Descr0: Empty, we own it, no errors -> 0x00000000 */
639 card->tx_buffer[i*4 + 0] = 0x00000000; 639 card->tx_buffer[i*4 + 0] = 0x00000000;
@@ -641,7 +641,7 @@ static void setup_descriptors(struct xircom_private *card)
641 card->tx_buffer[i*4 + 1] = 1536; 641 card->tx_buffer[i*4 + 1] = 1536;
642 if (i==NUMDESCRIPTORS-1) 642 if (i==NUMDESCRIPTORS-1)
643 card->tx_buffer[i*4 + 1] |= (1 << 25); /* bit 25 is "last descriptor" */ 643 card->tx_buffer[i*4 + 1] |= (1 << 25); /* bit 25 is "last descriptor" */
644 644
645 /* Tx Descr2: address of the buffer 645 /* Tx Descr2: address of the buffer
646 we store the buffer at the 2nd half of the page */ 646 we store the buffer at the 2nd half of the page */
647 address = (unsigned long) card->tx_dma_handle; 647 address = (unsigned long) card->tx_dma_handle;
@@ -748,7 +748,7 @@ static int receive_active(struct xircom_private *card)
748activate_receiver enables the receiver on the card. 748activate_receiver enables the receiver on the card.
749Before being allowed to active the receiver, the receiver 749Before being allowed to active the receiver, the receiver
750must be completely de-activated. To achieve this, 750must be completely de-activated. To achieve this,
751this code actually disables the receiver first; then it waits for the 751this code actually disables the receiver first; then it waits for the
752receiver to become inactive, then it activates the receiver and then 752receiver to become inactive, then it activates the receiver and then
753it waits for the receiver to be active. 753it waits for the receiver to be active.
754 754
@@ -762,13 +762,13 @@ static void activate_receiver(struct xircom_private *card)
762 762
763 763
764 val = inl(card->io_port + CSR6); /* Operation mode */ 764 val = inl(card->io_port + CSR6); /* Operation mode */
765 765
766 /* If the "active" bit is set and the receiver is already 766 /* If the "active" bit is set and the receiver is already
767 active, no need to do the expensive thing */ 767 active, no need to do the expensive thing */
768 if ((val&2) && (receive_active(card))) 768 if ((val&2) && (receive_active(card)))
769 return; 769 return;
770 770
771 771
772 val = val & ~2; /* disable the receiver */ 772 val = val & ~2; /* disable the receiver */
773 outl(val, card->io_port + CSR6); 773 outl(val, card->io_port + CSR6);
774 774
@@ -805,7 +805,7 @@ static void activate_receiver(struct xircom_private *card)
805 805
806/* 806/*
807deactivate_receiver disables the receiver on the card. 807deactivate_receiver disables the receiver on the card.
808To achieve this this code disables the receiver first; 808To achieve this this code disables the receiver first;
809then it waits for the receiver to become inactive. 809then it waits for the receiver to become inactive.
810 810
811must be called with the lock held and interrupts disabled. 811must be called with the lock held and interrupts disabled.
@@ -840,7 +840,7 @@ static void deactivate_receiver(struct xircom_private *card)
840activate_transmitter enables the transmitter on the card. 840activate_transmitter enables the transmitter on the card.
841Before being allowed to active the transmitter, the transmitter 841Before being allowed to active the transmitter, the transmitter
842must be completely de-activated. To achieve this, 842must be completely de-activated. To achieve this,
843this code actually disables the transmitter first; then it waits for the 843this code actually disables the transmitter first; then it waits for the
844transmitter to become inactive, then it activates the transmitter and then 844transmitter to become inactive, then it activates the transmitter and then
845it waits for the transmitter to be active again. 845it waits for the transmitter to be active again.
846 846
@@ -856,7 +856,7 @@ static void activate_transmitter(struct xircom_private *card)
856 val = inl(card->io_port + CSR6); /* Operation mode */ 856 val = inl(card->io_port + CSR6); /* Operation mode */
857 857
858 /* If the "active" bit is set and the receiver is already 858 /* If the "active" bit is set and the receiver is already
859 active, no need to do the expensive thing */ 859 active, no need to do the expensive thing */
860 if ((val&(1<<13)) && (transmit_active(card))) 860 if ((val&(1<<13)) && (transmit_active(card)))
861 return; 861 return;
862 862
@@ -896,7 +896,7 @@ static void activate_transmitter(struct xircom_private *card)
896 896
897/* 897/*
898deactivate_transmitter disables the transmitter on the card. 898deactivate_transmitter disables the transmitter on the card.
899To achieve this this code disables the transmitter first; 899To achieve this this code disables the transmitter first;
900then it waits for the transmitter to become inactive. 900then it waits for the transmitter to become inactive.
901 901
902must be called with the lock held and interrupts disabled. 902must be called with the lock held and interrupts disabled.
@@ -990,7 +990,7 @@ static void disable_all_interrupts(struct xircom_private *card)
990{ 990{
991 unsigned int val; 991 unsigned int val;
992 enter("enable_all_interrupts"); 992 enter("enable_all_interrupts");
993 993
994 val = 0; /* disable all interrupts */ 994 val = 0; /* disable all interrupts */
995 outl(val, card->io_port + CSR7); 995 outl(val, card->io_port + CSR7);
996 996
@@ -1031,8 +1031,8 @@ static int enable_promisc(struct xircom_private *card)
1031 unsigned int val; 1031 unsigned int val;
1032 enter("enable_promisc"); 1032 enter("enable_promisc");
1033 1033
1034 val = inl(card->io_port + CSR6); 1034 val = inl(card->io_port + CSR6);
1035 val = val | (1 << 6); 1035 val = val | (1 << 6);
1036 outl(val, card->io_port + CSR6); 1036 outl(val, card->io_port + CSR6);
1037 1037
1038 leave("enable_promisc"); 1038 leave("enable_promisc");
@@ -1042,7 +1042,7 @@ static int enable_promisc(struct xircom_private *card)
1042 1042
1043 1043
1044 1044
1045/* 1045/*
1046link_status() checks the the links status and will return 0 for no link, 10 for 10mbit link and 100 for.. guess what. 1046link_status() checks the the links status and will return 0 for no link, 10 for 10mbit link and 100 for.. guess what.
1047 1047
1048Must be called in locked state with interrupts disabled 1048Must be called in locked state with interrupts disabled
@@ -1051,15 +1051,15 @@ static int link_status(struct xircom_private *card)
1051{ 1051{
1052 unsigned int val; 1052 unsigned int val;
1053 enter("link_status"); 1053 enter("link_status");
1054 1054
1055 val = inb(card->io_port + CSR12); 1055 val = inb(card->io_port + CSR12);
1056 1056
1057 if (!(val&(1<<2))) /* bit 2 is 0 for 10mbit link, 1 for not an 10mbit link */ 1057 if (!(val&(1<<2))) /* bit 2 is 0 for 10mbit link, 1 for not an 10mbit link */
1058 return 10; 1058 return 10;
1059 if (!(val&(1<<1))) /* bit 1 is 0 for 100mbit link, 1 for not an 100mbit link */ 1059 if (!(val&(1<<1))) /* bit 1 is 0 for 100mbit link, 1 for not an 100mbit link */
1060 return 100; 1060 return 100;
1061 1061
1062 /* If we get here -> no link at all */ 1062 /* If we get here -> no link at all */
1063 1063
1064 leave("link_status"); 1064 leave("link_status");
1065 return 0; 1065 return 0;
@@ -1071,7 +1071,7 @@ static int link_status(struct xircom_private *card)
1071 1071
1072/* 1072/*
1073 read_mac_address() reads the MAC address from the NIC and stores it in the "dev" structure. 1073 read_mac_address() reads the MAC address from the NIC and stores it in the "dev" structure.
1074 1074
1075 This function will take the spinlock itself and can, as a result, not be called with the lock helt. 1075 This function will take the spinlock itself and can, as a result, not be called with the lock helt.
1076 */ 1076 */
1077static void read_mac_address(struct xircom_private *card) 1077static void read_mac_address(struct xircom_private *card)
@@ -1081,7 +1081,7 @@ static void read_mac_address(struct xircom_private *card)
1081 int i; 1081 int i;
1082 1082
1083 enter("read_mac_address"); 1083 enter("read_mac_address");
1084 1084
1085 spin_lock_irqsave(&card->lock, flags); 1085 spin_lock_irqsave(&card->lock, flags);
1086 1086
1087 outl(1 << 12, card->io_port + CSR9); /* enable boot rom access */ 1087 outl(1 << 12, card->io_port + CSR9); /* enable boot rom access */
@@ -1095,7 +1095,7 @@ static void read_mac_address(struct xircom_private *card)
1095 outl(i + 3, card->io_port + CSR10); 1095 outl(i + 3, card->io_port + CSR10);
1096 data_count = inl(card->io_port + CSR9) & 0xff; 1096 data_count = inl(card->io_port + CSR9) & 0xff;
1097 if ((tuple == 0x22) && (data_id == 0x04) && (data_count == 0x06)) { 1097 if ((tuple == 0x22) && (data_id == 0x04) && (data_count == 0x06)) {
1098 /* 1098 /*
1099 * This is it. We have the data we want. 1099 * This is it. We have the data we want.
1100 */ 1100 */
1101 for (j = 0; j < 6; j++) { 1101 for (j = 0; j < 6; j++) {
@@ -1136,12 +1136,12 @@ static void transceiver_voodoo(struct xircom_private *card)
1136 spin_lock_irqsave(&card->lock, flags); 1136 spin_lock_irqsave(&card->lock, flags);
1137 1137
1138 outl(0x0008, card->io_port + CSR15); 1138 outl(0x0008, card->io_port + CSR15);
1139 udelay(25); 1139 udelay(25);
1140 outl(0xa8050000, card->io_port + CSR15); 1140 outl(0xa8050000, card->io_port + CSR15);
1141 udelay(25); 1141 udelay(25);
1142 outl(0xa00f0000, card->io_port + CSR15); 1142 outl(0xa00f0000, card->io_port + CSR15);
1143 udelay(25); 1143 udelay(25);
1144 1144
1145 spin_unlock_irqrestore(&card->lock, flags); 1145 spin_unlock_irqrestore(&card->lock, flags);
1146 1146
1147 netif_start_queue(card->dev); 1147 netif_start_queue(card->dev);
@@ -1163,15 +1163,15 @@ static void xircom_up(struct xircom_private *card)
1163 1163
1164 spin_lock_irqsave(&card->lock, flags); 1164 spin_lock_irqsave(&card->lock, flags);
1165 1165
1166 1166
1167 enable_link_interrupt(card); 1167 enable_link_interrupt(card);
1168 enable_transmit_interrupt(card); 1168 enable_transmit_interrupt(card);
1169 enable_receive_interrupt(card); 1169 enable_receive_interrupt(card);
1170 enable_common_interrupts(card); 1170 enable_common_interrupts(card);
1171 enable_promisc(card); 1171 enable_promisc(card);
1172 1172
1173 /* The card can have received packets already, read them away now */ 1173 /* The card can have received packets already, read them away now */
1174 for (i=0;i<NUMDESCRIPTORS;i++) 1174 for (i=0;i<NUMDESCRIPTORS;i++)
1175 investigate_read_descriptor(card->dev,card,i,bufferoffsets[i]); 1175 investigate_read_descriptor(card->dev,card,i,bufferoffsets[i]);
1176 1176
1177 1177
@@ -1185,15 +1185,15 @@ static void xircom_up(struct xircom_private *card)
1185/* Bufferoffset is in BYTES */ 1185/* Bufferoffset is in BYTES */
1186static void investigate_read_descriptor(struct net_device *dev,struct xircom_private *card, int descnr, unsigned int bufferoffset) 1186static void investigate_read_descriptor(struct net_device *dev,struct xircom_private *card, int descnr, unsigned int bufferoffset)
1187{ 1187{
1188 int status; 1188 int status;
1189 1189
1190 enter("investigate_read_descriptor"); 1190 enter("investigate_read_descriptor");
1191 status = card->rx_buffer[4*descnr]; 1191 status = card->rx_buffer[4*descnr];
1192 1192
1193 if ((status > 0)) { /* packet received */ 1193 if ((status > 0)) { /* packet received */
1194 1194
1195 /* TODO: discard error packets */ 1195 /* TODO: discard error packets */
1196 1196
1197 short pkt_len = ((status >> 16) & 0x7ff) - 4; /* minus 4, we don't want the CRC */ 1197 short pkt_len = ((status >> 16) & 0x7ff) - 4; /* minus 4, we don't want the CRC */
1198 struct sk_buff *skb; 1198 struct sk_buff *skb;
1199 1199
@@ -1216,7 +1216,7 @@ static void investigate_read_descriptor(struct net_device *dev,struct xircom_pri
1216 dev->last_rx = jiffies; 1216 dev->last_rx = jiffies;
1217 card->stats.rx_packets++; 1217 card->stats.rx_packets++;
1218 card->stats.rx_bytes += pkt_len; 1218 card->stats.rx_bytes += pkt_len;
1219 1219
1220 out: 1220 out:
1221 /* give the buffer back to the card */ 1221 /* give the buffer back to the card */
1222 card->rx_buffer[4*descnr] = 0x80000000; 1222 card->rx_buffer[4*descnr] = 0x80000000;
@@ -1234,9 +1234,9 @@ static void investigate_write_descriptor(struct net_device *dev, struct xircom_p
1234 int status; 1234 int status;
1235 1235
1236 enter("investigate_write_descriptor"); 1236 enter("investigate_write_descriptor");
1237 1237
1238 status = card->tx_buffer[4*descnr]; 1238 status = card->tx_buffer[4*descnr];
1239#if 0 1239#if 0
1240 if (status & 0x8000) { /* Major error */ 1240 if (status & 0x8000) { /* Major error */
1241 printk(KERN_ERR "Major transmit error status %x \n", status); 1241 printk(KERN_ERR "Major transmit error status %x \n", status);
1242 card->tx_buffer[4*descnr] = 0; 1242 card->tx_buffer[4*descnr] = 0;
@@ -1258,7 +1258,7 @@ static void investigate_write_descriptor(struct net_device *dev, struct xircom_p
1258 } 1258 }
1259 1259
1260 leave("investigate_write_descriptor"); 1260 leave("investigate_write_descriptor");
1261 1261
1262} 1262}
1263 1263
1264 1264
@@ -1271,8 +1271,8 @@ static int __init xircom_init(void)
1271static void __exit xircom_exit(void) 1271static void __exit xircom_exit(void)
1272{ 1272{
1273 pci_unregister_driver(&xircom_ops); 1273 pci_unregister_driver(&xircom_ops);
1274} 1274}
1275 1275
1276module_init(xircom_init) 1276module_init(xircom_init)
1277module_exit(xircom_exit) 1277module_exit(xircom_exit)
1278 1278
diff --git a/drivers/net/wan/pci200syn.c b/drivers/net/wan/pci200syn.c
index eba8e5cfacc2..f485a97844cc 100644
--- a/drivers/net/wan/pci200syn.c
+++ b/drivers/net/wan/pci200syn.c
@@ -50,10 +50,6 @@ static const char* devname = "PCI200SYN";
50static int pci_clock_freq = 33000000; 50static int pci_clock_freq = 33000000;
51#define CLOCK_BASE pci_clock_freq 51#define CLOCK_BASE pci_clock_freq
52 52
53#define PCI_VENDOR_ID_GORAMO 0x10B5 /* uses PLX:9050 ID - this card */
54#define PCI_DEVICE_ID_PCI200SYN 0x9050 /* doesn't have its own ID */
55
56
57/* 53/*
58 * PLX PCI9052 local configuration and shared runtime registers. 54 * PLX PCI9052 local configuration and shared runtime registers.
59 * This structure can be used to access 9052 registers (memory mapped). 55 * This structure can be used to access 9052 registers (memory mapped).
@@ -262,7 +258,7 @@ static void pci200_pci_remove_one(struct pci_dev *pdev)
262 int i; 258 int i;
263 card_t *card = pci_get_drvdata(pdev); 259 card_t *card = pci_get_drvdata(pdev);
264 260
265 for(i = 0; i < 2; i++) 261 for (i = 0; i < 2; i++)
266 if (card->ports[i].card) { 262 if (card->ports[i].card) {
267 struct net_device *dev = port_to_dev(&card->ports[i]); 263 struct net_device *dev = port_to_dev(&card->ports[i]);
268 unregister_hdlc_device(dev); 264 unregister_hdlc_device(dev);
@@ -385,6 +381,15 @@ static int __devinit pci200_pci_init_one(struct pci_dev *pdev,
385 " %u RX packets rings\n", ramsize / 1024, ramphys, 381 " %u RX packets rings\n", ramsize / 1024, ramphys,
386 pdev->irq, card->tx_ring_buffers, card->rx_ring_buffers); 382 pdev->irq, card->tx_ring_buffers, card->rx_ring_buffers);
387 383
384 if (pdev->subsystem_device == PCI_DEVICE_ID_PLX_9050) {
385 printk(KERN_ERR "Detected PCI200SYN card with old "
386 "configuration data.\n");
387 printk(KERN_ERR "See <http://www.kernel.org/pub/"
388 "linux/utils/net/hdlc/pci200syn/> for update.\n");
389 printk(KERN_ERR "The card will stop working with"
390 " future versions of Linux if not updated.\n");
391 }
392
388 if (card->tx_ring_buffers < 1) { 393 if (card->tx_ring_buffers < 1) {
389 printk(KERN_ERR "pci200syn: RAM test failed\n"); 394 printk(KERN_ERR "pci200syn: RAM test failed\n");
390 pci200_pci_remove_one(pdev); 395 pci200_pci_remove_one(pdev);
@@ -396,7 +401,7 @@ static int __devinit pci200_pci_init_one(struct pci_dev *pdev,
396 writew(readw(p) | 0x0040, p); 401 writew(readw(p) | 0x0040, p);
397 402
398 /* Allocate IRQ */ 403 /* Allocate IRQ */
399 if(request_irq(pdev->irq, sca_intr, SA_SHIRQ, devname, card)) { 404 if (request_irq(pdev->irq, sca_intr, SA_SHIRQ, devname, card)) {
400 printk(KERN_WARNING "pci200syn: could not allocate IRQ%d.\n", 405 printk(KERN_WARNING "pci200syn: could not allocate IRQ%d.\n",
401 pdev->irq); 406 pdev->irq);
402 pci200_pci_remove_one(pdev); 407 pci200_pci_remove_one(pdev);
@@ -406,7 +411,7 @@ static int __devinit pci200_pci_init_one(struct pci_dev *pdev,
406 411
407 sca_init(card, 0); 412 sca_init(card, 0);
408 413
409 for(i = 0; i < 2; i++) { 414 for (i = 0; i < 2; i++) {
410 port_t *port = &card->ports[i]; 415 port_t *port = &card->ports[i];
411 struct net_device *dev = port_to_dev(port); 416 struct net_device *dev = port_to_dev(port);
412 hdlc_device *hdlc = dev_to_hdlc(dev); 417 hdlc_device *hdlc = dev_to_hdlc(dev);
@@ -425,7 +430,7 @@ static int __devinit pci200_pci_init_one(struct pci_dev *pdev,
425 hdlc->xmit = sca_xmit; 430 hdlc->xmit = sca_xmit;
426 port->settings.clock_type = CLOCK_EXT; 431 port->settings.clock_type = CLOCK_EXT;
427 port->card = card; 432 port->card = card;
428 if(register_hdlc_device(dev)) { 433 if (register_hdlc_device(dev)) {
429 printk(KERN_ERR "pci200syn: unable to register hdlc " 434 printk(KERN_ERR "pci200syn: unable to register hdlc "
430 "device\n"); 435 "device\n");
431 port->card = NULL; 436 port->card = NULL;
@@ -445,8 +450,10 @@ static int __devinit pci200_pci_init_one(struct pci_dev *pdev,
445 450
446 451
447static struct pci_device_id pci200_pci_tbl[] __devinitdata = { 452static struct pci_device_id pci200_pci_tbl[] __devinitdata = {
448 { PCI_VENDOR_ID_GORAMO, PCI_DEVICE_ID_PCI200SYN, PCI_ANY_ID, 453 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9050, PCI_VENDOR_ID_PLX,
449 PCI_ANY_ID, 0, 0, 0 }, 454 PCI_DEVICE_ID_PLX_9050, 0, 0, 0 },
455 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9050, PCI_VENDOR_ID_PLX,
456 PCI_DEVICE_ID_PLX_PCI200SYN, 0, 0, 0 },
450 { 0, } 457 { 0, }
451}; 458};
452 459
diff --git a/drivers/net/wireless/Kconfig b/drivers/net/wireless/Kconfig
index e0874cbfefea..d7691c482835 100644
--- a/drivers/net/wireless/Kconfig
+++ b/drivers/net/wireless/Kconfig
@@ -235,7 +235,35 @@ config IPW2200_MONITOR
235 promiscuous mode via the Wireless Tool's Monitor mode. While in this 235 promiscuous mode via the Wireless Tool's Monitor mode. While in this
236 mode, no packets can be sent. 236 mode, no packets can be sent.
237 237
238config IPW_QOS 238config IPW2200_RADIOTAP
239 bool "Enable radiotap format 802.11 raw packet support"
240 depends on IPW2200_MONITOR
241
242config IPW2200_PROMISCUOUS
243 bool "Enable creation of a RF radiotap promiscuous interface"
244 depends on IPW2200_MONITOR
245 select IPW2200_RADIOTAP
246 ---help---
247 Enables the creation of a second interface prefixed 'rtap'.
248 This second interface will provide every received in radiotap
249 format.
250
251 This is useful for performing wireless network analysis while
252 maintaining an active association.
253
254 Example usage:
255
256 % modprobe ipw2200 rtap_iface=1
257 % ifconfig rtap0 up
258 % tethereal -i rtap0
259
260 If you do not specify 'rtap_iface=1' as a module parameter then
261 the rtap interface will not be created and you will need to turn
262 it on via sysfs:
263
264 % echo 1 > /sys/bus/pci/drivers/ipw2200/*/rtap_iface
265
266config IPW2200_QOS
239 bool "Enable QoS support" 267 bool "Enable QoS support"
240 depends on IPW2200 && EXPERIMENTAL 268 depends on IPW2200 && EXPERIMENTAL
241 269
diff --git a/drivers/net/wireless/airo.c b/drivers/net/wireless/airo.c
index 00764ddd74d8..4069b79d8259 100644
--- a/drivers/net/wireless/airo.c
+++ b/drivers/net/wireless/airo.c
@@ -47,6 +47,7 @@
47#include <linux/ioport.h> 47#include <linux/ioport.h>
48#include <linux/pci.h> 48#include <linux/pci.h>
49#include <asm/uaccess.h> 49#include <asm/uaccess.h>
50#include <net/ieee80211.h>
50 51
51#include "airo.h" 52#include "airo.h"
52 53
@@ -467,6 +468,8 @@ static int do8bitIO = 0;
467#define RID_ECHOTEST_RESULTS 0xFF71 468#define RID_ECHOTEST_RESULTS 0xFF71
468#define RID_BSSLISTFIRST 0xFF72 469#define RID_BSSLISTFIRST 0xFF72
469#define RID_BSSLISTNEXT 0xFF73 470#define RID_BSSLISTNEXT 0xFF73
471#define RID_WPA_BSSLISTFIRST 0xFF74
472#define RID_WPA_BSSLISTNEXT 0xFF75
470 473
471typedef struct { 474typedef struct {
472 u16 cmd; 475 u16 cmd;
@@ -739,6 +742,14 @@ typedef struct {
739 u16 extSoftCap; 742 u16 extSoftCap;
740} CapabilityRid; 743} CapabilityRid;
741 744
745
746/* Only present on firmware >= 5.30.17 */
747typedef struct {
748 u16 unknown[4];
749 u8 fixed[12]; /* WLAN management frame */
750 u8 iep[624];
751} BSSListRidExtra;
752
742typedef struct { 753typedef struct {
743 u16 len; 754 u16 len;
744 u16 index; /* First is 0 and 0xffff means end of list */ 755 u16 index; /* First is 0 and 0xffff means end of list */
@@ -767,6 +778,9 @@ typedef struct {
767 } fh; 778 } fh;
768 u16 dsChannel; 779 u16 dsChannel;
769 u16 atimWindow; 780 u16 atimWindow;
781
782 /* Only present on firmware >= 5.30.17 */
783 BSSListRidExtra extra;
770} BSSListRid; 784} BSSListRid;
771 785
772typedef struct { 786typedef struct {
@@ -1140,8 +1154,6 @@ struct airo_info {
1140 char defindex; // Used with auto wep 1154 char defindex; // Used with auto wep
1141 struct proc_dir_entry *proc_entry; 1155 struct proc_dir_entry *proc_entry;
1142 spinlock_t aux_lock; 1156 spinlock_t aux_lock;
1143 unsigned long flags;
1144#define FLAG_PROMISC 8 /* IFF_PROMISC 0x100 - include/linux/if.h */
1145#define FLAG_RADIO_OFF 0 /* User disabling of MAC */ 1157#define FLAG_RADIO_OFF 0 /* User disabling of MAC */
1146#define FLAG_RADIO_DOWN 1 /* ifup/ifdown disabling of MAC */ 1158#define FLAG_RADIO_DOWN 1 /* ifup/ifdown disabling of MAC */
1147#define FLAG_RADIO_MASK 0x03 1159#define FLAG_RADIO_MASK 0x03
@@ -1151,6 +1163,7 @@ struct airo_info {
1151#define FLAG_UPDATE_MULTI 5 1163#define FLAG_UPDATE_MULTI 5
1152#define FLAG_UPDATE_UNI 6 1164#define FLAG_UPDATE_UNI 6
1153#define FLAG_802_11 7 1165#define FLAG_802_11 7
1166#define FLAG_PROMISC 8 /* IFF_PROMISC 0x100 - include/linux/if.h */
1154#define FLAG_PENDING_XMIT 9 1167#define FLAG_PENDING_XMIT 9
1155#define FLAG_PENDING_XMIT11 10 1168#define FLAG_PENDING_XMIT11 10
1156#define FLAG_MPI 11 1169#define FLAG_MPI 11
@@ -1158,17 +1171,19 @@ struct airo_info {
1158#define FLAG_COMMIT 13 1171#define FLAG_COMMIT 13
1159#define FLAG_RESET 14 1172#define FLAG_RESET 14
1160#define FLAG_FLASHING 15 1173#define FLAG_FLASHING 15
1161#define JOB_MASK 0x2ff0000 1174#define FLAG_WPA_CAPABLE 16
1162#define JOB_DIE 16 1175 unsigned long flags;
1163#define JOB_XMIT 17 1176#define JOB_DIE 0
1164#define JOB_XMIT11 18 1177#define JOB_XMIT 1
1165#define JOB_STATS 19 1178#define JOB_XMIT11 2
1166#define JOB_PROMISC 20 1179#define JOB_STATS 3
1167#define JOB_MIC 21 1180#define JOB_PROMISC 4
1168#define JOB_EVENT 22 1181#define JOB_MIC 5
1169#define JOB_AUTOWEP 23 1182#define JOB_EVENT 6
1170#define JOB_WSTATS 24 1183#define JOB_AUTOWEP 7
1171#define JOB_SCAN_RESULTS 25 1184#define JOB_WSTATS 8
1185#define JOB_SCAN_RESULTS 9
1186 unsigned long jobs;
1172 int (*bap_read)(struct airo_info*, u16 *pu16Dst, int bytelen, 1187 int (*bap_read)(struct airo_info*, u16 *pu16Dst, int bytelen,
1173 int whichbap); 1188 int whichbap);
1174 unsigned short *flash; 1189 unsigned short *flash;
@@ -1208,6 +1223,11 @@ struct airo_info {
1208#define PCI_SHARED_LEN 2*MPI_MAX_FIDS*PKTSIZE+RIDSIZE 1223#define PCI_SHARED_LEN 2*MPI_MAX_FIDS*PKTSIZE+RIDSIZE
1209 char proc_name[IFNAMSIZ]; 1224 char proc_name[IFNAMSIZ];
1210 1225
1226 /* WPA-related stuff */
1227 unsigned int bssListFirst;
1228 unsigned int bssListNext;
1229 unsigned int bssListRidLen;
1230
1211 struct list_head network_list; 1231 struct list_head network_list;
1212 struct list_head network_free_list; 1232 struct list_head network_free_list;
1213 BSSListElement *networks; 1233 BSSListElement *networks;
@@ -1264,7 +1284,7 @@ static void micinit(struct airo_info *ai)
1264{ 1284{
1265 MICRid mic_rid; 1285 MICRid mic_rid;
1266 1286
1267 clear_bit(JOB_MIC, &ai->flags); 1287 clear_bit(JOB_MIC, &ai->jobs);
1268 PC4500_readrid(ai, RID_MIC, &mic_rid, sizeof(mic_rid), 0); 1288 PC4500_readrid(ai, RID_MIC, &mic_rid, sizeof(mic_rid), 0);
1269 up(&ai->sem); 1289 up(&ai->sem);
1270 1290
@@ -1705,24 +1725,24 @@ static void emmh32_final(emmh32_context *context, u8 digest[4])
1705static int readBSSListRid(struct airo_info *ai, int first, 1725static int readBSSListRid(struct airo_info *ai, int first,
1706 BSSListRid *list) { 1726 BSSListRid *list) {
1707 int rc; 1727 int rc;
1708 Cmd cmd; 1728 Cmd cmd;
1709 Resp rsp; 1729 Resp rsp;
1710 1730
1711 if (first == 1) { 1731 if (first == 1) {
1712 if (ai->flags & FLAG_RADIO_MASK) return -ENETDOWN; 1732 if (ai->flags & FLAG_RADIO_MASK) return -ENETDOWN;
1713 memset(&cmd, 0, sizeof(cmd)); 1733 memset(&cmd, 0, sizeof(cmd));
1714 cmd.cmd=CMD_LISTBSS; 1734 cmd.cmd=CMD_LISTBSS;
1715 if (down_interruptible(&ai->sem)) 1735 if (down_interruptible(&ai->sem))
1716 return -ERESTARTSYS; 1736 return -ERESTARTSYS;
1717 issuecommand(ai, &cmd, &rsp); 1737 issuecommand(ai, &cmd, &rsp);
1718 up(&ai->sem); 1738 up(&ai->sem);
1719 /* Let the command take effect */ 1739 /* Let the command take effect */
1720 ai->task = current; 1740 ai->task = current;
1721 ssleep(3); 1741 ssleep(3);
1722 ai->task = NULL; 1742 ai->task = NULL;
1723 } 1743 }
1724 rc = PC4500_readrid(ai, first ? RID_BSSLISTFIRST : RID_BSSLISTNEXT, 1744 rc = PC4500_readrid(ai, first ? ai->bssListFirst : ai->bssListNext,
1725 list, sizeof(*list), 1); 1745 list, ai->bssListRidLen, 1);
1726 1746
1727 list->len = le16_to_cpu(list->len); 1747 list->len = le16_to_cpu(list->len);
1728 list->index = le16_to_cpu(list->index); 1748 list->index = le16_to_cpu(list->index);
@@ -2112,7 +2132,7 @@ static void airo_end_xmit(struct net_device *dev) {
2112 int fid = priv->xmit.fid; 2132 int fid = priv->xmit.fid;
2113 u32 *fids = priv->fids; 2133 u32 *fids = priv->fids;
2114 2134
2115 clear_bit(JOB_XMIT, &priv->flags); 2135 clear_bit(JOB_XMIT, &priv->jobs);
2116 clear_bit(FLAG_PENDING_XMIT, &priv->flags); 2136 clear_bit(FLAG_PENDING_XMIT, &priv->flags);
2117 status = transmit_802_3_packet (priv, fids[fid], skb->data); 2137 status = transmit_802_3_packet (priv, fids[fid], skb->data);
2118 up(&priv->sem); 2138 up(&priv->sem);
@@ -2162,7 +2182,7 @@ static int airo_start_xmit(struct sk_buff *skb, struct net_device *dev) {
2162 if (down_trylock(&priv->sem) != 0) { 2182 if (down_trylock(&priv->sem) != 0) {
2163 set_bit(FLAG_PENDING_XMIT, &priv->flags); 2183 set_bit(FLAG_PENDING_XMIT, &priv->flags);
2164 netif_stop_queue(dev); 2184 netif_stop_queue(dev);
2165 set_bit(JOB_XMIT, &priv->flags); 2185 set_bit(JOB_XMIT, &priv->jobs);
2166 wake_up_interruptible(&priv->thr_wait); 2186 wake_up_interruptible(&priv->thr_wait);
2167 } else 2187 } else
2168 airo_end_xmit(dev); 2188 airo_end_xmit(dev);
@@ -2177,7 +2197,7 @@ static void airo_end_xmit11(struct net_device *dev) {
2177 int fid = priv->xmit11.fid; 2197 int fid = priv->xmit11.fid;
2178 u32 *fids = priv->fids; 2198 u32 *fids = priv->fids;
2179 2199
2180 clear_bit(JOB_XMIT11, &priv->flags); 2200 clear_bit(JOB_XMIT11, &priv->jobs);
2181 clear_bit(FLAG_PENDING_XMIT11, &priv->flags); 2201 clear_bit(FLAG_PENDING_XMIT11, &priv->flags);
2182 status = transmit_802_11_packet (priv, fids[fid], skb->data); 2202 status = transmit_802_11_packet (priv, fids[fid], skb->data);
2183 up(&priv->sem); 2203 up(&priv->sem);
@@ -2233,7 +2253,7 @@ static int airo_start_xmit11(struct sk_buff *skb, struct net_device *dev) {
2233 if (down_trylock(&priv->sem) != 0) { 2253 if (down_trylock(&priv->sem) != 0) {
2234 set_bit(FLAG_PENDING_XMIT11, &priv->flags); 2254 set_bit(FLAG_PENDING_XMIT11, &priv->flags);
2235 netif_stop_queue(dev); 2255 netif_stop_queue(dev);
2236 set_bit(JOB_XMIT11, &priv->flags); 2256 set_bit(JOB_XMIT11, &priv->jobs);
2237 wake_up_interruptible(&priv->thr_wait); 2257 wake_up_interruptible(&priv->thr_wait);
2238 } else 2258 } else
2239 airo_end_xmit11(dev); 2259 airo_end_xmit11(dev);
@@ -2244,7 +2264,7 @@ static void airo_read_stats(struct airo_info *ai) {
2244 StatsRid stats_rid; 2264 StatsRid stats_rid;
2245 u32 *vals = stats_rid.vals; 2265 u32 *vals = stats_rid.vals;
2246 2266
2247 clear_bit(JOB_STATS, &ai->flags); 2267 clear_bit(JOB_STATS, &ai->jobs);
2248 if (ai->power.event) { 2268 if (ai->power.event) {
2249 up(&ai->sem); 2269 up(&ai->sem);
2250 return; 2270 return;
@@ -2272,10 +2292,10 @@ static struct net_device_stats *airo_get_stats(struct net_device *dev)
2272{ 2292{
2273 struct airo_info *local = dev->priv; 2293 struct airo_info *local = dev->priv;
2274 2294
2275 if (!test_bit(JOB_STATS, &local->flags)) { 2295 if (!test_bit(JOB_STATS, &local->jobs)) {
2276 /* Get stats out of the card if available */ 2296 /* Get stats out of the card if available */
2277 if (down_trylock(&local->sem) != 0) { 2297 if (down_trylock(&local->sem) != 0) {
2278 set_bit(JOB_STATS, &local->flags); 2298 set_bit(JOB_STATS, &local->jobs);
2279 wake_up_interruptible(&local->thr_wait); 2299 wake_up_interruptible(&local->thr_wait);
2280 } else 2300 } else
2281 airo_read_stats(local); 2301 airo_read_stats(local);
@@ -2290,7 +2310,7 @@ static void airo_set_promisc(struct airo_info *ai) {
2290 2310
2291 memset(&cmd, 0, sizeof(cmd)); 2311 memset(&cmd, 0, sizeof(cmd));
2292 cmd.cmd=CMD_SETMODE; 2312 cmd.cmd=CMD_SETMODE;
2293 clear_bit(JOB_PROMISC, &ai->flags); 2313 clear_bit(JOB_PROMISC, &ai->jobs);
2294 cmd.parm0=(ai->flags&IFF_PROMISC) ? PROMISC : NOPROMISC; 2314 cmd.parm0=(ai->flags&IFF_PROMISC) ? PROMISC : NOPROMISC;
2295 issuecommand(ai, &cmd, &rsp); 2315 issuecommand(ai, &cmd, &rsp);
2296 up(&ai->sem); 2316 up(&ai->sem);
@@ -2302,7 +2322,7 @@ static void airo_set_multicast_list(struct net_device *dev) {
2302 if ((dev->flags ^ ai->flags) & IFF_PROMISC) { 2322 if ((dev->flags ^ ai->flags) & IFF_PROMISC) {
2303 change_bit(FLAG_PROMISC, &ai->flags); 2323 change_bit(FLAG_PROMISC, &ai->flags);
2304 if (down_trylock(&ai->sem) != 0) { 2324 if (down_trylock(&ai->sem) != 0) {
2305 set_bit(JOB_PROMISC, &ai->flags); 2325 set_bit(JOB_PROMISC, &ai->jobs);
2306 wake_up_interruptible(&ai->thr_wait); 2326 wake_up_interruptible(&ai->thr_wait);
2307 } else 2327 } else
2308 airo_set_promisc(ai); 2328 airo_set_promisc(ai);
@@ -2380,7 +2400,7 @@ void stop_airo_card( struct net_device *dev, int freeres )
2380 } 2400 }
2381 clear_bit(FLAG_REGISTERED, &ai->flags); 2401 clear_bit(FLAG_REGISTERED, &ai->flags);
2382 } 2402 }
2383 set_bit(JOB_DIE, &ai->flags); 2403 set_bit(JOB_DIE, &ai->jobs);
2384 kill_proc(ai->thr_pid, SIGTERM, 1); 2404 kill_proc(ai->thr_pid, SIGTERM, 1);
2385 wait_for_completion(&ai->thr_exited); 2405 wait_for_completion(&ai->thr_exited);
2386 2406
@@ -2701,14 +2721,14 @@ static int reset_card( struct net_device *dev , int lock) {
2701 return 0; 2721 return 0;
2702} 2722}
2703 2723
2704#define MAX_NETWORK_COUNT 64 2724#define AIRO_MAX_NETWORK_COUNT 64
2705static int airo_networks_allocate(struct airo_info *ai) 2725static int airo_networks_allocate(struct airo_info *ai)
2706{ 2726{
2707 if (ai->networks) 2727 if (ai->networks)
2708 return 0; 2728 return 0;
2709 2729
2710 ai->networks = 2730 ai->networks =
2711 kzalloc(MAX_NETWORK_COUNT * sizeof(BSSListElement), 2731 kzalloc(AIRO_MAX_NETWORK_COUNT * sizeof(BSSListElement),
2712 GFP_KERNEL); 2732 GFP_KERNEL);
2713 if (!ai->networks) { 2733 if (!ai->networks) {
2714 airo_print_warn(ai->dev->name, "Out of memory allocating beacons"); 2734 airo_print_warn(ai->dev->name, "Out of memory allocating beacons");
@@ -2732,11 +2752,33 @@ static void airo_networks_initialize(struct airo_info *ai)
2732 2752
2733 INIT_LIST_HEAD(&ai->network_free_list); 2753 INIT_LIST_HEAD(&ai->network_free_list);
2734 INIT_LIST_HEAD(&ai->network_list); 2754 INIT_LIST_HEAD(&ai->network_list);
2735 for (i = 0; i < MAX_NETWORK_COUNT; i++) 2755 for (i = 0; i < AIRO_MAX_NETWORK_COUNT; i++)
2736 list_add_tail(&ai->networks[i].list, 2756 list_add_tail(&ai->networks[i].list,
2737 &ai->network_free_list); 2757 &ai->network_free_list);
2738} 2758}
2739 2759
2760static int airo_test_wpa_capable(struct airo_info *ai)
2761{
2762 int status;
2763 CapabilityRid cap_rid;
2764 const char *name = ai->dev->name;
2765
2766 status = readCapabilityRid(ai, &cap_rid, 1);
2767 if (status != SUCCESS) return 0;
2768
2769 /* Only firmware versions 5.30.17 or better can do WPA */
2770 if ((cap_rid.softVer > 0x530)
2771 || ((cap_rid.softVer == 0x530) && (cap_rid.softSubVer >= 17))) {
2772 airo_print_info(name, "WPA is supported.");
2773 return 1;
2774 }
2775
2776 /* No WPA support */
2777 airo_print_info(name, "WPA unsupported (only firmware versions 5.30.17"
2778 " and greater support WPA. Detected %s)", cap_rid.prodVer);
2779 return 0;
2780}
2781
2740static struct net_device *_init_airo_card( unsigned short irq, int port, 2782static struct net_device *_init_airo_card( unsigned short irq, int port,
2741 int is_pcmcia, struct pci_dev *pci, 2783 int is_pcmcia, struct pci_dev *pci,
2742 struct device *dmdev ) 2784 struct device *dmdev )
@@ -2759,6 +2801,7 @@ static struct net_device *_init_airo_card( unsigned short irq, int port,
2759 ai = dev->priv; 2801 ai = dev->priv;
2760 ai->wifidev = NULL; 2802 ai->wifidev = NULL;
2761 ai->flags = 0; 2803 ai->flags = 0;
2804 ai->jobs = 0;
2762 ai->dev = dev; 2805 ai->dev = dev;
2763 if (pci && (pci->device == 0x5000 || pci->device == 0xa504)) { 2806 if (pci && (pci->device == 0x5000 || pci->device == 0xa504)) {
2764 airo_print_dbg(dev->name, "Found an MPI350 card"); 2807 airo_print_dbg(dev->name, "Found an MPI350 card");
@@ -2838,6 +2881,18 @@ static struct net_device *_init_airo_card( unsigned short irq, int port,
2838 set_bit(FLAG_FLASHING, &ai->flags); 2881 set_bit(FLAG_FLASHING, &ai->flags);
2839 } 2882 }
2840 2883
2884 /* Test for WPA support */
2885 if (airo_test_wpa_capable(ai)) {
2886 set_bit(FLAG_WPA_CAPABLE, &ai->flags);
2887 ai->bssListFirst = RID_WPA_BSSLISTFIRST;
2888 ai->bssListNext = RID_WPA_BSSLISTNEXT;
2889 ai->bssListRidLen = sizeof(BSSListRid);
2890 } else {
2891 ai->bssListFirst = RID_BSSLISTFIRST;
2892 ai->bssListNext = RID_BSSLISTNEXT;
2893 ai->bssListRidLen = sizeof(BSSListRid) - sizeof(BSSListRidExtra);
2894 }
2895
2841 rc = register_netdev(dev); 2896 rc = register_netdev(dev);
2842 if (rc) { 2897 if (rc) {
2843 airo_print_err(dev->name, "Couldn't register_netdev"); 2898 airo_print_err(dev->name, "Couldn't register_netdev");
@@ -2875,7 +2930,7 @@ err_out_irq:
2875err_out_unlink: 2930err_out_unlink:
2876 del_airo_dev(dev); 2931 del_airo_dev(dev);
2877err_out_thr: 2932err_out_thr:
2878 set_bit(JOB_DIE, &ai->flags); 2933 set_bit(JOB_DIE, &ai->jobs);
2879 kill_proc(ai->thr_pid, SIGTERM, 1); 2934 kill_proc(ai->thr_pid, SIGTERM, 1);
2880 wait_for_completion(&ai->thr_exited); 2935 wait_for_completion(&ai->thr_exited);
2881err_out_free: 2936err_out_free:
@@ -2933,7 +2988,7 @@ static void airo_send_event(struct net_device *dev) {
2933 union iwreq_data wrqu; 2988 union iwreq_data wrqu;
2934 StatusRid status_rid; 2989 StatusRid status_rid;
2935 2990
2936 clear_bit(JOB_EVENT, &ai->flags); 2991 clear_bit(JOB_EVENT, &ai->jobs);
2937 PC4500_readrid(ai, RID_STATUS, &status_rid, sizeof(status_rid), 0); 2992 PC4500_readrid(ai, RID_STATUS, &status_rid, sizeof(status_rid), 0);
2938 up(&ai->sem); 2993 up(&ai->sem);
2939 wrqu.data.length = 0; 2994 wrqu.data.length = 0;
@@ -2947,7 +3002,7 @@ static void airo_send_event(struct net_device *dev) {
2947 3002
2948static void airo_process_scan_results (struct airo_info *ai) { 3003static void airo_process_scan_results (struct airo_info *ai) {
2949 union iwreq_data wrqu; 3004 union iwreq_data wrqu;
2950 BSSListRid BSSList; 3005 BSSListRid bss;
2951 int rc; 3006 int rc;
2952 BSSListElement * loop_net; 3007 BSSListElement * loop_net;
2953 BSSListElement * tmp_net; 3008 BSSListElement * tmp_net;
@@ -2960,15 +3015,15 @@ static void airo_process_scan_results (struct airo_info *ai) {
2960 } 3015 }
2961 3016
2962 /* Try to read the first entry of the scan result */ 3017 /* Try to read the first entry of the scan result */
2963 rc = PC4500_readrid(ai, RID_BSSLISTFIRST, &BSSList, sizeof(BSSList), 0); 3018 rc = PC4500_readrid(ai, ai->bssListFirst, &bss, ai->bssListRidLen, 0);
2964 if((rc) || (BSSList.index == 0xffff)) { 3019 if((rc) || (bss.index == 0xffff)) {
2965 /* No scan results */ 3020 /* No scan results */
2966 goto out; 3021 goto out;
2967 } 3022 }
2968 3023
2969 /* Read and parse all entries */ 3024 /* Read and parse all entries */
2970 tmp_net = NULL; 3025 tmp_net = NULL;
2971 while((!rc) && (BSSList.index != 0xffff)) { 3026 while((!rc) && (bss.index != 0xffff)) {
2972 /* Grab a network off the free list */ 3027 /* Grab a network off the free list */
2973 if (!list_empty(&ai->network_free_list)) { 3028 if (!list_empty(&ai->network_free_list)) {
2974 tmp_net = list_entry(ai->network_free_list.next, 3029 tmp_net = list_entry(ai->network_free_list.next,
@@ -2977,19 +3032,19 @@ static void airo_process_scan_results (struct airo_info *ai) {
2977 } 3032 }
2978 3033
2979 if (tmp_net != NULL) { 3034 if (tmp_net != NULL) {
2980 memcpy(tmp_net, &BSSList, sizeof(tmp_net->bss)); 3035 memcpy(tmp_net, &bss, sizeof(tmp_net->bss));
2981 list_add_tail(&tmp_net->list, &ai->network_list); 3036 list_add_tail(&tmp_net->list, &ai->network_list);
2982 tmp_net = NULL; 3037 tmp_net = NULL;
2983 } 3038 }
2984 3039
2985 /* Read next entry */ 3040 /* Read next entry */
2986 rc = PC4500_readrid(ai, RID_BSSLISTNEXT, 3041 rc = PC4500_readrid(ai, ai->bssListNext,
2987 &BSSList, sizeof(BSSList), 0); 3042 &bss, ai->bssListRidLen, 0);
2988 } 3043 }
2989 3044
2990out: 3045out:
2991 ai->scan_timeout = 0; 3046 ai->scan_timeout = 0;
2992 clear_bit(JOB_SCAN_RESULTS, &ai->flags); 3047 clear_bit(JOB_SCAN_RESULTS, &ai->jobs);
2993 up(&ai->sem); 3048 up(&ai->sem);
2994 3049
2995 /* Send an empty event to user space. 3050 /* Send an empty event to user space.
