aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/iommu/amd_iommu.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/iommu/amd_iommu.c')
-rw-r--r--drivers/iommu/amd_iommu.c2810
1 files changed, 2810 insertions, 0 deletions
diff --git a/drivers/iommu/amd_iommu.c b/drivers/iommu/amd_iommu.c
new file mode 100644
index 000000000000..748eab063857
--- /dev/null
+++ b/drivers/iommu/amd_iommu.c
@@ -0,0 +1,2810 @@
1/*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/pci-ats.h>
22#include <linux/bitmap.h>
23#include <linux/slab.h>
24#include <linux/debugfs.h>
25#include <linux/scatterlist.h>
26#include <linux/dma-mapping.h>
27#include <linux/iommu-helper.h>
28#include <linux/iommu.h>
29#include <linux/delay.h>
30#include <linux/amd-iommu.h>
31#include <asm/proto.h>
32#include <asm/iommu.h>
33#include <asm/gart.h>
34#include <asm/dma.h>
35
36#include "amd_iommu_proto.h"
37#include "amd_iommu_types.h"
38
39#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
40
41#define LOOP_TIMEOUT 100000
42
43static DEFINE_RWLOCK(amd_iommu_devtable_lock);
44
45/* A list of preallocated protection domains */
46static LIST_HEAD(iommu_pd_list);
47static DEFINE_SPINLOCK(iommu_pd_list_lock);
48
49/* List of all available dev_data structures */
50static LIST_HEAD(dev_data_list);
51static DEFINE_SPINLOCK(dev_data_list_lock);
52
53/*
54 * Domain for untranslated devices - only allocated
55 * if iommu=pt passed on kernel cmd line.
56 */
57static struct protection_domain *pt_domain;
58
59static struct iommu_ops amd_iommu_ops;
60
61/*
62 * general struct to manage commands send to an IOMMU
63 */
64struct iommu_cmd {
65 u32 data[4];
66};
67
68static void update_domain(struct protection_domain *domain);
69
70/****************************************************************************
71 *
72 * Helper functions
73 *
74 ****************************************************************************/
75
76static struct iommu_dev_data *alloc_dev_data(u16 devid)
77{
78 struct iommu_dev_data *dev_data;
79 unsigned long flags;
80
81 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
82 if (!dev_data)
83 return NULL;
84
85 dev_data->devid = devid;
86 atomic_set(&dev_data->bind, 0);
87
88 spin_lock_irqsave(&dev_data_list_lock, flags);
89 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
90 spin_unlock_irqrestore(&dev_data_list_lock, flags);
91
92 return dev_data;
93}
94
95static void free_dev_data(struct iommu_dev_data *dev_data)
96{
97 unsigned long flags;
98
99 spin_lock_irqsave(&dev_data_list_lock, flags);
100 list_del(&dev_data->dev_data_list);
101 spin_unlock_irqrestore(&dev_data_list_lock, flags);
102
103 kfree(dev_data);
104}
105
106static struct iommu_dev_data *search_dev_data(u16 devid)
107{
108 struct iommu_dev_data *dev_data;
109 unsigned long flags;
110
111 spin_lock_irqsave(&dev_data_list_lock, flags);
112 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
113 if (dev_data->devid == devid)
114 goto out_unlock;
115 }
116
117 dev_data = NULL;
118
119out_unlock:
120 spin_unlock_irqrestore(&dev_data_list_lock, flags);
121
122 return dev_data;
123}
124
125static struct iommu_dev_data *find_dev_data(u16 devid)
126{
127 struct iommu_dev_data *dev_data;
128
129 dev_data = search_dev_data(devid);
130
131 if (dev_data == NULL)
132 dev_data = alloc_dev_data(devid);
133
134 return dev_data;
135}
136
137static inline u16 get_device_id(struct device *dev)
138{
139 struct pci_dev *pdev = to_pci_dev(dev);
140
141 return calc_devid(pdev->bus->number, pdev->devfn);
142}
143
144static struct iommu_dev_data *get_dev_data(struct device *dev)
145{
146 return dev->archdata.iommu;
147}
148
149/*
150 * In this function the list of preallocated protection domains is traversed to
151 * find the domain for a specific device
152 */
153static struct dma_ops_domain *find_protection_domain(u16 devid)
154{
155 struct dma_ops_domain *entry, *ret = NULL;
156 unsigned long flags;
157 u16 alias = amd_iommu_alias_table[devid];
158
159 if (list_empty(&iommu_pd_list))
160 return NULL;
161
162 spin_lock_irqsave(&iommu_pd_list_lock, flags);
163
164 list_for_each_entry(entry, &iommu_pd_list, list) {
165 if (entry->target_dev == devid ||
166 entry->target_dev == alias) {
167 ret = entry;
168 break;
169 }
170 }
171
172 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
173
174 return ret;
175}
176
177/*
178 * This function checks if the driver got a valid device from the caller to
179 * avoid dereferencing invalid pointers.