@@ -3019,10 +3074,10 @@ static int airo_thread(void *data) {
3019 /* make swsusp happy with our thread */ 3074 /* make swsusp happy with our thread */
3020 try_to_freeze(); 3075 try_to_freeze();
3021 3076
3022 if (test_bit(JOB_DIE, &ai->flags)) 3077 if (test_bit(JOB_DIE, &ai->jobs))
3023 break; 3078 break;
3024 3079
3025 if (ai->flags & JOB_MASK) { 3080 if (ai->jobs) {
3026 locked = down_interruptible(&ai->sem); 3081 locked = down_interruptible(&ai->sem);
3027 } else { 3082 } else {
3028 wait_queue_t wait; 3083 wait_queue_t wait;
@@ -3031,16 +3086,16 @@ static int airo_thread(void *data) {
3031 add_wait_queue(&ai->thr_wait, &wait); 3086 add_wait_queue(&ai->thr_wait, &wait);
3032 for (;;) { 3087 for (;;) {
3033 set_current_state(TASK_INTERRUPTIBLE); 3088 set_current_state(TASK_INTERRUPTIBLE);
3034 if (ai->flags & JOB_MASK) 3089 if (ai->jobs)
3035 break; 3090 break;
3036 if (ai->expires || ai->scan_timeout) { 3091 if (ai->expires || ai->scan_timeout) {
3037 if (ai->scan_timeout && 3092 if (ai->scan_timeout &&
3038 time_after_eq(jiffies,ai->scan_timeout)){ 3093 time_after_eq(jiffies,ai->scan_timeout)){
3039 set_bit(JOB_SCAN_RESULTS,&ai->flags); 3094 set_bit(JOB_SCAN_RESULTS, &ai->jobs);
3040 break; 3095 break;
3041 } else if (ai->expires && 3096 } else if (ai->expires &&
3042 time_after_eq(jiffies,ai->expires)){ 3097 time_after_eq(jiffies,ai->expires)){
3043 set_bit(JOB_AUTOWEP,&ai->flags); 3098 set_bit(JOB_AUTOWEP, &ai->jobs);
3044 break; 3099 break;
3045 } 3100 }
3046 if (!signal_pending(current)) { 3101 if (!signal_pending(current)) {
@@ -3069,7 +3124,7 @@ static int airo_thread(void *data) {
3069 if (locked) 3124 if (locked)
3070 continue; 3125 continue;
3071 3126
3072 if (test_bit(JOB_DIE, &ai->flags)) { 3127 if (test_bit(JOB_DIE, &ai->jobs)) {
3073 up(&ai->sem); 3128 up(&ai->sem);
3074 break; 3129 break;
3075 } 3130 }
@@ -3079,23 +3134,23 @@ static int airo_thread(void *data) {
3079 continue; 3134 continue;
3080 } 3135 }
3081 3136
3082 if (test_bit(JOB_XMIT, &ai->flags)) 3137 if (test_bit(JOB_XMIT, &ai->jobs))
3083 airo_end_xmit(dev); 3138 airo_end_xmit(dev);
3084 else if (test_bit(JOB_XMIT11, &ai->flags)) 3139 else if (test_bit(JOB_XMIT11, &ai->jobs))
3085 airo_end_xmit11(dev); 3140 airo_end_xmit11(dev);
3086 else if (test_bit(JOB_STATS, &ai->flags)) 3141 else if (test_bit(JOB_STATS, &ai->jobs))
3087 airo_read_stats(ai); 3142 airo_read_stats(ai);
3088 else if (test_bit(JOB_WSTATS, &ai->flags)) 3143 else if (test_bit(JOB_WSTATS, &ai->jobs))
3089 airo_read_wireless_stats(ai); 3144 airo_read_wireless_stats(ai);
3090 else if (test_bit(JOB_PROMISC, &ai->flags)) 3145 else if (test_bit(JOB_PROMISC, &ai->jobs))
3091 airo_set_promisc(ai); 3146 airo_set_promisc(ai);
3092 else if (test_bit(JOB_MIC, &ai->flags)) 3147 else if (test_bit(JOB_MIC, &ai->jobs))
3093 micinit(ai); 3148 micinit(ai);
3094 else if (test_bit(JOB_EVENT, &ai->flags)) 3149 else if (test_bit(JOB_EVENT, &ai->jobs))
3095 airo_send_event(dev); 3150 airo_send_event(dev);
3096 else if (test_bit(JOB_AUTOWEP, &ai->flags)) 3151 else if (test_bit(JOB_AUTOWEP, &ai->jobs))
3097 timer_func(dev); 3152 timer_func(dev);
3098 else if (test_bit(JOB_SCAN_RESULTS, &ai->flags)) 3153 else if (test_bit(JOB_SCAN_RESULTS, &ai->jobs))
3099 airo_process_scan_results(ai); 3154 airo_process_scan_results(ai);
3100 else /* Shouldn't get here, but we make sure to unlock */ 3155 else /* Shouldn't get here, but we make sure to unlock */
3101 up(&ai->sem); 3156 up(&ai->sem);
@@ -3133,7 +3188,7 @@ static irqreturn_t airo_interrupt ( int irq, void* dev_id, struct pt_regs *regs)
3133 if ( status & EV_MIC ) { 3188 if ( status & EV_MIC ) {
3134 OUT4500( apriv, EVACK, EV_MIC ); 3189 OUT4500( apriv, EVACK, EV_MIC );
3135 if (test_bit(FLAG_MIC_CAPABLE, &apriv->flags)) { 3190 if (test_bit(FLAG_MIC_CAPABLE, &apriv->flags)) {
3136 set_bit(JOB_MIC, &apriv->flags); 3191 set_bit(JOB_MIC, &apriv->jobs);
3137 wake_up_interruptible(&apriv->thr_wait); 3192 wake_up_interruptible(&apriv->thr_wait);
3138 } 3193 }
3139 } 3194 }
@@ -3187,7 +3242,7 @@ static irqreturn_t airo_interrupt ( int irq, void* dev_id, struct pt_regs *regs)
3187 set_bit(FLAG_UPDATE_MULTI, &apriv->flags); 3242 set_bit(FLAG_UPDATE_MULTI, &apriv->flags);
3188 3243
3189 if (down_trylock(&apriv->sem) != 0) { 3244 if (down_trylock(&apriv->sem) != 0) {
3190 set_bit(JOB_EVENT, &apriv->flags); 3245 set_bit(JOB_EVENT, &apriv->jobs);
3191 wake_up_interruptible(&apriv->thr_wait); 3246 wake_up_interruptible(&apriv->thr_wait);
3192 } else 3247 } else
3193 airo_send_event(dev); 3248 airo_send_event(dev);
@@ -5485,7 +5540,7 @@ static void timer_func( struct net_device *dev ) {
5485 up(&apriv->sem); 5540 up(&apriv->sem);
5486 5541
5487/* Schedule check to see if the change worked */ 5542/* Schedule check to see if the change worked */
5488 clear_bit(JOB_AUTOWEP, &apriv->flags); 5543 clear_bit(JOB_AUTOWEP, &apriv->jobs);
5489 apriv->expires = RUN_AT(HZ*3); 5544 apriv->expires = RUN_AT(HZ*3);
5490} 5545}
5491 5546
@@ -6876,7 +6931,7 @@ static int airo_get_range(struct net_device *dev,
6876 } 6931 }
6877 range->num_txpower = i; 6932 range->num_txpower = i;
6878 range->txpower_capa = IW_TXPOW_MWATT; 6933 range->txpower_capa = IW_TXPOW_MWATT;
6879 range->we_version_source = 12; 6934 range->we_version_source = 19;
6880 range->we_version_compiled = WIRELESS_EXT; 6935 range->we_version_compiled = WIRELESS_EXT;
6881 range->retry_capa = IW_RETRY_LIMIT | IW_RETRY_LIFETIME; 6936 range->retry_capa = IW_RETRY_LIMIT | IW_RETRY_LIFETIME;
6882 range->retry_flags = IW_RETRY_LIMIT; 6937 range->retry_flags = IW_RETRY_LIMIT;
@@ -7152,6 +7207,7 @@ static inline char *airo_translate_scan(struct net_device *dev,
7152 u16 capabilities; 7207 u16 capabilities;
7153 char * current_val; /* For rates */ 7208 char * current_val; /* For rates */
7154 int i; 7209 int i;
7210 char * buf;
7155 7211
7156 /* First entry *MUST* be the AP MAC address */ 7212 /* First entry *MUST* be the AP MAC address */
7157 iwe.cmd = SIOCGIWAP; 7213 iwe.cmd = SIOCGIWAP;
@@ -7238,8 +7294,69 @@ static inline char *airo_translate_scan(struct net_device *dev,
7238 if((current_val - current_ev) > IW_EV_LCP_LEN) 7294 if((current_val - current_ev) > IW_EV_LCP_LEN)
7239 current_ev = current_val; 7295 current_ev = current_val;
7240 7296
7241 /* The other data in the scan result are not really 7297 /* Beacon interval */
7242 * interesting, so for now drop it - Jean II */ 7298 buf = kmalloc(30, GFP_KERNEL);
7299 if (buf) {
7300 iwe.cmd = IWEVCUSTOM;
7301 sprintf(buf, "bcn_int=%d", bss->beaconInterval);
7302 iwe.u.data.length = strlen(buf);
7303 current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe, buf);
7304 kfree(buf);
7305 }
7306
7307 /* Put WPA/RSN Information Elements into the event stream */
7308 if (test_bit(FLAG_WPA_CAPABLE, &ai->flags)) {
7309 unsigned int num_null_ies = 0;
7310 u16 length = sizeof (bss->extra.iep);
7311 struct ieee80211_info_element *info_element =
7312 (struct ieee80211_info_element *) &bss->extra.iep;
7313
7314 while ((length >= sizeof(*info_element)) && (num_null_ies < 2)) {
7315 if (sizeof(*info_element) + info_element->len > length) {
7316 /* Invalid element, don't continue parsing IE */
7317 break;
7318 }
7319
7320 switch (info_element->id) {
7321 case MFIE_TYPE_SSID:
7322 /* Two zero-length SSID elements
7323 * mean we're done parsing elements */
7324 if (!info_element->len)
7325 num_null_ies++;
7326 break;
7327
7328 case MFIE_TYPE_GENERIC:
7329 if (info_element->len >= 4 &&
7330 info_element->data[0] == 0x00 &&
7331 info_element->data[1] == 0x50 &&
7332 info_element->data[2] == 0xf2 &&
7333 info_element->data[3] == 0x01) {
7334 iwe.cmd = IWEVGENIE;
7335 iwe.u.data.length = min(info_element->len + 2,
7336 MAX_WPA_IE_LEN);
7337 current_ev = iwe_stream_add_point(current_ev, end_buf,
7338 &iwe, (char *) info_element);
7339 }
7340 break;
7341
7342 case MFIE_TYPE_RSN:
7343 iwe.cmd = IWEVGENIE;
7344 iwe.u.data.length = min(info_element->len + 2,
7345 MAX_WPA_IE_LEN);
7346 current_ev = iwe_stream_add_point(current_ev, end_buf,
7347 &iwe, (char *) info_element);
7348 break;
7349
7350 default:
7351 break;
7352 }
7353
7354 length -= sizeof(*info_element) + info_element->len;
7355 info_element =
7356 (struct ieee80211_info_element *)&info_element->
7357 data[info_element->len];
7358 }
7359 }
7243 return current_ev; 7360 return current_ev;
7244} 7361}
7245 7362
@@ -7521,7 +7638,7 @@ static void airo_read_wireless_stats(struct airo_info *local)
7521 u32 *vals = stats_rid.vals; 7638 u32 *vals = stats_rid.vals;
7522 7639
7523 /* Get stats out of the card */ 7640 /* Get stats out of the card */
7524 clear_bit(JOB_WSTATS, &local->flags); 7641 clear_bit(JOB_WSTATS, &local->jobs);
7525 if (local->power.event) { 7642 if (local->power.event) {
7526 up(&local->sem); 7643 up(&local->sem);
7527 return; 7644 return;
@@ -7565,10 +7682,10 @@ static struct iw_statistics *airo_get_wireless_stats(struct net_device *dev)
7565{ 7682{
7566 struct airo_info *local = dev->priv; 7683 struct airo_info *local = dev->priv;
7567 7684
7568 if (!test_bit(JOB_WSTATS, &local->flags)) { 7685 if (!test_bit(JOB_WSTATS, &local->jobs)) {
7569 /* Get stats out of the card if available */ 7686 /* Get stats out of the card if available */
7570 if (down_trylock(&local->sem) != 0) { 7687 if (down_trylock(&local->sem) != 0) {
7571 set_bit(JOB_WSTATS, &local->flags); 7688 set_bit(JOB_WSTATS, &local->jobs);
7572 wake_up_interruptible(&local->thr_wait); 7689 wake_up_interruptible(&local->thr_wait);
7573 } else 7690 } else
7574 airo_read_wireless_stats(local); 7691 airo_read_wireless_stats(local);
diff --git a/drivers/net/wireless/bcm43xx/bcm43xx.h b/drivers/net/wireless/bcm43xx/bcm43xx.h
index 2e83083935e1..e66fdb1f3cfd 100644
--- a/drivers/net/wireless/bcm43xx/bcm43xx.h
+++ b/drivers/net/wireless/bcm43xx/bcm43xx.h
@@ -645,7 +645,6 @@ struct bcm43xx_private {
645 unsigned int irq; 645 unsigned int irq;
646 646
647 void __iomem *mmio_addr; 647 void __iomem *mmio_addr;
648 unsigned int mmio_len;
649 648
650 /* Do not use the lock directly. Use the bcm43xx_lock* helper 649 /* Do not use the lock directly. Use the bcm43xx_lock* helper
651 * functions, to be MMIO-safe. */ 650 * functions, to be MMIO-safe. */
diff --git a/drivers/net/wireless/bcm43xx/bcm43xx_debugfs.c b/drivers/net/wireless/bcm43xx/bcm43xx_debugfs.c
index 35a4fcb6d923..7497fb16076e 100644
--- a/drivers/net/wireless/bcm43xx/bcm43xx_debugfs.c
+++ b/drivers/net/wireless/bcm43xx/bcm43xx_debugfs.c
@@ -92,7 +92,7 @@ static ssize_t devinfo_read_file(struct file *file, char __user *userbuf,
92 fappend("subsystem_vendor: 0x%04x subsystem_device: 0x%04x\n", 92 fappend("subsystem_vendor: 0x%04x subsystem_device: 0x%04x\n",
93 pci_dev->subsystem_vendor, pci_dev->subsystem_device); 93 pci_dev->subsystem_vendor, pci_dev->subsystem_device);
94 fappend("IRQ: %d\n", bcm->irq); 94 fappend("IRQ: %d\n", bcm->irq);
95 fappend("mmio_addr: 0x%p mmio_len: %u\n", bcm->mmio_addr, bcm->mmio_len); 95 fappend("mmio_addr: 0x%p\n", bcm->mmio_addr);
96 fappend("chip_id: 0x%04x chip_rev: 0x%02x\n", bcm->chip_id, bcm->chip_rev); 96 fappend("chip_id: 0x%04x chip_rev: 0x%02x\n", bcm->chip_id, bcm->chip_rev);
97 if ((bcm->core_80211[0].rev >= 3) && (bcm43xx_read32(bcm, 0x0158) & (1 << 16))) 97 if ((bcm->core_80211[0].rev >= 3) && (bcm43xx_read32(bcm, 0x0158) & (1 << 16)))
98 fappend("Radio disabled by hardware!\n"); 98 fappend("Radio disabled by hardware!\n");
diff --git a/drivers/net/wireless/bcm43xx/bcm43xx_main.c b/drivers/net/wireless/bcm43xx/bcm43xx_main.c
index 7ed18cad29f7..c0502905a956 100644
--- a/drivers/net/wireless/bcm43xx/bcm43xx_main.c
+++ b/drivers/net/wireless/bcm43xx/bcm43xx_main.c
@@ -128,13 +128,15 @@ MODULE_PARM_DESC(fwpostfix, "Postfix for .fw files. Useful for debugging.");
128 static struct pci_device_id bcm43xx_pci_tbl[] = { 128 static struct pci_device_id bcm43xx_pci_tbl[] = {
129 /* Broadcom 4303 802.11b */ 129 /* Broadcom 4303 802.11b */
130 { PCI_VENDOR_ID_BROADCOM, 0x4301, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, 130 { PCI_VENDOR_ID_BROADCOM, 0x4301, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
131 /* Broadcom 4307 802.11b */ 131 /* Broadcom 4307 802.11b */
132 { PCI_VENDOR_ID_BROADCOM, 0x4307, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, 132 { PCI_VENDOR_ID_BROADCOM, 0x4307, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
133 /* Broadcom 4318 802.11b/g */ 133 /* Broadcom 4318 802.11b/g */
134 { PCI_VENDOR_ID_BROADCOM, 0x4318, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, 134 { PCI_VENDOR_ID_BROADCOM, 0x4318, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
135 /* Broadcom 4319 802.11a/b/g */
136 { PCI_VENDOR_ID_BROADCOM, 0x4319, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
135 /* Broadcom 4306 802.11b/g */ 137 /* Broadcom 4306 802.11b/g */
136 { PCI_VENDOR_ID_BROADCOM, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, 138 { PCI_VENDOR_ID_BROADCOM, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
137 /* Broadcom 4306 802.11a */ 139 /* Broadcom 4306 802.11a */
138// { PCI_VENDOR_ID_BROADCOM, 0x4321, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, 140// { PCI_VENDOR_ID_BROADCOM, 0x4321, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
139 /* Broadcom 4309 802.11a/b/g */ 141 /* Broadcom 4309 802.11a/b/g */
140 { PCI_VENDOR_ID_BROADCOM, 0x4324, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, 142 { PCI_VENDOR_ID_BROADCOM, 0x4324, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
@@ -3299,8 +3301,7 @@ static void bcm43xx_detach_board(struct bcm43xx_private *bcm)
3299 3301
3300 bcm43xx_chipset_detach(bcm); 3302 bcm43xx_chipset_detach(bcm);
3301 /* Do _not_ access the chip, after it is detached. */ 3303 /* Do _not_ access the chip, after it is detached. */
3302 iounmap(bcm->mmio_addr); 3304 pci_iounmap(pci_dev, bcm->mmio_addr);
3303
3304 pci_release_regions(pci_dev); 3305 pci_release_regions(pci_dev);
3305 pci_disable_device(pci_dev); 3306 pci_disable_device(pci_dev);
3306 3307
@@ -3390,40 +3391,26 @@ static int bcm43xx_attach_board(struct bcm43xx_private *bcm)
3390 struct net_device *net_dev = bcm->net_dev; 3391 struct net_device *net_dev = bcm->net_dev;
3391 int err; 3392 int err;
3392 int i; 3393 int i;
3393 unsigned long mmio_start, mmio_flags, mmio_len;
3394 u32 coremask; 3394 u32 coremask;
3395 3395
3396 err = pci_enable_device(pci_dev); 3396 err = pci_enable_device(pci_dev);
3397 if (err) { 3397 if (err) {
3398 printk(KERN_ERR PFX "unable to wake up pci device (%i)\n", err); 3398 printk(KERN_ERR PFX "pci_enable_device() failed\n");
3399 goto out; 3399 goto out;
3400 } 3400 }
3401 mmio_start = pci_resource_start(pci_dev, 0);
3402 mmio_flags = pci_resource_flags(pci_dev, 0);
3403 mmio_len = pci_resource_len(pci_dev, 0);
3404 if (!(mmio_flags & IORESOURCE_MEM)) {
3405 printk(KERN_ERR PFX
3406 "%s, region #0 not an MMIO resource, aborting\n",
3407 pci_name(pci_dev));
3408 err = -ENODEV;
3409 goto err_pci_disable;
3410 }
3411 err = pci_request_regions(pci_dev, KBUILD_MODNAME); 3401 err = pci_request_regions(pci_dev, KBUILD_MODNAME);
3412 if (err) { 3402 if (err) {
3413 printk(KERN_ERR PFX 3403 printk(KERN_ERR PFX "pci_request_regions() failed\n");
3414 "could not access PCI resources (%i)\n", err);
3415 goto err_pci_disable; 3404 goto err_pci_disable;
3416 } 3405 }
3417 /* enable PCI bus-mastering */ 3406 /* enable PCI bus-mastering */
3418 pci_set_master(pci_dev); 3407 pci_set_master(pci_dev);
3419 bcm->mmio_addr = ioremap(mmio_start, mmio_len); 3408 bcm->mmio_addr = pci_iomap(pci_dev, 0, ~0UL);
3420 if (!bcm->mmio_addr) { 3409 if (!bcm->mmio_addr) {
3421 printk(KERN_ERR PFX "%s: cannot remap MMIO, aborting\n", 3410 printk(KERN_ERR PFX "pci_iomap() failed\n");
3422 pci_name(pci_dev));
3423 err = -EIO; 3411 err = -EIO;
3424 goto err_pci_release; 3412 goto err_pci_release;
3425 } 3413 }
3426 bcm->mmio_len = mmio_len;
3427 net_dev->base_addr = (unsigned long)bcm->mmio_addr; 3414 net_dev->base_addr = (unsigned long)bcm->mmio_addr;
3428 3415
3429 bcm43xx_pci_read_config16(bcm, PCI_SUBSYSTEM_VENDOR_ID, 3416 bcm43xx_pci_read_config16(bcm, PCI_SUBSYSTEM_VENDOR_ID,
@@ -3517,7 +3504,7 @@ err_80211_unwind:
3517err_chipset_detach: 3504err_chipset_detach:
3518 bcm43xx_chipset_detach(bcm); 3505 bcm43xx_chipset_detach(bcm);
3519err_iounmap: 3506err_iounmap:
3520 iounmap(bcm->mmio_addr); 3507 pci_iounmap(pci_dev, bcm->mmio_addr);
3521err_pci_release: 3508err_pci_release:
3522 pci_release_regions(pci_dev); 3509 pci_release_regions(pci_dev);
3523err_pci_disable: 3510err_pci_disable:
diff --git a/drivers/net/wireless/hermes.c b/drivers/net/wireless/hermes.c
index 346c6febb033..2aa2f389c0d5 100644
--- a/drivers/net/wireless/hermes.c
+++ b/drivers/net/wireless/hermes.c
@@ -121,12 +121,6 @@ void hermes_struct_init(hermes_t *hw, void __iomem *address, int reg_spacing)
121 hw->iobase = address; 121 hw->iobase = address;
122 hw->reg_spacing = reg_spacing; 122 hw->reg_spacing = reg_spacing;
123 hw->inten = 0x0; 123 hw->inten = 0x0;
124
125#ifdef HERMES_DEBUG_BUFFER
126 hw->dbufp = 0;
127 memset(&hw->dbuf, 0xff, sizeof(hw->dbuf));
128 memset(&hw->profile, 0, sizeof(hw->profile));
129#endif
130} 124}
131 125
132int hermes_init(hermes_t *hw) 126int hermes_init(hermes_t *hw)
@@ -347,19 +341,6 @@ static int hermes_bap_seek(hermes_t *hw, int bap, u16 id, u16 offset)
347 reg = hermes_read_reg(hw, oreg); 341 reg = hermes_read_reg(hw, oreg);
348 } 342 }
349 343
350#ifdef HERMES_DEBUG_BUFFER
351 hw->profile[HERMES_BAP_BUSY_TIMEOUT - k]++;
352
353 if (k < HERMES_BAP_BUSY_TIMEOUT) {
354 struct hermes_debug_entry *e =
355 &hw->dbuf[(hw->dbufp++) % HERMES_DEBUG_BUFSIZE];
356 e->bap = bap;
357 e->id = id;
358 e->offset = offset;
359 e->cycles = HERMES_BAP_BUSY_TIMEOUT - k;
360 }
361#endif
362
363 if (reg & HERMES_OFFSET_BUSY) 344 if (reg & HERMES_OFFSET_BUSY)
364 return -ETIMEDOUT; 345 return -ETIMEDOUT;
365 346
@@ -419,8 +400,7 @@ int hermes_bap_pread(hermes_t *hw, int bap, void *buf, int len,
419} 400}
420 401
421/* Write a block of data to the chip's buffer, via the 402/* Write a block of data to the chip's buffer, via the
422 * BAP. Synchronization/serialization is the caller's problem. len 403 * BAP. Synchronization/serialization is the caller's problem.
423 * must be even.
424 * 404 *
425 * Returns: < 0 on internal failure (errno), 0 on success, > 0 on error from firmware 405 * Returns: < 0 on internal failure (errno), 0 on success, > 0 on error from firmware
426 */ 406 */
@@ -430,7 +410,7 @@ int hermes_bap_pwrite(hermes_t *hw, int bap, const void *buf, int len,
430 int dreg = bap ? HERMES_DATA1 : HERMES_DATA0; 410 int dreg = bap ? HERMES_DATA1 : HERMES_DATA0;
431 int err = 0; 411 int err = 0;
432 412
433 if ( (len < 0) || (len % 2) ) 413 if (len < 0)
434 return -EINVAL; 414 return -EINVAL;
435 415
436 err = hermes_bap_seek(hw, bap, id, offset); 416 err = hermes_bap_seek(hw, bap, id, offset);
@@ -438,49 +418,12 @@ int hermes_bap_pwrite(hermes_t *hw, int bap, const void *buf, int len,
438 goto out; 418 goto out;
439 419
440 /* Actually do the transfer */ 420 /* Actually do the transfer */
441 hermes_write_words(hw, dreg, buf, len/2); 421 hermes_write_bytes(hw, dreg, buf, len);
442 422
443 out: 423 out:
444 return err; 424 return err;
445} 425}
446 426
447/* Write a block of data to the chip's buffer with padding if
448 * neccessary, via the BAP. Synchronization/serialization is the
449 * caller's problem. len must be even.
450 *
451 * Returns: < 0 on internal failure (errno), 0 on success, > 0 on error from firmware
452 */
453int hermes_bap_pwrite_pad(hermes_t *hw, int bap, const void *buf, unsigned data_len, int len,
454 u16 id, u16 offset)
455{
456 int dreg = bap ? HERMES_DATA1 : HERMES_DATA0;
457 int err = 0;
458
459 if (len < 0 || len % 2 || data_len > len)
460 return -EINVAL;
461
462 err = hermes_bap_seek(hw, bap, id, offset);
463 if (err)
464 goto out;
465
466 /* Transfer all the complete words of data */
467 hermes_write_words(hw, dreg, buf, data_len/2);
468 /* If there is an odd byte left over pad and transfer it */
469 if (data_len & 1) {
470 u8 end[2];
471 end[1] = 0;
472 end[0] = ((unsigned char *)buf)[data_len - 1];
473 hermes_write_words(hw, dreg, end, 1);
474 data_len ++;
475 }
476 /* Now send zeros for the padding */
477 if (data_len < len)
478 hermes_clear_words(hw, dreg, (len - data_len) / 2);
479 /* Complete */
480 out:
481 return err;
482}
483
484/* Read a Length-Type-Value record from the card. 427/* Read a Length-Type-Value record from the card.
485 * 428 *
486 * If length is NULL, we ignore the length read from the card, and 429 * If length is NULL, we ignore the length read from the card, and
@@ -553,7 +496,7 @@ int hermes_write_ltv(hermes_t *hw, int bap, u16 rid,
553 496
554 count = length - 1; 497 count = length - 1;
555 498
556 hermes_write_words(hw, dreg, value, count); 499 hermes_write_bytes(hw, dreg, value, count << 1);
557 500
558 err = hermes_docmd_wait(hw, HERMES_CMD_ACCESS | HERMES_CMD_WRITE, 501 err = hermes_docmd_wait(hw, HERMES_CMD_ACCESS | HERMES_CMD_WRITE,
559 rid, NULL); 502 rid, NULL);
@@ -568,7 +511,6 @@ EXPORT_SYMBOL(hermes_allocate);
568 511
569EXPORT_SYMBOL(hermes_bap_pread); 512EXPORT_SYMBOL(hermes_bap_pread);
570EXPORT_SYMBOL(hermes_bap_pwrite); 513EXPORT_SYMBOL(hermes_bap_pwrite);
571EXPORT_SYMBOL(hermes_bap_pwrite_pad);
572EXPORT_SYMBOL(hermes_read_ltv); 514EXPORT_SYMBOL(hermes_read_ltv);
573EXPORT_SYMBOL(hermes_write_ltv); 515EXPORT_SYMBOL(hermes_write_ltv);
574 516
diff --git a/drivers/net/wireless/hermes.h b/drivers/net/wireless/hermes.h
index 7644f72a9f4e..8e3f0e3edb58 100644
--- a/drivers/net/wireless/hermes.h
+++ b/drivers/net/wireless/hermes.h
@@ -328,16 +328,6 @@ struct hermes_multicast {
328 u8 addr[HERMES_MAX_MULTICAST][ETH_ALEN]; 328 u8 addr[HERMES_MAX_MULTICAST][ETH_ALEN];
329} __attribute__ ((packed)); 329} __attribute__ ((packed));
330 330
331// #define HERMES_DEBUG_BUFFER 1
332#define HERMES_DEBUG_BUFSIZE 4096
333struct hermes_debug_entry {
334 int bap;
335 u16 id, offset;
336 int cycles;
337};
338
339#ifdef __KERNEL__
340
341/* Timeouts */ 331/* Timeouts */
342#define HERMES_BAP_BUSY_TIMEOUT (10000) /* In iterations of ~1us */ 332#define HERMES_BAP_BUSY_TIMEOUT (10000) /* In iterations of ~1us */
343 333
@@ -347,14 +337,7 @@ typedef struct hermes {
347 int reg_spacing; 337 int reg_spacing;
348#define HERMES_16BIT_REGSPACING 0 338#define HERMES_16BIT_REGSPACING 0
349#define HERMES_32BIT_REGSPACING 1 339#define HERMES_32BIT_REGSPACING 1
350
351 u16 inten; /* Which interrupts should be enabled? */ 340 u16 inten; /* Which interrupts should be enabled? */
352
353#ifdef HERMES_DEBUG_BUFFER
354 struct hermes_debug_entry dbuf[HERMES_DEBUG_BUFSIZE];
355 unsigned long dbufp;
356 unsigned long profile[HERMES_BAP_BUSY_TIMEOUT+1];
357#endif
358} hermes_t; 341} hermes_t;
359 342
360/* Register access convenience macros */ 343/* Register access convenience macros */
@@ -376,8 +359,6 @@ int hermes_bap_pread(hermes_t *hw, int bap, void *buf, int len,
376 u16 id, u16 offset); 359 u16 id, u16 offset);
377int hermes_bap_pwrite(hermes_t *hw, int bap, const void *buf, int len, 360int hermes_bap_pwrite(hermes_t *hw, int bap, const void *buf, int len,
378 u16 id, u16 offset); 361 u16 id, u16 offset);
379int hermes_bap_pwrite_pad(hermes_t *hw, int bap, const void *buf,
380 unsigned data_len, int len, u16 id, u16 offset);
381int hermes_read_ltv(hermes_t *hw, int bap, u16 rid, unsigned buflen, 362int hermes_read_ltv(hermes_t *hw, int bap, u16 rid, unsigned buflen,
382 u16 *length, void *buf); 363 u16 *length, void *buf);
383int hermes_write_ltv(hermes_t *hw, int bap, u16 rid, 364int hermes_write_ltv(hermes_t *hw, int bap, u16 rid,
@@ -425,10 +406,13 @@ static inline void hermes_read_words(struct hermes *hw, int off, void *buf, unsi
425 ioread16_rep(hw->iobase + off, buf, count); 406 ioread16_rep(hw->iobase + off, buf, count);
426} 407}
427 408
428static inline void hermes_write_words(struct hermes *hw, int off, const void *buf, unsigned count) 409static inline void hermes_write_bytes(struct hermes *hw, int off,
410 const char *buf, unsigned count)
429{ 411{
430 off = off << hw->reg_spacing; 412 off = off << hw->reg_spacing;
431 iowrite16_rep(hw->iobase + off, buf, count); 413 iowrite16_rep(hw->iobase + off, buf, count >> 1);
414 if (unlikely(count & 1))
415 iowrite8(buf[count - 1], hw->iobase + off);
432} 416}
433 417
434static inline void hermes_clear_words(struct hermes *hw, int off, unsigned count) 418static inline void hermes_clear_words(struct hermes *hw, int off, unsigned count)
@@ -462,21 +446,4 @@ static inline int hermes_write_wordrec(hermes_t *hw, int bap, u16 rid, u16 word)
462 return HERMES_WRITE_RECORD(hw, bap, rid, &rec); 446 return HERMES_WRITE_RECORD(hw, bap, rid, &rec);
463} 447}
464 448
465#else /* ! __KERNEL__ */
466
467/* These are provided for the benefit of userspace drivers and testing programs
468 which use ioperm() or iopl() */
469
470#define hermes_read_reg(base, off) (inw((base) + (off)))
471#define hermes_write_reg(base, off, val) (outw((val), (base) + (off)))
472
473#define hermes_read_regn(base, name) (hermes_read_reg((base), HERMES_##name))
474#define hermes_write_regn(base, name, val) (hermes_write_reg((base), HERMES_##name, (val)))
475
476/* Note that for the next two, the count is in 16-bit words, not bytes */
477#define hermes_read_data(base, off, buf, count) (insw((base) + (off), (buf), (count)))
478#define hermes_write_data(base, off, buf, count) (outsw((base) + (off), (buf), (count)))
479
480#endif /* ! __KERNEL__ */
481
482#endif /* _HERMES_H */ 449#endif /* _HERMES_H */
diff --git a/drivers/net/wireless/hostap/hostap_80211_tx.c b/drivers/net/wireless/hostap/hostap_80211_tx.c
index 06a5214145e3..4a5be70c0419 100644
--- a/drivers/net/wireless/hostap/hostap_80211_tx.c
+++ b/drivers/net/wireless/hostap/hostap_80211_tx.c
@@ -534,5 +534,4 @@ int hostap_master_start_xmit(struct sk_buff *skb, struct net_device *dev)
534} 534}
535 535
536 536
537EXPORT_SYMBOL(hostap_dump_tx_80211);
538EXPORT_SYMBOL(hostap_master_start_xmit); 537EXPORT_SYMBOL(hostap_master_start_xmit);
diff --git a/drivers/net/wireless/hostap/hostap_ap.c b/drivers/net/wireless/hostap/hostap_ap.c
index 06c3fa32b310..ba13125024cb 100644
--- a/drivers/net/wireless/hostap/hostap_ap.c
+++ b/drivers/net/wireless/hostap/hostap_ap.c
@@ -3276,17 +3276,6 @@ EXPORT_SYMBOL(hostap_init_data);
3276EXPORT_SYMBOL(hostap_init_ap_proc); 3276EXPORT_SYMBOL(hostap_init_ap_proc);
3277EXPORT_SYMBOL(hostap_free_data); 3277EXPORT_SYMBOL(hostap_free_data);
3278EXPORT_SYMBOL(hostap_check_sta_fw_version); 3278EXPORT_SYMBOL(hostap_check_sta_fw_version);
3279EXPORT_SYMBOL(hostap_handle_sta_tx);
3280EXPORT_SYMBOL(hostap_handle_sta_release);
3281EXPORT_SYMBOL(hostap_handle_sta_tx_exc); 3279EXPORT_SYMBOL(hostap_handle_sta_tx_exc);
3282EXPORT_SYMBOL(hostap_update_sta_ps);
3283EXPORT_SYMBOL(hostap_handle_sta_rx);
3284EXPORT_SYMBOL(hostap_is_sta_assoc);
3285EXPORT_SYMBOL(hostap_is_sta_authorized);
3286EXPORT_SYMBOL(hostap_add_sta);
3287EXPORT_SYMBOL(hostap_update_rates);
3288EXPORT_SYMBOL(hostap_add_wds_links);
3289EXPORT_SYMBOL(hostap_wds_link_oper);
3290#ifndef PRISM2_NO_KERNEL_IEEE80211_MGMT 3280#ifndef PRISM2_NO_KERNEL_IEEE80211_MGMT
3291EXPORT_SYMBOL(hostap_deauth_all_stas);
3292#endif /* PRISM2_NO_KERNEL_IEEE80211_MGMT */ 3281#endif /* PRISM2_NO_KERNEL_IEEE80211_MGMT */
diff --git a/drivers/net/wireless/hostap/hostap_cs.c b/drivers/net/wireless/hostap/hostap_cs.c
index 55bed923fbe9..db03dc2646df 100644
--- a/drivers/net/wireless/hostap/hostap_cs.c
+++ b/drivers/net/wireless/hostap/hostap_cs.c
@@ -881,6 +881,12 @@ static struct pcmcia_device_id hostap_cs_ids[] = {
881 PCMCIA_DEVICE_PROD_ID12( 881 PCMCIA_DEVICE_PROD_ID12(
882 "ZoomAir 11Mbps High", "Rate wireless Networking", 882 "ZoomAir 11Mbps High", "Rate wireless Networking",
883 0x273fe3db, 0x32a1eaee), 883 0x273fe3db, 0x32a1eaee),
884 PCMCIA_DEVICE_PROD_ID123(
885 "Pretec", "CompactWLAN Card 802.11b", "2.5",
886 0x1cadd3e5, 0xe697636c, 0x7a5bfcf1),
887 PCMCIA_DEVICE_PROD_ID123(
888 "U.S. Robotics", "IEEE 802.11b PC-CARD", "Version 01.02",
889 0xc7b8df9d, 0x1700d087, 0x4b74baa0),
884 PCMCIA_DEVICE_NULL 890 PCMCIA_DEVICE_NULL
885}; 891};
886MODULE_DEVICE_TABLE(pcmcia, hostap_cs_ids); 892MODULE_DEVICE_TABLE(pcmcia, hostap_cs_ids);
diff --git a/drivers/net/wireless/hostap/hostap_main.c b/drivers/net/wireless/hostap/hostap_main.c
index 8dd4c4446a64..93786f4218f0 100644
--- a/drivers/net/wireless/hostap/hostap_main.c
+++ b/drivers/net/wireless/hostap/hostap_main.c
@@ -1125,11 +1125,9 @@ EXPORT_SYMBOL(hostap_set_auth_algs);
1125EXPORT_SYMBOL(hostap_dump_rx_header); 1125EXPORT_SYMBOL(hostap_dump_rx_header);
1126EXPORT_SYMBOL(hostap_dump_tx_header); 1126EXPORT_SYMBOL(hostap_dump_tx_header);
1127EXPORT_SYMBOL(hostap_80211_header_parse); 1127EXPORT_SYMBOL(hostap_80211_header_parse);
1128EXPORT_SYMBOL(hostap_80211_prism_header_parse);
1129EXPORT_SYMBOL(hostap_80211_get_hdrlen); 1128EXPORT_SYMBOL(hostap_80211_get_hdrlen);
1130EXPORT_SYMBOL(hostap_get_stats); 1129EXPORT_SYMBOL(hostap_get_stats);
1131EXPORT_SYMBOL(hostap_setup_dev); 1130EXPORT_SYMBOL(hostap_setup_dev);
1132EXPORT_SYMBOL(hostap_proc);
1133EXPORT_SYMBOL(hostap_set_multicast_list_queue); 1131EXPORT_SYMBOL(hostap_set_multicast_list_queue);
1134EXPORT_SYMBOL(hostap_set_hostapd); 1132EXPORT_SYMBOL(hostap_set_hostapd);
1135EXPORT_SYMBOL(hostap_set_hostapd_sta); 1133EXPORT_SYMBOL(hostap_set_hostapd_sta);
diff --git a/drivers/net/wireless/ipw2200.c b/drivers/net/wireless/ipw2200.c
index bca89cff85a6..39f82f219749 100644
--- a/drivers/net/wireless/ipw2200.c
+++ b/drivers/net/wireless/ipw2200.c
@@ -33,7 +33,44 @@
33#include "ipw2200.h" 33#include "ipw2200.h"
34#include <linux/version.h> 34#include <linux/version.h>
35 35
36#define IPW2200_VERSION "git-1.1.1" 36
37#ifndef KBUILD_EXTMOD
38#define VK "k"
39#else
40#define VK
41#endif
42
43#ifdef CONFIG_IPW2200_DEBUG
44#define VD "d"
45#else
46#define VD
47#endif
48
49#ifdef CONFIG_IPW2200_MONITOR
50#define VM "m"
51#else
52#define VM
53#endif
54
55#ifdef CONFIG_IPW2200_PROMISCUOUS
56#define VP "p"
57#else
58#define VP
59#endif
60
61#ifdef CONFIG_IPW2200_RADIOTAP
62#define VR "r"
63#else
64#define VR
65#endif
66
67#ifdef CONFIG_IPW2200_QOS
68#define VQ "q"
69#else
70#define VQ
71#endif
72
73#define IPW2200_VERSION "1.1.2" VK VD VM VP VR VQ
37#define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver" 74#define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
38#define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation" 75#define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
39#define DRV_VERSION IPW2200_VERSION 76#define DRV_VERSION IPW2200_VERSION
@@ -46,7 +83,9 @@ MODULE_AUTHOR(DRV_COPYRIGHT);
46MODULE_LICENSE("GPL"); 83MODULE_LICENSE("GPL");
47 84
48static int cmdlog = 0; 85static int cmdlog = 0;
86#ifdef CONFIG_IPW2200_DEBUG
49static int debug = 0; 87static int debug = 0;
88#endif
50static int channel = 0; 89static int channel = 0;
51static int mode = 0; 90static int mode = 0;
52 91
@@ -61,8 +100,14 @@ static int roaming = 1;
61static const char ipw_modes[] = { 100static const char ipw_modes[] = {
62 'a', 'b', 'g', '?' 101 'a', 'b', 'g', '?'