180 */
181static bool check_device(struct device *dev)
182{
183 u16 devid;
184
185 if (!dev || !dev->dma_mask)
186 return false;
187
188 /* No device or no PCI device */
189 if (dev->bus != &pci_bus_type)
190 return false;
191
192 devid = get_device_id(dev);
193
194 /* Out of our scope? */
195 if (devid > amd_iommu_last_bdf)
196 return false;
197
198 if (amd_iommu_rlookup_table[devid] == NULL)
199 return false;
200
201 return true;
202}
203
204static int iommu_init_device(struct device *dev)
205{
206 struct iommu_dev_data *dev_data;
207 u16 alias;
208
209 if (dev->archdata.iommu)
210 return 0;
211
212 dev_data = find_dev_data(get_device_id(dev));
213 if (!dev_data)
214 return -ENOMEM;
215
216 alias = amd_iommu_alias_table[dev_data->devid];
217 if (alias != dev_data->devid) {
218 struct iommu_dev_data *alias_data;
219
220 alias_data = find_dev_data(alias);
221 if (alias_data == NULL) {
222 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
223 dev_name(dev));
224 free_dev_data(dev_data);
225 return -ENOTSUPP;
226 }
227 dev_data->alias_data = alias_data;
228 }
229
230 dev->archdata.iommu = dev_data;
231
232 return 0;
233}
234
235static void iommu_ignore_device(struct device *dev)
236{
237 u16 devid, alias;
238
239 devid = get_device_id(dev);
240 alias = amd_iommu_alias_table[devid];
241
242 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
243 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
244
245 amd_iommu_rlookup_table[devid] = NULL;
246 amd_iommu_rlookup_table[alias] = NULL;
247}
248
249static void iommu_uninit_device(struct device *dev)
250{
251 /*
252 * Nothing to do here - we keep dev_data around for unplugged devices
253 * and reuse it when the device is re-plugged - not doing so would
254 * introduce a ton of races.
255 */
256}
257
258void __init amd_iommu_uninit_devices(void)
259{
260 struct iommu_dev_data *dev_data, *n;
261 struct pci_dev *pdev = NULL;
262
263 for_each_pci_dev(pdev) {
264
265 if (!check_device(&pdev->dev))
266 continue;
267
268 iommu_uninit_device(&pdev->dev);
269 }
270
271 /* Free all of our dev_data structures */
272 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
273 free_dev_data(dev_data);
274}
275
276int __init amd_iommu_init_devices(void)
277{
278 struct pci_dev *pdev = NULL;
279 int ret = 0;
280
281 for_each_pci_dev(pdev) {
282
283 if (!check_device(&pdev->dev))
284 continue;
285
286 ret = iommu_init_device(&pdev->dev);
287 if (ret == -ENOTSUPP)
288 iommu_ignore_device(&pdev->dev);
289 else if (ret)
290 goto out_free;
291 }
292
293 return 0;
294
295out_free:
296
297 amd_iommu_uninit_devices();
298
299 return ret;
300}
301#ifdef CONFIG_AMD_IOMMU_STATS
302
303/*
304 * Initialization code for statistics collection
305 */
306
307DECLARE_STATS_COUNTER(compl_wait);
308DECLARE_STATS_COUNTER(cnt_map_single);
309DECLARE_STATS_COUNTER(cnt_unmap_single);
310DECLARE_STATS_COUNTER(cnt_map_sg);
311DECLARE_STATS_COUNTER(cnt_unmap_sg);
312DECLARE_STATS_COUNTER(cnt_alloc_coherent);
313DECLARE_STATS_COUNTER(cnt_free_coherent);
314DECLARE_STATS_COUNTER(cross_page);
315DECLARE_STATS_COUNTER(domain_flush_single);
316DECLARE_STATS_COUNTER(domain_flush_all);
317DECLARE_STATS_COUNTER(alloced_io_mem);
318DECLARE_STATS_COUNTER(total_map_requests);
319
320static struct dentry *stats_dir;
321static struct dentry *de_fflush;
322
323static void amd_iommu_stats_add(struct __iommu_counter *cnt)
324{
325 if (stats_dir == NULL)
326 return;
327
328 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
329 &cnt->value);
330}
331
332static void amd_iommu_stats_init(void)
333{
334 stats_dir = debugfs_create_dir("amd-iommu", NULL);
335 if (stats_dir == NULL)
336 return;
337
338 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
339 (u32 *)&amd_iommu_unmap_flush);
340
341 amd_iommu_stats_add(&compl_wait);
342 amd_iommu_stats_add(&cnt_map_single);
343 amd_iommu_stats_add(&cnt_unmap_single);
344 amd_iommu_stats_add(&cnt_map_sg);
345 amd_iommu_stats_add(&cnt_unmap_sg);
346 amd_iommu_stats_add(&cnt_alloc_coherent);
347 amd_iommu_stats_add(&cnt_free_coherent);
348 amd_iommu_stats_add(&cross_page);
349 amd_iommu_stats_add(&domain_flush_single);
350 amd_iommu_stats_add(&domain_flush_all);
351 amd_iommu_stats_add(&alloced_io_mem);
352 amd_iommu_stats_add(&total_map_requests);
353}
354
355#endif
356
357/****************************************************************************
358 *
359 * Interrupt handling functions
360 *