63}; 102};
103static int antenna = CFG_SYS_ANTENNA_BOTH;
64 104
65#ifdef CONFIG_IPW_QOS 105#ifdef CONFIG_IPW2200_PROMISCUOUS
106static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
107#endif
108
109
110#ifdef CONFIG_IPW2200_QOS
66static int qos_enable = 0; 111static int qos_enable = 0;
67static int qos_burst_enable = 0; 112static int qos_burst_enable = 0;
68static int qos_no_ack_mask = 0; 113static int qos_no_ack_mask = 0;
@@ -126,7 +171,7 @@ static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_q
126 *qos_param); 171 *qos_param);
127static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element 172static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
128 *qos_param); 173 *qos_param);
129#endif /* CONFIG_IPW_QOS */ 174#endif /* CONFIG_IPW2200_QOS */
130 175
131static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev); 176static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
132static void ipw_remove_current_network(struct ipw_priv *priv); 177static void ipw_remove_current_network(struct ipw_priv *priv);
@@ -1269,6 +1314,105 @@ static ssize_t show_cmd_log(struct device *d,
1269 1314
1270static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL); 1315static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1271 1316
1317#ifdef CONFIG_IPW2200_PROMISCUOUS
1318static void ipw_prom_free(struct ipw_priv *priv);
1319static int ipw_prom_alloc(struct ipw_priv *priv);
1320static ssize_t store_rtap_iface(struct device *d,
1321 struct device_attribute *attr,
1322 const char *buf, size_t count)
1323{
1324 struct ipw_priv *priv = dev_get_drvdata(d);
1325 int rc = 0;
1326
1327 if (count < 1)
1328 return -EINVAL;
1329
1330 switch (buf[0]) {
1331 case '0':
1332 if (!rtap_iface)
1333 return count;
1334
1335 if (netif_running(priv->prom_net_dev)) {
1336 IPW_WARNING("Interface is up. Cannot unregister.\n");
1337 return count;
1338 }
1339
1340 ipw_prom_free(priv);
1341 rtap_iface = 0;
1342 break;
1343
1344 case '1':
1345 if (rtap_iface)
1346 return count;
1347
1348 rc = ipw_prom_alloc(priv);
1349 if (!rc)
1350 rtap_iface = 1;
1351 break;
1352
1353 default:
1354 return -EINVAL;
1355 }
1356
1357 if (rc) {
1358 IPW_ERROR("Failed to register promiscuous network "
1359 "device (error %d).\n", rc);
1360 }
1361
1362 return count;
1363}
1364
1365static ssize_t show_rtap_iface(struct device *d,
1366 struct device_attribute *attr,
1367 char *buf)
1368{
1369 struct ipw_priv *priv = dev_get_drvdata(d);
1370 if (rtap_iface)
1371 return sprintf(buf, "%s", priv->prom_net_dev->name);
1372 else {
1373 buf[0] = '-';
1374 buf[1] = '1';
1375 buf[2] = '\0';
1376 return 3;
1377 }
1378}
1379
1380static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1381 store_rtap_iface);
1382
1383static ssize_t store_rtap_filter(struct device *d,
1384 struct device_attribute *attr,
1385 const char *buf, size_t count)
1386{
1387 struct ipw_priv *priv = dev_get_drvdata(d);
1388
1389 if (!priv->prom_priv) {
1390 IPW_ERROR("Attempting to set filter without "
1391 "rtap_iface enabled.\n");
1392 return -EPERM;
1393 }
1394
1395 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1396
1397 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1398 BIT_ARG16(priv->prom_priv->filter));
1399
1400 return count;
1401}
1402
1403static ssize_t show_rtap_filter(struct device *d,
1404 struct device_attribute *attr,
1405 char *buf)
1406{
1407 struct ipw_priv *priv = dev_get_drvdata(d);
1408 return sprintf(buf, "0x%04X",
1409 priv->prom_priv ? priv->prom_priv->filter : 0);
1410}
1411
1412static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1413 store_rtap_filter);
1414#endif
1415
1272static ssize_t show_scan_age(struct device *d, struct device_attribute *attr, 1416static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1273 char *buf) 1417 char *buf)
1274{ 1418{
@@ -2025,16 +2169,11 @@ static int ipw_send_host_complete(struct ipw_priv *priv)
2025 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE); 2169 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2026} 2170}
2027 2171
2028static int ipw_send_system_config(struct ipw_priv *priv, 2172static int ipw_send_system_config(struct ipw_priv *priv)
2029 struct ipw_sys_config *config)
2030{ 2173{
2031 if (!priv || !config) { 2174 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2032 IPW_ERROR("Invalid args\n"); 2175 sizeof(priv->sys_config),
2033 return -1; 2176 &priv->sys_config);
2034 }
2035
2036 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG, sizeof(*config),
2037 config);
2038} 2177}
2039 2178
2040static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len) 2179static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
@@ -3104,10 +3243,10 @@ static int ipw_reset_nic(struct ipw_priv *priv)
3104 3243
3105 3244
3106struct ipw_fw { 3245struct ipw_fw {
3107 u32 ver; 3246 __le32 ver;
3108 u32 boot_size; 3247 __le32 boot_size;
3109 u32 ucode_size; 3248 __le32 ucode_size;
3110 u32 fw_size; 3249 __le32 fw_size;
3111 u8 data[0]; 3250 u8 data[0];
3112}; 3251};
3113 3252
@@ -3131,8 +3270,8 @@ static int ipw_get_fw(struct ipw_priv *priv,
3131 3270
3132 fw = (void *)(*raw)->data; 3271 fw = (void *)(*raw)->data;
3133 3272
3134 if ((*raw)->size < sizeof(*fw) + 3273 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3135 fw->boot_size + fw->ucode_size + fw->fw_size) { 3274 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3136 IPW_ERROR("%s is too small or corrupt (%zd)\n", 3275 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3137 name, (*raw)->size); 3276 name, (*raw)->size);
3138 return -EINVAL; 3277 return -EINVAL;
@@ -3237,8 +3376,9 @@ static int ipw_load(struct ipw_priv *priv)
3237 3376
3238 fw = (void *)raw->data; 3377 fw = (void *)raw->data;
3239 boot_img = &fw->data[0]; 3378 boot_img = &fw->data[0];
3240 ucode_img = &fw->data[fw->boot_size]; 3379 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3241 fw_img = &fw->data[fw->boot_size + fw->ucode_size]; 3380 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3381 le32_to_cpu(fw->ucode_size)];
3242 3382
3243 if (rc < 0) 3383 if (rc < 0)
3244 goto error; 3384 goto error;
@@ -3272,7 +3412,7 @@ static int ipw_load(struct ipw_priv *priv)
3272 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND); 3412 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3273 3413
3274 /* DMA the initial boot firmware into the device */ 3414 /* DMA the initial boot firmware into the device */
3275 rc = ipw_load_firmware(priv, boot_img, fw->boot_size); 3415 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3276 if (rc < 0) { 3416 if (rc < 0) {
3277 IPW_ERROR("Unable to load boot firmware: %d\n", rc); 3417 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3278 goto error; 3418 goto error;
@@ -3294,7 +3434,7 @@ static int ipw_load(struct ipw_priv *priv)
3294 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE); 3434 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3295 3435
3296 /* DMA the ucode into the device */ 3436 /* DMA the ucode into the device */
3297 rc = ipw_load_ucode(priv, ucode_img, fw->ucode_size); 3437 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3298 if (rc < 0) { 3438 if (rc < 0) {
3299 IPW_ERROR("Unable to load ucode: %d\n", rc); 3439 IPW_ERROR("Unable to load ucode: %d\n", rc);
3300 goto error; 3440 goto error;
@@ -3304,7 +3444,7 @@ static int ipw_load(struct ipw_priv *priv)
3304 ipw_stop_nic(priv); 3444 ipw_stop_nic(priv);
3305 3445
3306 /* DMA bss firmware into the device */ 3446 /* DMA bss firmware into the device */
3307 rc = ipw_load_firmware(priv, fw_img, fw->fw_size); 3447 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3308 if (rc < 0) { 3448 if (rc < 0) {
3309 IPW_ERROR("Unable to load firmware: %d\n", rc); 3449 IPW_ERROR("Unable to load firmware: %d\n", rc);
3310 goto error; 3450 goto error;
@@ -3700,7 +3840,17 @@ static void ipw_bg_disassociate(void *data)
3700static void ipw_system_config(void *data) 3840static void ipw_system_config(void *data)
3701{ 3841{
3702 struct ipw_priv *priv = data; 3842 struct ipw_priv *priv = data;
3703 ipw_send_system_config(priv, &priv->sys_config); 3843
3844#ifdef CONFIG_IPW2200_PROMISCUOUS
3845 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3846 priv->sys_config.accept_all_data_frames = 1;
3847 priv->sys_config.accept_non_directed_frames = 1;
3848 priv->sys_config.accept_all_mgmt_bcpr = 1;
3849 priv->sys_config.accept_all_mgmt_frames = 1;
3850 }
3851#endif
3852
3853 ipw_send_system_config(priv);
3704} 3854}
3705 3855
3706struct ipw_status_code { 3856struct ipw_status_code {
@@ -3771,6 +3921,13 @@ static void inline average_init(struct average *avg)
3771 memset(avg, 0, sizeof(*avg)); 3921 memset(avg, 0, sizeof(*avg));
3772} 3922}
3773 3923
3924#define DEPTH_RSSI 8
3925#define DEPTH_NOISE 16
3926static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3927{
3928 return ((depth-1)*prev_avg + val)/depth;
3929}
3930
3774static void average_add(struct average *avg, s16 val) 3931static void average_add(struct average *avg, s16 val)
3775{ 3932{
3776 avg->sum -= avg->entries[avg->pos]; 3933 avg->sum -= avg->entries[avg->pos];
@@ -3800,8 +3957,8 @@ static void ipw_reset_stats(struct ipw_priv *priv)
3800 priv->quality = 0; 3957 priv->quality = 0;
3801 3958
3802 average_init(&priv->average_missed_beacons); 3959 average_init(&priv->average_missed_beacons);
3803 average_init(&priv->average_rssi); 3960 priv->exp_avg_rssi = -60;
3804 average_init(&priv->average_noise); 3961 priv->exp_avg_noise = -85 + 0x100;
3805 3962
3806 priv->last_rate = 0; 3963 priv->last_rate = 0;
3807 priv->last_missed_beacons = 0; 3964 priv->last_missed_beacons = 0;
@@ -4008,7 +4165,7 @@ static void ipw_gather_stats(struct ipw_priv *priv)
4008 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n", 4165 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4009 tx_quality, tx_failures_delta, tx_packets_delta); 4166 tx_quality, tx_failures_delta, tx_packets_delta);
4010 4167
4011 rssi = average_value(&priv->average_rssi); 4168 rssi = priv->exp_avg_rssi;
4012 signal_quality = 4169 signal_quality =
4013 (100 * 4170 (100 *
4014 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) * 4171 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
@@ -4185,7 +4342,7 @@ static void ipw_rx_notification(struct ipw_priv *priv,
4185 queue_work(priv->workqueue, 4342 queue_work(priv->workqueue,
4186 &priv->system_config); 4343 &priv->system_config);
4187 4344
4188#ifdef CONFIG_IPW_QOS 4345#ifdef CONFIG_IPW2200_QOS
4189#define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \ 4346#define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4190 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl)) 4347 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4191 if ((priv->status & STATUS_AUTH) && 4348 if ((priv->status & STATUS_AUTH) &&
@@ -4482,6 +4639,24 @@ static void ipw_rx_notification(struct ipw_priv *priv,
4482 && priv->status & STATUS_ASSOCIATED) 4639 && priv->status & STATUS_ASSOCIATED)
4483 queue_delayed_work(priv->workqueue, 4640 queue_delayed_work(priv->workqueue,
4484 &priv->request_scan, HZ); 4641 &priv->request_scan, HZ);
4642
4643 /* Send an empty event to user space.
4644 * We don't send the received data on the event because
4645 * it would require us to do complex transcoding, and
4646 * we want to minimise the work done in the irq handler
4647 * Use a request to extract the data.
4648 * Also, we generate this even for any scan, regardless
4649 * on how the scan was initiated. User space can just
4650 * sync on periodic scan to get fresh data...
4651 * Jean II */
4652 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) {
4653 union iwreq_data wrqu;
4654
4655 wrqu.data.length = 0;
4656 wrqu.data.flags = 0;
4657 wireless_send_event(priv->net_dev, SIOCGIWSCAN,
4658 &wrqu, NULL);
4659 }
4485 break; 4660 break;
4486 } 4661 }
4487 4662
@@ -4577,11 +4752,10 @@ static void ipw_rx_notification(struct ipw_priv *priv,
4577 4752
4578 case HOST_NOTIFICATION_NOISE_STATS:{ 4753 case HOST_NOTIFICATION_NOISE_STATS:{
4579 if (notif->size == sizeof(u32)) { 4754 if (notif->size == sizeof(u32)) {
4580 priv->last_noise = 4755 priv->exp_avg_noise =
4581 (u8) (le32_to_cpu(notif->u.noise.value) & 4756 exponential_average(priv->exp_avg_noise,
4582 0xff); 4757 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4583 average_add(&priv->average_noise, 4758 DEPTH_NOISE);
4584 priv->last_noise);
4585 break; 4759 break;
4586 } 4760 }
4587 4761
@@ -6170,8 +6344,6 @@ static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6170{ 6344{
6171 /* make sure WPA is enabled */ 6345 /* make sure WPA is enabled */
6172 ipw_wpa_enable(priv, 1); 6346 ipw_wpa_enable(priv, 1);
6173
6174 ipw_disassociate(priv);
6175} 6347}
6176 6348
6177static int ipw_set_rsn_capa(struct ipw_priv *priv, 6349static int ipw_set_rsn_capa(struct ipw_priv *priv,
@@ -6365,6 +6537,7 @@ static int ipw_wx_set_auth(struct net_device *dev,
6365 6537
6366 case IW_AUTH_WPA_ENABLED: 6538 case IW_AUTH_WPA_ENABLED:
6367 ret = ipw_wpa_enable(priv, param->value); 6539 ret = ipw_wpa_enable(priv, param->value);
6540 ipw_disassociate(priv);
6368 break; 6541 break;
6369 6542
6370 case IW_AUTH_RX_UNENCRYPTED_EAPOL: 6543 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
@@ -6506,7 +6679,7 @@ static int ipw_wx_set_mlme(struct net_device *dev,
6506 return 0; 6679 return 0;
6507} 6680}
6508 6681
6509#ifdef CONFIG_IPW_QOS 6682#ifdef CONFIG_IPW2200_QOS
6510 6683
6511/* QoS */ 6684/* QoS */
6512/* 6685/*
@@ -6853,61 +7026,55 @@ static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
6853 return from_priority_to_tx_queue[priority] - 1; 7026 return from_priority_to_tx_queue[priority] - 1;
6854} 7027}
6855 7028
6856/* 7029static int ipw_is_qos_active(struct net_device *dev,
6857* add QoS parameter to the TX command 7030 struct sk_buff *skb)
6858*/
6859static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
6860 u16 priority,
6861 struct tfd_data *tfd, u8 unicast)
6862{ 7031{
6863 int ret = 0; 7032 struct ipw_priv *priv = ieee80211_priv(dev);
6864 int tx_queue_id = 0;
6865 struct ieee80211_qos_data *qos_data = NULL; 7033 struct ieee80211_qos_data *qos_data = NULL;
6866 int active, supported; 7034 int active, supported;
6867 unsigned long flags; 7035 u8 *daddr = skb->data + ETH_ALEN;
7036 int unicast = !is_multicast_ether_addr(daddr);
6868 7037
6869 if (!(priv->status & STATUS_ASSOCIATED)) 7038 if (!(priv->status & STATUS_ASSOCIATED))
6870 return 0; 7039 return 0;
6871 7040
6872 qos_data = &priv->assoc_network->qos_data; 7041 qos_data = &priv->assoc_network->qos_data;
6873 7042
6874 spin_lock_irqsave(&priv->ieee->lock, flags);
6875
6876 if (priv->ieee->iw_mode == IW_MODE_ADHOC) { 7043 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6877 if (unicast == 0) 7044 if (unicast == 0)
6878 qos_data->active = 0; 7045 qos_data->active = 0;
6879 else 7046 else
6880 qos_data->active = qos_data->supported; 7047 qos_data->active = qos_data->supported;
6881 } 7048 }
6882
6883 active = qos_data->active; 7049 active = qos_data->active;
6884 supported = qos_data->supported; 7050 supported = qos_data->supported;
6885
6886 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6887
6888 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d " 7051 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
6889 "unicast %d\n", 7052 "unicast %d\n",
6890 priv->qos_data.qos_enable, active, supported, unicast); 7053 priv->qos_data.qos_enable, active, supported, unicast);
6891 if (active && priv->qos_data.qos_enable) { 7054 if (active && priv->qos_data.qos_enable)
6892 ret = from_priority_to_tx_queue[priority]; 7055 return 1;
6893 tx_queue_id = ret - 1;
6894 IPW_DEBUG_QOS("QoS packet priority is %d \n", priority);
6895 if (priority <= 7) {
6896 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
6897 tfd->tfd.tfd_26.mchdr.qos_ctrl = priority;
6898 tfd->tfd.tfd_26.mchdr.frame_ctl |=
6899 IEEE80211_STYPE_QOS_DATA;
6900
6901 if (priv->qos_data.qos_no_ack_mask &
6902 (1UL << tx_queue_id)) {
6903 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
6904 tfd->tfd.tfd_26.mchdr.qos_ctrl |=
6905 CTRL_QOS_NO_ACK;
6906 }
6907 }
6908 }
6909 7056
6910 return ret; 7057 return 0;
7058
7059}
7060/*
7061* add QoS parameter to the TX command
7062*/
7063static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7064 u16 priority,
7065 struct tfd_data *tfd)
7066{
7067 int tx_queue_id = 0;
7068
7069
7070 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7071 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7072
7073 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7074 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7075 tfd->tfd.tfd_26.mchdr.qos_ctrl |= CTRL_QOS_NO_ACK;
7076 }
7077 return 0;
6911} 7078}
6912 7079
6913/* 7080/*
@@ -6977,7 +7144,7 @@ static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos
6977 qos_param); 7144 qos_param);
6978} 7145}
6979 7146
6980#endif /* CONFIG_IPW_QOS */ 7147#endif /* CONFIG_IPW2200_QOS */
6981 7148
6982static int ipw_associate_network(struct ipw_priv *priv, 7149static int ipw_associate_network(struct ipw_priv *priv,
6983 struct ieee80211_network *network, 7150 struct ieee80211_network *network,
@@ -7116,7 +7283,7 @@ static int ipw_associate_network(struct ipw_priv *priv,
7116 else 7283 else
7117 priv->sys_config.answer_broadcast_ssid_probe = 0; 7284 priv->sys_config.answer_broadcast_ssid_probe = 0;
7118 7285
7119 err = ipw_send_system_config(priv, &priv->sys_config); 7286 err = ipw_send_system_config(priv);
7120 if (err) { 7287 if (err) {
7121 IPW_DEBUG_HC("Attempt to send sys config command failed.\n"); 7288 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7122 return err; 7289 return err;
@@ -7141,7 +7308,7 @@ static int ipw_associate_network(struct ipw_priv *priv,
7141 7308
7142 priv->assoc_network = network; 7309 priv->assoc_network = network;
7143 7310
7144#ifdef CONFIG_IPW_QOS 7311#ifdef CONFIG_IPW2200_QOS
7145 ipw_qos_association(priv, network); 7312 ipw_qos_association(priv, network);
7146#endif 7313#endif
7147 7314
@@ -7415,7 +7582,7 @@ static void ipw_handle_data_packet(struct ipw_priv *priv,
7415 } 7582 }
7416} 7583}
7417 7584
7418#ifdef CONFIG_IEEE80211_RADIOTAP 7585#ifdef CONFIG_IPW2200_RADIOTAP
7419static void ipw_handle_data_packet_monitor(struct ipw_priv *priv, 7586static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7420 struct ipw_rx_mem_buffer *rxb, 7587 struct ipw_rx_mem_buffer *rxb,
7421 struct ieee80211_rx_stats *stats) 7588 struct ieee80211_rx_stats *stats)
@@ -7432,15 +7599,7 @@ static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7432 /* Magic struct that slots into the radiotap header -- no reason 7599 /* Magic struct that slots into the radiotap header -- no reason
7433 * to build this manually element by element, we can write it much 7600 * to build this manually element by element, we can write it much
7434 * more efficiently than we can parse it. ORDER MATTERS HERE */ 7601 * more efficiently than we can parse it. ORDER MATTERS HERE */
7435 struct ipw_rt_hdr { 7602 struct ipw_rt_hdr *ipw_rt;
7436 struct ieee80211_radiotap_header rt_hdr;
7437 u8 rt_flags; /* radiotap packet flags */
7438 u8 rt_rate; /* rate in 500kb/s */
7439 u16 rt_channel; /* channel in mhz */
7440 u16 rt_chbitmask; /* channel bitfield */
7441 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
7442 u8 rt_antenna; /* antenna number */
7443 } *ipw_rt;
7444 7603
7445 short len = le16_to_cpu(pkt->u.frame.length); 7604 short len = le16_to_cpu(pkt->u.frame.length);
7446 7605
@@ -7494,9 +7653,11 @@ static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7494 /* Big bitfield of all the fields we provide in radiotap */ 7653 /* Big bitfield of all the fields we provide in radiotap */
7495 ipw_rt->rt_hdr.it_present = 7654 ipw_rt->rt_hdr.it_present =
7496 ((1 << IEEE80211_RADIOTAP_FLAGS) | 7655 ((1 << IEEE80211_RADIOTAP_FLAGS) |
7656 (1 << IEEE80211_RADIOTAP_TSFT) |
7497 (1 << IEEE80211_RADIOTAP_RATE) | 7657 (1 << IEEE80211_RADIOTAP_RATE) |
7498 (1 << IEEE80211_RADIOTAP_CHANNEL) | 7658 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7499 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) | 7659 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7660 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7500 (1 << IEEE80211_RADIOTAP_ANTENNA)); 7661 (1 << IEEE80211_RADIOTAP_ANTENNA));
7501 7662
7502 /* Zero the flags, we'll add to them as we go */ 7663 /* Zero the flags, we'll add to them as we go */
@@ -7582,6 +7743,217 @@ static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7582} 7743}
7583#endif 7744#endif
7584 7745
7746#ifdef CONFIG_IPW2200_PROMISCUOUS
7747#define ieee80211_is_probe_response(fc) \
7748 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7749 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7750
7751#define ieee80211_is_management(fc) \
7752 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7753
7754#define ieee80211_is_control(fc) \
7755 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7756
7757#define ieee80211_is_data(fc) \
7758 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7759
7760#define ieee80211_is_assoc_request(fc) \
7761 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7762
7763#define ieee80211_is_reassoc_request(fc) \
7764 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7765
7766static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7767 struct ipw_rx_mem_buffer *rxb,
7768 struct ieee80211_rx_stats *stats)
7769{
7770 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7771 struct ipw_rx_frame *frame = &pkt->u.frame;
7772 struct ipw_rt_hdr *ipw_rt;
7773
7774 /* First cache any information we need before we overwrite
7775 * the information provided in the skb from the hardware */
7776 struct ieee80211_hdr *hdr;
7777 u16 channel = frame->received_channel;
7778 u8 phy_flags = frame->antennaAndPhy;
7779 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7780 s8 noise = frame->noise;
7781 u8 rate = frame->rate;
7782 short len = le16_to_cpu(pkt->u.frame.length);
7783 u64 tsf = 0;
7784 struct sk_buff *skb;
7785 int hdr_only = 0;
7786 u16 filter = priv->prom_priv->filter;
7787
7788 /* If the filter is set to not include Rx frames then return */
7789 if (filter & IPW_PROM_NO_RX)
7790 return;
7791
7792 /* We received data from the HW, so stop the watchdog */
7793 priv->prom_net_dev->trans_start = jiffies;
7794
7795 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7796 priv->prom_priv->ieee->stats.rx_errors++;
7797 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7798 return;
7799 }
7800
7801 /* We only process data packets if the interface is open */
7802 if (unlikely(!netif_running(priv->prom_net_dev))) {
7803 priv->prom_priv->ieee->stats.rx_dropped++;
7804 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7805 return;
7806 }
7807
7808 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7809 * that now */
7810 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7811 /* FIXME: Should alloc bigger skb instead */
7812 priv->prom_priv->ieee->stats.rx_dropped++;
7813 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7814 return;
7815 }
7816
7817 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7818 if (ieee80211_is_management(hdr->frame_ctl)) {
7819 if (filter & IPW_PROM_NO_MGMT)
7820 return;
7821 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7822 hdr_only = 1;
7823 } else if (ieee80211_is_control(hdr->frame_ctl)) {
7824 if (filter & IPW_PROM_NO_CTL)
7825 return;
7826 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7827 hdr_only = 1;
7828 } else if (ieee80211_is_data(hdr->frame_ctl)) {
7829 if (filter & IPW_PROM_NO_DATA)
7830 return;
7831 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7832 hdr_only = 1;
7833 }
7834
7835 /* Copy the SKB since this is for the promiscuous side */
7836 skb = skb_copy(rxb->skb, GFP_ATOMIC);
7837 if (skb == NULL) {
7838 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7839 return;
7840 }
7841
7842 /* copy the frame data to write after where the radiotap header goes */
7843 ipw_rt = (void *)skb->data;
7844
7845 if (hdr_only)
7846 len = ieee80211_get_hdrlen(hdr->frame_ctl);
7847
7848 memcpy(ipw_rt->payload, hdr, len);
7849
7850 /* Zero the radiotap static buffer ... We only need to zero the bytes
7851 * NOT part of our real header, saves a little time.
7852 *
7853 * No longer necessary since we fill in all our data. Purge before
7854 * merging patch officially.
7855 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7856 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7857 */
7858
7859 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7860 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7861 ipw_rt->rt_hdr.it_len = sizeof(*ipw_rt); /* total header+data */
7862
7863 /* Set the size of the skb to the size of the frame */
7864 skb_put(skb, ipw_rt->rt_hdr.it_len + len);
7865
7866 /* Big bitfield of all the fields we provide in radiotap */
7867 ipw_rt->rt_hdr.it_present =
7868 ((1 << IEEE80211_RADIOTAP_FLAGS) |
7869 (1 << IEEE80211_RADIOTAP_TSFT) |
7870 (1 << IEEE80211_RADIOTAP_RATE) |
7871 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7872 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7873 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7874 (1 << IEEE80211_RADIOTAP_ANTENNA));
7875
7876 /* Zero the flags, we'll add to them as we go */
7877 ipw_rt->rt_flags = 0;
7878
7879 ipw_rt->rt_tsf = tsf;
7880
7881 /* Convert to DBM */
7882 ipw_rt->rt_dbmsignal = signal;
7883 ipw_rt->rt_dbmnoise = noise;
7884
7885 /* Convert the channel data and set the flags */
7886 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
7887 if (channel > 14) { /* 802.11a */
7888 ipw_rt->rt_chbitmask =
7889 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7890 } else if (phy_flags & (1 << 5)) { /* 802.11b */
7891 ipw_rt->rt_chbitmask =
7892 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7893 } else { /* 802.11g */
7894 ipw_rt->rt_chbitmask =
7895 (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7896 }
7897
7898 /* set the rate in multiples of 500k/s */
7899 switch (rate) {
7900 case IPW_TX_RATE_1MB:
7901 ipw_rt->rt_rate = 2;
7902 break;
7903 case IPW_TX_RATE_2MB:
7904 ipw_rt->rt_rate = 4;
7905 break;
7906 case IPW_TX_RATE_5MB:
7907 ipw_rt->rt_rate = 10;
7908 break;
7909 case IPW_TX_RATE_6MB:
7910 ipw_rt->rt_rate = 12;
7911 break;
7912 case IPW_TX_RATE_9MB:
7913 ipw_rt->rt_rate = 18;
7914 break;
7915 case IPW_TX_RATE_11MB:
7916 ipw_rt->rt_rate = 22;
7917 break;
7918 case IPW_TX_RATE_12MB:
7919 ipw_rt->rt_rate = 24;
7920 break;
7921 case IPW_TX_RATE_18MB:
7922 ipw_rt->rt_rate = 36;
7923 break;
7924 case IPW_TX_RATE_24MB:
7925 ipw_rt->rt_rate = 48;
7926 break;
7927 case IPW_TX_RATE_36MB:
7928 ipw_rt->rt_rate = 72;
7929 break;
7930 case IPW_TX_RATE_48MB:
7931 ipw_rt->rt_rate = 96;
7932 break;
7933 case IPW_TX_RATE_54MB:
7934 ipw_rt->rt_rate = 108;
7935 break;
7936 default:
7937 ipw_rt->rt_rate = 0;
7938 break;
7939 }
7940
7941 /* antenna number */
7942 ipw_rt->rt_antenna = (phy_flags & 3);
7943
7944 /* set the preamble flag if we have it */
7945 if (phy_flags & (1 << 6))
7946 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7947
7948 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
7949
7950 if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
7951 priv->prom_priv->ieee->stats.rx_errors++;
7952 dev_kfree_skb_any(skb);
7953 }
7954}
7955#endif
7956
7585static int is_network_packet(struct ipw_priv *priv, 7957static int is_network_packet(struct ipw_priv *priv,
7586 struct ieee80211_hdr_4addr *header) 7958 struct ieee80211_hdr_4addr *header)
7587{ 7959{
@@ -7808,15 +8180,21 @@ static void ipw_rx(struct ipw_priv *priv)
7808 8180
7809 priv->rx_packets++; 8181 priv->rx_packets++;
7810 8182
8183#ifdef CONFIG_IPW2200_PROMISCUOUS
8184 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8185 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8186#endif
8187
7811#ifdef CONFIG_IPW2200_MONITOR 8188#ifdef CONFIG_IPW2200_MONITOR
7812 if (priv->ieee->iw_mode == IW_MODE_MONITOR) { 8189 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7813#ifdef CONFIG_IEEE80211_RADIOTAP 8190#ifdef CONFIG_IPW2200_RADIOTAP
7814 ipw_handle_data_packet_monitor(priv, 8191
7815 rxb, 8192 ipw_handle_data_packet_monitor(priv,
7816 &stats); 8193 rxb,
8194 &stats);
7817#else 8195#else
7818 ipw_handle_data_packet(priv, rxb, 8196 ipw_handle_data_packet(priv, rxb,
7819 &stats); 8197 &stats);
7820#endif 8198#endif
7821 break; 8199 break;
7822 } 8200 }
@@ -7837,9 +8215,9 @@ static void ipw_rx(struct ipw_priv *priv)
7837 if (network_packet && priv->assoc_network) { 8215 if (network_packet && priv->assoc_network) {
7838 priv->assoc_network->stats.rssi = 8216 priv->assoc_network->stats.rssi =
7839 stats.rssi; 8217 stats.rssi;
7840 average_add(&priv->average_rssi, 8218 priv->exp_avg_rssi =
7841 stats.rssi); 8219 exponential_average(priv->exp_avg_rssi,
7842 priv->last_rx_rssi = stats.rssi; 8220 stats.rssi, DEPTH_RSSI);
7843 } 8221 }
7844 8222
7845 IPW_DEBUG_RX("Frame: len=%u\n", 8223 IPW_DEBUG_RX("Frame: len=%u\n",
@@ -7982,10 +8360,10 @@ static int ipw_sw_reset(struct ipw_priv *priv, int option)
7982 IPW_DEBUG_INFO("Bind to static channel %d\n", channel); 8360 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
7983 /* TODO: Validate that provided channel is in range */ 8361 /* TODO: Validate that provided channel is in range */
7984 } 8362 }
7985#ifdef CONFIG_IPW_QOS 8363#ifdef CONFIG_IPW2200_QOS
7986 ipw_qos_init(priv, qos_enable, qos_burst_enable, 8364 ipw_qos_init(priv, qos_enable, qos_burst_enable,
7987 burst_duration_CCK, burst_duration_OFDM); 8365 burst_duration_CCK, burst_duration_OFDM);
7988#endif /* CONFIG_IPW_QOS */ 8366#endif /* CONFIG_IPW2200_QOS */
7989 8367
7990 switch (mode) { 8368 switch (mode) {
7991 case 1: 8369 case 1:
@@ -7996,7 +8374,7 @@ static int ipw_sw_reset(struct ipw_priv *priv, int option)
7996#ifdef CONFIG_IPW2200_MONITOR 8374#ifdef CONFIG_IPW2200_MONITOR
7997 case 2: 8375 case 2:
7998 priv->ieee->iw_mode = IW_MODE_MONITOR; 8376 priv->ieee->iw_mode = IW_MODE_MONITOR;
7999#ifdef CONFIG_IEEE80211_RADIOTAP 8377#ifdef CONFIG_IPW2200_RADIOTAP
8000 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 8378 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8001#else 8379#else
8002 priv->net_dev->type = ARPHRD_IEEE80211; 8380 priv->net_dev->type = ARPHRD_IEEE80211;
@@ -8251,7 +8629,7 @@ static int ipw_wx_set_mode(struct net_device *dev,
8251 priv->net_dev->type = ARPHRD_ETHER; 8629 priv->net_dev->type = ARPHRD_ETHER;
8252 8630
8253 if (wrqu->mode == IW_MODE_MONITOR) 8631 if (wrqu->mode == IW_MODE_MONITOR)
8254#ifdef CONFIG_IEEE80211_RADIOTAP 8632#ifdef CONFIG_IPW2200_RADIOTAP
8255 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 8633 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8256#else 8634#else
8257 priv->net_dev->type = ARPHRD_IEEE80211; 8635 priv->net_dev->type = ARPHRD_IEEE80211;
@@ -8379,7 +8757,8 @@ static int ipw_wx_get_range(struct net_device *dev,
8379 /* Event capability (kernel + driver) */ 8757 /* Event capability (kernel + driver) */
8380 range->event_capa[0] = (IW_EVENT_CAPA_K_0 | 8758 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8381 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) | 8759 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8382 IW_EVENT_CAPA_MASK(SIOCGIWAP)); 8760 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8761 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8383 range->event_capa[1] = IW_EVENT_CAPA_K_1; 8762 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8384 8763
8385 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 | 8764 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
@@ -8734,6 +9113,7 @@ static int ipw_wx_get_rate(struct net_device *dev,
8734 struct ipw_priv *priv = ieee80211_priv(dev); 9113 struct ipw_priv *priv = ieee80211_priv(dev);
8735 mutex_lock(&priv->mutex); 9114 mutex_lock(&priv->mutex);
8736 wrqu->bitrate.value = priv->last_rate; 9115 wrqu->bitrate.value = priv->last_rate;
9116 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
8737 mutex_unlock(&priv->mutex); 9117 mutex_unlock(&priv->mutex);
8738 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value); 9118 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
8739 return 0; 9119 return 0;
@@ -9351,7 +9731,7 @@ static int ipw_wx_set_monitor(struct net_device *dev,
9351 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]); 9731 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9352 if (enable) { 9732 if (enable) {
9353 if (priv->ieee->iw_mode != IW_MODE_MONITOR) { 9733 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9354#ifdef CONFIG_IEEE80211_RADIOTAP 9734#ifdef CONFIG_IPW2200_RADIOTAP
9355 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; 9735 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9356#else 9736#else
9357 priv->net_dev->type = ARPHRD_IEEE80211; 9737 priv->net_dev->type = ARPHRD_IEEE80211;
@@ -9579,8 +9959,8 @@ static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
9579 } 9959 }
9580 9960
9581 wstats->qual.qual = priv->quality; 9961 wstats->qual.qual = priv->quality;
9582 wstats->qual.level = average_value(&priv->average_rssi); 9962 wstats->qual.level = priv->exp_avg_rssi;
9583 wstats->qual.noise = average_value(&priv->average_noise); 9963 wstats->qual.noise = priv->exp_avg_noise;
9584 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED | 9964 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
9585 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM; 9965 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
9586 9966
@@ -9608,7 +9988,9 @@ static void init_sys_config(struct ipw_sys_config *sys_config)
9608 sys_config->disable_unicast_decryption = 1; 9988 sys_config->disable_unicast_decryption = 1;
9609 sys_config->exclude_multicast_unencrypted = 0; 9989 sys_config->exclude_multicast_unencrypted = 0;
9610 sys_config->disable_multicast_decryption = 1; 9990 sys_config->disable_multicast_decryption = 1;
9611 sys_config->antenna_diversity = CFG_SYS_ANTENNA_SLOW_DIV; 9991 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
9992 antenna = CFG_SYS_ANTENNA_BOTH;
9993 sys_config->antenna_diversity = antenna;
9612 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */ 9994 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
9613 sys_config->dot11g_auto_detection = 0; 9995 sys_config->dot11g_auto_detection = 0;
9614 sys_config->enable_cts_to_self = 0; 9996 sys_config->enable_cts_to_self = 0;
@@ -9647,11 +10029,11 @@ we need to heavily modify the ieee80211_skb_to_txb.
9647static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb, 10029static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
9648 int pri) 10030 int pri)
9649{ 10031{
9650 struct ieee80211_hdr_3addr *hdr = (struct ieee80211_hdr_3addr *) 10032 struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
9651 txb->fragments[0]->data; 10033 txb->fragments[0]->data;
9652 int i = 0; 10034 int i = 0;
9653 struct tfd_frame *tfd; 10035 struct tfd_frame *tfd;
9654#ifdef CONFIG_IPW_QOS 10036#ifdef CONFIG_IPW2200_QOS
9655 int tx_id = ipw_get_tx_queue_number(priv, pri); 10037 int tx_id = ipw_get_tx_queue_number(priv, pri);
9656 struct clx2_tx_queue *txq = &priv->txq[tx_id]; 10038 struct clx2_tx_queue *txq = &priv->txq[tx_id];
9657#else 10039#else
@@ -9662,9 +10044,9 @@ static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
9662 u16 remaining_bytes; 10044 u16 remaining_bytes;
9663 int fc; 10045 int fc;
9664 10046
10047 hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
9665 switch (priv->ieee->iw_mode) { 10048 switch (priv->ieee->iw_mode) {
9666 case IW_MODE_ADHOC: 10049 case IW_MODE_ADHOC:
9667 hdr_len = IEEE80211_3ADDR_LEN;
9668 unicast = !is_multicast_ether_addr(hdr->addr1); 10050 unicast = !is_multicast_ether_addr(hdr->addr1);
9669 id = ipw_find_station(priv, hdr->addr1); 10051 id = ipw_find_station(priv, hdr->addr1);
9670 if (id == IPW_INVALID_STATION) { 10052 if (id == IPW_INVALID_STATION) {
@@ -9681,7 +10063,6 @@ static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
9681 case IW_MODE_INFRA: 10063 case IW_MODE_INFRA:
9682 default: 10064 default:
9683 unicast = !is_multicast_ether_addr(hdr->addr3); 10065 unicast = !is_multicast_ether_addr(hdr->addr3);
9684 hdr_len = IEEE80211_3ADDR_LEN;
9685 id = 0; 10066 id = 0;
9686 break; 10067 break;
9687 } 10068 }
@@ -9759,9 +10140,10 @@ static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
9759 /* No hardware encryption */ 10140 /* No hardware encryption */
9760 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP; 10141 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
9761 10142
9762#ifdef CONFIG_IPW_QOS 10143#ifdef CONFIG_IPW2200_QOS
9763 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data), unicast); 10144 if (fc & IEEE80211_STYPE_QOS_DATA)
9764#endif /* CONFIG_IPW_QOS */ 10145 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10146#endif /* CONFIG_IPW2200_QOS */
9765 10147
9766 /* payload */ 10148 /* payload */
9767 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2), 10149 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
@@ -9841,12 +10223,12 @@ static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
9841static int ipw_net_is_queue_full(struct net_device *dev, int pri) 10223static int ipw_net_is_queue_full(struct net_device *dev, int pri)
9842{ 10224{
9843 struct ipw_priv *priv = ieee80211_priv(dev); 10225 struct ipw_priv *priv = ieee80211_priv(dev);
9844#ifdef CONFIG_IPW_QOS 10226#ifdef CONFIG_IPW2200_QOS
9845 int tx_id = ipw_get_tx_queue_number(priv, pri); 10227 int tx_id = ipw_get_tx_queue_number(priv, pri);
9846 struct clx2_tx_queue *txq = &priv->txq[tx_id]; 10228 struct clx2_tx_queue *txq = &priv->txq[tx_id];
9847#else 10229#else
9848 struct clx2_tx_queue *txq = &priv->txq[0]; 10230 struct clx2_tx_queue *txq = &priv->txq[0];
9849#endif /* CONFIG_IPW_QOS */ 10231#endif /* CONFIG_IPW2200_QOS */
9850 10232
9851 if (ipw_queue_space(&txq->q) < txq->q.high_mark) 10233 if (ipw_queue_space(&txq->q) < txq->q.high_mark)
9852 return 1; 10234 return 1;
@@ -9854,6 +10236,88 @@ static int ipw_net_is_queue_full(struct net_device *dev, int pri)
9854 return 0; 10236 return 0;
9855} 10237}
9856 10238
10239#ifdef CONFIG_IPW2200_PROMISCUOUS
10240static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10241 struct ieee80211_txb *txb)
10242{
10243 struct ieee80211_rx_stats dummystats;
10244 struct ieee80211_hdr *hdr;
10245 u8 n;
10246 u16 filter = priv->prom_priv->filter;
10247 int hdr_only = 0;
10248
10249 if (filter & IPW_PROM_NO_TX)
10250 return;
10251
10252 memset(&dummystats, 0, sizeof(dummystats));
10253
10254 /* Filtering of fragment chains is done agains the first fragment */
10255 hdr = (void *)txb->fragments[0]->data;
10256 if (ieee80211_is_management(hdr->frame_ctl)) {
10257 if (filter & IPW_PROM_NO_MGMT)
10258 return;
10259 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10260 hdr_only = 1;
10261 } else if (ieee80211_is_control(hdr->frame_ctl)) {
10262 if (filter & IPW_PROM_NO_CTL)
10263 return;
10264 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10265 hdr_only = 1;
10266 } else if (ieee80211_is_data(hdr->frame_ctl)) {
10267 if (filter & IPW_PROM_NO_DATA)
10268 return;
10269 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10270 hdr_only = 1;
10271 }
10272
10273 for(n=0; n<txb->nr_frags; ++n) {
10274 struct sk_buff *src = txb->fragments[n];
10275 struct sk_buff *dst;
10276 struct ieee80211_radiotap_header *rt_hdr;
10277 int len;
10278
10279 if (hdr_only) {
10280 hdr = (void *)src->data;
10281 len = ieee80211_get_hdrlen(hdr->frame_ctl);
10282 } else
10283 len = src->len;
10284
10285 dst = alloc_skb(
10286 len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10287 if (!dst) continue;
10288
10289 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10290
10291 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10292 rt_hdr->it_pad = 0;
10293 rt_hdr->it_present = 0; /* after all, it's just an idea */
10294 rt_hdr->it_present |= (1 << IEEE80211_RADIOTAP_CHANNEL);
10295
10296 *(u16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10297 ieee80211chan2mhz(priv->channel));
10298 if (priv->channel > 14) /* 802.11a */
10299 *(u16*)skb_put(dst, sizeof(u16)) =
10300 cpu_to_le16(IEEE80211_CHAN_OFDM |
10301 IEEE80211_CHAN_5GHZ);
10302 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10303 *(u16*)skb_put(dst, sizeof(u16)) =
10304 cpu_to_le16(IEEE80211_CHAN_CCK |
10305 IEEE80211_CHAN_2GHZ);
10306 else /* 802.11g */
10307 *(u16*)skb_put(dst, sizeof(u16)) =
10308 cpu_to_le16(IEEE80211_CHAN_OFDM |
10309 IEEE80211_CHAN_2GHZ);
10310
10311 rt_hdr->it_len = dst->len;
10312
10313 memcpy(skb_put(dst, len), src->data, len);
10314
10315 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10316 dev_kfree_skb_any(dst);
10317 }
10318}
10319#endif
10320
9857static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb, 10321static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
9858 struct net_device *dev, int pri) 10322 struct net_device *dev, int pri)
9859{ 10323{
@@ -9871,6 +10335,11 @@ static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
9871 goto fail_unlock; 10335 goto fail_unlock;
9872 } 10336 }
9873 10337
10338#ifdef CONFIG_IPW2200_PROMISCUOUS
10339 if (rtap_iface && netif_running(priv->prom_net_dev))
10340 ipw_handle_promiscuous_tx(priv, txb);
10341#endif
10342
9874 ret = ipw_tx_skb(priv, txb, pri); 10343 ret = ipw_tx_skb(priv, txb, pri);
9875 if (ret == NETDEV_TX_OK) 10344 if (ret == NETDEV_TX_OK)
9876 __ipw_led_activity_on(priv); 10345 __ipw_led_activity_on(priv);
@@ -10169,10 +10638,10 @@ static int ipw_setup_deferred_work(struct ipw_priv *priv)
10169 INIT_WORK(&priv->merge_networks, 10638 INIT_WORK(&priv->merge_networks,
10170 (void (*)(void *))ipw_merge_adhoc_network, priv); 10639 (void (*)(void *))ipw_merge_adhoc_network, priv);
10171 10640
10172#ifdef CONFIG_IPW_QOS 10641#ifdef CONFIG_IPW2200_QOS
10173 INIT_WORK(&priv->qos_activate, (void (*)(void *))ipw_bg_qos_activate, 10642 INIT_WORK(&priv->qos_activate, (void (*)(void *))ipw_bg_qos_activate,
10174 priv); 10643 priv);
10175#endif /* CONFIG_IPW_QOS */ 10644#endif /* CONFIG_IPW2200_QOS */
10176 10645
10177 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long)) 10646 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10178 ipw_irq_tasklet, (unsigned long)priv); 10647 ipw_irq_tasklet, (unsigned long)priv);
@@ -10318,12 +10787,21 @@ static int ipw_config(struct ipw_priv *priv)
10318 |= CFG_BT_COEXISTENCE_OOB; 10787 |= CFG_BT_COEXISTENCE_OOB;
10319 } 10788 }
10320 10789
10790#ifdef CONFIG_IPW2200_PROMISCUOUS
10791 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10792 priv->sys_config.accept_all_data_frames = 1;
10793 priv->sys_config.accept_non_directed_frames = 1;
10794 priv->sys_config.accept_all_mgmt_bcpr = 1;
10795 priv->sys_config.accept_all_mgmt_frames = 1;
10796 }
10797#endif
10798
10321 if (priv->ieee->iw_mode == IW_MODE_ADHOC) 10799 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10322 priv->sys_config.answer_broadcast_ssid_probe = 1; 10800 priv->sys_config.answer_broadcast_ssid_probe = 1;
10323 else 10801 else
10324 priv->sys_config.answer_broadcast_ssid_probe = 0; 10802 priv->sys_config.answer_broadcast_ssid_probe = 0;
10325 10803
10326 if (ipw_send_system_config(priv, &priv->sys_config)) 10804 if (ipw_send_system_config(priv))
10327 goto error; 10805 goto error;
10328 10806
10329 init_supported_rates(priv, &priv->rates); 10807 init_supported_rates(priv, &priv->rates);
@@ -10335,10 +10813,10 @@ static int ipw_config(struct ipw_priv *priv)
10335 if (ipw_send_rts_threshold(priv, priv->rts_threshold)) 10813 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10336 goto error; 10814 goto error;
10337 } 10815 }
10338#ifdef CONFIG_IPW_QOS 10816#ifdef CONFIG_IPW2200_QOS
10339 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n"); 10817 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10340 ipw_qos_activate(priv, NULL); 10818 ipw_qos_activate(priv, NULL);
10341#endif /* CONFIG_IPW_QOS */ 10819#endif /* CONFIG_IPW2200_QOS */
10342 10820
10343 if (ipw_set_random_seed(priv)) 10821 if (ipw_set_random_seed(priv))
10344 goto error; 10822 goto error;
@@ -10639,6 +11117,7 @@ static int ipw_up(struct ipw_priv *priv)
10639 if (priv->cmdlog == NULL) { 11117 if (priv->cmdlog == NULL) {
10640 IPW_ERROR("Error allocating %d command log entries.\n", 11118 IPW_ERROR("Error allocating %d command log entries.\n",
10641 cmdlog); 11119 cmdlog);
11120 return -ENOMEM;
10642 } else { 11121 } else {
10643 memset(priv->cmdlog, 0, sizeof(*priv->cmdlog) * cmdlog); 11122 memset(priv->cmdlog, 0, sizeof(*priv->cmdlog) * cmdlog);
10644 priv->cmdlog_len = cmdlog; 11123 priv->cmdlog_len = cmdlog;
@@ -10860,6 +11339,10 @@ static struct attribute *ipw_sysfs_entries[] = {
10860 &dev_attr_led.attr, 11339 &dev_attr_led.attr,
10861 &dev_attr_speed_scan.attr, 11340 &dev_attr_speed_scan.attr,
10862 &dev_attr_net_stats.attr, 11341 &dev_attr_net_stats.attr,
11342#ifdef CONFIG_IPW2200_PROMISCUOUS
11343 &dev_attr_rtap_iface.attr,
11344 &dev_attr_rtap_filter.attr,
11345#endif
10863 NULL 11346 NULL
10864}; 11347};
10865 11348
@@ -10868,6 +11351,109 @@ static struct attribute_group ipw_attribute_group = {
10868 .attrs = ipw_sysfs_entries, 11351 .attrs = ipw_sysfs_entries,
10869}; 11352};
10870 11353
11354#ifdef CONFIG_IPW2200_PROMISCUOUS
11355static int ipw_prom_open(struct net_device *dev)
11356{
11357 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11358 struct ipw_priv *priv = prom_priv->priv;
11359
11360 IPW_DEBUG_INFO("prom dev->open\n");
11361 netif_carrier_off(dev);
11362 netif_stop_queue(dev);
11363
11364 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11365 priv->sys_config.accept_all_data_frames = 1;
11366 priv->sys_config.accept_non_directed_frames = 1;
11367 priv->sys_config.accept_all_mgmt_bcpr = 1;
11368 priv->sys_config.accept_all_mgmt_frames = 1;
11369
11370 ipw_send_system_config(priv);
11371 }
11372
11373 return 0;
11374}
11375
11376static int ipw_prom_stop(struct net_device *dev)
11377{
11378 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11379 struct ipw_priv *priv = prom_priv->priv;
11380
11381 IPW_DEBUG_INFO("prom dev->stop\n");
11382
11383 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11384 priv->sys_config.accept_all_data_frames = 0;
11385 priv->sys_config.accept_non_directed_frames = 0;
11386 priv->sys_config.accept_all_mgmt_bcpr = 0;
11387 priv->sys_config.accept_all_mgmt_frames = 0;
11388
11389 ipw_send_system_config(priv);
11390 }
11391
11392 return 0;
11393}
11394
11395static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11396{
11397 IPW_DEBUG_INFO("prom dev->xmit\n");
11398 netif_stop_queue(dev);
11399 return -EOPNOTSUPP;
11400}
11401
11402static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11403{
11404 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11405 return &prom_priv->ieee->stats;
11406}
11407
11408static int ipw_prom_alloc(struct ipw_priv *priv)
11409{
11410 int rc = 0;
11411
11412 if (priv->prom_net_dev)
11413 return -EPERM;
11414
11415 priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11416 if (priv->prom_net_dev == NULL)
11417 return -ENOMEM;
11418
11419 priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11420 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11421 priv->prom_priv->priv = priv;
11422
11423 strcpy(priv->prom_net_dev->name, "rtap%d");
11424
11425 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11426 priv->prom_net_dev->open = ipw_prom_open;
11427 priv->prom_net_dev->stop = ipw_prom_stop;
11428 priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11429 priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11430
11431 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11432
11433 rc = register_netdev(priv->prom_net_dev);
11434 if (rc) {
11435 free_ieee80211(priv->prom_net_dev);
11436 priv->prom_net_dev = NULL;
11437 return rc;
11438 }
11439
11440 return 0;
11441}
11442
11443static void ipw_prom_free(struct ipw_priv *priv)
11444{
11445 if (!priv->prom_net_dev)
11446 return;
11447
11448 unregister_netdev(priv->prom_net_dev);
11449 free_ieee80211(priv->prom_net_dev);
11450
11451 priv->prom_net_dev = NULL;
11452}
11453
11454#endif
11455
11456
10871static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 11457static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
10872{ 11458{
10873 int err = 0; 11459 int err = 0;
@@ -10959,11 +11545,12 @@ static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
10959 priv->ieee->set_security = shim__set_security; 11545 priv->ieee->set_security = shim__set_security;
10960 priv->ieee->is_queue_full = ipw_net_is_queue_full; 11546 priv->ieee->is_queue_full = ipw_net_is_queue_full;
10961 11547
10962#ifdef CONFIG_IPW_QOS 11548#ifdef CONFIG_IPW2200_QOS
11549 priv->ieee->is_qos_active = ipw_is_qos_active;
10963 priv->ieee->handle_probe_response = ipw_handle_beacon; 11550 priv->ieee->handle_probe_response = ipw_handle_beacon;
10964 priv->ieee->handle_beacon = ipw_handle_probe_response; 11551 priv->ieee->handle_beacon = ipw_handle_probe_response;
10965 priv->ieee->handle_assoc_response = ipw_handle_assoc_response; 11552 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
10966#endif /* CONFIG_IPW_QOS */ 11553#endif /* CONFIG_IPW2200_QOS */
10967 11554
10968 priv->ieee->perfect_rssi = -20; 11555 priv->ieee->perfect_rssi = -20;
10969 priv->ieee->worst_rssi = -85; 11556 priv->ieee->worst_rssi = -85;
@@ -10997,6 +11584,18 @@ static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
10997 goto out_remove_sysfs; 11584 goto out_remove_sysfs;
10998 } 11585 }
10999 11586
11587#ifdef CONFIG_IPW2200_PROMISCUOUS
11588 if (rtap_iface) {
11589 err = ipw_prom_alloc(priv);
11590 if (err) {
11591 IPW_ERROR("Failed to register promiscuous network "
11592 "device (error %d).\n", err);
11593 unregister_netdev(priv->net_dev);
11594 goto out_remove_sysfs;
11595 }
11596 }
11597#endif
11598
11000 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg " 11599 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11001 "channels, %d 802.11a channels)\n", 11600 "channels, %d 802.11a channels)\n",
11002 priv->ieee->geo.name, priv->ieee->geo.bg_channels, 11601 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
@@ -11076,6 +11675,10 @@ static void ipw_pci_remove(struct pci_dev *pdev)
11076 priv->error = NULL; 11675 priv->error = NULL;
11077 } 11676 }
11078 11677
11678#ifdef CONFIG_IPW2200_PROMISCUOUS
11679 ipw_prom_free(priv);
11680#endif
11681
11079 free_irq(pdev->irq, priv); 11682 free_irq(pdev->irq, priv);
11080 iounmap(priv->hw_base); 11683 iounmap(priv->hw_base);
11081 pci_release_regions(pdev); 11684 pci_release_regions(pdev);
@@ -11200,7 +11803,12 @@ MODULE_PARM_DESC(debug, "debug output mask");
11200module_param(channel, int, 0444); 11803module_param(channel, int, 0444);
11201MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])"); 11804MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11202 11805
11203#ifdef CONFIG_IPW_QOS 11806#ifdef CONFIG_IPW2200_PROMISCUOUS
11807module_param(rtap_iface, int, 0444);
11808MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11809#endif
11810
11811#ifdef CONFIG_IPW2200_QOS
11204module_param(qos_enable, int, 0444); 11812module_param(qos_enable, int, 0444);
11205MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis"); 11813MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11206 11814
@@ -11215,7 +11823,7 @@ MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11215 11823
11216module_param(burst_duration_OFDM, int, 0444); 11824module_param(burst_duration_OFDM, int, 0444);
11217MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value"); 11825MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11218#endif /* CONFIG_IPW_QOS */ 11826#endif /* CONFIG_IPW2200_QOS */
11219 11827
11220#ifdef CONFIG_IPW2200_MONITOR 11828#ifdef CONFIG_IPW2200_MONITOR
11221module_param(mode, int, 0444); 11829module_param(mode, int, 0444);
@@ -11238,5 +11846,8 @@ MODULE_PARM_DESC(cmdlog,
11238module_param(roaming, int, 0444); 11846module_param(roaming, int, 0444);
11239MODULE_PARM_DESC(roaming, "enable roaming support (default on)"); 11847MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11240 11848
11849module_param(antenna, int, 0444);
11850MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
11851
11241module_exit(ipw_exit); 11852module_exit(ipw_exit);
11242module_init(ipw_init); 11853module_init(ipw_init);
diff --git a/drivers/net/wireless/ipw2200.h b/drivers/net/wireless/ipw2200.h
index 4b9804900702..6044c0be2c80 100644
--- a/drivers/net/wireless/ipw2200.h
+++ b/drivers/net/wireless/ipw2200.h
@@ -789,7 +789,7 @@ struct ipw_sys_config {
789 u8 bt_coexist_collision_thr; 789 u8 bt_coexist_collision_thr;
790 u8 silence_threshold; 790 u8 silence_threshold;
791 u8 accept_all_mgmt_bcpr; 791 u8 accept_all_mgmt_bcpr;
792 u8 accept_all_mgtm_frames; 792 u8 accept_all_mgmt_frames;
793 u8 pass_noise_stats_to_host; 793 u8 pass_noise_stats_to_host;
794 u8 reserved3; 794 u8 reserved3;
795} __attribute__ ((packed)); 795} __attribute__ ((packed));
@@ -1122,6 +1122,52 @@ struct ipw_fw_error {
1122 u8 payload[0]; 1122 u8 payload[0];
1123} __attribute__ ((packed)); 1123} __attribute__ ((packed));
1124 1124
1125#ifdef CONFIG_IPW2200_PROMISCUOUS
1126
1127enum ipw_prom_filter {
1128 IPW_PROM_CTL_HEADER_ONLY = (1 << 0),
1129 IPW_PROM_MGMT_HEADER_ONLY = (1 << 1),
1130 IPW_PROM_DATA_HEADER_ONLY = (1 << 2),
1131 IPW_PROM_ALL_HEADER_ONLY = 0xf, /* bits 0..3 */
1132 IPW_PROM_NO_TX = (1 << 4),
1133 IPW_PROM_NO_RX = (1 << 5),
1134 IPW_PROM_NO_CTL = (1 << 6),
1135 IPW_PROM_NO_MGMT = (1 << 7),
1136 IPW_PROM_NO_DATA = (1 << 8),
1137};
1138
1139struct ipw_priv;
1140struct ipw_prom_priv {
1141 struct ipw_priv *priv;
1142 struct ieee80211_device *ieee;
1143 enum ipw_prom_filter filter;
1144 int tx_packets;
1145 int rx_packets;
1146};
1147#endif
1148
1149#if defined(CONFIG_IPW2200_RADIOTAP) || defined(CONFIG_IPW2200_PROMISCUOUS)
1150/* Magic struct that slots into the radiotap header -- no reason
1151 * to build this manually element by element, we can write it much
1152 * more efficiently than we can parse it. ORDER MATTERS HERE
1153 *
1154 * When sent to us via the simulated Rx interface in sysfs, the entire
1155 * structure is provided regardless of any bits unset.
1156 */
1157struct ipw_rt_hdr {
1158 struct ieee80211_radiotap_header rt_hdr;
1159 u64 rt_tsf; /* TSF */
1160 u8 rt_flags; /* radiotap packet flags */
1161 u8 rt_rate; /* rate in 500kb/s */
1162 u16 rt_channel; /* channel in mhz */
1163 u16 rt_chbitmask; /* channel bitfield */
1164 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
1165 s8 rt_dbmnoise;
1166 u8 rt_antenna; /* antenna number */
1167 u8 payload[0]; /* payload... */
1168} __attribute__ ((packed));
1169#endif
1170
1125struct ipw_priv { 1171struct ipw_priv {
1126 /* ieee device used by generic ieee processing code */ 1172 /* ieee device used by generic ieee processing code */
1127 struct ieee80211_device *ieee; 1173 struct ieee80211_device *ieee;
@@ -1133,6 +1179,12 @@ struct ipw_priv {
1133 struct pci_dev *pci_dev; 1179 struct pci_dev *pci_dev;
1134 struct net_device *net_dev; 1180 struct net_device *net_dev;
1135 1181
1182#ifdef CONFIG_IPW2200_PROMISCUOUS
1183 /* Promiscuous mode */
1184 struct ipw_prom_priv *prom_priv;
1185 struct net_device *prom_net_dev;
1186#endif
1187
1136 /* pci hardware address support */ 1188 /* pci hardware address support */
1137 void __iomem *hw_base; 1189 void __iomem *hw_base;
1138 unsigned long hw_len; 1190 unsigned long hw_len;
@@ -1153,11 +1205,9 @@ struct ipw_priv {
1153 u32 config; 1205 u32 config;
1154 u32 capability; 1206 u32 capability;
1155 1207
1156 u8 last_rx_rssi;
1157 u8 last_noise;
1158 struct average average_missed_beacons; 1208 struct average average_missed_beacons;
1159 struct average average_rssi; 1209 s16 exp_avg_rssi;
1160 struct average average_noise; 1210 s16 exp_avg_noise;
1161 u32 port_type; 1211 u32 port_type;
1162 int rx_bufs_min; /**< minimum number of bufs in Rx queue */ 1212 int rx_bufs_min; /**< minimum number of bufs in Rx queue */
1163 int rx_pend_max; /**< maximum pending buffers for one IRQ */ 1213 int rx_pend_max; /**< maximum pending buffers for one IRQ */
@@ -1308,6 +1358,29 @@ struct ipw_priv {
1308 1358
1309/* debug macros */ 1359/* debug macros */
1310 1360
1361/* Debug and printf string expansion helpers for printing bitfields */
1362#define BIT_FMT8 "%c%c%c%c-%c%c%c%c"
1363#define BIT_FMT16 BIT_FMT8 ":" BIT_FMT8
1364#define BIT_FMT32 BIT_FMT16 " " BIT_FMT16
1365
1366#define BITC(x,y) (((x>>y)&1)?'1':'0')
1367#define BIT_ARG8(x) \
1368BITC(x,7),BITC(x,6),BITC(x,5),BITC(x,4),\
1369BITC(x,3),BITC(x,2),BITC(x,1),BITC(x,0)
1370
1371#define BIT_ARG16(x) \
1372BITC(x,15),BITC(x,14),BITC(x,13),BITC(x,12),\
1373BITC(x,11),BITC(x,10),BITC(x,9),BITC(x,8),\
1374BIT_ARG8(x)
1375
1376#define BIT_ARG32(x) \
1377BITC(x,31),BITC(x,30),BITC(x,29),BITC(x,28),\
1378BITC(x,27),BITC(x,26),BITC(x,25),BITC(x,24),\
1379BITC(x,23),BITC(x,22),BITC(x,21),BITC(x,20),\
1380BITC(x,19),BITC(x,18),BITC(x,17),BITC(x,16),\
1381BIT_ARG16(x)
1382
1383
1311#ifdef CONFIG_IPW2200_DEBUG 1384#ifdef CONFIG_IPW2200_DEBUG
1312#define IPW_DEBUG(level, fmt, args...) \ 1385#define IPW_DEBUG(level, fmt, args...) \
1313do { if (ipw_debug_level & (level)) \ 1386do { if (ipw_debug_level & (level)) \
diff --git a/drivers/net/wireless/orinoco.c b/drivers/net/wireless/orinoco.c
index c2d0b09e0418..b563decf599e 100644
--- a/drivers/net/wireless/orinoco.c
+++ b/drivers/net/wireless/orinoco.c
@@ -201,41 +201,12 @@ static struct {
201/* Data types */ 201/* Data types */
202/********************************************************************/ 202/********************************************************************/
203 203
204/* Used in Event handling. 204/* Beginning of the Tx descriptor, used in TxExc handling */
205 * We avoid nested structures as they break on ARM -- Moustafa */ 205struct hermes_txexc_data {
206struct hermes_tx_descriptor_802_11 { 206 struct hermes_tx_descriptor desc;
207 /* hermes_tx_descriptor */
208 __le16 status;
209 __le16 reserved1;
210 __le16 reserved2;
211 __le32 sw_support;
212 u8 retry_count;
213 u8 tx_rate;
214 __le16 tx_control;
215
216 /* ieee80211_hdr */
217 __le16 frame_ctl; 207 __le16 frame_ctl;
218 __le16 duration_id; 208 __le16 duration_id;
219 u8 addr1[ETH_ALEN]; 209 u8 addr1[ETH_ALEN];
220 u8 addr2[ETH_ALEN];
221 u8 addr3[ETH_ALEN];
222 __le16 seq_ctl;
223 u8 addr4[ETH_ALEN];
224
225 __le16 data_len;
226
227 /* ethhdr */
228 u8 h_dest[ETH_ALEN]; /* destination eth addr */
229 u8 h_source[ETH_ALEN]; /* source ether addr */
230 __be16 h_proto; /* packet type ID field */
231
232 /* p8022_hdr */
233 u8 dsap;
234 u8 ssap;
235 u8 ctrl;
236 u8 oui[3];
237
238 __be16 ethertype;
239} __attribute__ ((packed)); 210} __attribute__ ((packed));
240 211
241/* Rx frame header except compatibility 802.3 header */ 212/* Rx frame header except compatibility 802.3 header */
@@ -450,53 +421,39 @@ static int orinoco_xmit(struct sk_buff *skb, struct net_device *dev)
450 hermes_t *hw = &priv->hw; 421 hermes_t *hw = &priv->hw;
451 int err = 0; 422 int err = 0;
452 u16 txfid = priv->txfid; 423 u16 txfid = priv->txfid;
453 char *p;
454 struct ethhdr *eh; 424 struct ethhdr *eh;
455 int len, data_len, data_off; 425 int data_off;
456 struct hermes_tx_descriptor desc; 426 struct hermes_tx_descriptor desc;
457 unsigned long flags; 427 unsigned long flags;
458 428
459 TRACE_ENTER(dev->name);
460
461 if (! netif_running(dev)) { 429 if (! netif_running(dev)) {
462 printk(KERN_ERR "%s: Tx on stopped device!\n", 430 printk(KERN_ERR "%s: Tx on stopped device!\n",
463 dev->name); 431 dev->name);
464 TRACE_EXIT(dev->name); 432 return NETDEV_TX_BUSY;
465 return 1;
466 } 433 }
467 434
468 if (netif_queue_stopped(dev)) { 435 if (netif_queue_stopped(dev)) {
469 printk(KERN_DEBUG "%s: Tx while transmitter busy!\n", 436 printk(KERN_DEBUG "%s: Tx while transmitter busy!\n",
470 dev->name); 437 dev->name);
471 TRACE_EXIT(dev->name); 438 return NETDEV_TX_BUSY;
472 return 1;
473 } 439 }
474 440
475 if (orinoco_lock(priv, &flags) != 0) { 441 if (orinoco_lock(priv, &flags) != 0) {
476 printk(KERN_ERR "%s: orinoco_xmit() called while hw_unavailable\n", 442 printk(KERN_ERR "%s: orinoco_xmit() called while hw_unavailable\n",
477 dev->name); 443 dev->name);
478 TRACE_EXIT(dev->name); 444 return NETDEV_TX_BUSY;
479 return 1;
480 } 445 }
481 446
482 if (! netif_carrier_ok(dev) || (priv->iw_mode == IW_MODE_MONITOR)) { 447 if (! netif_carrier_ok(dev) || (priv->iw_mode == IW_MODE_MONITOR)) {
483 /* Oops, the firmware hasn't established a connection, 448 /* Oops, the firmware hasn't established a connection,
484 silently drop the packet (this seems to be the 449 silently drop the packet (this seems to be the
485 safest approach). */ 450 safest approach). */
486 stats->tx_errors++; 451 goto drop;
487 orinoco_unlock(priv, &flags);
488 dev_kfree_skb(skb);
489 TRACE_EXIT(dev->name);
490 return 0;
491 } 452 }
492 453
493 /* Length of the packet body */ 454 /* Check packet length */
494 /* FIXME: what if the skb is smaller than this? */ 455 if (skb->len < ETH_HLEN)
495 len = max_t(int, ALIGN(skb->len, 2), ETH_ZLEN); 456 goto drop;
496 skb = skb_padto(skb, len);
497 if (skb == NULL)
498 goto fail;
499 len -= ETH_HLEN;
500 457
501 eh = (struct ethhdr *)skb->data; 458 eh = (struct ethhdr *)skb->data;
502 459
@@ -507,8 +464,7 @@ static int orinoco_xmit(struct sk_buff *skb, struct net_device *dev)
507 if (net_ratelimit()) 464 if (net_ratelimit())
508 printk(KERN_ERR "%s: Error %d writing Tx descriptor " 465 printk(KERN_ERR "%s: Error %d writing Tx descriptor "
509 "to BAP\n", dev->name, err); 466 "to BAP\n", dev->name, err);
510 stats->tx_errors++; 467 goto busy;
511 goto fail;
512 } 468 }
513 469
514 /* Clear the 802.11 header and data length fields - some 470 /* Clear the 802.11 header and data length fields - some
@@ -519,50 +475,38 @@ static int orinoco_xmit(struct sk_buff *skb, struct net_device *dev)
519 475
520 /* Encapsulate Ethernet-II frames */ 476 /* Encapsulate Ethernet-II frames */
521 if (ntohs(eh->h_proto) > ETH_DATA_LEN) { /* Ethernet-II frame */ 477 if (ntohs(eh->h_proto) > ETH_DATA_LEN) { /* Ethernet-II frame */
522 struct header_struct hdr; 478 struct header_struct {
523 data_len = len; 479 struct ethhdr eth; /* 802.3 header */
524 data_off = HERMES_802_3_OFFSET + sizeof(hdr); 480 u8 encap[6]; /* 802.2 header */
525 p = skb->data + ETH_HLEN; 481 } __attribute__ ((packed)) hdr;
526 482
527 /* 802.3 header */ 483 /* Strip destination and source from the data */
528 memcpy(hdr.dest, eh->h_dest, ETH_ALEN); 484 skb_pull(skb, 2 * ETH_ALEN);
529 memcpy(hdr.src, eh->h_source, ETH_ALEN); 485 data_off = HERMES_802_2_OFFSET + sizeof(encaps_hdr);
530 hdr.len = htons(data_len + ENCAPS_OVERHEAD); 486
531 487 /* And move them to a separate header */
532 /* 802.2 header */ 488 memcpy(&hdr.eth, eh, 2 * ETH_ALEN);
533 memcpy(&hdr.dsap, &encaps_hdr, sizeof(encaps_hdr)); 489 hdr.eth.h_proto = htons(sizeof(encaps_hdr) + skb->len);
534 490 memcpy(hdr.encap, encaps_hdr, sizeof(encaps_hdr));
535 hdr.ethertype = eh->h_proto; 491
536 err = hermes_bap_pwrite(hw, USER_BAP, &hdr, sizeof(hdr), 492 err = hermes_bap_pwrite(hw, USER_BAP, &hdr, sizeof(hdr),
537 txfid, HERMES_802_3_OFFSET); 493 txfid, HERMES_802_3_OFFSET);
538 if (err) { 494 if (err) {
539 if (net_ratelimit()) 495 if (net_ratelimit())
540 printk(KERN_ERR "%s: Error %d writing packet " 496 printk(KERN_ERR "%s: Error %d writing packet "
541 "header to BAP\n", dev->name, err); 497 "header to BAP\n", dev->name, err);
542 stats->tx_errors++; 498 goto busy;
543 goto fail;
544 } 499 }
545 /* Actual xfer length - allow for padding */
546 len = ALIGN(data_len, 2);
547 if (len < ETH_ZLEN - ETH_HLEN)
548 len = ETH_ZLEN - ETH_HLEN;
549 } else { /* IEEE 802.3 frame */ 500 } else { /* IEEE 802.3 frame */
550 data_len = len + ETH_HLEN;
551 data_off = HERMES_802_3_OFFSET; 501 data_off = HERMES_802_3_OFFSET;
552 p = skb->data;
553 /* Actual xfer length - round up for odd length packets */
554 len = ALIGN(data_len, 2);
555 if (len < ETH_ZLEN)
556 len = ETH_ZLEN;
557 } 502 }
558 503
559 err = hermes_bap_pwrite_pad(hw, USER_BAP, p, data_len, len, 504 err = hermes_bap_pwrite(hw, USER_BAP, skb->data, skb->len,
560 txfid, data_off); 505 txfid, data_off);
561 if (err) { 506 if (err) {
562 printk(KERN_ERR "%s: Error %d writing packet to BAP\n", 507 printk(KERN_ERR "%s: Error %d writing packet to BAP\n",
563 dev->name, err); 508 dev->name, err);
564 stats->tx_errors++; 509 goto busy;
565 goto fail;
566 } 510 }
567 511
568 /* Finally, we actually initiate the send */ 512 /* Finally, we actually initiate the send */
@@ -575,25 +519,27 @@ static int orinoco_xmit(struct sk_buff *skb, struct net_device *dev)
575 if (net_ratelimit()) 519 if (net_ratelimit())
576 printk(KERN_ERR "%s: Error %d transmitting packet\n", 520 printk(KERN_ERR "%s: Error %d transmitting packet\n",
577 dev->name, err); 521 dev->name, err);
578 stats->tx_errors++; 522 goto busy;
579 goto fail;
580 } 523 }
581 524
582 dev->trans_start = jiffies; 525 dev->trans_start = jiffies;
583 stats->tx_bytes += data_off + data_len; 526 stats->tx_bytes += data_off + skb->len;
527 goto ok;
584 528
585 orinoco_unlock(priv, &flags); 529 drop:
530 stats->tx_errors++;
531 stats->tx_dropped++;
586 532
533 ok:
534 orinoco_unlock(priv, &flags);
587 dev_kfree_skb(skb); 535 dev_kfree_skb(skb);
536 return NETDEV_TX_OK;
588 537
589 TRACE_EXIT(dev->name); 538 busy:
590 539 if (err == -EIO)
591 return 0; 540 schedule_work(&priv->reset_work);
592 fail:
593 TRACE_EXIT(dev->name);
594
595 orinoco_unlock(priv, &flags); 541 orinoco_unlock(priv, &flags);
596 return err; 542 return NETDEV_TX_BUSY;
597} 543}
598 544
599static void __orinoco_ev_alloc(struct net_device *dev, hermes_t *hw) 545static void __orinoco_ev_alloc(struct net_device *dev, hermes_t *hw)
@@ -629,7 +575,7 @@ static void __orinoco_ev_txexc(struct net_device *dev, hermes_t *hw)
629 struct net_device_stats *stats = &priv->stats; 575 struct net_device_stats *stats = &priv->stats;
630 u16 fid = hermes_read_regn(hw, TXCOMPLFID); 576 u16 fid = hermes_read_regn(hw, TXCOMPLFID);
631 u16 status; 577 u16 status;
632 struct hermes_tx_descriptor_802_11 hdr; 578 struct hermes_txexc_data hdr;
633 int err = 0; 579 int err = 0;
634 580
635 if (fid == DUMMY_FID) 581 if (fid == DUMMY_FID)
@@ -637,8 +583,7 @@ static void __orinoco_ev_txexc(struct net_device *dev, hermes_t *hw)
637 583
638 /* Read part of the frame header - we need status and addr1 */ 584 /* Read part of the frame header - we need status and addr1 */
639 err = hermes_bap_pread(hw, IRQ_BAP, &hdr, 585 err = hermes_bap_pread(hw, IRQ_BAP, &hdr,
640 offsetof(struct hermes_tx_descriptor_802_11, 586 sizeof(struct hermes_txexc_data),
641 addr2),
642 fid, 0); 587 fid, 0);
643 588
644 hermes_write_regn(hw, TXCOMPLFID, DUMMY_FID); 589 hermes_write_regn(hw, TXCOMPLFID, DUMMY_FID);
@@ -658,7 +603,7 @@ static void __orinoco_ev_txexc(struct net_device *dev, hermes_t *hw)
658 * exceeded, because that's the only status that really mean 603 * exceeded, because that's the only status that really mean
659 * that this particular node went away. 604 * that this particular node went away.