361 ****************************************************************************/
362
363static void dump_dte_entry(u16 devid)
364{
365 int i;
366
367 for (i = 0; i < 8; ++i)
368 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
369 amd_iommu_dev_table[devid].data[i]);
370}
371
372static void dump_command(unsigned long phys_addr)
373{
374 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
375 int i;
376
377 for (i = 0; i < 4; ++i)
378 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
379}
380
381static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
382{
383 u32 *event = __evt;
384 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
385 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
386 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
387 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
388 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
389
390 printk(KERN_ERR "AMD-Vi: Event logged [");
391
392 switch (type) {
393 case EVENT_TYPE_ILL_DEV:
394 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
395 "address=0x%016llx flags=0x%04x]\n",
396 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
397 address, flags);
398 dump_dte_entry(devid);
399 break;
400 case EVENT_TYPE_IO_FAULT:
401 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
402 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
403 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
404 domid, address, flags);
405 break;
406 case EVENT_TYPE_DEV_TAB_ERR:
407 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
408 "address=0x%016llx flags=0x%04x]\n",
409 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
410 address, flags);
411 break;
412 case EVENT_TYPE_PAGE_TAB_ERR:
413 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
414 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
415 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
416 domid, address, flags);
417 break;
418 case EVENT_TYPE_ILL_CMD:
419 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
420 dump_command(address);
421 break;
422 case EVENT_TYPE_CMD_HARD_ERR:
423 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
424 "flags=0x%04x]\n", address, flags);
425 break;
426 case EVENT_TYPE_IOTLB_INV_TO:
427 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
428 "address=0x%016llx]\n",
429 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
430 address);
431 break;
432 case EVENT_TYPE_INV_DEV_REQ:
433 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
434 "address=0x%016llx flags=0x%04x]\n",
435 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
436 address, flags);
437 break;
438 default:
439 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
440 }
441}
442
443static void iommu_poll_events(struct amd_iommu *iommu)
444{
445 u32 head, tail;
446 unsigned long flags;
447
448 spin_lock_irqsave(&iommu->lock, flags);
449
450 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
451 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
452
453 while (head != tail) {
454 iommu_print_event(iommu, iommu->evt_buf + head);
455 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
456 }
457
458 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
459
460 spin_unlock_irqrestore(&iommu->lock, flags);
461}
462
463irqreturn_t amd_iommu_int_thread(int irq, void *data)
464{
465 struct amd_iommu *iommu;
466
467 for_each_iommu(iommu)
468 iommu_poll_events(iommu);
469
470 return IRQ_HANDLED;
471}
472
473irqreturn_t amd_iommu_int_handler(int irq, void *data)
474{
475 return IRQ_WAKE_THREAD;
476}
477
478/****************************************************************************
479 *
480 * IOMMU command queuing functions
481 *
482 ****************************************************************************/
483
484static int wait_on_sem(volatile u64 *sem)
485{
486 int i = 0;
487
488 while (*sem == 0 && i < LOOP_TIMEOUT) {
489 udelay(1);
490 i += 1;
491 }
492
493 if (i == LOOP_TIMEOUT) {
494 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
495 return -EIO;
496 }
497
498 return 0;
499}
500
501static void copy_cmd_to_buffer(struct amd_iommu *iommu,
502 struct iommu_cmd *cmd,
503 u32 tail)
504{
505 u8 *target;
506
507 target = iommu->cmd_buf + tail;
508 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
509
510 /* Copy command to buffer */
511 memcpy(target, cmd, sizeof(*cmd));
512
513 /* Tell the IOMMU about it */
514 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
515}
516
517static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