660 * Other errors means that *we* screwed up. - Jean II */ 605 * Other errors means that *we* screwed up. - Jean II */
661 status = le16_to_cpu(hdr.status); 606 status = le16_to_cpu(hdr.desc.status);
662 if (status & (HERMES_TXSTAT_RETRYERR | HERMES_TXSTAT_AGEDERR)) { 607 if (status & (HERMES_TXSTAT_RETRYERR | HERMES_TXSTAT_AGEDERR)) {
663 union iwreq_data wrqu; 608 union iwreq_data wrqu;
664 609
@@ -1398,16 +1343,12 @@ int __orinoco_down(struct net_device *dev)
1398 return 0; 1343 return 0;
1399} 1344}
1400 1345
1401int orinoco_reinit_firmware(struct net_device *dev) 1346static int orinoco_allocate_fid(struct net_device *dev)
1402{ 1347{
1403 struct orinoco_private *priv = netdev_priv(dev); 1348 struct orinoco_private *priv = netdev_priv(dev);
1404 struct hermes *hw = &priv->hw; 1349 struct hermes *hw = &priv->hw;
1405 int err; 1350 int err;
1406 1351
1407 err = hermes_init(hw);
1408 if (err)
1409 return err;
1410
1411 err = hermes_allocate(hw, priv->nicbuf_size, &priv->txfid); 1352 err = hermes_allocate(hw, priv->nicbuf_size, &priv->txfid);
1412 if (err == -EIO && priv->nicbuf_size > TX_NICBUF_SIZE_BUG) { 1353 if (err == -EIO && priv->nicbuf_size > TX_NICBUF_SIZE_BUG) {
1413 /* Try workaround for old Symbol firmware bug */ 1354 /* Try workaround for old Symbol firmware bug */
@@ -1426,6 +1367,19 @@ int orinoco_reinit_firmware(struct net_device *dev)
1426 return err; 1367 return err;
1427} 1368}
1428 1369
1370int orinoco_reinit_firmware(struct net_device *dev)
1371{
1372 struct orinoco_private *priv = netdev_priv(dev);
1373 struct hermes *hw = &priv->hw;
1374 int err;
1375
1376 err = hermes_init(hw);
1377 if (!err)
1378 err = orinoco_allocate_fid(dev);
1379
1380 return err;
1381}
1382
1429static int __orinoco_hw_set_bitrate(struct orinoco_private *priv) 1383static int __orinoco_hw_set_bitrate(struct orinoco_private *priv)
1430{ 1384{
1431 hermes_t *hw = &priv->hw; 1385 hermes_t *hw = &priv->hw;
@@ -2272,14 +2226,12 @@ static int orinoco_init(struct net_device *dev)
2272 u16 reclen; 2226 u16 reclen;
2273 int len; 2227 int len;
2274 2228
2275 TRACE_ENTER(dev->name);
2276
2277 /* No need to lock, the hw_unavailable flag is already set in 2229 /* No need to lock, the hw_unavailable flag is already set in
2278 * alloc_orinocodev() */ 2230 * alloc_orinocodev() */
2279 priv->nicbuf_size = IEEE80211_FRAME_LEN + ETH_HLEN; 2231 priv->nicbuf_size = IEEE80211_FRAME_LEN + ETH_HLEN;
2280 2232
2281 /* Initialize the firmware */ 2233 /* Initialize the firmware */
2282 err = orinoco_reinit_firmware(dev); 2234 err = hermes_init(hw);
2283 if (err != 0) { 2235 if (err != 0) {
2284 printk(KERN_ERR "%s: failed to initialize firmware (err = %d)\n", 2236 printk(KERN_ERR "%s: failed to initialize firmware (err = %d)\n",
2285 dev->name, err); 2237 dev->name, err);
@@ -2337,6 +2289,13 @@ static int orinoco_init(struct net_device *dev)
2337 2289
2338 printk(KERN_DEBUG "%s: Station name \"%s\"\n", dev->name, priv->nick); 2290 printk(KERN_DEBUG "%s: Station name \"%s\"\n", dev->name, priv->nick);
2339 2291
2292 err = orinoco_allocate_fid(dev);
2293 if (err) {
2294 printk(KERN_ERR "%s: failed to allocate NIC buffer!\n",
2295 dev->name);
2296 goto out;
2297 }
2298
2340 /* Get allowed channels */ 2299 /* Get allowed channels */
2341 err = hermes_read_wordrec(hw, USER_BAP, HERMES_RID_CHANNELLIST, 2300 err = hermes_read_wordrec(hw, USER_BAP, HERMES_RID_CHANNELLIST,
2342 &priv->channel_mask); 2301 &priv->channel_mask);
@@ -2427,7 +2386,6 @@ static int orinoco_init(struct net_device *dev)
2427 printk(KERN_DEBUG "%s: ready\n", dev->name); 2386 printk(KERN_DEBUG "%s: ready\n", dev->name);
2428 2387
2429 out: 2388 out:
2430 TRACE_EXIT(dev->name);
2431 return err; 2389 return err;
2432} 2390}
2433 2391
@@ -2795,8 +2753,6 @@ static int orinoco_ioctl_getiwrange(struct net_device *dev,
2795 int numrates; 2753 int numrates;
2796 int i, k; 2754 int i, k;
2797 2755
2798 TRACE_ENTER(dev->name);
2799
2800 rrq->length = sizeof(struct iw_range); 2756 rrq->length = sizeof(struct iw_range);
2801 memset(range, 0, sizeof(struct iw_range)); 2757 memset(range, 0, sizeof(struct iw_range));
2802 2758
@@ -2886,8 +2842,6 @@ static int orinoco_ioctl_getiwrange(struct net_device *dev,
2886 IW_EVENT_CAPA_SET(range->event_capa, SIOCGIWSCAN); 2842 IW_EVENT_CAPA_SET(range->event_capa, SIOCGIWSCAN);
2887 IW_EVENT_CAPA_SET(range->event_capa, IWEVTXDROP); 2843 IW_EVENT_CAPA_SET(range->event_capa, IWEVTXDROP);
2888 2844
2889 TRACE_EXIT(dev->name);
2890
2891 return 0; 2845 return 0;
2892} 2846}
2893 2847
@@ -3069,8 +3023,6 @@ static int orinoco_ioctl_getessid(struct net_device *dev,
3069 int err = 0; 3023 int err = 0;
3070 unsigned long flags; 3024 unsigned long flags;
3071 3025
3072 TRACE_ENTER(dev->name);
3073
3074 if (netif_running(dev)) { 3026 if (netif_running(dev)) {
3075 err = orinoco_hw_get_essid(priv, &active, essidbuf); 3027 err = orinoco_hw_get_essid(priv, &active, essidbuf);
3076 if (err) 3028 if (err)
@@ -3085,8 +3037,6 @@ static int orinoco_ioctl_getessid(struct net_device *dev,
3085 erq->flags = 1; 3037 erq->flags = 1;
3086 erq->length = strlen(essidbuf) + 1; 3038 erq->length = strlen(essidbuf) + 1;
3087 3039
3088 TRACE_EXIT(dev->name);
3089
3090 return 0; 3040 return 0;
3091} 3041}
3092 3042
@@ -4347,69 +4297,6 @@ static struct ethtool_ops orinoco_ethtool_ops = {
4347}; 4297};
4348 4298
4349/********************************************************************/ 4299/********************************************************************/
4350/* Debugging */
4351/********************************************************************/
4352
4353#if 0
4354static void show_rx_frame(struct orinoco_rxframe_hdr *frame)
4355{
4356 printk(KERN_DEBUG "RX descriptor:\n");
4357 printk(KERN_DEBUG " status = 0x%04x\n", frame->desc.status);
4358 printk(KERN_DEBUG " time = 0x%08x\n", frame->desc.time);
4359 printk(KERN_DEBUG " silence = 0x%02x\n", frame->desc.silence);
4360 printk(KERN_DEBUG " signal = 0x%02x\n", frame->desc.signal);
4361 printk(KERN_DEBUG " rate = 0x%02x\n", frame->desc.rate);
4362 printk(KERN_DEBUG " rxflow = 0x%02x\n", frame->desc.rxflow);
4363 printk(KERN_DEBUG " reserved = 0x%08x\n", frame->desc.reserved);
4364
4365 printk(KERN_DEBUG "IEEE 802.11 header:\n");
4366 printk(KERN_DEBUG " frame_ctl = 0x%04x\n",
4367 frame->p80211.frame_ctl);
4368 printk(KERN_DEBUG " duration_id = 0x%04x\n",
4369 frame->p80211.duration_id);
4370 printk(KERN_DEBUG " addr1 = %02x:%02x:%02x:%02x:%02x:%02x\n",
4371 frame->p80211.addr1[0], frame->p80211.addr1[1],
4372 frame->p80211.addr1[2], frame->p80211.addr1[3],
4373 frame->p80211.addr1[4], frame->p80211.addr1[5]);
4374 printk(KERN_DEBUG " addr2 = %02x:%02x:%02x:%02x:%02x:%02x\n",
4375 frame->p80211.addr2[0], frame->p80211.addr2[1],
4376 frame->p80211.addr2[2], frame->p80211.addr2[3],
4377 frame->p80211.addr2[4], frame->p80211.addr2[5]);
4378 printk(KERN_DEBUG " addr3 = %02x:%02x:%02x:%02x:%02x:%02x\n",
4379 frame->p80211.addr3[0], frame->p80211.addr3[1],
4380 frame->p80211.addr3[2], frame->p80211.addr3[3],
4381 frame->p80211.addr3[4], frame->p80211.addr3[5]);
4382 printk(KERN_DEBUG " seq_ctl = 0x%04x\n",
4383 frame->p80211.seq_ctl);
4384 printk(KERN_DEBUG " addr4 = %02x:%02x:%02x:%02x:%02x:%02x\n",
4385 frame->p80211.addr4[0], frame->p80211.addr4[1],
4386 frame->p80211.addr4[2], frame->p80211.addr4[3],
4387 frame->p80211.addr4[4], frame->p80211.addr4[5]);
4388 printk(KERN_DEBUG " data_len = 0x%04x\n",
4389 frame->p80211.data_len);
4390
4391 printk(KERN_DEBUG "IEEE 802.3 header:\n");
4392 printk(KERN_DEBUG " dest = %02x:%02x:%02x:%02x:%02x:%02x\n",
4393 frame->p8023.h_dest[0], frame->p8023.h_dest[1],
4394 frame->p8023.h_dest[2], frame->p8023.h_dest[3],
4395 frame->p8023.h_dest[4], frame->p8023.h_dest[5]);
4396 printk(KERN_DEBUG " src = %02x:%02x:%02x:%02x:%02x:%02x\n",
4397 frame->p8023.h_source[0], frame->p8023.h_source[1],
4398 frame->p8023.h_source[2], frame->p8023.h_source[3],
4399 frame->p8023.h_source[4], frame->p8023.h_source[5]);
4400 printk(KERN_DEBUG " len = 0x%04x\n", frame->p8023.h_proto);
4401
4402 printk(KERN_DEBUG "IEEE 802.2 LLC/SNAP header:\n");
4403 printk(KERN_DEBUG " DSAP = 0x%02x\n", frame->p8022.dsap);
4404 printk(KERN_DEBUG " SSAP = 0x%02x\n", frame->p8022.ssap);
4405 printk(KERN_DEBUG " ctrl = 0x%02x\n", frame->p8022.ctrl);
4406 printk(KERN_DEBUG " OUI = %02x:%02x:%02x\n",
4407 frame->p8022.oui[0], frame->p8022.oui[1], frame->p8022.oui[2]);
4408 printk(KERN_DEBUG " ethertype = 0x%04x\n", frame->ethertype);
4409}
4410#endif /* 0 */
4411
4412/********************************************************************/
4413/* Module initialization */ 4300/* Module initialization */
4414/********************************************************************/ 4301/********************************************************************/
4415 4302
diff --git a/drivers/net/wireless/orinoco.h b/drivers/net/wireless/orinoco.h
index f5d856db92a1..16db3e14b7d2 100644
--- a/drivers/net/wireless/orinoco.h
+++ b/drivers/net/wireless/orinoco.h
@@ -7,7 +7,7 @@
7#ifndef _ORINOCO_H 7#ifndef _ORINOCO_H
8#define _ORINOCO_H 8#define _ORINOCO_H
9 9
10#define DRIVER_VERSION "0.15rc3" 10#define DRIVER_VERSION "0.15"
11 11
12#include <linux/netdevice.h> 12#include <linux/netdevice.h>
13#include <linux/wireless.h> 13#include <linux/wireless.h>
@@ -30,20 +30,6 @@ struct orinoco_key {
30 char data[ORINOCO_MAX_KEY_SIZE]; 30 char data[ORINOCO_MAX_KEY_SIZE];
31} __attribute__ ((packed)); 31} __attribute__ ((packed));
32 32
33struct header_struct {
34 /* 802.3 */
35 u8 dest[ETH_ALEN];
36 u8 src[ETH_ALEN];
37 __be16 len;
38 /* 802.2 */
39 u8 dsap;
40 u8 ssap;
41 u8 ctrl;
42 /* SNAP */
43 u8 oui[3];
44 unsigned short ethertype;
45} __attribute__ ((packed));
46
47typedef enum { 33typedef enum {
48 FIRMWARE_TYPE_AGERE, 34 FIRMWARE_TYPE_AGERE,
49 FIRMWARE_TYPE_INTERSIL, 35 FIRMWARE_TYPE_INTERSIL,
@@ -132,9 +118,6 @@ extern int orinoco_debug;
132#define DEBUG(n, args...) do { } while (0) 118#define DEBUG(n, args...) do { } while (0)
133#endif /* ORINOCO_DEBUG */ 119#endif /* ORINOCO_DEBUG */
134 120
135#define TRACE_ENTER(devname) DEBUG(2, "%s: -> %s()\n", devname, __FUNCTION__);
136#define TRACE_EXIT(devname) DEBUG(2, "%s: <- %s()\n", devname, __FUNCTION__);
137
138/********************************************************************/ 121/********************************************************************/
139/* Exported prototypes */ 122/* Exported prototypes */
140/********************************************************************/ 123/********************************************************************/
diff --git a/drivers/net/wireless/orinoco_cs.c b/drivers/net/wireless/orinoco_cs.c
index 434f7d7ad841..b2aec4d9fbb1 100644
--- a/drivers/net/wireless/orinoco_cs.c
+++ b/drivers/net/wireless/orinoco_cs.c
@@ -147,14 +147,11 @@ static void orinoco_cs_detach(struct pcmcia_device *link)
147{ 147{
148 struct net_device *dev = link->priv; 148 struct net_device *dev = link->priv;
149 149
150 if (link->dev_node)
151 unregister_netdev(dev);
152
150 orinoco_cs_release(link); 153 orinoco_cs_release(link);
151 154
152 DEBUG(0, PFX "detach: link=%p link->dev_node=%p\n", link, link->dev_node);
153 if (link->dev_node) {
154 DEBUG(0, PFX "About to unregister net device %p\n",
155 dev);
156 unregister_netdev(dev);
157 }
158 free_orinocodev(dev); 155 free_orinocodev(dev);
159} /* orinoco_cs_detach */ 156} /* orinoco_cs_detach */
160 157
@@ -178,13 +175,10 @@ orinoco_cs_config(struct pcmcia_device *link)
178 int last_fn, last_ret; 175 int last_fn, last_ret;
179 u_char buf[64]; 176 u_char buf[64];
180 config_info_t conf; 177 config_info_t conf;
181 cisinfo_t info;
182 tuple_t tuple; 178 tuple_t tuple;
183 cisparse_t parse; 179 cisparse_t parse;
184 void __iomem *mem; 180 void __iomem *mem;
185 181
186 CS_CHECK(ValidateCIS, pcmcia_validate_cis(link, &info));
187
188 /* 182 /*
189 * This reads the card's CONFIG tuple to find its 183 * This reads the card's CONFIG tuple to find its
190 * configuration registers. 184 * configuration registers.
@@ -234,12 +228,6 @@ orinoco_cs_config(struct pcmcia_device *link)
234 goto next_entry; 228 goto next_entry;
235 link->conf.ConfigIndex = cfg->index; 229 link->conf.ConfigIndex = cfg->index;
236 230
237 /* Does this card need audio output? */
238 if (cfg->flags & CISTPL_CFTABLE_AUDIO) {
239 link->conf.Attributes |= CONF_ENABLE_SPKR;
240 link->conf.Status = CCSR_AUDIO_ENA;
241 }
242
243 /* Use power settings for Vcc and Vpp if present */ 231 /* Use power settings for Vcc and Vpp if present */
244 /* Note that the CIS values need to be rescaled */ 232 /* Note that the CIS values need to be rescaled */
245 if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) { 233 if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) {
@@ -355,19 +343,10 @@ orinoco_cs_config(struct pcmcia_device *link)
355 net_device has been registered */ 343 net_device has been registered */
356 344
357 /* Finally, report what we've done */ 345 /* Finally, report what we've done */
358 printk(KERN_DEBUG "%s: index 0x%02x: ", 346 printk(KERN_DEBUG "%s: " DRIVER_NAME " at %s, irq %d, io "
359 dev->name, link->conf.ConfigIndex); 347 "0x%04x-0x%04x\n", dev->name, dev->class_dev.dev->bus_id,
360 if (link->conf.Vpp) 348 link->irq.AssignedIRQ, link->io.BasePort1,
361 printk(", Vpp %d.%d", link->conf.Vpp / 10, 349 link->io.BasePort1 + link->io.NumPorts1 - 1);
362 link->conf.Vpp % 10);
363 printk(", irq %d", link->irq.AssignedIRQ);
364 if (link->io.NumPorts1)
365 printk(", io 0x%04x-0x%04x", link->io.BasePort1,
366 link->io.BasePort1 + link->io.NumPorts1 - 1);
367 if (link->io.NumPorts2)
368 printk(" & 0x%04x-0x%04x", link->io.BasePort2,
369 link->io.BasePort2 + link->io.NumPorts2 - 1);
370 printk("\n");
371 350
372 return 0; 351 return 0;
373 352
@@ -436,7 +415,6 @@ static int orinoco_cs_resume(struct pcmcia_device *link)
436 struct orinoco_private *priv = netdev_priv(dev); 415 struct orinoco_private *priv = netdev_priv(dev);
437 struct orinoco_pccard *card = priv->card; 416 struct orinoco_pccard *card = priv->card;
438 int err = 0; 417 int err = 0;
439 unsigned long flags;
440 418
441 if (! test_bit(0, &card->hard_reset_in_progress)) { 419 if (! test_bit(0, &card->hard_reset_in_progress)) {
442 err = orinoco_reinit_firmware(dev); 420 err = orinoco_reinit_firmware(dev);
@@ -446,7 +424,7 @@ static int orinoco_cs_resume(struct pcmcia_device *link)
446 return -EIO; 424 return -EIO;
447 } 425 }
448 426
449 spin_lock_irqsave(&priv->lock, flags); 427 spin_lock(&priv->lock);
450 428
451 netif_device_attach(dev); 429 netif_device_attach(dev);
452 priv->hw_unavailable--; 430 priv->hw_unavailable--;
@@ -458,10 +436,10 @@ static int orinoco_cs_resume(struct pcmcia_device *link)
458 dev->name, err); 436 dev->name, err);
459 } 437 }
460 438
461 spin_unlock_irqrestore(&priv->lock, flags); 439 spin_unlock(&priv->lock);
462 } 440 }
463 441
464 return 0; 442 return err;
465} 443}
466 444
467 445
diff --git a/drivers/net/wireless/orinoco_nortel.c b/drivers/net/wireless/orinoco_nortel.c
index d1a670b35338..74b9d5b2ba9e 100644
--- a/drivers/net/wireless/orinoco_nortel.c
+++ b/drivers/net/wireless/orinoco_nortel.c
@@ -1,9 +1,8 @@
1/* orinoco_nortel.c 1/* orinoco_nortel.c
2 * 2 *
3 * Driver for Prism II devices which would usually be driven by orinoco_cs, 3 * Driver for Prism II devices which would usually be driven by orinoco_cs,
4 * but are connected to the PCI bus by a PCI-to-PCMCIA adapter used in 4 * but are connected to the PCI bus by a PCI-to-PCMCIA adapter used in
5 * Nortel emobility, Symbol LA-4113 and Symbol LA-4123. 5 * Nortel emobility, Symbol LA-4113 and Symbol LA-4123.
6 * but are connected to the PCI bus by a Nortel PCI-PCMCIA-Adapter.
7 * 6 *
8 * Copyright (C) 2002 Tobias Hoffmann 7 * Copyright (C) 2002 Tobias Hoffmann
9 * (C) 2003 Christoph Jungegger <disdos@traum404.de> 8 * (C) 2003 Christoph Jungegger <disdos@traum404.de>
@@ -50,67 +49,62 @@
50#include <pcmcia/cisreg.h> 49#include <pcmcia/cisreg.h>
51 50
52#include "orinoco.h" 51#include "orinoco.h"
52#include "orinoco_pci.h"
53 53
54#define COR_OFFSET (0xe0) /* COR attribute offset of Prism2 PC card */ 54#define COR_OFFSET (0xe0) /* COR attribute offset of Prism2 PC card */
55#define COR_VALUE (COR_LEVEL_REQ | COR_FUNC_ENA) /* Enable PC card with interrupt in level trigger */ 55#define COR_VALUE (COR_LEVEL_REQ | COR_FUNC_ENA) /* Enable PC card with interrupt in level trigger */
56 56
57 57
58/* Nortel specific data */
59struct nortel_pci_card {
60 unsigned long iobase1;
61 unsigned long iobase2;
62};
63
64/* 58/*
65 * Do a soft reset of the PCI card using the Configuration Option Register 59 * Do a soft reset of the card using the Configuration Option Register
66 * We need this to get going... 60 * We need this to get going...
67 * This is the part of the code that is strongly inspired from wlan-ng 61 * This is the part of the code that is strongly inspired from wlan-ng
68 * 62 *
69 * Note bis : Don't try to access HERMES_CMD during the reset phase. 63 * Note bis : Don't try to access HERMES_CMD during the reset phase.
70 * It just won't work ! 64 * It just won't work !
71 */ 65 */
72static int nortel_pci_cor_reset(struct orinoco_private *priv) 66static int orinoco_nortel_cor_reset(struct orinoco_private *priv)
73{ 67{
74 struct nortel_pci_card *card = priv->card; 68 struct orinoco_pci_card *card = priv->card;
75 69
76 /* Assert the reset until the card notice */ 70 /* Assert the reset until the card notices */
77 outw_p(8, card->iobase1 + 2); 71 iowrite16(8, card->bridge_io + 2);
78 inw(card->iobase2 + COR_OFFSET); 72 ioread16(card->attr_io + COR_OFFSET);
79 outw_p(0x80, card->iobase2 + COR_OFFSET); 73 iowrite16(0x80, card->attr_io + COR_OFFSET);
80 mdelay(1); 74 mdelay(1);
81 75
82 /* Give time for the card to recover from this hard effort */ 76 /* Give time for the card to recover from this hard effort */
83 outw_p(0, card->iobase2 + COR_OFFSET); 77 iowrite16(0, card->attr_io + COR_OFFSET);
84 outw_p(0, card->iobase2 + COR_OFFSET); 78 iowrite16(0, card->attr_io + COR_OFFSET);
85 mdelay(1); 79 mdelay(1);
86 80
87 /* set COR as usual */ 81 /* Set COR as usual */
88 outw_p(COR_VALUE, card->iobase2 + COR_OFFSET); 82 iowrite16(COR_VALUE, card->attr_io + COR_OFFSET);
89 outw_p(COR_VALUE, card->iobase2 + COR_OFFSET); 83 iowrite16(COR_VALUE, card->attr_io + COR_OFFSET);
90 mdelay(1); 84 mdelay(1);
91 85
92 outw_p(0x228, card->iobase1 + 2); 86 iowrite16(0x228, card->bridge_io + 2);
93 87
94 return 0; 88 return 0;
95} 89}
96 90
97static int nortel_pci_hw_init(struct nortel_pci_card *card) 91static int orinoco_nortel_hw_init(struct orinoco_pci_card *card)
98{ 92{
99 int i; 93 int i;
100 u32 reg; 94 u32 reg;
101 95
102 /* setup bridge */ 96 /* Setup bridge */
103 if (inw(card->iobase1) & 1) { 97 if (ioread16(card->bridge_io) & 1) {
104 printk(KERN_ERR PFX "brg1 answer1 wrong\n"); 98 printk(KERN_ERR PFX "brg1 answer1 wrong\n");
105 return -EBUSY; 99 return -EBUSY;
106 } 100 }
107 outw_p(0x118, card->iobase1 + 2); 101 iowrite16(0x118, card->bridge_io + 2);
108 outw_p(0x108, card->iobase1 + 2); 102 iowrite16(0x108, card->bridge_io + 2);
109 mdelay(30); 103 mdelay(30);
110 outw_p(0x8, card->iobase1 + 2); 104 iowrite16(0x8, card->bridge_io + 2);
111 for (i = 0; i < 30; i++) { 105 for (i = 0; i < 30; i++) {
112 mdelay(30); 106 mdelay(30);
113 if (inw(card->iobase1) & 0x10) { 107 if (ioread16(card->bridge_io) & 0x10) {
114 break; 108 break;
115 } 109 }
116 } 110 }
@@ -118,42 +112,42 @@ static int nortel_pci_hw_init(struct nortel_pci_card *card)
118 printk(KERN_ERR PFX "brg1 timed out\n"); 112 printk(KERN_ERR PFX "brg1 timed out\n");
119 return -EBUSY; 113 return -EBUSY;
120 } 114 }
121 if (inw(card->iobase2 + 0xe0) & 1) { 115 if (ioread16(card->attr_io + COR_OFFSET) & 1) {
122 printk(KERN_ERR PFX "brg2 answer1 wrong\n"); 116 printk(KERN_ERR PFX "brg2 answer1 wrong\n");
123 return -EBUSY; 117 return -EBUSY;
124 } 118 }
125 if (inw(card->iobase2 + 0xe2) & 1) { 119 if (ioread16(card->attr_io + COR_OFFSET + 2) & 1) {
126 printk(KERN_ERR PFX "brg2 answer2 wrong\n"); 120 printk(KERN_ERR PFX "brg2 answer2 wrong\n");
127 return -EBUSY; 121 return -EBUSY;
128 } 122 }
129 if (inw(card->iobase2 + 0xe4) & 1) { 123 if (ioread16(card->attr_io + COR_OFFSET + 4) & 1) {
130 printk(KERN_ERR PFX "brg2 answer3 wrong\n"); 124 printk(KERN_ERR PFX "brg2 answer3 wrong\n");
131 return -EBUSY; 125 return -EBUSY;
132 } 126 }
133 127
134 /* set the PCMCIA COR-Register */ 128 /* Set the PCMCIA COR register */
135 outw_p(COR_VALUE, card->iobase2 + COR_OFFSET); 129 iowrite16(COR_VALUE, card->attr_io + COR_OFFSET);
136 mdelay(1); 130 mdelay(1);
137 reg = inw(card->iobase2 + COR_OFFSET); 131 reg = ioread16(card->attr_io + COR_OFFSET);
138 if (reg != COR_VALUE) { 132 if (reg != COR_VALUE) {
139 printk(KERN_ERR PFX "Error setting COR value (reg=%x)\n", 133 printk(KERN_ERR PFX "Error setting COR value (reg=%x)\n",
140 reg); 134 reg);
141 return -EBUSY; 135 return -EBUSY;
142 } 136 }
143 137
144 /* set leds */ 138 /* Set LEDs */
145 outw_p(1, card->iobase1 + 10); 139 iowrite16(1, card->bridge_io + 10);
146 return 0; 140 return 0;
147} 141}
148 142
149static int nortel_pci_init_one(struct pci_dev *pdev, 143static int orinoco_nortel_init_one(struct pci_dev *pdev,
150 const struct pci_device_id *ent) 144 const struct pci_device_id *ent)
151{ 145{
152 int err; 146 int err;
153 struct orinoco_private *priv; 147 struct orinoco_private *priv;
154 struct nortel_pci_card *card; 148 struct orinoco_pci_card *card;
155 struct net_device *dev; 149 struct net_device *dev;
156 void __iomem *iomem; 150 void __iomem *hermes_io, *bridge_io, *attr_io;
157 151
158 err = pci_enable_device(pdev); 152 err = pci_enable_device(pdev);
159 if (err) { 153 if (err) {
@@ -162,19 +156,34 @@ static int nortel_pci_init_one(struct pci_dev *pdev,
162 } 156 }
163 157
164 err = pci_request_regions(pdev, DRIVER_NAME); 158 err = pci_request_regions(pdev, DRIVER_NAME);
165 if (err != 0) { 159 if (err) {
166 printk(KERN_ERR PFX "Cannot obtain PCI resources\n"); 160 printk(KERN_ERR PFX "Cannot obtain PCI resources\n");
167 goto fail_resources; 161 goto fail_resources;
168 } 162 }
169 163
170 iomem = pci_iomap(pdev, 2, 0); 164 bridge_io = pci_iomap(pdev, 0, 0);
171 if (!iomem) { 165 if (!bridge_io) {
172 err = -ENOMEM; 166 printk(KERN_ERR PFX "Cannot map bridge registers\n");
173 goto fail_map_io; 167 err = -EIO;
168 goto fail_map_bridge;
169 }
170
171 attr_io = pci_iomap(pdev, 1, 0);
172 if (!attr_io) {
173 printk(KERN_ERR PFX "Cannot map PCMCIA attributes\n");
174 err = -EIO;
175 goto fail_map_attr;
176 }
177
178 hermes_io = pci_iomap(pdev, 2, 0);
179 if (!hermes_io) {
180 printk(KERN_ERR PFX "Cannot map chipset registers\n");
181 err = -EIO;
182 goto fail_map_hermes;
174 } 183 }
175 184
176 /* Allocate network device */ 185 /* Allocate network device */
177 dev = alloc_orinocodev(sizeof(*card), nortel_pci_cor_reset); 186 dev = alloc_orinocodev(sizeof(*card), orinoco_nortel_cor_reset);
178 if (!dev) { 187 if (!dev) {
179 printk(KERN_ERR PFX "Cannot allocate network device\n"); 188 printk(KERN_ERR PFX "Cannot allocate network device\n");
180 err = -ENOMEM; 189 err = -ENOMEM;
@@ -183,16 +192,12 @@ static int nortel_pci_init_one(struct pci_dev *pdev,
183 192
184 priv = netdev_priv(dev); 193 priv = netdev_priv(dev);
185 card = priv->card; 194 card = priv->card;
186 card->iobase1 = pci_resource_start(pdev, 0); 195 card->bridge_io = bridge_io;
187 card->iobase2 = pci_resource_start(pdev, 1); 196 card->attr_io = attr_io;
188 dev->base_addr = pci_resource_start(pdev, 2);
189 SET_MODULE_OWNER(dev); 197 SET_MODULE_OWNER(dev);
190 SET_NETDEV_DEV(dev, &pdev->dev); 198 SET_NETDEV_DEV(dev, &pdev->dev);
191 199
192 hermes_struct_init(&priv->hw, iomem, HERMES_16BIT_REGSPACING); 200 hermes_struct_init(&priv->hw, hermes_io, HERMES_16BIT_REGSPACING);
193
194 printk(KERN_DEBUG PFX "Detected Nortel PCI device at %s irq:%d, "
195 "io addr:0x%lx\n", pci_name(pdev), pdev->irq, dev->base_addr);
196 201
197 err = request_irq(pdev->irq, orinoco_interrupt, SA_SHIRQ, 202 err = request_irq(pdev->irq, orinoco_interrupt, SA_SHIRQ,
198 dev->name, dev); 203 dev->name, dev);
@@ -201,21 +206,19 @@ static int nortel_pci_init_one(struct pci_dev *pdev,
201 err = -EBUSY; 206 err = -EBUSY;
202 goto fail_irq; 207 goto fail_irq;
203 } 208 }
204 dev->irq = pdev->irq;
205 209
206 err = nortel_pci_hw_init(card); 210 err = orinoco_nortel_hw_init(card);
207 if (err) { 211 if (err) {
208 printk(KERN_ERR PFX "Hardware initialization failed\n"); 212 printk(KERN_ERR PFX "Hardware initialization failed\n");
209 goto fail; 213 goto fail;
210 } 214 }
211 215
212 err = nortel_pci_cor_reset(priv); 216 err = orinoco_nortel_cor_reset(priv);
213 if (err) { 217 if (err) {
214 printk(KERN_ERR PFX "Initial reset failed\n"); 218 printk(KERN_ERR PFX "Initial reset failed\n");
215 goto fail; 219 goto fail;
216 } 220 }
217 221
218
219 err = register_netdev(dev); 222 err = register_netdev(dev);
220 if (err) { 223 if (err) {
221 printk(KERN_ERR PFX "Cannot register network device\n"); 224 printk(KERN_ERR PFX "Cannot register network device\n");
@@ -223,6 +226,8 @@ static int nortel_pci_init_one(struct pci_dev *pdev,
223 } 226 }
224 227
225 pci_set_drvdata(pdev, dev); 228 pci_set_drvdata(pdev, dev);
229 printk(KERN_DEBUG "%s: " DRIVER_NAME " at %s\n", dev->name,
230 pci_name(pdev));
226 231
227 return 0; 232 return 0;
228 233
@@ -234,9 +239,15 @@ static int nortel_pci_init_one(struct pci_dev *pdev,
234 free_orinocodev(dev); 239 free_orinocodev(dev);
235 240
236 fail_alloc: 241 fail_alloc:
237 pci_iounmap(pdev, iomem); 242 pci_iounmap(pdev, hermes_io);
238 243
239 fail_map_io: 244 fail_map_hermes:
245 pci_iounmap(pdev, attr_io);
246
247 fail_map_attr:
248 pci_iounmap(pdev, bridge_io);
249
250 fail_map_bridge:
240 pci_release_regions(pdev); 251 pci_release_regions(pdev);
241 252
242 fail_resources: 253 fail_resources:
@@ -245,26 +256,27 @@ static int nortel_pci_init_one(struct pci_dev *pdev,
245 return err; 256 return err;
246} 257}
247 258
248static void __devexit nortel_pci_remove_one(struct pci_dev *pdev) 259static void __devexit orinoco_nortel_remove_one(struct pci_dev *pdev)
249{ 260{
250 struct net_device *dev = pci_get_drvdata(pdev); 261 struct net_device *dev = pci_get_drvdata(pdev);
251 struct orinoco_private *priv = netdev_priv(dev); 262 struct orinoco_private *priv = netdev_priv(dev);
252 struct nortel_pci_card *card = priv->card; 263 struct orinoco_pci_card *card = priv->card;
253 264
254 /* clear leds */ 265 /* Clear LEDs */
255 outw_p(0, card->iobase1 + 10); 266 iowrite16(0, card->bridge_io + 10);
256 267
257 unregister_netdev(dev); 268 unregister_netdev(dev);
258 free_irq(dev->irq, dev); 269 free_irq(pdev->irq, dev);
259 pci_set_drvdata(pdev, NULL); 270 pci_set_drvdata(pdev, NULL);
260 free_orinocodev(dev); 271 free_orinocodev(dev);
261 pci_iounmap(pdev, priv->hw.iobase); 272 pci_iounmap(pdev, priv->hw.iobase);
273 pci_iounmap(pdev, card->attr_io);
274 pci_iounmap(pdev, card->bridge_io);
262 pci_release_regions(pdev); 275 pci_release_regions(pdev);
263 pci_disable_device(pdev); 276 pci_disable_device(pdev);
264} 277}
265 278
266 279static struct pci_device_id orinoco_nortel_id_table[] = {
267static struct pci_device_id nortel_pci_id_table[] = {
268 /* Nortel emobility PCI */ 280 /* Nortel emobility PCI */
269 {0x126c, 0x8030, PCI_ANY_ID, PCI_ANY_ID,}, 281 {0x126c, 0x8030, PCI_ANY_ID, PCI_ANY_ID,},
270 /* Symbol LA-4123 PCI */ 282 /* Symbol LA-4123 PCI */
@@ -272,13 +284,15 @@ static struct pci_device_id nortel_pci_id_table[] = {
272 {0,}, 284 {0,},
273}; 285};
274 286
275MODULE_DEVICE_TABLE(pci, nortel_pci_id_table); 287MODULE_DEVICE_TABLE(pci, orinoco_nortel_id_table);
276 288
277static struct pci_driver nortel_pci_driver = { 289static struct pci_driver orinoco_nortel_driver = {
278 .name = DRIVER_NAME, 290 .name = DRIVER_NAME,
279 .id_table = nortel_pci_id_table, 291 .id_table = orinoco_nortel_id_table,
280 .probe = nortel_pci_init_one, 292 .probe = orinoco_nortel_init_one,
281 .remove = __devexit_p(nortel_pci_remove_one), 293 .remove = __devexit_p(orinoco_nortel_remove_one),
294 .suspend = orinoco_pci_suspend,
295 .resume = orinoco_pci_resume,
282}; 296};
283 297
284static char version[] __initdata = DRIVER_NAME " " DRIVER_VERSION 298static char version[] __initdata = DRIVER_NAME " " DRIVER_VERSION
@@ -288,20 +302,19 @@ MODULE_DESCRIPTION
288 ("Driver for wireless LAN cards using the Nortel PCI bridge"); 302 ("Driver for wireless LAN cards using the Nortel PCI bridge");
289MODULE_LICENSE("Dual MPL/GPL"); 303MODULE_LICENSE("Dual MPL/GPL");
290 304
291static int __init nortel_pci_init(void) 305static int __init orinoco_nortel_init(void)
292{ 306{
293 printk(KERN_DEBUG "%s\n", version); 307 printk(KERN_DEBUG "%s\n", version);
294 return pci_module_init(&nortel_pci_driver); 308 return pci_module_init(&orinoco_nortel_driver);
295} 309}
296 310
297static void __exit nortel_pci_exit(void) 311static void __exit orinoco_nortel_exit(void)
298{ 312{
299 pci_unregister_driver(&nortel_pci_driver); 313 pci_unregister_driver(&orinoco_nortel_driver);
300 ssleep(1);
301} 314}
302 315
303module_init(nortel_pci_init); 316module_init(orinoco_nortel_init);
304module_exit(nortel_pci_exit); 317module_exit(orinoco_nortel_exit);
305 318
306/* 319/*
307 * Local variables: 320 * Local variables:
diff --git a/drivers/net/wireless/orinoco_pci.c b/drivers/net/wireless/orinoco_pci.c
index 5362c214fc8e..1c105f40f8d5 100644
--- a/drivers/net/wireless/orinoco_pci.c
+++ b/drivers/net/wireless/orinoco_pci.c
@@ -1,11 +1,11 @@
1/* orinoco_pci.c 1/* orinoco_pci.c
2 * 2 *
3 * Driver for Prism II devices that have a direct PCI interface 3 * Driver for Prism 2.5/3 devices that have a direct PCI interface
4 * (i.e., not in a Pcmcia or PLX bridge) 4 * (i.e. these are not PCMCIA cards in a PCMCIA-to-PCI bridge).
5 * 5 * The card contains only one PCI region, which contains all the usual
6 * Specifically here we're talking about the Linksys WMP11 6 * hermes registers, as well as the COR register.
7 * 7 *
8 * Current maintainers (as of 29 September 2003) are: 8 * Current maintainers are:
9 * Pavel Roskin <proski AT gnu.org> 9 * Pavel Roskin <proski AT gnu.org>
10 * and David Gibson <hermes AT gibson.dropbear.id.au> 10 * and David Gibson <hermes AT gibson.dropbear.id.au>
11 * 11 *
@@ -41,54 +41,6 @@
41 * under either the MPL or the GPL. 41 * under either the MPL or the GPL.
42 */ 42 */
43 43
44/*
45 * Theory of operation...
46 * -------------------
47 * Maybe you had a look in orinoco_plx. Well, this is totally different...
48 *
49 * The card contains only one PCI region, which contains all the usual
50 * hermes registers.
51 *
52 * The driver will memory map this region in normal memory. Because
53 * the hermes registers are mapped in normal memory and not in ISA I/O
54 * post space, we can't use the usual inw/outw macros and we need to
55 * use readw/writew.
56 * This slight difference force us to compile our own version of
57 * hermes.c with the register access macro changed. That's a bit
58 * hackish but works fine.
59 *
60 * Note that the PCI region is pretty big (4K). That's much more than
61 * the usual set of hermes register (0x0 -> 0x3E). I've got a strong
62 * suspicion that the whole memory space of the adapter is in fact in
63 * this region. Accessing directly the adapter memory instead of going
64 * through the usual register would speed up significantely the
65 * operations...
66 *
67 * Finally, the card looks like this :
68-----------------------
69 Bus 0, device 14, function 0:
70 Network controller: PCI device 1260:3873 (Harris Semiconductor) (rev 1).
71 IRQ 11.
72 Master Capable. Latency=248.
73 Prefetchable 32 bit memory at 0xffbcc000 [0xffbccfff].
74-----------------------
7500:0e.0 Network controller: Harris Semiconductor: Unknown device 3873 (rev 01)
76 Subsystem: Unknown device 1737:3874
77 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B-
78 Status: Cap+ 66Mhz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR-
79 Latency: 248 set, cache line size 08
80 Interrupt: pin A routed to IRQ 11
81 Region 0: Memory at ffbcc000 (32-bit, prefetchable) [size=4K]
82 Capabilities: [dc] Power Management version 2
83 Flags: PMEClk- AuxPwr- DSI- D1+ D2+ PME+
84 Status: D0 PME-Enable- DSel=0 DScale=0 PME-
85-----------------------
86 *
87 * That's all..
88 *
89 * Jean II
90 */
91
92#define DRIVER_NAME "orinoco_pci" 44#define DRIVER_NAME "orinoco_pci"
93#define PFX DRIVER_NAME ": " 45#define PFX DRIVER_NAME ": "
94 46
@@ -100,12 +52,14 @@
100#include <linux/pci.h> 52#include <linux/pci.h>
101 53
102#include "orinoco.h" 54#include "orinoco.h"
55#include "orinoco_pci.h"
103 56
104/* All the magic there is from wlan-ng */ 57/* Offset of the COR register of the PCI card */
105/* Magic offset of the reset register of the PCI card */
106#define HERMES_PCI_COR (0x26) 58#define HERMES_PCI_COR (0x26)
107/* Magic bitmask to reset the card */ 59
60/* Bitmask to reset the card */
108#define HERMES_PCI_COR_MASK (0x0080) 61#define HERMES_PCI_COR_MASK (0x0080)
62
109/* Magic timeouts for doing the reset. 63/* Magic timeouts for doing the reset.
110 * Those times are straight from wlan-ng, and it is claimed that they 64 * Those times are straight from wlan-ng, and it is claimed that they
111 * are necessary. Alan will kill me. Take your time and grab a coffee. */ 65 * are necessary. Alan will kill me. Take your time and grab a coffee. */
@@ -113,13 +67,8 @@
113#define HERMES_PCI_COR_OFFT (500) /* ms */ 67#define HERMES_PCI_COR_OFFT (500) /* ms */
114#define HERMES_PCI_COR_BUSYT (500) /* ms */ 68#define HERMES_PCI_COR_BUSYT (500) /* ms */
115 69
116/* Orinoco PCI specific data */
117struct orinoco_pci_card {
118 void __iomem *pci_ioaddr;
119};
120
121/* 70/*
122 * Do a soft reset of the PCI card using the Configuration Option Register 71 * Do a soft reset of the card using the Configuration Option Register
123 * We need this to get going... 72 * We need this to get going...
124 * This is the part of the code that is strongly inspired from wlan-ng 73 * This is the part of the code that is strongly inspired from wlan-ng
125 * 74 *
@@ -131,14 +80,13 @@ struct orinoco_pci_card {
131 * Note bis : Don't try to access HERMES_CMD during the reset phase. 80 * Note bis : Don't try to access HERMES_CMD during the reset phase.
132 * It just won't work ! 81 * It just won't work !
133 */ 82 */
134static int 83static int orinoco_pci_cor_reset(struct orinoco_private *priv)
135orinoco_pci_cor_reset(struct orinoco_private *priv)
136{ 84{
137 hermes_t *hw = &priv->hw; 85 hermes_t *hw = &priv->hw;
138 unsigned long timeout; 86 unsigned long timeout;
139 u16 reg; 87 u16 reg;
140 88
141 /* Assert the reset until the card notice */ 89 /* Assert the reset until the card notices */
142 hermes_write_regn(hw, PCI_COR, HERMES_PCI_COR_MASK); 90 hermes_write_regn(hw, PCI_COR, HERMES_PCI_COR_MASK);
143 mdelay(HERMES_PCI_COR_ONT); 91 mdelay(HERMES_PCI_COR_ONT);
144 92
@@ -163,19 +111,14 @@ orinoco_pci_cor_reset(struct orinoco_private *priv)
163 return 0; 111 return 0;
164} 112}
165 113
166/*
167 * Initialise a card. Mostly similar to PLX code.