518{
519 WARN_ON(address & 0x7ULL);
520
521 memset(cmd, 0, sizeof(*cmd));
522 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
523 cmd->data[1] = upper_32_bits(__pa(address));
524 cmd->data[2] = 1;
525 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
526}
527
528static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
529{
530 memset(cmd, 0, sizeof(*cmd));
531 cmd->data[0] = devid;
532 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
533}
534
535static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
536 size_t size, u16 domid, int pde)
537{
538 u64 pages;
539 int s;
540
541 pages = iommu_num_pages(address, size, PAGE_SIZE);
542 s = 0;
543
544 if (pages > 1) {
545 /*
546 * If we have to flush more than one page, flush all
547 * TLB entries for this domain
548 */
549 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
550 s = 1;
551 }
552
553 address &= PAGE_MASK;
554
555 memset(cmd, 0, sizeof(*cmd));
556 cmd->data[1] |= domid;
557 cmd->data[2] = lower_32_bits(address);
558 cmd->data[3] = upper_32_bits(address);
559 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
560 if (s) /* size bit - we flush more than one 4kb page */
561 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
562 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
563 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
564}
565
566static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
567 u64 address, size_t size)
568{
569 u64 pages;
570 int s;
571
572 pages = iommu_num_pages(address, size, PAGE_SIZE);
573 s = 0;
574
575 if (pages > 1) {
576 /*
577 * If we have to flush more than one page, flush all
578 * TLB entries for this domain
579 */
580 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
581 s = 1;
582 }
583
584 address &= PAGE_MASK;
585
586 memset(cmd, 0, sizeof(*cmd));
587 cmd->data[0] = devid;
588 cmd->data[0] |= (qdep & 0xff) << 24;
589 cmd->data[1] = devid;
590 cmd->data[2] = lower_32_bits(address);
591 cmd->data[3] = upper_32_bits(address);
592 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
593 if (s)
594 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
595}
596
597static void build_inv_all(struct iommu_cmd *cmd)
598{
599 memset(cmd, 0, sizeof(*cmd));
600 CMD_SET_TYPE(cmd, CMD_INV_ALL);
601}
602
603/*
604 * Writes the command to the IOMMUs command buffer and informs the
605 * hardware about the new command.
606 */
607static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
608{
609 u32 left, tail, head, next_tail;
610 unsigned long flags;
611
612 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
613
614again:
615 spin_lock_irqsave(&iommu->lock, flags);
616
617 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
618 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
619 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
620 left = (head - next_tail) % iommu->cmd_buf_size;
621
622 if (left <= 2) {
623 struct iommu_cmd sync_cmd;
624 volatile u64 sem = 0;
625 int ret;
626
627 build_completion_wait(&sync_cmd, (u64)&sem);
628 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
629
630 spin_unlock_irqrestore(&iommu->lock, flags);
631
632 if ((ret = wait_on_sem(&sem)) != 0)
633 return ret;
634
635 goto again;
636 }
637
638 copy_cmd_to_buffer(iommu, cmd, tail);
639
640 /* We need to sync now to make sure all commands are processed */
641 iommu->need_sync = true;
642
643 spin_unlock_irqrestore(&iommu->lock, flags);
644
645 return 0;
646}
647
648/*
649 * This function queues a completion wait command into the command
650 * buffer of an IOMMU
651 */
652static int iommu_completion_wait(struct amd_iommu *iommu)
653{
654 struct iommu_cmd cmd;
655 volatile u64 sem = 0;
656 int ret;
657
658 if (!iommu->need_sync)
659 return 0;
660
661 build_completion_wait(&cmd, (u64)&sem);
662
663 ret = iommu_queue_command(iommu, &cmd);
664 if (ret)
665 return ret;
666
667 return wait_on_sem(&sem);
668}
669
670static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
671{
672 struct iommu_cmd cmd;
673
674 build_inv_dte(&cmd, devid);
675
676 return iommu_queue_command(iommu, &cmd);
677}
678
679static void iommu_flush_dte_all(struct amd_iommu *iommu)
680{
681 u32 devid;
682
683 for (devid = 0; devid <= 0xffff; ++devid)
684 iommu_flush_dte(iommu, devid);
685
686 iommu_completion_wait(iommu);
687}
688
689/*
690 * This function uses heavy locking and may disable irqs for some time. But
691 * this is no issue because it is only called during resume.
692 */
693static void iommu_flush_tlb_all(struct amd_iommu *iommu)
694{
695 u32 dom_id;
696
697 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
698 struct iommu_cmd cmd;
699 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
700 dom_id, 1);
701 iommu_queue_command(iommu, &cmd);
702 }
703
704 iommu_completion_wait(iommu);
705}
706
707static void iommu_flush_all(struct amd_iommu *iommu)
708{
709 struct iommu_cmd cmd;
710
711 build_inv_all(&cmd);
712
713 iommu_queue_command(iommu, &cmd);
714 iommu_completion_wait(iommu);
715}
716
717void iommu_flush_all_caches(struct amd_iommu *iommu)
718{
719 if (iommu_feature(iommu, FEATURE_IA)) {
720 iommu_flush_all(iommu);
721 } else {
722 iommu_flush_dte_all(iommu);
723 iommu_flush_tlb_all(iommu);
724 }
725}
726
727/*
728 * Command send function for flushing on-device TLB
729 */
730static int device_flush_iotlb(struct iommu_dev_data *dev_data,
731 u64 address, size_t size)
732{
733 struct amd_iommu *iommu;
734 struct iommu_cmd cmd;
735 int qdep;
736
737 qdep = dev_data->ats.qdep;
738 iommu = amd_iommu_rlookup_table[dev_data->devid];
739
740 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
741
742 return iommu_queue_command(iommu, &cmd);
743}
744
745/*
746 * Command send function for invalidating a device table entry
747 */
748static int device_flush_dte(struct iommu_dev_data *dev_data)
749{
750 struct amd_iommu *iommu;
751 int ret;
752
753 iommu = amd_iommu_rlookup_table[dev_data->devid];
754
755 ret = iommu_flush_dte(iommu, dev_data->devid);
756 if (ret)
757 return ret;
758
759 if (dev_data->ats.enabled)
760 ret = device_flush_iotlb(dev_data, 0, ~0UL);
761
762 return ret;
763}
764
765/*
766 * TLB invalidation function which is called from the mapping functions.
767 * It invalidates a single PTE if the range to flush is within a single
768 * page. Otherwise it flushes the whole TLB of the IOMMU.
769 */
770static void __domain_flush_pages(struct protection_domain *domain,
771 u64 address, size_t size, int pde)
772{
773 struct iommu_dev_data *dev_data;
774 struct iommu_cmd cmd;
775 int ret = 0, i;
776
777 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
778
779 for (i = 0; i < amd_iommus_present; ++i) {
780 if (!domain->dev_iommu[i])
781 continue;
782
783 /*
784 * Devices of this domain are behind this IOMMU
785 * We need a TLB flush
786 */
787 ret |= iommu_queue_command(amd_iommus[i], &cmd);
788 }
789
790 list_for_each_entry(dev_data, &domain->dev_list, list) {
791
792 if (!dev_data->ats.enabled)
793 continue;
794
795 ret |= device_flush_iotlb(dev_data, address, size);
796 }
797
798 WARN_ON(ret);
799}
800
801static void domain_flush_pages(struct protection_domain *domain,
802 u64 address, size_t size)
803{
804 __domain_flush_pages(domain, address, size, 0);
805}
806
807/* Flush the whole IO/TLB for a given protection domain */
808static void domain_flush_tlb(struct protection_domain *domain)
809{
810 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
811}
812
813/* Flush the whole IO/TLB for a given protection domain - including PDE */
814static void domain_flush_tlb_pde(struct protection_domain *domain)
815{
816 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
817}
818
819static void domain_flush_complete(struct protection_domain *domain)
820{
821 int i;
822
823 for (i = 0; i < amd_iommus_present; ++i) {
824 if (!domain->dev_iommu[i])
825 continue;
826
827 /*
828 * Devices of this domain are behind this IOMMU
829 * We need to wait for completion of all commands.