168 */
169static int orinoco_pci_init_one(struct pci_dev *pdev, 114static int orinoco_pci_init_one(struct pci_dev *pdev,
170 const struct pci_device_id *ent) 115 const struct pci_device_id *ent)
171{ 116{
172 int err = 0; 117 int err;
173 unsigned long pci_iorange; 118 struct orinoco_private *priv;
174 u16 __iomem *pci_ioaddr = NULL;
175 unsigned long pci_iolen;
176 struct orinoco_private *priv = NULL;
177 struct orinoco_pci_card *card; 119 struct orinoco_pci_card *card;
178 struct net_device *dev = NULL; 120 struct net_device *dev;
121 void __iomem *hermes_io;
179 122
180 err = pci_enable_device(pdev); 123 err = pci_enable_device(pdev);
181 if (err) { 124 if (err) {
@@ -184,39 +127,32 @@ static int orinoco_pci_init_one(struct pci_dev *pdev,
184 } 127 }
185 128
186 err = pci_request_regions(pdev, DRIVER_NAME); 129 err = pci_request_regions(pdev, DRIVER_NAME);
187 if (err != 0) { 130 if (err) {
188 printk(KERN_ERR PFX "Cannot obtain PCI resources\n"); 131 printk(KERN_ERR PFX "Cannot obtain PCI resources\n");
189 goto fail_resources; 132 goto fail_resources;
190 } 133 }
191 134
192 /* Resource 0 is mapped to the hermes registers */ 135 hermes_io = pci_iomap(pdev, 0, 0);
193 pci_iorange = pci_resource_start(pdev, 0); 136 if (!hermes_io) {
194 pci_iolen = pci_resource_len(pdev, 0); 137 printk(KERN_ERR PFX "Cannot remap chipset registers\n");
195 pci_ioaddr = ioremap(pci_iorange, pci_iolen); 138 err = -EIO;
196 if (!pci_iorange) { 139 goto fail_map_hermes;
197 printk(KERN_ERR PFX "Cannot remap hardware registers\n");
198 goto fail_map;
199 } 140 }
200 141
201 /* Allocate network device */ 142 /* Allocate network device */
202 dev = alloc_orinocodev(sizeof(*card), orinoco_pci_cor_reset); 143 dev = alloc_orinocodev(sizeof(*card), orinoco_pci_cor_reset);
203 if (! dev) { 144 if (!dev) {
145 printk(KERN_ERR PFX "Cannot allocate network device\n");
204 err = -ENOMEM; 146 err = -ENOMEM;
205 goto fail_alloc; 147 goto fail_alloc;
206 } 148 }
207 149
208 priv = netdev_priv(dev); 150 priv = netdev_priv(dev);
209 card = priv->card; 151 card = priv->card;
210 card->pci_ioaddr = pci_ioaddr;
211 dev->mem_start = pci_iorange;
212 dev->mem_end = pci_iorange + pci_iolen - 1;
213 SET_MODULE_OWNER(dev); 152 SET_MODULE_OWNER(dev);
214 SET_NETDEV_DEV(dev, &pdev->dev); 153 SET_NETDEV_DEV(dev, &pdev->dev);
215 154
216 hermes_struct_init(&priv->hw, pci_ioaddr, HERMES_32BIT_REGSPACING); 155 hermes_struct_init(&priv->hw, hermes_io, HERMES_32BIT_REGSPACING);
217
218 printk(KERN_DEBUG PFX "Detected device %s, mem:0x%lx-0x%lx, irq %d\n",
219 pci_name(pdev), dev->mem_start, dev->mem_end, pdev->irq);
220 156
221 err = request_irq(pdev->irq, orinoco_interrupt, SA_SHIRQ, 157 err = request_irq(pdev->irq, orinoco_interrupt, SA_SHIRQ,
222 dev->name, dev); 158 dev->name, dev);
@@ -225,9 +161,7 @@ static int orinoco_pci_init_one(struct pci_dev *pdev,
225 err = -EBUSY; 161 err = -EBUSY;
226 goto fail_irq; 162 goto fail_irq;
227 } 163 }
228 dev->irq = pdev->irq;
229 164
230 /* Perform a COR reset to start the card */
231 err = orinoco_pci_cor_reset(priv); 165 err = orinoco_pci_cor_reset(priv);
232 if (err) { 166 if (err) {
233 printk(KERN_ERR PFX "Initial reset failed\n"); 167 printk(KERN_ERR PFX "Initial reset failed\n");
@@ -236,11 +170,13 @@ static int orinoco_pci_init_one(struct pci_dev *pdev,
236 170
237 err = register_netdev(dev); 171 err = register_netdev(dev);
238 if (err) { 172 if (err) {
239 printk(KERN_ERR PFX "Failed to register net device\n"); 173 printk(KERN_ERR PFX "Cannot register network device\n");
240 goto fail; 174 goto fail;
241 } 175 }
242 176
243 pci_set_drvdata(pdev, dev); 177 pci_set_drvdata(pdev, dev);
178 printk(KERN_DEBUG "%s: " DRIVER_NAME " at %s\n", dev->name,
179 pci_name(pdev));
244 180
245 return 0; 181 return 0;
246 182
@@ -252,9 +188,9 @@ static int orinoco_pci_init_one(struct pci_dev *pdev,
252 free_orinocodev(dev); 188 free_orinocodev(dev);
253 189
254 fail_alloc: 190 fail_alloc:
255 iounmap(pci_ioaddr); 191 pci_iounmap(pdev, hermes_io);
256 192
257 fail_map: 193 fail_map_hermes:
258 pci_release_regions(pdev); 194 pci_release_regions(pdev);
259 195
260 fail_resources: 196 fail_resources:
@@ -267,87 +203,17 @@ static void __devexit orinoco_pci_remove_one(struct pci_dev *pdev)
267{ 203{
268 struct net_device *dev = pci_get_drvdata(pdev); 204 struct net_device *dev = pci_get_drvdata(pdev);
269 struct orinoco_private *priv = netdev_priv(dev); 205 struct orinoco_private *priv = netdev_priv(dev);
270 struct orinoco_pci_card *card = priv->card;
271 206
272 unregister_netdev(dev); 207 unregister_netdev(dev);
273 free_irq(dev->irq, dev); 208 free_irq(pdev->irq, dev);
274 pci_set_drvdata(pdev, NULL); 209 pci_set_drvdata(pdev, NULL);
275 free_orinocodev(dev); 210 free_orinocodev(dev);
276 iounmap(card->pci_ioaddr); 211 pci_iounmap(pdev, priv->hw.iobase);
277 pci_release_regions(pdev); 212 pci_release_regions(pdev);
278 pci_disable_device(pdev); 213 pci_disable_device(pdev);
279} 214}
280 215
281static int orinoco_pci_suspend(struct pci_dev *pdev, pm_message_t state) 216static struct pci_device_id orinoco_pci_id_table[] = {
282{
283 struct net_device *dev = pci_get_drvdata(pdev);
284 struct orinoco_private *priv = netdev_priv(dev);
285 unsigned long flags;
286 int err;
287
288
289 err = orinoco_lock(priv, &flags);
290 if (err) {
291 printk(KERN_ERR "%s: hw_unavailable on orinoco_pci_suspend\n",
292 dev->name);
293 return err;
294 }
295
296 err = __orinoco_down(dev);
297 if (err)
298 printk(KERN_WARNING "%s: orinoco_pci_suspend(): Error %d downing interface\n",
299 dev->name, err);
300
301 netif_device_detach(dev);
302
303 priv->hw_unavailable++;
304
305 orinoco_unlock(priv, &flags);
306
307 pci_save_state(pdev);
308 pci_set_power_state(pdev, PCI_D3hot);
309
310 return 0;
311}
312
313static int orinoco_pci_resume(struct pci_dev *pdev)
314{
315 struct net_device *dev = pci_get_drvdata(pdev);
316 struct orinoco_private *priv = netdev_priv(dev);
317 unsigned long flags;
318 int err;
319
320 printk(KERN_DEBUG "%s: Orinoco-PCI waking up\n", dev->name);
321
322 pci_set_power_state(pdev, 0);
323 pci_restore_state(pdev);
324
325 err = orinoco_reinit_firmware(dev);
326 if (err) {
327 printk(KERN_ERR "%s: Error %d re-initializing firmware on orinoco_pci_resume()\n",
328 dev->name, err);
329 return err;
330 }
331
332 spin_lock_irqsave(&priv->lock, flags);
333
334 netif_device_attach(dev);
335
336 priv->hw_unavailable--;
337
338 if (priv->open && (! priv->hw_unavailable)) {
339 err = __orinoco_up(dev);
340 if (err)
341 printk(KERN_ERR "%s: Error %d restarting card on orinoco_pci_resume()\n",
342 dev->name, err);
343 }
344
345 spin_unlock_irqrestore(&priv->lock, flags);
346
347 return 0;
348}
349
350static struct pci_device_id orinoco_pci_pci_id_table[] = {
351 /* Intersil Prism 3 */ 217 /* Intersil Prism 3 */
352 {0x1260, 0x3872, PCI_ANY_ID, PCI_ANY_ID,}, 218 {0x1260, 0x3872, PCI_ANY_ID, PCI_ANY_ID,},
353 /* Intersil Prism 2.5 */ 219 /* Intersil Prism 2.5 */
@@ -357,11 +223,11 @@ static struct pci_device_id orinoco_pci_pci_id_table[] = {
357 {0,}, 223 {0,},
358}; 224};
359 225
360MODULE_DEVICE_TABLE(pci, orinoco_pci_pci_id_table); 226MODULE_DEVICE_TABLE(pci, orinoco_pci_id_table);
361 227
362static struct pci_driver orinoco_pci_driver = { 228static struct pci_driver orinoco_pci_driver = {
363 .name = DRIVER_NAME, 229 .name = DRIVER_NAME,
364 .id_table = orinoco_pci_pci_id_table, 230 .id_table = orinoco_pci_id_table,
365 .probe = orinoco_pci_init_one, 231 .probe = orinoco_pci_init_one,
366 .remove = __devexit_p(orinoco_pci_remove_one), 232 .remove = __devexit_p(orinoco_pci_remove_one),
367 .suspend = orinoco_pci_suspend, 233 .suspend = orinoco_pci_suspend,
diff --git a/drivers/net/wireless/orinoco_pci.h b/drivers/net/wireless/orinoco_pci.h
new file mode 100644
index 000000000000..7eb1e08113e0
--- /dev/null
+++ b/drivers/net/wireless/orinoco_pci.h
@@ -0,0 +1,104 @@
1/* orinoco_pci.h
2 *
3 * Common code for all Orinoco drivers for PCI devices, including
4 * both native PCI and PCMCIA-to-PCI bridges.
5 *
6 * Copyright (C) 2005, Pavel Roskin.
7 * See orinoco.c for license.
8 */
9
10#ifndef _ORINOCO_PCI_H
11#define _ORINOCO_PCI_H
12
13#include <linux/netdevice.h>
14
15/* Driver specific data */
16struct orinoco_pci_card {
17 void __iomem *bridge_io;
18 void __iomem *attr_io;
19};
20
21#ifdef CONFIG_PM
22static int orinoco_pci_suspend(struct pci_dev *pdev, pm_message_t state)
23{
24 struct net_device *dev = pci_get_drvdata(pdev);
25 struct orinoco_private *priv = netdev_priv(dev);
26 unsigned long flags;
27 int err;
28
29 err = orinoco_lock(priv, &flags);
30 if (err) {
31 printk(KERN_ERR "%s: cannot lock hardware for suspend\n",
32 dev->name);
33 return err;
34 }
35
36 err = __orinoco_down(dev);
37 if (err)
38 printk(KERN_WARNING "%s: error %d bringing interface down "
39 "for suspend\n", dev->name, err);
40
41 netif_device_detach(dev);
42
43 priv->hw_unavailable++;
44
45 orinoco_unlock(priv, &flags);
46
47 free_irq(pdev->irq, dev);
48 pci_save_state(pdev);
49 pci_disable_device(pdev);
50 pci_set_power_state(pdev, PCI_D3hot);
51
52 return 0;
53}
54
55static int orinoco_pci_resume(struct pci_dev *pdev)
56{
57 struct net_device *dev = pci_get_drvdata(pdev);
58 struct orinoco_private *priv = netdev_priv(dev);
59 unsigned long flags;
60 int err;
61
62 pci_set_power_state(pdev, 0);
63 pci_enable_device(pdev);
64 pci_restore_state(pdev);
65
66 err = request_irq(pdev->irq, orinoco_interrupt, SA_SHIRQ,
67 dev->name, dev);
68 if (err) {
69 printk(KERN_ERR "%s: cannot re-allocate IRQ on resume\n",
70 dev->name);
71 pci_disable_device(pdev);
72 return -EBUSY;
73 }
74
75 err = orinoco_reinit_firmware(dev);
76 if (err) {
77 printk(KERN_ERR "%s: error %d re-initializing firmware "
78 "on resume\n", dev->name, err);
79 return err;
80 }
81
82 spin_lock_irqsave(&priv->lock, flags);
83
84 netif_device_attach(dev);
85
86 priv->hw_unavailable--;
87
88 if (priv->open && (! priv->hw_unavailable)) {
89 err = __orinoco_up(dev);
90 if (err)
91 printk(KERN_ERR "%s: Error %d restarting card on resume\n",
92 dev->name, err);
93 }
94
95 spin_unlock_irqrestore(&priv->lock, flags);
96
97 return 0;
98}
99#else
100#define orinoco_pci_suspend NULL
101#define orinoco_pci_resume NULL
102#endif
103
104#endif /* _ORINOCO_PCI_H */
diff --git a/drivers/net/wireless/orinoco_plx.c b/drivers/net/wireless/orinoco_plx.c
index 210e73776545..84f696c77551 100644
--- a/drivers/net/wireless/orinoco_plx.c
+++ b/drivers/net/wireless/orinoco_plx.c
@@ -3,7 +3,7 @@
3 * Driver for Prism II devices which would usually be driven by orinoco_cs, 3 * Driver for Prism II devices which would usually be driven by orinoco_cs,
4 * but are connected to the PCI bus by a PLX9052. 4 * but are connected to the PCI bus by a PLX9052.
5 * 5 *
6 * Current maintainers (as of 29 September 2003) are: 6 * Current maintainers are:
7 * Pavel Roskin <proski AT gnu.org> 7 * Pavel Roskin <proski AT gnu.org>
8 * and David Gibson <hermes AT gibson.dropbear.id.au> 8 * and David Gibson <hermes AT gibson.dropbear.id.au>
9 * 9 *
@@ -30,38 +30,18 @@
30 * other provisions required by the GPL. If you do not delete the 30 * other provisions required by the GPL. If you do not delete the
31 * provisions above, a recipient may use your version of this file 31 * provisions above, a recipient may use your version of this file
32 * under either the MPL or the GPL. 32 * under either the MPL or the GPL.
33
34 * Caution: this is experimental and probably buggy. For success and
35 * failure reports for different cards and adaptors, see
36 * orinoco_plx_pci_id_table near the end of the file. If you have a
37 * card we don't have the PCI id for, and looks like it should work,
38 * drop me mail with the id and "it works"/"it doesn't work".
39 *
40 * Note: if everything gets detected fine but it doesn't actually send
41 * or receive packets, your first port of call should probably be to
42 * try newer firmware in the card. Especially if you're doing Ad-Hoc
43 * modes.
44 *
45 * The actual driving is done by orinoco.c, this is just resource
46 * allocation stuff. The explanation below is courtesy of Ryan Niemi
47 * on the linux-wlan-ng list at
48 * http://archives.neohapsis.com/archives/dev/linux-wlan/2001-q1/0026.html
49 * 33 *
50 * The PLX9052-based cards (WL11000 and several others) are a 34 * Here's the general details on how the PLX9052 adapter works:
51 * different beast than the usual PCMCIA-based PRISM2 configuration
52 * expected by wlan-ng. Here's the general details on how the WL11000
53 * PCI adapter works:
54 * 35 *
55 * - Two PCI I/O address spaces, one 0x80 long which contains the 36 * - Two PCI I/O address spaces, one 0x80 long which contains the
56 * PLX9052 registers, and one that's 0x40 long mapped to the PCMCIA 37 * PLX9052 registers, and one that's 0x40 long mapped to the PCMCIA
57 * slot I/O address space. 38 * slot I/O address space.
58 * 39 *
59 * - One PCI memory address space, mapped to the PCMCIA memory space 40 * - One PCI memory address space, mapped to the PCMCIA attribute space
60 * (containing the CIS). 41 * (containing the CIS).
61 * 42 *
62 * After identifying the I/O and memory space, you can read through 43 * Using the later, you can read through the CIS data to make sure the
63 * the memory space to confirm the CIS's device ID or manufacturer ID 44 * card is compatible with the driver. Keep in mind that the PCMCIA
64 * to make sure it's the expected card. qKeep in mind that the PCMCIA
65 * spec specifies the CIS as the lower 8 bits of each word read from 45 * spec specifies the CIS as the lower 8 bits of each word read from
66 * the CIS, so to read the bytes of the CIS, read every other byte 46 * the CIS, so to read the bytes of the CIS, read every other byte
67 * (0,2,4,...). Passing that test, you need to enable the I/O address 47 * (0,2,4,...). Passing that test, you need to enable the I/O address
@@ -71,7 +51,7 @@
71 * within the PCI memory space. Write 0x41 to the COR register to 51 * within the PCI memory space. Write 0x41 to the COR register to
72 * enable I/O mode and to select level triggered interrupts. To 52 * enable I/O mode and to select level triggered interrupts. To
73 * confirm you actually succeeded, read the COR register back and make 53 * confirm you actually succeeded, read the COR register back and make
74 * sure it actually got set to 0x41, incase you have an unexpected 54 * sure it actually got set to 0x41, in case you have an unexpected
75 * card inserted. 55 * card inserted.
76 * 56 *
77 * Following that, you can treat the second PCI I/O address space (the 57 * Following that, you can treat the second PCI I/O address space (the
@@ -101,16 +81,6 @@
101 * that, I've hot-swapped a number of times during debugging and 81 * that, I've hot-swapped a number of times during debugging and
102 * driver development for various reasons (stuck WAIT# line after the 82 * driver development for various reasons (stuck WAIT# line after the
103 * radio card's firmware locks up). 83 * radio card's firmware locks up).
104 *
105 * Hope this is enough info for someone to add PLX9052 support to the
106 * wlan-ng card. In the case of the WL11000, the PCI ID's are
107 * 0x1639/0x0200, with matching subsystem ID's. Other PLX9052-based
108 * manufacturers other than Eumitcom (or on cards other than the
109 * WL11000) may have different PCI ID's.
110 *
111 * If anyone needs any more specific info, let me know. I haven't had
112 * time to implement support myself yet, and with the way things are
113 * going, might not have time for a while..
114 */ 84 */
115 85
116#define DRIVER_NAME "orinoco_plx" 86#define DRIVER_NAME "orinoco_plx"
@@ -125,6 +95,7 @@
125#include <pcmcia/cisreg.h> 95#include <pcmcia/cisreg.h>
126 96
127#include "orinoco.h" 97#include "orinoco.h"
98#include "orinoco_pci.h"
128 99
129#define COR_OFFSET (0x3e0) /* COR attribute offset of Prism2 PC card */ 100#define COR_OFFSET (0x3e0) /* COR attribute offset of Prism2 PC card */
130#define COR_VALUE (COR_LEVEL_REQ | COR_FUNC_ENA) /* Enable PC card with interrupt in level trigger */ 101#define COR_VALUE (COR_LEVEL_REQ | COR_FUNC_ENA) /* Enable PC card with interrupt in level trigger */
@@ -134,30 +105,20 @@
134#define PLX_INTCSR 0x4c /* Interrupt Control & Status Register */ 105#define PLX_INTCSR 0x4c /* Interrupt Control & Status Register */
135#define PLX_INTCSR_INTEN (1<<6) /* Interrupt Enable bit */ 106#define PLX_INTCSR_INTEN (1<<6) /* Interrupt Enable bit */
136 107
137static const u8 cis_magic[] = {
138 0x01, 0x03, 0x00, 0x00, 0xff, 0x17, 0x04, 0x67
139};
140
141/* Orinoco PLX specific data */
142struct orinoco_plx_card {
143 void __iomem *attr_mem;
144};
145
146/* 108/*
147 * Do a soft reset of the card using the Configuration Option Register 109 * Do a soft reset of the card using the Configuration Option Register
148 */ 110 */
149static int orinoco_plx_cor_reset(struct orinoco_private *priv) 111static int orinoco_plx_cor_reset(struct orinoco_private *priv)
150{ 112{
151 hermes_t *hw = &priv->hw; 113 hermes_t *hw = &priv->hw;
152 struct orinoco_plx_card *card = priv->card; 114 struct orinoco_pci_card *card = priv->card;
153 u8 __iomem *attr_mem = card->attr_mem;
154 unsigned long timeout; 115 unsigned long timeout;
155 u16 reg; 116 u16 reg;
156 117
157 writeb(COR_VALUE | COR_RESET, attr_mem + COR_OFFSET); 118 iowrite8(COR_VALUE | COR_RESET, card->attr_io + COR_OFFSET);
158 mdelay(1); 119 mdelay(1);
159 120
160 writeb(COR_VALUE, attr_mem + COR_OFFSET); 121 iowrite8(COR_VALUE, card->attr_io + COR_OFFSET);
161 mdelay(1); 122 mdelay(1);
162 123
163 /* Just in case, wait more until the card is no longer busy */ 124 /* Just in case, wait more until the card is no longer busy */
@@ -168,7 +129,7 @@ static int orinoco_plx_cor_reset(struct orinoco_private *priv)
168 reg = hermes_read_regn(hw, CMD); 129 reg = hermes_read_regn(hw, CMD);
169 } 130 }
170 131
171 /* Did we timeout ? */ 132 /* Still busy? */
172 if (reg & HERMES_CMD_BUSY) { 133 if (reg & HERMES_CMD_BUSY) {
173 printk(KERN_ERR PFX "Busy timeout\n"); 134 printk(KERN_ERR PFX "Busy timeout\n");
174 return -ETIMEDOUT; 135 return -ETIMEDOUT;
@@ -177,20 +138,55 @@ static int orinoco_plx_cor_reset(struct orinoco_private *priv)
177 return 0; 138 return 0;
178} 139}
179 140
141static int orinoco_plx_hw_init(struct orinoco_pci_card *card)
142{
143 int i;
144 u32 csr_reg;
145 static const u8 cis_magic[] = {
146 0x01, 0x03, 0x00, 0x00, 0xff, 0x17, 0x04, 0x67
147 };
148
149 printk(KERN_DEBUG PFX "CIS: ");
150 for (i = 0; i < 16; i++) {
151 printk("%02X:", ioread8(card->attr_io + (i << 1)));
152 }
153 printk("\n");
154
155 /* Verify whether a supported PC card is present */
156 /* FIXME: we probably need to be smarted about this */
157 for (i = 0; i < sizeof(cis_magic); i++) {
158 if (cis_magic[i] != ioread8(card->attr_io + (i << 1))) {
159 printk(KERN_ERR PFX "The CIS value of Prism2 PC "
160 "card is unexpected\n");
161 return -ENODEV;
162 }
163 }
164
165 /* bjoern: We need to tell the card to enable interrupts, in
166 case the serial eprom didn't do this already. See the
167 PLX9052 data book, p8-1 and 8-24 for reference. */
168 csr_reg = ioread32(card->bridge_io + PLX_INTCSR);
169 if (!(csr_reg & PLX_INTCSR_INTEN)) {
170 csr_reg |= PLX_INTCSR_INTEN;
171 iowrite32(csr_reg, card->bridge_io + PLX_INTCSR);
172 csr_reg = ioread32(card->bridge_io + PLX_INTCSR);
173 if (!(csr_reg & PLX_INTCSR_INTEN)) {
174 printk(KERN_ERR PFX "Cannot enable interrupts\n");
175 return -EIO;
176 }
177 }
178
179 return 0;
180}
180 181
181static int orinoco_plx_init_one(struct pci_dev *pdev, 182static int orinoco_plx_init_one(struct pci_dev *pdev,
182 const struct pci_device_id *ent) 183 const struct pci_device_id *ent)
183{ 184{
184 int err = 0; 185 int err;
185 u8 __iomem *attr_mem = NULL; 186 struct orinoco_private *priv;
186 u32 csr_reg, plx_addr; 187 struct orinoco_pci_card *card;
187 struct orinoco_private *priv = NULL; 188 struct net_device *dev;
188 struct orinoco_plx_card *card; 189 void __iomem *hermes_io, *attr_io, *bridge_io;
189 unsigned long pccard_ioaddr = 0;
190 unsigned long pccard_iolen = 0;
191 struct net_device *dev = NULL;
192 void __iomem *mem;
193 int i;
194 190
195 err = pci_enable_device(pdev); 191 err = pci_enable_device(pdev);
196 if (err) { 192 if (err) {
@@ -199,30 +195,30 @@ static int orinoco_plx_init_one(struct pci_dev *pdev,
199 } 195 }
200 196
201 err = pci_request_regions(pdev, DRIVER_NAME); 197 err = pci_request_regions(pdev, DRIVER_NAME);
202 if (err != 0) { 198 if (err) {
203 printk(KERN_ERR PFX "Cannot obtain PCI resources\n"); 199 printk(KERN_ERR PFX "Cannot obtain PCI resources\n");
204 goto fail_resources; 200 goto fail_resources;
205 } 201 }
206 202
207 /* Resource 1 is mapped to PLX-specific registers */ 203 bridge_io = pci_iomap(pdev, 1, 0);
208 plx_addr = pci_resource_start(pdev, 1); 204 if (!bridge_io) {
205 printk(KERN_ERR PFX "Cannot map bridge registers\n");
206 err = -EIO;
207 goto fail_map_bridge;
208 }
209 209
210 /* Resource 2 is mapped to the PCMCIA attribute memory */ 210 attr_io = pci_iomap(pdev, 2, 0);
211 attr_mem = ioremap(pci_resource_start(pdev, 2), 211 if (!attr_io) {
212 pci_resource_len(pdev, 2)); 212 printk(KERN_ERR PFX "Cannot map PCMCIA attributes\n");
213 if (!attr_mem) { 213 err = -EIO;
214 printk(KERN_ERR PFX "Cannot remap PCMCIA space\n");
215 goto fail_map_attr; 214 goto fail_map_attr;
216 } 215 }
217 216
218 /* Resource 3 is mapped to the PCMCIA I/O address space */ 217 hermes_io = pci_iomap(pdev, 3, 0);
219 pccard_ioaddr = pci_resource_start(pdev, 3); 218 if (!hermes_io) {
220 pccard_iolen = pci_resource_len(pdev, 3); 219 printk(KERN_ERR PFX "Cannot map chipset registers\n");
221 220 err = -EIO;
222 mem = pci_iomap(pdev, 3, 0); 221 goto fail_map_hermes;
223 if (!mem) {
224 err = -ENOMEM;
225 goto fail_map_io;
226 } 222 }
227 223
228 /* Allocate network device */ 224 /* Allocate network device */
@@ -235,16 +231,12 @@ static int orinoco_plx_init_one(struct pci_dev *pdev,
235 231
236 priv = netdev_priv(dev); 232 priv = netdev_priv(dev);
237 card = priv->card; 233 card = priv->card;
238 card->attr_mem = attr_mem; 234 card->bridge_io = bridge_io;
239 dev->base_addr = pccard_ioaddr; 235 card->attr_io = attr_io;
240 SET_MODULE_OWNER(dev); 236 SET_MODULE_OWNER(dev);
241 SET_NETDEV_DEV(dev, &pdev->dev); 237 SET_NETDEV_DEV(dev, &pdev->dev);
242 238
243 hermes_struct_init(&priv->hw, mem, HERMES_16BIT_REGSPACING); 239 hermes_struct_init(&priv->hw, hermes_io, HERMES_16BIT_REGSPACING);
244
245 printk(KERN_DEBUG PFX "Detected Orinoco/Prism2 PLX device "
246 "at %s irq:%d, io addr:0x%lx\n", pci_name(pdev), pdev->irq,
247 pccard_ioaddr);
248 240
249 err = request_irq(pdev->irq, orinoco_interrupt, SA_SHIRQ, 241 err = request_irq(pdev->irq, orinoco_interrupt, SA_SHIRQ,
250 dev->name, dev); 242 dev->name, dev);
@@ -253,20 +245,11 @@ static int orinoco_plx_init_one(struct pci_dev *pdev,
253 err = -EBUSY; 245 err = -EBUSY;
254 goto fail_irq; 246 goto fail_irq;
255 } 247 }
256 dev->irq = pdev->irq;
257 248
258 /* bjoern: We need to tell the card to enable interrupts, in 249 err = orinoco_plx_hw_init(card);
259 case the serial eprom didn't do this already. See the 250 if (err) {
260 PLX9052 data book, p8-1 and 8-24 for reference. */ 251 printk(KERN_ERR PFX "Hardware initialization failed\n");
261 csr_reg = inl(plx_addr + PLX_INTCSR); 252 goto fail;
262 if (!(csr_reg & PLX_INTCSR_INTEN)) {
263 csr_reg |= PLX_INTCSR_INTEN;
264 outl(csr_reg, plx_addr + PLX_INTCSR);
265 csr_reg = inl(plx_addr + PLX_INTCSR);
266 if (!(csr_reg & PLX_INTCSR_INTEN)) {
267 printk(KERN_ERR PFX "Cannot enable interrupts\n");
268 goto fail;
269 }
270 } 253 }
271 254
272 err = orinoco_plx_cor_reset(priv); 255 err = orinoco_plx_cor_reset(priv);
@@ -275,23 +258,6 @@ static int orinoco_plx_init_one(struct pci_dev *pdev,
275 goto fail; 258 goto fail;
276 } 259 }
277 260
278 printk(KERN_DEBUG PFX "CIS: ");
279 for (i = 0; i < 16; i++) {
280 printk("%02X:", readb(attr_mem + 2*i));
281 }
282 printk("\n");
283
284 /* Verify whether a supported PC card is present */
285 /* FIXME: we probably need to be smarted about this */
286 for (i = 0; i < sizeof(cis_magic); i++) {
287 if (cis_magic[i] != readb(attr_mem +2*i)) {
288 printk(KERN_ERR PFX "The CIS value of Prism2 PC "
289 "card is unexpected\n");
290 err = -EIO;
291 goto fail;
292 }
293 }
294
295 err = register_netdev(dev); 261 err = register_netdev(dev);
296 if (err) { 262 if (err) {
297 printk(KERN_ERR PFX "Cannot register network device\n"); 263 printk(KERN_ERR PFX "Cannot register network device\n");
@@ -299,6 +265,8 @@ static int orinoco_plx_init_one(struct pci_dev *pdev,
299 } 265 }
300 266
301 pci_set_drvdata(pdev, dev); 267 pci_set_drvdata(pdev, dev);
268 printk(KERN_DEBUG "%s: " DRIVER_NAME " at %s\n", dev->name,
269 pci_name(pdev));
302 270
303 return 0; 271 return 0;
304 272
@@ -310,12 +278,15 @@ static int orinoco_plx_init_one(struct pci_dev *pdev,
310 free_orinocodev(dev); 278 free_orinocodev(dev);
311 279
312 fail_alloc: 280 fail_alloc:
313 pci_iounmap(pdev, mem); 281 pci_iounmap(pdev, hermes_io);
314 282
315 fail_map_io: 283 fail_map_hermes:
316 iounmap(attr_mem); 284 pci_iounmap(pdev, attr_io);
317 285
318 fail_map_attr: 286 fail_map_attr:
287 pci_iounmap(pdev, bridge_io);
288
289 fail_map_bridge:
319 pci_release_regions(pdev); 290 pci_release_regions(pdev);
320 291
321 fail_resources: 292 fail_resources:
@@ -328,23 +299,20 @@ static void __devexit orinoco_plx_remove_one(struct pci_dev *pdev)
328{ 299{
329 struct net_device *dev = pci_get_drvdata(pdev); 300 struct net_device *dev = pci_get_drvdata(pdev);
330 struct orinoco_private *priv = netdev_priv(dev); 301 struct orinoco_private *priv = netdev_priv(dev);
331 struct orinoco_plx_card *card = priv->card; 302 struct orinoco_pci_card *card = priv->card;
332 u8 __iomem *attr_mem = card->attr_mem;
333
334 BUG_ON(! dev);
335 303
336 unregister_netdev(dev); 304 unregister_netdev(dev);
337 free_irq(dev->irq, dev); 305 free_irq(pdev->irq, dev);
338 pci_set_drvdata(pdev, NULL); 306 pci_set_drvdata(pdev, NULL);
339 free_orinocodev(dev); 307 free_orinocodev(dev);
340 pci_iounmap(pdev, priv->hw.iobase); 308 pci_iounmap(pdev, priv->hw.iobase);
341 iounmap(attr_mem); 309 pci_iounmap(pdev, card->attr_io);
310 pci_iounmap(pdev, card->bridge_io);
342 pci_release_regions(pdev); 311 pci_release_regions(pdev);
343 pci_disable_device(pdev); 312 pci_disable_device(pdev);
344} 313}
345 314
346 315static struct pci_device_id orinoco_plx_id_table[] = {
347static struct pci_device_id orinoco_plx_pci_id_table[] = {
348 {0x111a, 0x1023, PCI_ANY_ID, PCI_ANY_ID,}, /* Siemens SpeedStream SS1023 */ 316 {0x111a, 0x1023, PCI_ANY_ID, PCI_ANY_ID,}, /* Siemens SpeedStream SS1023 */
349 {0x1385, 0x4100, PCI_ANY_ID, PCI_ANY_ID,}, /* Netgear MA301 */ 317 {0x1385, 0x4100, PCI_ANY_ID, PCI_ANY_ID,}, /* Netgear MA301 */
350 {0x15e8, 0x0130, PCI_ANY_ID, PCI_ANY_ID,}, /* Correga - does this work? */ 318 {0x15e8, 0x0130, PCI_ANY_ID, PCI_ANY_ID,}, /* Correga - does this work? */
@@ -362,13 +330,15 @@ static struct pci_device_id orinoco_plx_pci_id_table[] = {
362 {0,}, 330 {0,},
363}; 331};
364 332
365MODULE_DEVICE_TABLE(pci, orinoco_plx_pci_id_table); 333MODULE_DEVICE_TABLE(pci, orinoco_plx_id_table);
366 334
367static struct pci_driver orinoco_plx_driver = { 335static struct pci_driver orinoco_plx_driver = {
368 .name = DRIVER_NAME, 336 .name = DRIVER_NAME,
369 .id_table = orinoco_plx_pci_id_table, 337 .id_table = orinoco_plx_id_table,
370 .probe = orinoco_plx_init_one, 338 .probe = orinoco_plx_init_one,
371 .remove = __devexit_p(orinoco_plx_remove_one), 339 .remove = __devexit_p(orinoco_plx_remove_one),
340 .suspend = orinoco_pci_suspend,
341 .resume = orinoco_pci_resume,
372}; 342};
373 343
374static char version[] __initdata = DRIVER_NAME " " DRIVER_VERSION 344static char version[] __initdata = DRIVER_NAME " " DRIVER_VERSION
@@ -388,7 +358,6 @@ static int __init orinoco_plx_init(void)
388static void __exit orinoco_plx_exit(void) 358static void __exit orinoco_plx_exit(void)
389{ 359{
390 pci_unregister_driver(&orinoco_plx_driver); 360 pci_unregister_driver(&orinoco_plx_driver);
391 ssleep(1);
392} 361}
393 362
394module_init(orinoco_plx_init); 363module_init(orinoco_plx_init);
diff --git a/drivers/net/wireless/orinoco_tmd.c b/drivers/net/wireless/orinoco_tmd.c
index 5e68b7026186..d2b4decb7a7d 100644
--- a/drivers/net/wireless/orinoco_tmd.c
+++ b/drivers/net/wireless/orinoco_tmd.c
@@ -1,5 +1,5 @@
1/* orinoco_tmd.c 1/* orinoco_tmd.c
2 * 2 *
3 * Driver for Prism II devices which would usually be driven by orinoco_cs, 3 * Driver for Prism II devices which would usually be driven by orinoco_cs,
4 * but are connected to the PCI bus by a TMD7160. 4 * but are connected to the PCI bus by a TMD7160.
5 * 5 *
@@ -26,25 +26,13 @@
26 * other provisions required by the GPL. If you do not delete the 26 * other provisions required by the GPL. If you do not delete the
27 * provisions above, a recipient may use your version of this file 27 * provisions above, a recipient may use your version of this file
28 * under either the MPL or the GPL. 28 * under either the MPL or the GPL.
29
30 * Caution: this is experimental and probably buggy. For success and
31 * failure reports for different cards and adaptors, see
32 * orinoco_tmd_pci_id_table near the end of the file. If you have a
33 * card we don't have the PCI id for, and looks like it should work,
34 * drop me mail with the id and "it works"/"it doesn't work".
35 *
36 * Note: if everything gets detected fine but it doesn't actually send
37 * or receive packets, your first port of call should probably be to
38 * try newer firmware in the card. Especially if you're doing Ad-Hoc
39 * modes
40 * 29 *
41 * The actual driving is done by orinoco.c, this is just resource 30 * The actual driving is done by orinoco.c, this is just resource
42 * allocation stuff. 31 * allocation stuff.
43 * 32 *
44 * This driver is modeled after the orinoco_plx driver. The main 33 * This driver is modeled after the orinoco_plx driver. The main
45 * difference is that the TMD chip has only IO port ranges and no 34 * difference is that the TMD chip has only IO port ranges and doesn't
46 * memory space, i.e. no access to the CIS. Compared to the PLX chip, 35 * provide access to the PCMCIA attribute space.
47 * the io range functionalities are exchanged.