830 */
831 iommu_completion_wait(amd_iommus[i]);
832 }
833}
834
835
836/*
837 * This function flushes the DTEs for all devices in domain
838 */
839static void domain_flush_devices(struct protection_domain *domain)
840{
841 struct iommu_dev_data *dev_data;
842 unsigned long flags;
843
844 spin_lock_irqsave(&domain->lock, flags);
845
846 list_for_each_entry(dev_data, &domain->dev_list, list)
847 device_flush_dte(dev_data);
848
849 spin_unlock_irqrestore(&domain->lock, flags);
850}
851
852/****************************************************************************
853 *
854 * The functions below are used the create the page table mappings for
855 * unity mapped regions.
856 *
857 ****************************************************************************/
858
859/*
860 * This function is used to add another level to an IO page table. Adding
861 * another level increases the size of the address space by 9 bits to a size up
862 * to 64 bits.
863 */
864static bool increase_address_space(struct protection_domain *domain,
865 gfp_t gfp)
866{
867 u64 *pte;
868
869 if (domain->mode == PAGE_MODE_6_LEVEL)
870 /* address space already 64 bit large */
871 return false;
872
873 pte = (void *)get_zeroed_page(gfp);
874 if (!pte)
875 return false;
876
877 *pte = PM_LEVEL_PDE(domain->mode,
878 virt_to_phys(domain->pt_root));
879 domain->pt_root = pte;
880 domain->mode += 1;
881 domain->updated = true;
882
883 return true;
884}
885
886static u64 *alloc_pte(struct protection_domain *domain,
887 unsigned long address,
888 unsigned long page_size,
889 u64 **pte_page,
890 gfp_t gfp)
891{
892 int level, end_lvl;
893 u64 *pte, *page;
894
895 BUG_ON(!is_power_of_2(page_size));
896
897 while (address > PM_LEVEL_SIZE(domain->mode))
898 increase_address_space(domain, gfp);
899
900 level = domain->mode - 1;
901 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
902 address = PAGE_SIZE_ALIGN(address, page_size);
903 end_lvl = PAGE_SIZE_LEVEL(page_size);
904
905 while (level > end_lvl) {
906 if (!IOMMU_PTE_PRESENT(*pte)) {
907 page = (u64 *)get_zeroed_page(gfp);
908 if (!page)
909 return NULL;
910 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
911 }
912
913 /* No level skipping support yet */
914 if (PM_PTE_LEVEL(*pte) != level)
915 return NULL;
916
917 level -= 1;
918
919 pte = IOMMU_PTE_PAGE(*pte);
920
921 if (pte_page && level == end_lvl)
922 *pte_page = pte;
923
924 pte = &pte[PM_LEVEL_INDEX(level, address)];
925 }
926
927 return pte;
928}
929
930/*
931 * This function checks if there is a PTE for a given dma address. If
932 * there is one, it returns the pointer to it.
933 */
934static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
935{
936 int level;
937 u64 *pte;
938
939 if (address > PM_LEVEL_SIZE(domain->mode))
940 return NULL;
941
942 level = domain->mode - 1;
943 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
944
945 while (level > 0) {
946
947 /* Not Present */
948 if (!IOMMU_PTE_PRESENT(*pte))
949 return NULL;
950
951 /* Large PTE */
952 if (PM_PTE_LEVEL(*pte) == 0x07) {
953 unsigned long pte_mask, __pte;
954
955 /*
956 * If we have a series of large PTEs, make
957 * sure to return a pointer to the first one.
958 */
959 pte_mask = PTE_PAGE_SIZE(*pte);
960 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
961 __pte = ((unsigned long)pte) & pte_mask;
962
963 return (u64 *)__pte;
964 }
965
966 /* No level skipping support yet */
967 if (PM_PTE_LEVEL(*pte) != level)
968 return NULL;
969
970 level -= 1;
971
972 /* Walk to the next level */
973 pte = IOMMU_PTE_PAGE(*pte);
974 pte = &pte[PM_LEVEL_INDEX(level, address)];
975 }
976
977 return pte;
978}
979
980/*
981 * Generic mapping functions. It maps a physical address into a DMA
982 * address space. It allocates the page table pages if necessary.
983 * In the future it can be extended to a generic mapping function
984 * supporting all features of AMD IOMMU page tables like level skipping
985 * and full 64 bit address spaces.
986 */
987static int iommu_map_page(struct protection_domain *dom,
988 unsigned long bus_addr,
989 unsigned long phys_addr,
990 int prot,
991 unsigned long page_size)
992{
993 u64 __pte, *pte;
994 int i, count;
995
996 if (!(prot & IOMMU_PROT_MASK))
997 return -EINVAL;
998
999 bus_addr = PAGE_ALIGN(bus_addr);
1000 phys_addr = PAGE_ALIGN(phys_addr);
1001 count = PAGE_SIZE_PTE_COUNT(page_size);
1002 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1003
1004 for (i = 0; i < count; ++i)
1005 if (IOMMU_PTE_PRESENT(pte[i]))
1006 return -EBUSY;
1007
1008 if (page_size > PAGE_SIZE) {
1009 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1010 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1011 } else
1012 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1013
1014 if (prot & IOMMU_PROT_IR)
1015 __pte |= IOMMU_PTE_IR;
1016 if (prot & IOMMU_PROT_IW)
1017 __pte |= IOMMU_PTE_IW;
1018
1019 for (i = 0; i < count; ++i)
1020 pte[i] = __pte;
1021
1022 update_domain(dom);
1023
1024 return 0;
1025}
1026
1027static unsigned long iommu_unmap_page(struct protection_domain *dom,
1028 unsigned long bus_addr,
1029 unsigned long page_size)
1030{
1031 unsigned long long unmap_size, unmapped;
1032 u64 *pte;
1033
1034 BUG_ON(!is_power_of_2(page_size));
1035
1036 unmapped = 0;
1037
1038 while (unmapped < page_size) {
1039
1040 pte = fetch_pte(dom, bus_addr);
1041
1042 if (!pte) {
1043 /*
1044 * No PTE for this address
1045 * move forward in 4kb steps
1046 */
1047 unmap_size = PAGE_SIZE;
1048 } else if (PM_PTE_LEVEL(*pte) == 0) {
1049 /* 4kb PTE found for this address */
1050 unmap_size = PAGE_SIZE;
1051 *pte = 0ULL;
1052 } else {
1053 int count, i;
1054
1055 /* Large PTE found which maps this address */
1056 unmap_size = PTE_PAGE_SIZE(*pte);
1057 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1058 for (i = 0; i < count; i++)
1059 pte[i] = 0ULL;
1060 }
1061
1062 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1063 unmapped += unmap_size;
1064 }
1065
1066 BUG_ON(!is_power_of_2(unmapped));
1067
1068 return unmapped;
1069}
1070
1071/*
1072 * This function checks if a specific unity mapping entry is needed for
1073 * this specific IOMMU.
1074 */
1075static int iommu_for_unity_map(struct amd_iommu *iommu,
1076 struct unity_map_entry *entry)
1077{
1078 u16 bdf, i;
1079
1080 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1081 bdf = amd_iommu_alias_table[i];
1082 if (amd_iommu_rlookup_table[bdf] == iommu)
1083 return 1;
1084 }
1085
1086 return 0;
1087}
1088
1089/*
1090 * This function actually applies the mapping to the page table of the
1091 * dma_ops domain.
1092 */
1093static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1094 struct unity_map_entry *e)
1095{
1096 u64 addr;
1097 int ret;
1098
1099 for (addr = e->address_start; addr < e->address_end;
1100 addr += PAGE_SIZE) {
1101 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1102 PAGE_SIZE);
1103 if (ret)
1104 return ret;
1105 /*
1106 * if unity mapping is in aperture range mark the page
1107 * as allocated in the aperture
1108 */
1109 if (addr < dma_dom->aperture_size)
1110 __set_bit(addr >> PAGE_SHIFT,
1111 dma_dom->aperture[0]->bitmap);
1112 }
1113
1114 return 0;
1115}
1116
1117/*
1118 * Init the unity mappings for a specific IOMMU in the system
1119 *
1120 * Basically iterates over all unity mapping entries and applies them to
1121 * the default domain DMA of that IOMMU if necessary.