48 * 36 *
49 * Pheecom sells cards with the TMD chip as "ASIC version" 37 * Pheecom sells cards with the TMD chip as "ASIC version"
50 */ 38 */
@@ -61,32 +49,26 @@
61#include <pcmcia/cisreg.h> 49#include <pcmcia/cisreg.h>
62 50
63#include "orinoco.h" 51#include "orinoco.h"
52#include "orinoco_pci.h"
64 53
65#define COR_VALUE (COR_LEVEL_REQ | COR_FUNC_ENA) /* Enable PC card with interrupt in level trigger */ 54#define COR_VALUE (COR_LEVEL_REQ | COR_FUNC_ENA) /* Enable PC card with interrupt in level trigger */
66#define COR_RESET (0x80) /* reset bit in the COR register */ 55#define COR_RESET (0x80) /* reset bit in the COR register */
67#define TMD_RESET_TIME (500) /* milliseconds */ 56#define TMD_RESET_TIME (500) /* milliseconds */
68 57
69/* Orinoco TMD specific data */
70struct orinoco_tmd_card {
71 u32 tmd_io;
72};
73
74
75/* 58/*
76 * Do a soft reset of the card using the Configuration Option Register 59 * Do a soft reset of the card using the Configuration Option Register
77 */ 60 */
78static int orinoco_tmd_cor_reset(struct orinoco_private *priv) 61static int orinoco_tmd_cor_reset(struct orinoco_private *priv)
79{ 62{
80 hermes_t *hw = &priv->hw; 63 hermes_t *hw = &priv->hw;
81 struct orinoco_tmd_card *card = priv->card; 64 struct orinoco_pci_card *card = priv->card;
82 u32 addr = card->tmd_io;
83 unsigned long timeout; 65 unsigned long timeout;
84 u16 reg; 66 u16 reg;
85 67
86 outb(COR_VALUE | COR_RESET, addr); 68 iowrite8(COR_VALUE | COR_RESET, card->bridge_io);
87 mdelay(1); 69 mdelay(1);
88 70
89 outb(COR_VALUE, addr); 71 iowrite8(COR_VALUE, card->bridge_io);
90 mdelay(1); 72 mdelay(1);
91 73
92 /* Just in case, wait more until the card is no longer busy */ 74 /* Just in case, wait more until the card is no longer busy */
@@ -97,7 +79,7 @@ static int orinoco_tmd_cor_reset(struct orinoco_private *priv)
97 reg = hermes_read_regn(hw, CMD); 79 reg = hermes_read_regn(hw, CMD);
98 } 80 }
99 81
100 /* Did we timeout ? */ 82 /* Still busy? */
101 if (reg & HERMES_CMD_BUSY) { 83 if (reg & HERMES_CMD_BUSY) {
102 printk(KERN_ERR PFX "Busy timeout\n"); 84 printk(KERN_ERR PFX "Busy timeout\n");
103 return -ETIMEDOUT; 85 return -ETIMEDOUT;
@@ -110,11 +92,11 @@ static int orinoco_tmd_cor_reset(struct orinoco_private *priv)
110static int orinoco_tmd_init_one(struct pci_dev *pdev, 92static int orinoco_tmd_init_one(struct pci_dev *pdev,
111 const struct pci_device_id *ent) 93 const struct pci_device_id *ent)
112{ 94{
113 int err = 0; 95 int err;
114 struct orinoco_private *priv = NULL; 96 struct orinoco_private *priv;
115 struct orinoco_tmd_card *card; 97 struct orinoco_pci_card *card;
116 struct net_device *dev = NULL; 98 struct net_device *dev;
117 void __iomem *mem; 99 void __iomem *hermes_io, *bridge_io;
118 100
119 err = pci_enable_device(pdev); 101 err = pci_enable_device(pdev);
120 if (err) { 102 if (err) {
@@ -123,20 +105,28 @@ static int orinoco_tmd_init_one(struct pci_dev *pdev,
123 } 105 }
124 106
125 err = pci_request_regions(pdev, DRIVER_NAME); 107 err = pci_request_regions(pdev, DRIVER_NAME);
126 if (err != 0) { 108 if (err) {
127 printk(KERN_ERR PFX "Cannot obtain PCI resources\n"); 109 printk(KERN_ERR PFX "Cannot obtain PCI resources\n");
128 goto fail_resources; 110 goto fail_resources;
129 } 111 }
130 112
131 mem = pci_iomap(pdev, 2, 0); 113 bridge_io = pci_iomap(pdev, 1, 0);
132 if (! mem) { 114 if (!bridge_io) {
133 err = -ENOMEM; 115 printk(KERN_ERR PFX "Cannot map bridge registers\n");
134 goto fail_iomap; 116 err = -EIO;
117 goto fail_map_bridge;
118 }
119
120 hermes_io = pci_iomap(pdev, 2, 0);
121 if (!hermes_io) {
122 printk(KERN_ERR PFX "Cannot map chipset registers\n");
123 err = -EIO;
124 goto fail_map_hermes;
135 } 125 }
136 126
137 /* Allocate network device */ 127 /* Allocate network device */
138 dev = alloc_orinocodev(sizeof(*card), orinoco_tmd_cor_reset); 128 dev = alloc_orinocodev(sizeof(*card), orinoco_tmd_cor_reset);
139 if (! dev) { 129 if (!dev) {
140 printk(KERN_ERR PFX "Cannot allocate network device\n"); 130 printk(KERN_ERR PFX "Cannot allocate network device\n");
141 err = -ENOMEM; 131 err = -ENOMEM;
142 goto fail_alloc; 132 goto fail_alloc;
@@ -144,16 +134,11 @@ static int orinoco_tmd_init_one(struct pci_dev *pdev,
144 134
145 priv = netdev_priv(dev); 135 priv = netdev_priv(dev);
146 card = priv->card; 136 card = priv->card;
147 card->tmd_io = pci_resource_start(pdev, 1); 137 card->bridge_io = bridge_io;
148 dev->base_addr = pci_resource_start(pdev, 2);
149 SET_MODULE_OWNER(dev); 138 SET_MODULE_OWNER(dev);
150 SET_NETDEV_DEV(dev, &pdev->dev); 139 SET_NETDEV_DEV(dev, &pdev->dev);
151 140
152 hermes_struct_init(&priv->hw, mem, HERMES_16BIT_REGSPACING); 141 hermes_struct_init(&priv->hw, hermes_io, HERMES_16BIT_REGSPACING);
153
154 printk(KERN_DEBUG PFX "Detected Orinoco/Prism2 TMD device "
155 "at %s irq:%d, io addr:0x%lx\n", pci_name(pdev), pdev->irq,
156 dev->base_addr);
157 142
158 err = request_irq(pdev->irq, orinoco_interrupt, SA_SHIRQ, 143 err = request_irq(pdev->irq, orinoco_interrupt, SA_SHIRQ,
159 dev->name, dev); 144 dev->name, dev);
@@ -162,7 +147,6 @@ static int orinoco_tmd_init_one(struct pci_dev *pdev,
162 err = -EBUSY; 147 err = -EBUSY;
163 goto fail_irq; 148 goto fail_irq;
164 } 149 }
165 dev->irq = pdev->irq;
166 150
167 err = orinoco_tmd_cor_reset(priv); 151 err = orinoco_tmd_cor_reset(priv);
168 if (err) { 152 if (err) {
@@ -177,6 +161,8 @@ static int orinoco_tmd_init_one(struct pci_dev *pdev,
177 } 161 }
178 162
179 pci_set_drvdata(pdev, dev); 163 pci_set_drvdata(pdev, dev);
164 printk(KERN_DEBUG "%s: " DRIVER_NAME " at %s\n", dev->name,
165 pci_name(pdev));
180 166
181 return 0; 167 return 0;
182 168
@@ -188,9 +174,12 @@ static int orinoco_tmd_init_one(struct pci_dev *pdev,
188 free_orinocodev(dev); 174 free_orinocodev(dev);
189 175
190 fail_alloc: 176 fail_alloc:
191 pci_iounmap(pdev, mem); 177 pci_iounmap(pdev, hermes_io);
178
179 fail_map_hermes:
180 pci_iounmap(pdev, bridge_io);
192 181
193 fail_iomap: 182 fail_map_bridge:
194 pci_release_regions(pdev); 183 pci_release_regions(pdev);
195 184
196 fail_resources: 185 fail_resources:
@@ -203,31 +192,32 @@ static void __devexit orinoco_tmd_remove_one(struct pci_dev *pdev)
203{ 192{
204 struct net_device *dev = pci_get_drvdata(pdev); 193 struct net_device *dev = pci_get_drvdata(pdev);
205 struct orinoco_private *priv = dev->priv; 194 struct orinoco_private *priv = dev->priv;
206 195 struct orinoco_pci_card *card = priv->card;
207 BUG_ON(! dev);
208 196
209 unregister_netdev(dev); 197 unregister_netdev(dev);
210 free_irq(dev->irq, dev); 198 free_irq(pdev->irq, dev);
211 pci_set_drvdata(pdev, NULL); 199 pci_set_drvdata(pdev, NULL);
212 free_orinocodev(dev); 200 free_orinocodev(dev);
213 pci_iounmap(pdev, priv->hw.iobase); 201 pci_iounmap(pdev, priv->hw.iobase);
202 pci_iounmap(pdev, card->bridge_io);
214 pci_release_regions(pdev); 203 pci_release_regions(pdev);
215 pci_disable_device(pdev); 204 pci_disable_device(pdev);
216} 205}
217 206
218 207static struct pci_device_id orinoco_tmd_id_table[] = {
219static struct pci_device_id orinoco_tmd_pci_id_table[] = {
220 {0x15e8, 0x0131, PCI_ANY_ID, PCI_ANY_ID,}, /* NDC and OEMs, e.g. pheecom */ 208 {0x15e8, 0x0131, PCI_ANY_ID, PCI_ANY_ID,}, /* NDC and OEMs, e.g. pheecom */
221 {0,}, 209 {0,},
222}; 210};
223 211
224MODULE_DEVICE_TABLE(pci, orinoco_tmd_pci_id_table); 212MODULE_DEVICE_TABLE(pci, orinoco_tmd_id_table);
225 213
226static struct pci_driver orinoco_tmd_driver = { 214static struct pci_driver orinoco_tmd_driver = {
227 .name = DRIVER_NAME, 215 .name = DRIVER_NAME,
228 .id_table = orinoco_tmd_pci_id_table, 216 .id_table = orinoco_tmd_id_table,
229 .probe = orinoco_tmd_init_one, 217 .probe = orinoco_tmd_init_one,
230 .remove = __devexit_p(orinoco_tmd_remove_one), 218 .remove = __devexit_p(orinoco_tmd_remove_one),
219 .suspend = orinoco_pci_suspend,
220 .resume = orinoco_pci_resume,
231}; 221};
232 222
233static char version[] __initdata = DRIVER_NAME " " DRIVER_VERSION 223static char version[] __initdata = DRIVER_NAME " " DRIVER_VERSION
@@ -245,7 +235,6 @@ static int __init orinoco_tmd_init(void)
245static void __exit orinoco_tmd_exit(void) 235static void __exit orinoco_tmd_exit(void)
246{ 236{
247 pci_unregister_driver(&orinoco_tmd_driver); 237 pci_unregister_driver(&orinoco_tmd_driver);
248 ssleep(1);
249} 238}
250 239
251module_init(orinoco_tmd_init); 240module_init(orinoco_tmd_init);
diff --git a/drivers/net/wireless/spectrum_cs.c b/drivers/net/wireless/spectrum_cs.c
index f7b77ce54d7b..7f9aa139c347 100644
--- a/drivers/net/wireless/spectrum_cs.c
+++ b/drivers/net/wireless/spectrum_cs.c
@@ -1,6 +1,6 @@
1/* 1/*
2 * Driver for 802.11b cards using RAM-loadable Symbol firmware, such as 2 * Driver for 802.11b cards using RAM-loadable Symbol firmware, such as
3 * Symbol Wireless Networker LA4100, CompactFlash cards by Socket 3 * Symbol Wireless Networker LA4137, CompactFlash cards by Socket
4 * Communications and Intel PRO/Wireless 2011B. 4 * Communications and Intel PRO/Wireless 2011B.
5 * 5 *
6 * The driver implements Symbol firmware download. The rest is handled 6 * The driver implements Symbol firmware download. The rest is handled
@@ -120,8 +120,8 @@ static void spectrum_cs_release(struct pcmcia_device *link);
120 * Each block has the following structure. 120 * Each block has the following structure.
121 */ 121 */
122struct dblock { 122struct dblock {
123 __le32 _addr; /* adapter address where to write the block */ 123 __le32 addr; /* adapter address where to write the block */
124 __le16 _len; /* length of the data only, in bytes */ 124 __le16 len; /* length of the data only, in bytes */
125 char data[0]; /* data to be written */ 125 char data[0]; /* data to be written */
126} __attribute__ ((packed)); 126} __attribute__ ((packed));
127 127
@@ -131,9 +131,9 @@ struct dblock {
131 * items with matching ID should be written. 131 * items with matching ID should be written.
132 */ 132 */
133struct pdr { 133struct pdr {
134 __le32 _id; /* record ID */ 134 __le32 id; /* record ID */
135 __le32 _addr; /* adapter address where to write the data */ 135 __le32 addr; /* adapter address where to write the data */
136 __le32 _len; /* expected length of the data, in bytes */ 136 __le32 len; /* expected length of the data, in bytes */
137 char next[0]; /* next PDR starts here */ 137 char next[0]; /* next PDR starts here */
138} __attribute__ ((packed)); 138} __attribute__ ((packed));
139 139
@@ -144,8 +144,8 @@ struct pdr {
144 * be plugged into the secondary firmware. 144 * be plugged into the secondary firmware.
145 */ 145 */
146struct pdi { 146struct pdi {
147 __le16 _len; /* length of ID and data, in words */ 147 __le16 len; /* length of ID and data, in words */
148 __le16 _id; /* record ID */ 148 __le16 id; /* record ID */
149 char data[0]; /* plug data */ 149 char data[0]; /* plug data */
150} __attribute__ ((packed)); 150} __attribute__ ((packed));
151 151
@@ -154,44 +154,44 @@ struct pdi {
154static inline u32 154static inline u32
155dblock_addr(const struct dblock *blk) 155dblock_addr(const struct dblock *blk)
156{ 156{
157 return le32_to_cpu(blk->_addr); 157 return le32_to_cpu(blk->addr);
158} 158}
159 159
160static inline u32 160static inline u32
161dblock_len(const struct dblock *blk) 161dblock_len(const struct dblock *blk)
162{ 162{
163 return le16_to_cpu(blk->_len); 163 return le16_to_cpu(blk->len);
164} 164}
165 165
166static inline u32 166static inline u32
167pdr_id(const struct pdr *pdr) 167pdr_id(const struct pdr *pdr)
168{ 168{
169 return le32_to_cpu(pdr->_id); 169 return le32_to_cpu(pdr->id);
170} 170}
171 171
172static inline u32 172static inline u32
173pdr_addr(const struct pdr *pdr) 173pdr_addr(const struct pdr *pdr)
174{ 174{
175 return le32_to_cpu(pdr->_addr); 175 return le32_to_cpu(pdr->addr);
176} 176}
177 177
178static inline u32 178static inline u32
179pdr_len(const struct pdr *pdr) 179pdr_len(const struct pdr *pdr)
180{ 180{
181 return le32_to_cpu(pdr->_len); 181 return le32_to_cpu(pdr->len);
182} 182}
183 183
184static inline u32 184static inline u32
185pdi_id(const struct pdi *pdi) 185pdi_id(const struct pdi *pdi)
186{ 186{
187 return le16_to_cpu(pdi->_id); 187 return le16_to_cpu(pdi->id);
188} 188}
189 189
190/* Return length of the data only, in bytes */ 190/* Return length of the data only, in bytes */
191static inline u32 191static inline u32
192pdi_len(const struct pdi *pdi) 192pdi_len(const struct pdi *pdi)
193{ 193{
194 return 2 * (le16_to_cpu(pdi->_len) - 1); 194 return 2 * (le16_to_cpu(pdi->len) - 1);
195} 195}
196 196
197 197
@@ -343,8 +343,7 @@ spectrum_plug_pdi(hermes_t *hw, struct pdr *first_pdr, struct pdi *pdi)
343 343
344 /* do the actual plugging */ 344 /* do the actual plugging */
345 spectrum_aux_setaddr(hw, pdr_addr(pdr)); 345 spectrum_aux_setaddr(hw, pdr_addr(pdr));
346 hermes_write_words(hw, HERMES_AUXDATA, pdi->data, 346 hermes_write_bytes(hw, HERMES_AUXDATA, pdi->data, pdi_len(pdi));
347 pdi_len(pdi) / 2);
348 347
349 return 0; 348 return 0;
350} 349}
@@ -424,8 +423,8 @@ spectrum_load_blocks(hermes_t *hw, const struct dblock *first_block)
424 423
425 while (dblock_addr(blk) != BLOCK_END) { 424 while (dblock_addr(blk) != BLOCK_END) {
426 spectrum_aux_setaddr(hw, blkaddr); 425 spectrum_aux_setaddr(hw, blkaddr);
427 hermes_write_words(hw, HERMES_AUXDATA, blk->data, 426 hermes_write_bytes(hw, HERMES_AUXDATA, blk->data,
428 blklen / 2); 427 blklen);
429 428
430 blk = (struct dblock *) &blk->data[blklen]; 429 blk = (struct dblock *) &blk->data[blklen];
431 blkaddr = dblock_addr(blk); 430 blkaddr = dblock_addr(blk);
@@ -626,14 +625,11 @@ static void spectrum_cs_detach(struct pcmcia_device *link)
626{ 625{
627 struct net_device *dev = link->priv; 626 struct net_device *dev = link->priv;
628 627
628 if (link->dev_node)
629 unregister_netdev(dev);
630
629 spectrum_cs_release(link); 631 spectrum_cs_release(link);
630 632
631 DEBUG(0, PFX "detach: link=%p link->dev_node=%p\n", link, link->dev_node);
632 if (link->dev_node) {
633 DEBUG(0, PFX "About to unregister net device %p\n",
634 dev);
635 unregister_netdev(dev);
636 }
637 free_orinocodev(dev); 633 free_orinocodev(dev);
638} /* spectrum_cs_detach */ 634} /* spectrum_cs_detach */
639 635
@@ -653,13 +649,10 @@ spectrum_cs_config(struct pcmcia_device *link)
653 int last_fn, last_ret; 649 int last_fn, last_ret;
654 u_char buf[64]; 650 u_char buf[64];
655 config_info_t conf; 651 config_info_t conf;
656 cisinfo_t info;
657 tuple_t tuple; 652 tuple_t tuple;
658 cisparse_t parse; 653 cisparse_t parse;
659 void __iomem *mem; 654 void __iomem *mem;
660 655
661 CS_CHECK(ValidateCIS, pcmcia_validate_cis(link, &info));
662
663 /* 656 /*
664 * This reads the card's CONFIG tuple to find its 657 * This reads the card's CONFIG tuple to find its
665 * configuration registers. 658 * configuration registers.
@@ -709,12 +702,6 @@ spectrum_cs_config(struct pcmcia_device *link)
709 goto next_entry; 702 goto next_entry;
710 link->conf.ConfigIndex = cfg->index; 703 link->conf.ConfigIndex = cfg->index;
711 704
712 /* Does this card need audio output? */
713 if (cfg->flags & CISTPL_CFTABLE_AUDIO) {
714 link->conf.Attributes |= CONF_ENABLE_SPKR;
715 link->conf.Status = CCSR_AUDIO_ENA;
716 }
717
718 /* Use power settings for Vcc and Vpp if present */ 705 /* Use power settings for Vcc and Vpp if present */
719 /* Note that the CIS values need to be rescaled */ 706 /* Note that the CIS values need to be rescaled */
720 if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) { 707 if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) {
@@ -835,19 +822,10 @@ spectrum_cs_config(struct pcmcia_device *link)
835 net_device has been registered */ 822 net_device has been registered */
836 823
837 /* Finally, report what we've done */ 824 /* Finally, report what we've done */
838 printk(KERN_DEBUG "%s: index 0x%02x: ", 825 printk(KERN_DEBUG "%s: " DRIVER_NAME " at %s, irq %d, io "
839 dev->name, link->conf.ConfigIndex); 826 "0x%04x-0x%04x\n", dev->name, dev->class_dev.dev->bus_id,
840 if (link->conf.Vpp) 827 link->irq.AssignedIRQ, link->io.BasePort1,
841 printk(", Vpp %d.%d", link->conf.Vpp / 10, 828 link->io.BasePort1 + link->io.NumPorts1 - 1);
842 link->conf.Vpp % 10);
843 printk(", irq %d", link->irq.AssignedIRQ);
844 if (link->io.NumPorts1)
845 printk(", io 0x%04x-0x%04x", link->io.BasePort1,
846 link->io.BasePort1 + link->io.NumPorts1 - 1);
847 if (link->io.NumPorts2)
848 printk(" & 0x%04x-0x%04x", link->io.BasePort2,
849 link->io.BasePort2 + link->io.NumPorts2 - 1);
850 printk("\n");
851 829
852 return 0; 830 return 0;
853 831
@@ -888,11 +866,10 @@ spectrum_cs_suspend(struct pcmcia_device *link)
888{ 866{
889 struct net_device *dev = link->priv; 867 struct net_device *dev = link->priv;
890 struct orinoco_private *priv = netdev_priv(dev); 868 struct orinoco_private *priv = netdev_priv(dev);
891 unsigned long flags;
892 int err = 0; 869 int err = 0;
893 870
894 /* Mark the device as stopped, to block IO until later */ 871 /* Mark the device as stopped, to block IO until later */
895 spin_lock_irqsave(&priv->lock, flags); 872 spin_lock(&priv->lock);
896 873
897 err = __orinoco_down(dev); 874 err = __orinoco_down(dev);
898 if (err) 875 if (err)
@@ -902,9 +879,9 @@ spectrum_cs_suspend(struct pcmcia_device *link)
902 netif_device_detach(dev); 879 netif_device_detach(dev);
903 priv->hw_unavailable++; 880 priv->hw_unavailable++;
904 881
905 spin_unlock_irqrestore(&priv->lock, flags); 882 spin_unlock(&priv->lock);
906 883
907 return 0; 884 return err;
908} 885}
909 886
910static int 887static int
@@ -932,7 +909,7 @@ static char version[] __initdata = DRIVER_NAME " " DRIVER_VERSION
932 " David Gibson <hermes@gibson.dropbear.id.au>, et al)"; 909 " David Gibson <hermes@gibson.dropbear.id.au>, et al)";
933 910
934static struct pcmcia_device_id spectrum_cs_ids[] = { 911static struct pcmcia_device_id spectrum_cs_ids[] = {
935 PCMCIA_DEVICE_MANF_CARD(0x026c, 0x0001), /* Symbol Spectrum24 LA4100 */ 912 PCMCIA_DEVICE_MANF_CARD(0x026c, 0x0001), /* Symbol Spectrum24 LA4137 */
936 PCMCIA_DEVICE_MANF_CARD(0x0104, 0x0001), /* Socket Communications CF */ 913 PCMCIA_DEVICE_MANF_CARD(0x0104, 0x0001), /* Socket Communications CF */
937 PCMCIA_DEVICE_PROD_ID12("Intel", "PRO/Wireless LAN PC Card", 0x816cc815, 0x6fbf459a), /* 2011B, not 2011 */ 914 PCMCIA_DEVICE_PROD_ID12("Intel", "PRO/Wireless LAN PC Card", 0x816cc815, 0x6fbf459a), /* 2011B, not 2011 */
938 PCMCIA_DEVICE_NULL, 915 PCMCIA_DEVICE_NULL,
diff --git a/drivers/pci/pci.c b/drivers/pci/pci.c
index 2329f941a0dc..8d107c6c2c70 100644
--- a/drivers/pci/pci.c
+++ b/drivers/pci/pci.c
@@ -164,7 +164,6 @@ int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
164 return __pci_bus_find_cap(bus, devfn, hdr_type & 0x7f, cap); 164 return __pci_bus_find_cap(bus, devfn, hdr_type & 0x7f, cap);
165} 165}
166 166
167#if 0
168/** 167/**
169 * pci_find_ext_capability - Find an extended capability 168 * pci_find_ext_capability - Find an extended capability
170 * @dev: PCI device to query 169 * @dev: PCI device to query
@@ -212,7 +211,7 @@ int pci_find_ext_capability(struct pci_dev *dev, int cap)
212 211
213 return 0; 212 return 0;
214} 213}
215#endif /* 0 */ 214EXPORT_SYMBOL_GPL(pci_find_ext_capability);
216 215
217/** 216/**
218 * pci_find_parent_resource - return resource region of parent bus of given region 217 * pci_find_parent_resource - return resource region of parent bus of given region
diff --git a/drivers/s390/net/Makefile b/drivers/s390/net/Makefile
index 90d4d0ef3dd4..6775a837d646 100644
--- a/drivers/s390/net/Makefile
+++ b/drivers/s390/net/Makefile
@@ -2,7 +2,7 @@
2# S/390 network devices 2# S/390 network devices
3# 3#
4 4
5ctc-objs := ctcmain.o ctctty.o ctcdbug.o 5ctc-objs := ctcmain.o ctcdbug.o
6 6
7obj-$(CONFIG_IUCV) += iucv.o 7obj-$(CONFIG_IUCV) += iucv.o
8obj-$(CONFIG_NETIUCV) += netiucv.o fsm.o 8obj-$(CONFIG_NETIUCV) += netiucv.o fsm.o
@@ -10,6 +10,7 @@ obj-$(CONFIG_SMSGIUCV) += smsgiucv.o
10obj-$(CONFIG_CTC) += ctc.o fsm.o cu3088.o 10obj-$(CONFIG_CTC) += ctc.o fsm.o cu3088.o
11obj-$(CONFIG_LCS) += lcs.o cu3088.o 11obj-$(CONFIG_LCS) += lcs.o cu3088.o
12obj-$(CONFIG_CLAW) += claw.o cu3088.o 12obj-$(CONFIG_CLAW) += claw.o cu3088.o
13obj-$(CONFIG_MPC) += ctcmpc.o fsm.o cu3088.o
13qeth-y := qeth_main.o qeth_mpc.o qeth_sys.o qeth_eddp.o 14qeth-y := qeth_main.o qeth_mpc.o qeth_sys.o qeth_eddp.o
14qeth-$(CONFIG_PROC_FS) += qeth_proc.o 15qeth-$(CONFIG_PROC_FS) += qeth_proc.o
15obj-$(CONFIG_QETH) += qeth.o 16obj-$(CONFIG_QETH) += qeth.o
diff --git a/drivers/s390/net/ctcmain.c b/drivers/s390/net/ctcmain.c
index fe986af884f8..20c8eb16f464 100644
--- a/drivers/s390/net/ctcmain.c
+++ b/drivers/s390/net/ctcmain.c
@@ -6,7 +6,7 @@
6 * Fixes by : Jochen Röhrig (roehrig@de.ibm.com) 6 * Fixes by : Jochen Röhrig (roehrig@de.ibm.com)
7 * Arnaldo Carvalho de Melo <acme@conectiva.com.br> 7 * Arnaldo Carvalho de Melo <acme@conectiva.com.br>
8 Peter Tiedemann (ptiedem@de.ibm.com) 8 Peter Tiedemann (ptiedem@de.ibm.com)
9 * Driver Model stuff by : Cornelia Huck <huckc@de.ibm.com> 9 * Driver Model stuff by : Cornelia Huck <cornelia.huck@de.ibm.com>
10 * 10 *
11 * Documentation used: 11 * Documentation used:
12 * - Principles of Operation (IBM doc#: SA22-7201-06) 12 * - Principles of Operation (IBM doc#: SA22-7201-06)
@@ -65,7 +65,6 @@
65 65
66#include <asm/idals.h> 66#include <asm/idals.h>
67 67
68#include "ctctty.h"
69#include "fsm.h" 68#include "fsm.h"
70#include "cu3088.h" 69#include "cu3088.h"
71 70
@@ -479,10 +478,7 @@ ctc_unpack_skb(struct channel *ch, struct sk_buff *pskb)
479 skb->dev = pskb->dev; 478 skb->dev = pskb->dev;
480 skb->protocol = pskb->protocol; 479 skb->protocol = pskb->protocol;
481 pskb->ip_summed = CHECKSUM_UNNECESSARY; 480 pskb->ip_summed = CHECKSUM_UNNECESSARY;
482 if (ch->protocol == CTC_PROTO_LINUX_TTY) 481 netif_rx_ni(skb);
483 ctc_tty_netif_rx(skb);
484 else
485 netif_rx_ni(skb);
486 /** 482 /**
487 * Successful rx; reset logflags 483 * Successful rx; reset logflags
488 */ 484 */
@@ -557,8 +553,7 @@ ccw_unit_check(struct channel *ch, unsigned char sense)
557 DBF_TEXT(trace, 5, __FUNCTION__); 553 DBF_TEXT(trace, 5, __FUNCTION__);
558 if (sense & SNS0_INTERVENTION_REQ) { 554 if (sense & SNS0_INTERVENTION_REQ) {
559 if (sense & 0x01) { 555 if (sense & 0x01) {
560 if (ch->protocol != CTC_PROTO_LINUX_TTY) 556 ctc_pr_debug("%s: Interface disc. or Sel. reset "
561 ctc_pr_debug("%s: Interface disc. or Sel. reset "
562 "(remote)\n", ch->id); 557 "(remote)\n", ch->id);
563 fsm_event(ch->fsm, CH_EVENT_UC_RCRESET, ch); 558 fsm_event(ch->fsm, CH_EVENT_UC_RCRESET, ch);
564 } else { 559 } else {
@@ -2034,7 +2029,6 @@ static void
2034dev_action_chup(fsm_instance * fi, int event, void *arg) 2029dev_action_chup(fsm_instance * fi, int event, void *arg)
2035{ 2030{
2036 struct net_device *dev = (struct net_device *) arg; 2031 struct net_device *dev = (struct net_device *) arg;
2037 struct ctc_priv *privptr = dev->priv;
2038 2032
2039 DBF_TEXT(trace, 3, __FUNCTION__); 2033 DBF_TEXT(trace, 3, __FUNCTION__);
2040 switch (fsm_getstate(fi)) { 2034 switch (fsm_getstate(fi)) {
@@ -2049,8 +2043,6 @@ dev_action_chup(fsm_instance * fi, int event, void *arg)
2049 fsm_newstate(fi, DEV_STATE_RUNNING); 2043 fsm_newstate(fi, DEV_STATE_RUNNING);
2050 ctc_pr_info("%s: connected with remote side\n", 2044 ctc_pr_info("%s: connected with remote side\n",
2051 dev->name); 2045 dev->name);
2052 if (privptr->protocol == CTC_PROTO_LINUX_TTY)
2053 ctc_tty_setcarrier(dev, 1);
2054 ctc_clear_busy(dev); 2046 ctc_clear_busy(dev);
2055 } 2047 }
2056 break; 2048 break;
@@ -2059,8 +2051,6 @@ dev_action_chup(fsm_instance * fi, int event, void *arg)
2059 fsm_newstate(fi, DEV_STATE_RUNNING); 2051 fsm_newstate(fi, DEV_STATE_RUNNING);
2060 ctc_pr_info("%s: connected with remote side\n", 2052 ctc_pr_info("%s: connected with remote side\n",
2061 dev->name); 2053 dev->name);
2062 if (privptr->protocol == CTC_PROTO_LINUX_TTY)
2063 ctc_tty_setcarrier(dev, 1);
2064 ctc_clear_busy(dev); 2054 ctc_clear_busy(dev);
2065 } 2055 }
2066 break; 2056 break;
@@ -2086,14 +2076,10 @@ dev_action_chup(fsm_instance * fi, int event, void *arg)
2086static void 2076static void
2087dev_action_chdown(fsm_instance * fi, int event, void *arg) 2077dev_action_chdown(fsm_instance * fi, int event, void *arg)
2088{ 2078{
2089 struct net_device *dev = (struct net_device *) arg;
2090 struct ctc_priv *privptr = dev->priv;
2091 2079
2092 DBF_TEXT(trace, 3, __FUNCTION__); 2080 DBF_TEXT(trace, 3, __FUNCTION__);
2093 switch (fsm_getstate(fi)) { 2081 switch (fsm_getstate(fi)) {
2094 case DEV_STATE_RUNNING: 2082 case DEV_STATE_RUNNING:
2095 if (privptr->protocol == CTC_PROTO_LINUX_TTY)
2096 ctc_tty_setcarrier(dev, 0);
2097 if (event == DEV_EVENT_TXDOWN) 2083 if (event == DEV_EVENT_TXDOWN)
2098 fsm_newstate(fi, DEV_STATE_STARTWAIT_TX); 2084 fsm_newstate(fi, DEV_STATE_STARTWAIT_TX);
2099 else 2085 else
@@ -2397,8 +2383,6 @@ ctc_tx(struct sk_buff *skb, struct net_device * dev)
2397 */ 2383 */
2398 if (fsm_getstate(privptr->fsm) != DEV_STATE_RUNNING) { 2384 if (fsm_getstate(privptr->fsm) != DEV_STATE_RUNNING) {
2399 fsm_event(privptr->fsm, DEV_EVENT_START, dev); 2385 fsm_event(privptr->fsm, DEV_EVENT_START, dev);
2400 if (privptr->protocol == CTC_PROTO_LINUX_TTY)
2401 return -EBUSY;
2402 dev_kfree_skb(skb); 2386 dev_kfree_skb(skb);
2403 privptr->stats.tx_dropped++; 2387 privptr->stats.tx_dropped++;
2404 privptr->stats.tx_errors++; 2388 privptr->stats.tx_errors++;
@@ -2608,20 +2592,13 @@ ctc_netdev_unregister(struct net_device * dev)
2608 if (!dev) 2592 if (!dev)
2609 return; 2593 return;
2610 privptr = (struct ctc_priv *) dev->priv; 2594 privptr = (struct ctc_priv *) dev->priv;
2611 if (privptr->protocol != CTC_PROTO_LINUX_TTY) 2595 unregister_netdev(dev);
2612 unregister_netdev(dev);
2613 else
2614 ctc_tty_unregister_netdev(dev);
2615} 2596}
2616 2597
2617static int 2598static int
2618ctc_netdev_register(struct net_device * dev) 2599ctc_netdev_register(struct net_device * dev)
2619{ 2600{
2620 struct ctc_priv *privptr = (struct ctc_priv *) dev->priv; 2601 return register_netdev(dev);
2621 if (privptr->protocol != CTC_PROTO_LINUX_TTY)
2622 return register_netdev(dev);
2623 else
2624 return ctc_tty_register_netdev(dev);
2625} 2602}
2626 2603
2627static void 2604static void
@@ -2667,7 +2644,9 @@ ctc_proto_store(struct device *dev, struct device_attribute *attr, const char *b
2667 if (!priv) 2644 if (!priv)
2668 return -ENODEV; 2645 return -ENODEV;
2669 sscanf(buf, "%u", &value); 2646 sscanf(buf, "%u", &value);
2670 if ((value < 0) || (value > CTC_PROTO_MAX)) 2647 if (!((value == CTC_PROTO_S390) ||
2648 (value == CTC_PROTO_LINUX) ||
2649 (value == CTC_PROTO_OS390)))
2671 return -EINVAL; 2650 return -EINVAL;
2672 priv->protocol = value; 2651 priv->protocol = value;
2673 2652
@@ -2897,10 +2876,7 @@ ctc_new_device(struct ccwgroup_device *cgdev)
2897 goto out; 2876 goto out;
2898 } 2877 }
2899 2878
2900 if (privptr->protocol == CTC_PROTO_LINUX_TTY) 2879 strlcpy(dev->name, "ctc%d", IFNAMSIZ);
2901 strlcpy(dev->name, "ctctty%d", IFNAMSIZ);
2902 else
2903 strlcpy(dev->name, "ctc%d", IFNAMSIZ);
2904 2880
2905 for (direction = READ; direction <= WRITE; direction++) { 2881 for (direction = READ; direction <= WRITE; direction++) {
2906 privptr->channel[direction] = 2882 privptr->channel[direction] =
@@ -3046,7 +3022,6 @@ ctc_exit(void)
3046{ 3022{
3047 DBF_TEXT(setup, 3, __FUNCTION__); 3023 DBF_TEXT(setup, 3, __FUNCTION__);
3048 unregister_cu3088_discipline(&ctc_group_driver); 3024 unregister_cu3088_discipline(&ctc_group_driver);
3049 ctc_tty_cleanup();
3050 ctc_unregister_dbf_views(); 3025 ctc_unregister_dbf_views();
3051 ctc_pr_info("CTC driver unloaded\n"); 3026 ctc_pr_info("CTC driver unloaded\n");
3052} 3027}
@@ -3073,10 +3048,8 @@ ctc_init(void)
3073 ctc_pr_crit("ctc_init failed with ctc_register_dbf_views rc = %d\n", ret); 3048 ctc_pr_crit("ctc_init failed with ctc_register_dbf_views rc = %d\n", ret);
3074 return ret; 3049 return ret;
3075 } 3050 }
3076 ctc_tty_init();
3077 ret = register_cu3088_discipline(&ctc_group_driver); 3051 ret = register_cu3088_discipline(&ctc_group_driver);
3078 if (ret) { 3052 if (ret) {
3079 ctc_tty_cleanup();
3080 ctc_unregister_dbf_views(); 3053 ctc_unregister_dbf_views();
3081 } 3054 }
3082 return ret; 3055 return ret;
diff --git a/drivers/s390/net/ctcmain.h b/drivers/s390/net/ctcmain.h
index d2e835c0c134..7f305d119f3d 100644
--- a/drivers/s390/net/ctcmain.h
+++ b/drivers/s390/net/ctcmain.h
@@ -35,7 +35,9 @@
35#include <asm/ccwdev.h> 35#include <asm/ccwdev.h>
36#include <asm/ccwgroup.h> 36#include <asm/ccwgroup.h>
37 37
38#include "ctctty.h" 38#include <linux/skbuff.h>
39#include <linux/netdevice.h>
40
39#include "fsm.h" 41#include "fsm.h"
40#include "cu3088.h" 42#include "cu3088.h"
41 43
@@ -50,9 +52,7 @@
50 52
51#define CTC_PROTO_S390 0 53#define CTC_PROTO_S390 0
52#define CTC_PROTO_LINUX 1 54#define CTC_PROTO_LINUX 1
53#define CTC_PROTO_LINUX_TTY 2
54#define CTC_PROTO_OS390 3 55#define CTC_PROTO_OS390 3
55#define CTC_PROTO_MAX 3
56 56
57#define CTC_BUFSIZE_LIMIT 65535 57#define CTC_BUFSIZE_LIMIT 65535
58#define CTC_BUFSIZE_DEFAULT 32768 58#define CTC_BUFSIZE_DEFAULT 32768
@@ -257,15 +257,13 @@ static __inline__ void
257ctc_clear_busy(struct net_device * dev) 257ctc_clear_busy(struct net_device * dev)
258{ 258{
259 clear_bit(0, &(((struct ctc_priv *) dev->priv)->tbusy)); 259 clear_bit(0, &(((struct ctc_priv *) dev->priv)->tbusy));
260 if (((struct ctc_priv *)dev->priv)->protocol != CTC_PROTO_LINUX_TTY) 260 netif_wake_queue(dev);
261 netif_wake_queue(dev);
262} 261}
263 262
264static __inline__ int 263static __inline__ int
265ctc_test_and_set_busy(struct net_device * dev) 264ctc_test_and_set_busy(struct net_device * dev)
266{ 265{
267 if (((struct ctc_priv *)dev->priv)->protocol != CTC_PROTO_LINUX_TTY) 266 netif_stop_queue(dev);
268 netif_stop_queue(dev);
269 return test_and_set_bit(0, &((struct ctc_priv *) dev->priv)->tbusy); 267 return test_and_set_bit(0, &((struct ctc_priv *) dev->priv)->tbusy);
270} 268}
271 269
diff --git a/drivers/s390/net/ctctty.c b/drivers/s390/net/ctctty.c
deleted file mode 100644
index af54d1de07bf..000000000000
--- a/drivers/s390/net/ctctty.c
+++ /dev/null
@@ -1,1259 +0,0 @@
1/*
2 * CTC / ESCON network driver, tty interface.
3 *
4 * Copyright (C) 2001 IBM Deutschland Entwicklung GmbH, IBM Corporation
5 * Author(s): Fritz Elfert (elfert@de.ibm.com, felfert@millenux.com)
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 *
21 */
22
23#include <linux/config.h>
24#include <linux/module.h>
25#include <linux/tty.h>
26#include <linux/tty_flip.h>
27#include <linux/serial_reg.h>
28#include <linux/interrupt.h>
29#include <linux/delay.h>
30#include <asm/uaccess.h>
31#include <linux/devfs_fs_kernel.h>
32#include "ctctty.h"
33#include "ctcdbug.h"
34
35#define CTC_TTY_MAJOR 43
36#define CTC_TTY_MAX_DEVICES 64
37
38#define CTC_ASYNC_MAGIC 0x49344C01 /* for paranoia-checking */
39#define CTC_ASYNC_INITIALIZED 0x80000000 /* port was initialized */
40#define CTC_ASYNC_NORMAL_ACTIVE 0x20000000 /* Normal device active */
41#define CTC_ASYNC_CLOSING 0x08000000 /* Serial port is closing */
42#define CTC_ASYNC_CTS_FLOW 0x04000000 /* Do CTS flow control */
43#define CTC_ASYNC_CHECK_CD 0x02000000 /* i.e., CLOCAL */
44#define CTC_ASYNC_HUP_NOTIFY 0x0001 /* Notify tty on hangups/closes */
45#define CTC_ASYNC_NETDEV_OPEN 0x0002 /* Underlying netdev is open */
46#define CTC_ASYNC_TX_LINESTAT 0x0004 /* Must send line status */
47#define CTC_ASYNC_SPLIT_TERMIOS 0x0008 /* Sep. termios for dialin/out */
48#define CTC_TTY_XMIT_SIZE 1024 /* Default bufsize for write */
49#define CTC_SERIAL_XMIT_MAX 4000 /* Maximum bufsize for write */
50
51/* Private data (similar to async_struct in <linux/serial.h>) */
52typedef struct {
53 int magic;
54 int flags; /* defined in tty.h */
55 int mcr; /* Modem control register */
56 int msr; /* Modem status register */
57 int lsr; /* Line status register */
58 int line;
59 int count; /* # of fd on device */
60 int blocked_open; /* # of blocked opens */
61 struct net_device *netdev;
62 struct sk_buff_head tx_queue; /* transmit queue */
63 struct sk_buff_head rx_queue; /* receive queue */
64 struct tty_struct *tty; /* Pointer to corresponding tty */
65 wait_queue_head_t open_wait;
66 wait_queue_head_t close_wait;
67 struct semaphore write_sem;
68 struct tasklet_struct tasklet;
69 struct timer_list stoptimer;
70} ctc_tty_info;
71
72/* Description of one CTC-tty */
73typedef struct {
74 struct tty_driver *ctc_tty_device; /* tty-device */
75 ctc_tty_info info[CTC_TTY_MAX_DEVICES]; /* Private data */
76} ctc_tty_driver;
77
78static ctc_tty_driver *driver;
79
80/* Leave this unchanged unless you know what you do! */
81#define MODEM_PARANOIA_CHECK
82#define MODEM_DO_RESTART
83
84#define CTC_TTY_NAME "ctctty"
85
86static __u32 ctc_tty_magic = CTC_ASYNC_MAGIC;
87static int ctc_tty_shuttingdown = 0;
88
89static spinlock_t ctc_tty_lock;
90
91/* ctc_tty_try_read() is called from within ctc_tty_rcv_skb()
92 * to stuff incoming data directly into a tty's flip-buffer. If the
93 * flip buffer is full, the packet gets queued up.
94 *
95 * Return:
96 * 1 = Success
97 * 0 = Failure, data has to be buffered and later processed by
98 * ctc_tty_readmodem().
99 */
100static int
101ctc_tty_try_read(ctc_tty_info * info, struct sk_buff *skb)
102{
103 int len;
104 struct tty_struct *tty;
105
106 DBF_TEXT(trace, 5, __FUNCTION__);
107 if ((tty = info->tty)) {
108 if (info->mcr & UART_MCR_RTS) {
109 len = skb->len;
110 tty_insert_flip_string(tty, skb->data, len);
111 tty_flip_buffer_push(tty);
112 kfree_skb(skb);
113 return 1;
114 }
115 }
116 return 0;
117}
118
119/* ctc_tty_readmodem() is called periodically from within timer-interrupt.
120 * It tries getting received data from the receive queue an stuff it into
121 * the tty's flip-buffer.
122 */
123static int
124ctc_tty_readmodem(ctc_tty_info *info)
125{
126 int ret = 1;
127 struct tty_struct *tty;
128
129 DBF_TEXT(trace, 5, __FUNCTION__);
130 if ((tty = info->tty)) {
131 if (info->mcr & UART_MCR_RTS) {
132 struct sk_buff *skb;
133
134 if ((skb = skb_dequeue(&info->rx_queue))) {
135 int len = skb->len;
136 tty_insert_flip_string(tty, skb->data, len);
137 skb_pull(skb, len);
138 tty_flip_buffer_push(tty);
139 if (skb->len > 0)
140 skb_queue_head(&info->rx_queue, skb);
141 else {
142 kfree_skb(skb);
143 ret = !skb_queue_empty(&info->rx_queue);
144 }
145 }
146 }
147 }
148 return ret;
149}
150
151void
152ctc_tty_setcarrier(struct net_device *netdev, int on)
153{
154 int i;
155
156 DBF_TEXT(trace, 4, __FUNCTION__);
157 if ((!driver) || ctc_tty_shuttingdown)
158 return;
159 for (i = 0; i < CTC_TTY_MAX_DEVICES; i++)
160 if (driver->info[i].netdev == netdev) {
161 ctc_tty_info *info = &driver->info[i];
162 if (on)
163 info->msr |= UART_MSR_DCD;
164 else
165 info->msr &= ~UART_MSR_DCD;
166 if ((info->flags & CTC_ASYNC_CHECK_CD) && (!on))
167 tty_hangup(info->tty);
168 }
169}
170
171void
172ctc_tty_netif_rx(struct sk_buff *skb)
173{
174 int i;
175 ctc_tty_info *info = NULL;
176
177 DBF_TEXT(trace, 5, __FUNCTION__);
178 if (!skb)
179 return;
180 if ((!skb->dev) || (!driver) || ctc_tty_shuttingdown) {
181 dev_kfree_skb(skb);
182 return;
183 }
184 for (i = 0; i < CTC_TTY_MAX_DEVICES; i++)
185 if (driver->info[i].netdev == skb->dev) {
186 info = &driver->info[i];
187 break;
188 }
189 if (!info) {
190 dev_kfree_skb(skb);
191 return;
192 }
193 if (skb->len < 6) {
194 dev_kfree_skb(skb);
195 return;
196 }
197 if (memcmp(skb->data, &ctc_tty_magic, sizeof(__u32))) {
198 dev_kfree_skb(skb);
199 return;
200 }
201 skb_pull(skb, sizeof(__u32));
202
203 i = *((int *)skb->data);
204 skb_pull(skb, sizeof(info->mcr));
205 if (i & UART_MCR_RTS) {
206 info->msr |= UART_MSR_CTS;
207 if (info->flags & CTC_ASYNC_CTS_FLOW)
208 info->tty->hw_stopped = 0;
209 } else {
210 info->msr &= ~UART_MSR_CTS;
211 if (info->flags & CTC_ASYNC_CTS_FLOW)
212 info->tty->hw_stopped = 1;
213 }
214 if (i & UART_MCR_DTR)
215 info->msr |= UART_MSR_DSR;
216 else
217 info->msr &= ~UART_MSR_DSR;
218 if (skb->len <= 0) {
219 kfree_skb(skb);
220 return;
221 }
222 /* Try to deliver directly via tty-flip-buf if queue is empty */
223 if (skb_queue_empty(&info->rx_queue))
224 if (ctc_tty_try_read(info, skb))
225 return;
226 /* Direct deliver failed or queue wasn't empty.
227 * Queue up for later dequeueing via timer-irq.
228 */
229 skb_queue_tail(&info->rx_queue, skb);
230 /* Schedule dequeuing */
231 tasklet_schedule(&info->tasklet);
232}
233
234static int
235ctc_tty_tint(ctc_tty_info * info)
236{
237 struct sk_buff *skb = skb_dequeue(&info->tx_queue);
238 int stopped = (info->tty->hw_stopped || info->tty->stopped);
239 int wake = 1;
240 int rc;
241
242 DBF_TEXT(trace, 4, __FUNCTION__);
243 if (!info->netdev) {
244 if (skb)
245 kfree_skb(skb);
246 return 0;
247 }
248 if (info->flags & CTC_ASYNC_TX_LINESTAT) {
249 int skb_res = info->netdev->hard_header_len +
250 sizeof(info->mcr) + sizeof(__u32);
251 /* If we must update line status,
252 * create an empty dummy skb and insert it.
253 */
254 if (skb)
255 skb_queue_head(&info->tx_queue, skb);
256
257 skb = dev_alloc_skb(skb_res);
258 if (!skb) {
259 printk(KERN_WARNING
260 "ctc_tty: Out of memory in %s%d tint\n",
261 CTC_TTY_NAME, info->line);
262 return 1;
263 }
264 skb_reserve(skb, skb_res);
265 stopped = 0;
266 wake = 0;
267 }
268 if (!skb)
269 return 0;
270 if (stopped) {
271 skb_queue_head(&info->tx_queue, skb);
272 return 1;
273 }
274#if 0
275 if (skb->len > 0)
276 printk(KERN_DEBUG "tint: %d %02x\n", skb->len, *(skb->data));
277 else
278 printk(KERN_DEBUG "tint: %d STAT\n", skb->len);
279#endif
280 memcpy(skb_push(skb, sizeof(info->mcr)), &info->mcr, sizeof(info->mcr));
281 memcpy(skb_push(skb, sizeof(__u32)), &ctc_tty_magic, sizeof(__u32));
282 rc = info->netdev->hard_start_xmit(skb, info->netdev);
283 if (rc) {
284 skb_pull(skb, sizeof(info->mcr) + sizeof(__u32));
285 if (skb->len > 0)
286 skb_queue_head(&info->tx_queue, skb);
287 else
288 kfree_skb(skb);
289 } else {
290 struct tty_struct *tty = info->tty;
291
292 info->flags &= ~CTC_ASYNC_TX_LINESTAT;
293 if (tty) {
294 tty_wakeup(tty);
295 }
296 }
297 return (skb_queue_empty(&info->tx_queue) ? 0 : 1);
298}
299
300/************************************************************
301 *
302 * Modem-functions
303 *
304 * mostly "stolen" from original Linux-serial.c and friends.
305 *
306 ************************************************************/
307
308static inline int
309ctc_tty_paranoia_check(ctc_tty_info * info, char *name, const char *routine)
310{
311#ifdef MODEM_PARANOIA_CHECK
312 if (!info) {
313 printk(KERN_WARNING "ctc_tty: null info_struct for %s in %s\n",
314 name, routine);
315 return 1;
316 }
317 if (info->magic != CTC_ASYNC_MAGIC) {
318 printk(KERN_WARNING "ctc_tty: bad magic for info struct %s in %s\n",
319 name, routine);
320 return 1;
321 }
322#endif
323 return 0;
324}
325
326static void
327ctc_tty_inject(ctc_tty_info *info, char c)
328{
329 int skb_res;
330 struct sk_buff *skb;
331
332 DBF_TEXT(trace, 4, __FUNCTION__);
333 if (ctc_tty_shuttingdown)
334 return;
335 skb_res = info->netdev->hard_header_len + sizeof(info->mcr) +
336 sizeof(__u32) + 1;
337 skb = dev_alloc_skb(skb_res);
338 if (!skb) {
339 printk(KERN_WARNING
340 "ctc_tty: Out of memory in %s%d tx_inject\n",
341 CTC_TTY_NAME, info->line);
342 return;
343 }
344 skb_reserve(skb, skb_res);
345 *(skb_put(skb, 1)) = c;
346 skb_queue_head(&info->tx_queue, skb);
347 tasklet_schedule(&info->tasklet);
348}
349
350static void
351ctc_tty_transmit_status(ctc_tty_info *info)
352{
353 DBF_TEXT(trace, 5, __FUNCTION__);
354 if (ctc_tty_shuttingdown)
355 return;
356 info->flags |= CTC_ASYNC_TX_LINESTAT;
357 tasklet_schedule(&info->tasklet);
358}
359
360static void
361ctc_tty_change_speed(ctc_tty_info * info)
362{
363 unsigned int cflag;
364 unsigned int quot;
365 int i;
366
367 DBF_TEXT(trace, 3, __FUNCTION__);
368 if (!info->tty || !info->tty->termios)
369 return;
370 cflag = info->tty->termios->c_cflag;
371
372 quot = i = cflag & CBAUD;
373 if (i & CBAUDEX) {
374 i &= ~CBAUDEX;
375 if (i < 1 || i > 2)
376 info->tty->termios->c_cflag &= ~CBAUDEX;
377 else
378 i += 15;
379 }
380 if (quot) {
381 info->mcr |= UART_MCR_DTR;
382 info->mcr |= UART_MCR_RTS;
383 ctc_tty_transmit_status(info);
384 } else {
385 info->mcr &= ~UART_MCR_DTR;
386 info->mcr &= ~UART_MCR_RTS;
387 ctc_tty_transmit_status(info);
388 return;
389 }
390
391 /* CTS flow control flag and modem status interrupts */
392 if (cflag & CRTSCTS) {
393 info->flags |= CTC_ASYNC_CTS_FLOW;
394 } else
395 info->flags &= ~CTC_ASYNC_CTS_FLOW;
396 if (cflag & CLOCAL)
397 info->flags &= ~CTC_ASYNC_CHECK_CD;
398 else {
399 info->flags |= CTC_ASYNC_CHECK_CD;
400 }
401}
402
403static int
404ctc_tty_startup(ctc_tty_info * info)
405{
406 DBF_TEXT(trace, 3, __FUNCTION__);
407 if (info->flags & CTC_ASYNC_INITIALIZED)
408 return 0;
409#ifdef CTC_DEBUG_MODEM_OPEN
410 printk(KERN_DEBUG "starting up %s%d ...\n", CTC_TTY_NAME, info->line);
411#endif
412 /*
413 * Now, initialize the UART
414 */
415 info->mcr = UART_MCR_DTR | UART_MCR_RTS | UART_MCR_OUT2;
416 if (info->tty)
417 clear_bit(TTY_IO_ERROR, &info->tty->flags);
418 /*
419 * and set the speed of the serial port
420 */
421 ctc_tty_change_speed(info);
422
423 info->flags |= CTC_ASYNC_INITIALIZED;
424 if (!(info->flags & CTC_ASYNC_NETDEV_OPEN))
425 info->netdev->open(info->netdev);
426 info->flags |= CTC_ASYNC_NETDEV_OPEN;
427 return 0;
428}
429
430static void
431ctc_tty_stopdev(unsigned long data)
432{
433 ctc_tty_info *info = (ctc_tty_info *)data;
434
435 if ((!info) || (!info->netdev) ||
436 (info->flags & CTC_ASYNC_INITIALIZED))
437 return;
438 info->netdev->stop(info->netdev);
439 info->flags &= ~CTC_ASYNC_NETDEV_OPEN;
440}
441
442/*
443 * This routine will shutdown a serial port; interrupts are disabled, and
444 * DTR is dropped if the hangup on close termio flag is on.
445 */
446static void
447ctc_tty_shutdown(ctc_tty_info * info)
448{
449 DBF_TEXT(trace, 3, __FUNCTION__);
450 if (!(info->flags & CTC_ASYNC_INITIALIZED))
451 return;
452#ifdef CTC_DEBUG_MODEM_OPEN
453 printk(KERN_DEBUG "Shutting down %s%d ....\n", CTC_TTY_NAME, info->line);
454#endif
455 info->msr &= ~UART_MSR_RI;
456 if (!info->tty || (info->tty->termios->c_cflag & HUPCL))
457 info->mcr &= ~(UART_MCR_DTR | UART_MCR_RTS);
458 if (info->tty)
459 set_bit(TTY_IO_ERROR, &info->tty->flags);
460 mod_timer(&info->stoptimer, jiffies + (10 * HZ));
461 skb_queue_purge(&info->tx_queue);
462 skb_queue_purge(&info->rx_queue);
463 info->flags &= ~CTC_ASYNC_INITIALIZED;
464}
465
466/* ctc_tty_write() is the main send-routine. It is called from the upper
467 * levels within the kernel to perform sending data. Depending on the
468 * online-flag it either directs output to the at-command-interpreter or
469 * to the lower level. Additional tasks done here:
470 * - If online, check for escape-sequence (+++)
471 * - If sending audio-data, call ctc_tty_DLEdown() to parse DLE-codes.
472 * - If receiving audio-data, call ctc_tty_end_vrx() to abort if needed.
473 * - If dialing, abort dial.
474 */
475static int
476ctc_tty_write(struct tty_struct *tty, const u_char * buf, int count)
477{
478 int c;
479 int total = 0;
480 ctc_tty_info *info = (ctc_tty_info *) tty->driver_data;
481
482 DBF_TEXT(trace, 5, __FUNCTION__);
483 if (ctc_tty_shuttingdown)
484 goto ex;
485 if (ctc_tty_paranoia_check(info, tty->name, "ctc_tty_write"))
486 goto ex;
487 if (!tty)
488 goto ex;
489 if (!info->netdev) {
490 total = -ENODEV;
491 goto ex;
492 }
493 while (1) {
494 struct sk_buff *skb;
495 int skb_res;
496
497 c = (count < CTC_TTY_XMIT_SIZE) ? count : CTC_TTY_XMIT_SIZE;
498 if (c <= 0)
499 break;
500
501 skb_res = info->netdev->hard_header_len + sizeof(info->mcr) +
502 + sizeof(__u32);
503 skb = dev_alloc_skb(skb_res + c);
504 if (!skb) {
505 printk(KERN_WARNING
506 "ctc_tty: Out of memory in %s%d write\n",
507 CTC_TTY_NAME, info->line);
508 break;
509 }
510 skb_reserve(skb, skb_res);
511 memcpy(skb_put(skb, c), buf, c);
512 skb_queue_tail(&info->tx_queue, skb);
513 buf += c;
514 total += c;
515 count -= c;
516 }
517 if (!skb_queue_empty(&info->tx_queue)) {
518 info->lsr &= ~UART_LSR_TEMT;
519 tasklet_schedule(&info->tasklet);
520 }
521ex:
522 DBF_TEXT(trace, 6, __FUNCTION__);
523 return total;
524}
525
526static int
527ctc_tty_write_room(struct tty_struct *tty)
528{
529 ctc_tty_info *info = (ctc_tty_info *) tty->driver_data;
530
531 if (ctc_tty_paranoia_check(info, tty->name, "ctc_tty_write_room"))
532 return 0;
533 return CTC_TTY_XMIT_SIZE;
534}
535
536static int
537ctc_tty_chars_in_buffer(struct tty_struct *tty)
538{
539 ctc_tty_info *info = (ctc_tty_info *) tty->driver_data;
540
541 if (ctc_tty_paranoia_check(info, tty->name, "ctc_tty_chars_in_buffer"))
542 return 0;
543 return 0;
544}
545
546static void
547ctc_tty_flush_buffer(struct tty_struct *tty)
548{
549 ctc_tty_info *info;
550 unsigned long flags;
551
552 DBF_TEXT(trace, 4, __FUNCTION__);
553 if (!tty)
554 goto ex;
555 spin_lock_irqsave(&ctc_tty_lock, flags);
556 info = (ctc_tty_info *) tty->driver_data;
557 if (ctc_tty_paranoia_check(info, tty->name, "ctc_tty_flush_buffer")) {
558 spin_unlock_irqrestore(&ctc_tty_lock, flags);
559 goto ex;
560 }
561 skb_queue_purge(&info->tx_queue);
562 info->lsr |= UART_LSR_TEMT;
563 spin_unlock_irqrestore(&ctc_tty_lock, flags);
564 wake_up_interruptible(&tty->write_wait);
565 tty_wakeup(tty);
566ex:
567 DBF_TEXT_(trace, 2, "ex: %s ", __FUNCTION__);
568 return;
569}
570
571static void
572ctc_tty_flush_chars(struct tty_struct *tty)
573{
574 ctc_tty_info *info = (ctc_tty_info *) tty->driver_data;
575
576 DBF_TEXT(trace, 4, __FUNCTION__);
577 if (ctc_tty_shuttingdown)
578 return;
579 if (ctc_tty_paranoia_check(info, tty->name, "ctc_tty_flush_chars"))
580 return;
581 if (tty->stopped || tty->hw_stopped || skb_queue_empty(&info->tx_queue))
582 return;
583 tasklet_schedule(&info->tasklet);
584}
585
586/*
587 * ------------------------------------------------------------
588 * ctc_tty_throttle()
589 *
590 * This routine is called by the upper-layer tty layer to signal that
591 * incoming characters should be throttled.
592 * ------------------------------------------------------------
593 */
594static void
595ctc_tty_throttle(struct tty_struct *tty)
596{
597 ctc_tty_info *info = (ctc_tty_info *) tty->driver_data;
598
599 DBF_TEXT(trace, 4, __FUNCTION__);
600 if (ctc_tty_paranoia_check(info, tty->name, "ctc_tty_throttle"))
601 return;
602 info->mcr &= ~UART_MCR_RTS;
603 if (I_IXOFF(tty))
604 ctc_tty_inject(info, STOP_CHAR(tty));
605 ctc_tty_transmit_status(info);
606}
607
608static void
609ctc_tty_unthrottle(struct tty_struct *tty)
610{
611 ctc_tty_info *info = (ctc_tty_info *) tty->driver_data;
612
613 DBF_TEXT(trace, 4, __FUNCTION__);
614 if (ctc_tty_paranoia_check(info, tty->name, "ctc_tty_unthrottle"))
615 return;
616 info->mcr |= UART_MCR_RTS;
617 if (I_IXOFF(tty))
618 ctc_tty_inject(info, START_CHAR(tty));
619 ctc_tty_transmit_status(info);
620}
621
622/*
623 * ------------------------------------------------------------
624 * ctc_tty_ioctl() and friends
625 * ------------------------------------------------------------
626 */
627
628/*
629 * ctc_tty_get_lsr_info - get line status register info
630 *
631 * Purpose: Let user call ioctl() to get info when the UART physically
632 * is emptied. On bus types like RS485, the transmitter must
633 * release the bus after transmitting. This must be done when
634 * the transmit shift register is empty, not be done when the
635 * transmit holding register is empty. This functionality
636 * allows RS485 driver to be written in user space.
637 */
638static int
639ctc_tty_get_lsr_info(ctc_tty_info * info, uint __user *value)
640{
641 u_char status;
642 uint result;
643 ulong flags;
644
645 DBF_TEXT(trace, 4, __FUNCTION__);
646 spin_lock_irqsave(&ctc_tty_lock, flags);
647 status = info->lsr;
648 spin_unlock_irqrestore(&ctc_tty_lock, flags);
649 result = ((status & UART_LSR_TEMT) ? TIOCSER_TEMT : 0);
650 put_user(result, value);
651 return 0;
652}
653
654
655static int ctc_tty_tiocmget(struct tty_struct *tty, struct file *file)
656{
657 ctc_tty_info *info = (ctc_tty_info *) tty->driver_data;
658 u_char control,
659 status;
660 uint result;
661 ulong flags;
662
663 DBF_TEXT(trace, 4, __FUNCTION__);
664 if (ctc_tty_paranoia_check(info, tty->name, "ctc_tty_ioctl"))
665 return -ENODEV;
666 if (tty->flags & (1 << TTY_IO_ERROR))
667 return -EIO;
668
669 control = info->mcr;
670 spin_lock_irqsave(&ctc_tty_lock, flags);
671 status = info->msr;
672 spin_unlock_irqrestore(&ctc_tty_lock, flags);
673 result = ((control & UART_MCR_RTS) ? TIOCM_RTS : 0)
674 | ((control & UART_MCR_DTR) ? TIOCM_DTR : 0)
675 | ((status & UART_MSR_DCD) ? TIOCM_CAR : 0)
676 | ((status & UART_MSR_RI) ? TIOCM_RNG : 0)
677 | ((status & UART_MSR_DSR) ? TIOCM_DSR : 0)
678 | ((status & UART_MSR_CTS) ? TIOCM_CTS : 0);
679 return result;
680}
681
682static int
683ctc_tty_tiocmset(struct tty_struct *tty, struct file *file,
684 unsigned int set, unsigned int clear)
685{
686 ctc_tty_info *info = (ctc_tty_info *) tty->driver_data;
687
688 DBF_TEXT(trace, 4, __FUNCTION__);
689 if (ctc_tty_paranoia_check(info, tty->name, "ctc_tty_ioctl"))
690 return -ENODEV;
691 if (tty->flags & (1 << TTY_IO_ERROR))
692 return -EIO;
693
694 if (set & TIOCM_RTS)
695 info->mcr |= UART_MCR_RTS;
696 if (set & TIOCM_DTR)
697 info->mcr |= UART_MCR_DTR;
698
699 if (clear & TIOCM_RTS)
700 info->mcr &= ~UART_MCR_RTS;
701 if (clear & TIOCM_DTR)
702 info->mcr &= ~UART_MCR_DTR;
703
704 if ((set | clear) & (TIOCM_RTS|TIOCM_DTR))
705 ctc_tty_transmit_status(info);
706 return 0;
707}
708
709static int
710ctc_tty_ioctl(struct tty_struct *tty, struct file *file,
711 uint cmd, ulong arg)
712{
713 ctc_tty_info *info = (ctc_tty_info *) tty->driver_data;
714 int error;
715 int retval;
716
717 DBF_TEXT(trace, 4, __FUNCTION__);
718 if (ctc_tty_paranoia_check(info, tty->name, "ctc_tty_ioctl"))
719 return -ENODEV;
720 if (tty->flags & (1 << TTY_IO_ERROR))
721 return -EIO;
722 switch (cmd) {
723 case TCSBRK: /* SVID version: non-zero arg --> no break */
724#ifdef CTC_DEBUG_MODEM_IOCTL
725 printk(KERN_DEBUG "%s%d ioctl TCSBRK\n", CTC_TTY_NAME, info->line);
726#endif
727 retval = tty_check_change(tty);
728 if (retval)
729 return retval;
730 tty_wait_until_sent(tty, 0);
731 return 0;
732 case TCSBRKP: /* support for POSIX tcsendbreak() */
733#ifdef CTC_DEBUG_MODEM_IOCTL
734 printk(KERN_DEBUG "%s%d ioctl TCSBRKP\n", CTC_TTY_NAME, info->line);
735#endif
736 retval = tty_check_change(tty);
737 if (retval)
738 return retval;
739 tty_wait_until_sent(tty, 0);
740 return 0;
741 case TIOCGSOFTCAR:
742#ifdef CTC_DEBUG_MODEM_IOCTL
743 printk(KERN_DEBUG "%s%d ioctl TIOCGSOFTCAR\n", CTC_TTY_NAME,
744 info->line);
745#endif
746 error = put_user(C_CLOCAL(tty) ? 1 : 0, (ulong __user *) arg);
747 return error;
748 case TIOCSSOFTCAR:
749#ifdef CTC_DEBUG_MODEM_IOCTL
750 printk(KERN_DEBUG "%s%d ioctl TIOCSSOFTCAR\n", CTC_TTY_NAME,
751 info->line);
752#endif
753 error = get_user(arg, (ulong __user *) arg);
754 if (error)
755 return error;
756 tty->termios->c_cflag =
757 ((tty->termios->c_cflag & ~CLOCAL) |
758 (arg ? CLOCAL : 0));
759 return 0;
760 case TIOCSERGETLSR: /* Get line status register */
761#ifdef CTC_DEBUG_MODEM_IOCTL
762 printk(KERN_DEBUG "%s%d ioctl TIOCSERGETLSR\n", CTC_TTY_NAME,
763 info->line);
764#endif
765 if (access_ok(VERIFY_WRITE, (void __user *) arg, sizeof(uint)))
766 return ctc_tty_get_lsr_info(info, (uint __user *) arg);
767 else
768 return -EFAULT;
769 default:
770#ifdef CTC_DEBUG_MODEM_IOCTL
771 printk(KERN_DEBUG "UNKNOWN ioctl 0x%08x on %s%d\n", cmd,
772 CTC_TTY_NAME, info->line);
773#endif
774 return -ENOIOCTLCMD;
775 }
776 return 0;
777}
778
779static void
780ctc_tty_set_termios(struct tty_struct *tty, struct termios *old_termios)
781{
782 ctc_tty_info *info = (ctc_tty_info *) tty->driver_data;
783 unsigned int cflag = tty->termios->c_cflag;
784
785 DBF_TEXT(trace, 4, __FUNCTION__);
786 ctc_tty_change_speed(info);
787
788 /* Handle transition to B0 */
789 if ((old_termios->c_cflag & CBAUD) && !(cflag & CBAUD)) {
790 info->mcr &= ~(UART_MCR_DTR|UART_MCR_RTS);
791 ctc_tty_transmit_status(info);
792 }
793
794 /* Handle transition from B0 to other */
795 if (!(old_termios->c_cflag & CBAUD) && (cflag & CBAUD)) {
796 info->mcr |= UART_MCR_DTR;
797 if (!(tty->termios->c_cflag & CRTSCTS) ||
798 !test_bit(TTY_THROTTLED, &tty->flags)) {
799 info->mcr |= UART_MCR_RTS;
800 }
801 ctc_tty_transmit_status(info);
802 }
803
804 /* Handle turning off CRTSCTS */
805 if ((old_termios->c_cflag & CRTSCTS) &&
806 !(tty->termios->c_cflag & CRTSCTS))
807 tty->hw_stopped = 0;
808}
809
810/*
811 * ------------------------------------------------------------
812 * ctc_tty_open() and friends
813 * ------------------------------------------------------------
814 */
815static int
816ctc_tty_block_til_ready(struct tty_struct *tty, struct file *filp, ctc_tty_info *info)
817{
818 DECLARE_WAITQUEUE(wait, NULL);
819 int do_clocal = 0;
820 unsigned long flags;
821 int retval;
822
823 DBF_TEXT(trace, 4, __FUNCTION__);
824 /*
825 * If the device is in the middle of being closed, then block
826 * until it's done, and then try again.
827 */
828 if (tty_hung_up_p(filp) ||
829 (info->flags & CTC_ASYNC_CLOSING)) {
830 if (info->flags & CTC_ASYNC_CLOSING)
831 wait_event(info->close_wait,
832 !(info->flags & CTC_ASYNC_CLOSING));
833#ifdef MODEM_DO_RESTART
834 if (info->flags & CTC_ASYNC_HUP_NOTIFY)
835 return -EAGAIN;
836 else
837 return -ERESTARTSYS;
838#else
839 return -EAGAIN;
840#endif
841 }
842 /*
843 * If non-blocking mode is set, then make the check up front
844 * and then exit.
845 */
846 if ((filp->f_flags & O_NONBLOCK) ||
847 (tty->flags & (1 << TTY_IO_ERROR))) {
848 info->flags |= CTC_ASYNC_NORMAL_ACTIVE;
849 return 0;
850 }
851 if (tty->termios->c_cflag & CLOCAL)
852 do_clocal = 1;
853 /*
854 * Block waiting for the carrier detect and the line to become
855 * free (i.e., not in use by the callout). While we are in
856 * this loop, info->count is dropped by one, so that
857 * ctc_tty_close() knows when to free things. We restore it upon
858 * exit, either normal or abnormal.
859 */
860 retval = 0;
861 add_wait_queue(&info->open_wait, &wait);
862#ifdef CTC_DEBUG_MODEM_OPEN
863 printk(KERN_DEBUG "ctc_tty_block_til_ready before block: %s%d, count = %d\n",
864 CTC_TTY_NAME, info->line, info->count);
865#endif
866 spin_lock_irqsave(&ctc_tty_lock, flags);
867 if (!(tty_hung_up_p(filp)))
868 info->count--;
869 spin_unlock_irqrestore(&ctc_tty_lock, flags);
870 info->blocked_open++;
871 while (1) {
872 set_current_state(TASK_INTERRUPTIBLE);
873 if (tty_hung_up_p(filp) ||
874 !(info->flags & CTC_ASYNC_INITIALIZED)) {
875#ifdef MODEM_DO_RESTART
876 if (info->flags & CTC_ASYNC_HUP_NOTIFY)
877 retval = -EAGAIN;
878 else
879 retval = -ERESTARTSYS;
880#else
881 retval = -EAGAIN;
882#endif
883 break;
884 }
885 if (!(info->flags & CTC_ASYNC_CLOSING) &&
886 (do_clocal || (info->msr & UART_MSR_DCD))) {
887 break;
888 }
889 if (signal_pending(current)) {
890 retval = -ERESTARTSYS;
891 break;
892 }
893#ifdef CTC_DEBUG_MODEM_OPEN
894 printk(KERN_DEBUG "ctc_tty_block_til_ready blocking: %s%d, count = %d\n",
895 CTC_TTY_NAME, info->line, info->count);
896#endif
897 schedule();
898 }
899 current->state = TASK_RUNNING;
900 remove_wait_queue(&info->open_wait, &wait);
901 if (!tty_hung_up_p(filp))
902 info->count++;
903 info->blocked_open--;
904#ifdef CTC_DEBUG_MODEM_OPEN
905 printk(KERN_DEBUG "ctc_tty_block_til_ready after blocking: %s%d, count = %d\n",
906 CTC_TTY_NAME, info->line, info->count);
907#endif
908 if (retval)
909 return retval;
910 info->flags |= CTC_ASYNC_NORMAL_ACTIVE;
911 return 0;
912}
913
914/*
915 * This routine is called whenever a serial port is opened. It
916 * enables interrupts for a serial port, linking in its async structure into
917 * the IRQ chain. It also performs the serial-specific
918 * initialization for the tty structure.
919 */
920static int
921ctc_tty_open(struct tty_struct *tty, struct file *filp)
922{
923 ctc_tty_info *info;
924 unsigned long saveflags;
925 int retval,
926 line;
927
928 DBF_TEXT(trace, 3, __FUNCTION__);
929 line = tty->index;
930 if (line < 0 || line > CTC_TTY_MAX_DEVICES)
931 return -ENODEV;
932 info = &driver->info[line];
933 if (ctc_tty_paranoia_check(info, tty->name, "ctc_tty_open"))
934 return -ENODEV;
935 if (!info->netdev)
936 return -ENODEV;
937#ifdef CTC_DEBUG_MODEM_OPEN
938 printk(KERN_DEBUG "ctc_tty_open %s, count = %d\n", tty->name,
939 info->count);
940#endif
941 spin_lock_irqsave(&ctc_tty_lock, saveflags);
942 info->count++;
943 tty->driver_data = info;
944 info->tty = tty;
945 spin_unlock_irqrestore(&ctc_tty_lock, saveflags);
946 /*
947 * Start up serial port
948 */
949 retval = ctc_tty_startup(info);
950 if (retval) {
951#ifdef CTC_DEBUG_MODEM_OPEN
952 printk(KERN_DEBUG "ctc_tty_open return after startup\n");
953#endif
954 return retval;
955 }
956 retval = ctc_tty_block_til_ready(tty, filp, info);
957 if (retval) {
958#ifdef CTC_DEBUG_MODEM_OPEN
959 printk(KERN_DEBUG "ctc_tty_open return after ctc_tty_block_til_ready \n");
960#endif
961 return retval;
962 }
963#ifdef CTC_DEBUG_MODEM_OPEN
964 printk(KERN_DEBUG "ctc_tty_open %s successful...\n", tty->name);
965#endif
966 return 0;
967}
968
969static void
970ctc_tty_close(struct tty_struct *tty, struct file *filp)
971{
972 ctc_tty_info *info = (ctc_tty_info *) tty->driver_data;
973 ulong flags;
974 ulong timeout;
975 DBF_TEXT(trace, 3, __FUNCTION__);
976 if (!info || ctc_tty_paranoia_check(info, tty->name, "ctc_tty_close"))
977 return;
978 spin_lock_irqsave(&ctc_tty_lock, flags);
979 if (tty_hung_up_p(filp)) {
980 spin_unlock_irqrestore(&ctc_tty_lock, flags);
981#ifdef CTC_DEBUG_MODEM_OPEN
982 printk(KERN_DEBUG "ctc_tty_close return after tty_hung_up_p\n");
983#endif
984 return;
985 }
986 if ((tty->count == 1) && (info->count != 1)) {
987 /*
988 * Uh, oh. tty->count is 1, which means that the tty
989 * structure will be freed. Info->count should always
990 * be one in these conditions. If it's greater than
991 * one, we've got real problems, since it means the
992 * serial port won't be shutdown.
993 */
994 printk(KERN_ERR "ctc_tty_close: bad port count; tty->count is 1, "
995 "info->count is %d\n", info->count);
996 info->count = 1;
997 }
998 if (--info->count < 0) {
999 printk(KERN_ERR "ctc_tty_close: bad port count for %s%d: %d\n",
1000 CTC_TTY_NAME, info->line, info->count);
1001 info->count = 0;
1002 }
1003 if (info->count) {
1004 local_irq_restore(flags);
1005#ifdef CTC_DEBUG_MODEM_OPEN
1006 printk(KERN_DEBUG "ctc_tty_close after info->count != 0\n");
1007#endif
1008 return;
1009 }
1010 info->flags |= CTC_ASYNC_CLOSING;
1011 tty->closing = 1;
1012 /*
1013 * At this point we stop accepting input. To do this, we
1014 * disable the receive line status interrupts, and tell the
1015 * interrupt driver to stop checking the data ready bit in the
1016 * line status register.
1017 */
1018 if (info->flags & CTC_ASYNC_INITIALIZED) {
1019 tty_wait_until_sent(tty, 30*HZ); /* 30 seconds timeout */
1020 /*
1021 * Before we drop DTR, make sure the UART transmitter
1022 * has completely drained; this is especially
1023 * important if there is a transmit FIFO!
1024 */
1025 timeout = jiffies + HZ;
1026 while (!(info->lsr & UART_LSR_TEMT)) {
1027 spin_unlock_irqrestore(&ctc_tty_lock, flags);
1028 msleep(500);
1029 spin_lock_irqsave(&ctc_tty_lock, flags);
1030 if (time_after(jiffies,timeout))
1031 break;
1032 }
1033 }
1034 ctc_tty_shutdown(info);
1035 if (tty->driver->flush_buffer) {
1036 skb_queue_purge(&info->tx_queue);
1037 info->lsr |= UART_LSR_TEMT;
1038 }
1039 tty_ldisc_flush(tty);
1040 info->tty = 0;
1041 tty->closing = 0;
1042 if (info->blocked_open) {
1043 msleep_interruptible(500);
1044 wake_up_interruptible(&info->open_wait);
1045 }
1046 info->flags &= ~(CTC_ASYNC_NORMAL_ACTIVE | CTC_ASYNC_CLOSING);
1047 wake_up_interruptible(&info->close_wait);
1048 spin_unlock_irqrestore(&ctc_tty_lock, flags);
1049#ifdef CTC_DEBUG_MODEM_OPEN
1050 printk(KERN_DEBUG "ctc_tty_close normal exit\n");
1051#endif
1052}
1053
1054/*
1055 * ctc_tty_hangup() --- called by tty_hangup() when a hangup is signaled.
1056 */
1057static void
1058ctc_tty_hangup(struct tty_struct *tty)
1059{
1060 ctc_tty_info *info = (ctc_tty_info *)tty->driver_data;
1061 unsigned long saveflags;
1062 DBF_TEXT(trace, 3, __FUNCTION__);
1063 if (ctc_tty_paranoia_check(info, tty->name, "ctc_tty_hangup"))
1064 return;
1065 ctc_tty_shutdown(info);
1066 info->count = 0;
1067 info->flags &= ~CTC_ASYNC_NORMAL_ACTIVE;
1068 spin_lock_irqsave(&ctc_tty_lock, saveflags);
1069 info->tty = 0;
1070 spin_unlock_irqrestore(&ctc_tty_lock, saveflags);
1071 wake_up_interruptible(&info->open_wait);
1072}
1073
1074
1075/*
1076 * For all online tty's, try sending data to
1077 * the lower levels.
1078 */
1079static void
1080ctc_tty_task(unsigned long arg)
1081{
1082 ctc_tty_info *info = (void *)arg;
1083 unsigned long saveflags;
1084 int again;
1085
1086 DBF_TEXT(trace, 3, __FUNCTION__);
1087 spin_lock_irqsave(&ctc_tty_lock, saveflags);
1088 if ((!ctc_tty_shuttingdown) && info) {
1089 again = ctc_tty_tint(info);
1090 if (!again)
1091 info->lsr |= UART_LSR_TEMT;
1092 again |= ctc_tty_readmodem(info);
1093 if (again) {
1094 tasklet_schedule(&info->tasklet);
1095 }
1096 }
1097 spin_unlock_irqrestore(&ctc_tty_lock, saveflags);
1098}
1099
1100static struct tty_operations ctc_ops = {
1101 .open = ctc_tty_open,
1102 .close = ctc_tty_close,
1103 .write = ctc_tty_write,
1104 .flush_chars = ctc_tty_flush_chars,
1105 .write_room = ctc_tty_write_room,
1106 .chars_in_buffer = ctc_tty_chars_in_buffer,
1107 .flush_buffer = ctc_tty_flush_buffer,
1108 .ioctl = ctc_tty_ioctl,
1109 .throttle = ctc_tty_throttle,
1110 .unthrottle = ctc_tty_unthrottle,
1111 .set_termios = ctc_tty_set_termios,
1112 .hangup = ctc_tty_hangup,
1113 .tiocmget = ctc_tty_tiocmget,
1114 .tiocmset = ctc_tty_tiocmset,
1115};
1116
1117int
1118ctc_tty_init(void)
1119{
1120 int i;
1121 ctc_tty_info *info;
1122 struct tty_driver *device;
1123
1124 DBF_TEXT(trace, 2, __FUNCTION__);
1125 driver = kmalloc(sizeof(ctc_tty_driver), GFP_KERNEL);
1126 if (driver == NULL) {
1127 printk(KERN_WARNING "Out of memory in ctc_tty_modem_init\n");
1128 return -ENOMEM;
1129 }
1130 memset(driver, 0, sizeof(ctc_tty_driver));
1131 device = alloc_tty_driver(CTC_TTY_MAX_DEVICES);
1132 if (!device) {
1133 kfree(driver);
1134 printk(KERN_WARNING "Out of memory in ctc_tty_modem_init\n");
1135 return -ENOMEM;
1136 }
1137
1138 device->devfs_name = "ctc/" CTC_TTY_NAME;
1139 device->name = CTC_TTY_NAME;
1140 device->major = CTC_TTY_MAJOR;
1141 device->minor_start = 0;
1142 device->type = TTY_DRIVER_TYPE_SERIAL;
1143 device->subtype = SERIAL_TYPE_NORMAL;
1144 device->init_termios = tty_std_termios;
1145 device->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL;
1146 device->flags = TTY_DRIVER_REAL_RAW;
1147 device->driver_name = "ctc_tty",
1148 tty_set_operations(device, &ctc_ops);
1149 if (tty_register_driver(device)) {
1150 printk(KERN_WARNING "ctc_tty: Couldn't register serial-device\n");
1151 put_tty_driver(device);
1152 kfree(driver);
1153 return -1;
1154 }
1155 driver->ctc_tty_device = device;
1156 for (i = 0; i < CTC_TTY_MAX_DEVICES; i++) {
1157 info = &driver->info[i];
1158 init_MUTEX(&info->write_sem);
1159 tasklet_init(&info->tasklet, ctc_tty_task,
1160 (unsigned long) info);
1161 info->magic = CTC_ASYNC_MAGIC;
1162 info->line = i;
1163 info->tty = 0;
1164 info->count = 0;
1165 info->blocked_open = 0;
1166 init_waitqueue_head(&info->open_wait);
1167 init_waitqueue_head(&info->close_wait);
1168 skb_queue_head_init(&info->tx_queue);
1169 skb_queue_head_init(&info->rx_queue);
1170 init_timer(&info->stoptimer);
1171 info->stoptimer.function = ctc_tty_stopdev;
1172 info->stoptimer.data = (unsigned long)info;
1173 info->mcr = UART_MCR_RTS;
1174 }
1175 return 0;
1176}
1177
1178int
1179ctc_tty_register_netdev(struct net_device *dev) {
1180 int ttynum;
1181 char *err;
1182 char *p;
1183
1184 DBF_TEXT(trace, 2, __FUNCTION__);
1185 if ((!dev) || (!dev->name)) {
1186 printk(KERN_WARNING
1187 "ctc_tty_register_netdev called "
1188 "with NULL dev or NULL dev-name\n");
1189 return -1;
1190 }
1191
1192 /*
1193 * If the name is a format string the caller wants us to
1194 * do a name allocation : format string must end with %d
1195 */
1196 if (strchr(dev->name, '%'))
1197 {
1198 int err = dev_alloc_name(dev, dev->name); // dev->name is changed by this
1199 if (err < 0) {
1200 printk(KERN_DEBUG "dev_alloc returned error %d\n", err);
1201 return err;
1202 }
1203
1204 }
1205
1206 for (p = dev->name; p && ((*p < '0') || (*p > '9')); p++);
1207 ttynum = simple_strtoul(p, &err, 0);
1208 if ((ttynum < 0) || (ttynum >= CTC_TTY_MAX_DEVICES) ||
1209 (err && *err)) {
1210 printk(KERN_WARNING
1211 "ctc_tty_register_netdev called "
1212 "with number in name '%s'\n", dev->name);
1213 return -1;
1214 }
1215 if (driver->info[ttynum].netdev) {
1216 printk(KERN_WARNING
1217 "ctc_tty_register_netdev called "
1218 "for already registered device '%s'\n",
1219 dev->name);
1220 return -1;
1221 }
1222 driver->info[ttynum].netdev = dev;
1223 return 0;
1224}
1225
1226void
1227ctc_tty_unregister_netdev(struct net_device *dev) {
1228 int i;
1229 unsigned long saveflags;
1230 ctc_tty_info *info = NULL;
1231
1232 DBF_TEXT(trace, 2, __FUNCTION__);
1233 spin_lock_irqsave(&ctc_tty_lock, saveflags);
1234 for (i = 0; i < CTC_TTY_MAX_DEVICES; i++)
1235 if (driver->info[i].netdev == dev) {
1236 info = &driver->info[i];
1237 break;
1238 }
1239 if (info) {
1240 info->netdev = NULL;
1241 skb_queue_purge(&info->tx_queue);
1242 skb_queue_purge(&info->rx_queue);
1243 }
1244 spin_unlock_irqrestore(&ctc_tty_lock, saveflags);
1245}
1246
1247void
1248ctc_tty_cleanup(void) {
1249 unsigned long saveflags;
1250
1251 DBF_TEXT(trace, 2, __FUNCTION__);
1252 spin_lock_irqsave(&ctc_tty_lock, saveflags);
1253 ctc_tty_shuttingdown = 1;
1254 spin_unlock_irqrestore(&ctc_tty_lock, saveflags);
1255 tty_unregister_driver(driver->ctc_tty_device);
1256 put_tty_driver(driver->ctc_tty_device);
1257 kfree(driver);
1258 driver = NULL;
1259}
diff --git a/drivers/s390/net/ctctty.h b/drivers/s390/net/ctctty.h
deleted file mode 100644
index 7254dc006311..000000000000
--- a/drivers/s390/net/ctctty.h
+++ /dev/null
@@ -1,35 +0,0 @@
1/*
2 * CTC / ESCON network driver, tty interface.
3 *
4 * Copyright (C) 2001 IBM Deutschland Entwicklung GmbH, IBM Corporation
5 * Author(s): Fritz Elfert (elfert@de.ibm.com, felfert@millenux.com)
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22#ifndef _CTCTTY_H_
23#define _CTCTTY_H_
24
25#include <linux/skbuff.h>
26#include <linux/netdevice.h>
27
28extern int ctc_tty_register_netdev(struct net_device *);
29extern void ctc_tty_unregister_netdev(struct net_device *);
30extern void ctc_tty_netif_rx(struct sk_buff *);
31extern int ctc_tty_init(void);
32extern void ctc_tty_cleanup(void);
33extern void ctc_tty_setcarrier(struct net_device *, int);
34
35#endif