1122 */
1123static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1124{
1125 struct unity_map_entry *entry;
1126 int ret;
1127
1128 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1129 if (!iommu_for_unity_map(iommu, entry))
1130 continue;
1131 ret = dma_ops_unity_map(iommu->default_dom, entry);
1132 if (ret)
1133 return ret;
1134 }
1135
1136 return 0;
1137}
1138
1139/*
1140 * Inits the unity mappings required for a specific device
1141 */
1142static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1143 u16 devid)
1144{
1145 struct unity_map_entry *e;
1146 int ret;
1147
1148 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1149 if (!(devid >= e->devid_start && devid <= e->devid_end))
1150 continue;
1151 ret = dma_ops_unity_map(dma_dom, e);
1152 if (ret)
1153 return ret;
1154 }
1155
1156 return 0;
1157}
1158
1159/****************************************************************************
1160 *
1161 * The next functions belong to the address allocator for the dma_ops
1162 * interface functions. They work like the allocators in the other IOMMU
1163 * drivers. Its basically a bitmap which marks the allocated pages in
1164 * the aperture. Maybe it could be enhanced in the future to a more
1165 * efficient allocator.
1166 *
1167 ****************************************************************************/
1168
1169/*
1170 * The address allocator core functions.
1171 *
1172 * called with domain->lock held
1173 */
1174
1175/*
1176 * Used to reserve address ranges in the aperture (e.g. for exclusion
1177 * ranges.
1178 */
1179static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1180 unsigned long start_page,
1181 unsigned int pages)
1182{
1183 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1184
1185 if (start_page + pages > last_page)
1186 pages = last_page - start_page;
1187
1188 for (i = start_page; i < start_page + pages; ++i) {
1189 int index = i / APERTURE_RANGE_PAGES;
1190 int page = i % APERTURE_RANGE_PAGES;
1191 __set_bit(page, dom->aperture[index]->bitmap);
1192 }
1193}
1194
1195/*
1196 * This function is used to add a new aperture range to an existing
1197 * aperture in case of dma_ops domain allocation or address allocation
1198 * failure.
1199 */
1200static int alloc_new_range(struct dma_ops_domain *dma_dom,
1201 bool populate, gfp_t gfp)
1202{
1203 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1204 struct amd_iommu *iommu;
1205 unsigned long i;
1206
1207#ifdef CONFIG_IOMMU_STRESS
1208 populate = false;
1209#endif
1210
1211 if (index >= APERTURE_MAX_RANGES)
1212 return -ENOMEM;
1213
1214 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1215 if (!dma_dom->aperture[index])
1216 return -ENOMEM;
1217
1218 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1219 if (!dma_dom->aperture[index]->bitmap)
1220 goto out_free;
1221
1222 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1223
1224 if (populate) {
1225 unsigned long address = dma_dom->aperture_size;
1226 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1227 u64 *pte, *pte_page;
1228
1229 for (i = 0; i < num_ptes; ++i) {
1230 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1231 &pte_page, gfp);
1232 if (!pte)
1233 goto out_free;
1234
1235 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1236
1237 address += APERTURE_RANGE_SIZE / 64;
1238 }
1239 }
1240
1241 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1242
1243 /* Initialize the exclusion range if necessary */
1244 for_each_iommu(iommu) {
1245 if (iommu->exclusion_start &&
1246 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1247 && iommu->exclusion_start < dma_dom->aperture_size) {
1248 unsigned long startpage;
1249 int pages = iommu_num_pages(iommu->exclusion_start,
1250 iommu->exclusion_length,
1251 PAGE_SIZE);
1252 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1253 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1254 }
1255 }
1256
1257 /*
1258 * Check for areas already mapped as present in the new aperture
1259 * range and mark those pages as reserved in the allocator. Such
1260 * mappings may already exist as a result of requested unity
1261 * mappings for devices.
1262 */
1263 for (i = dma_dom->aperture[index]->offset;
1264 i < dma_dom->aperture_size;
1265 i += PAGE_SIZE) {
1266 u64 *pte = fetch_pte(&dma_dom->domain, i);
1267 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1268 continue;
1269
1270 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
1271 }
1272
1273 update_domain(&dma_dom->domain);
1274
1275 return 0;
1276
1277out_free:
1278 update_domain(&dma_dom->domain);
1279
1280 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1281
1282 kfree(dma_dom->aperture[index]);
1283 dma_dom->aperture[index] = NULL;
1284
1285 return -ENOMEM;
1286}
1287
1288static unsigned long dma_ops_area_alloc(struct device *dev,
1289 struct dma_ops_domain *dom,
1290 unsigned int pages,
1291 unsigned long align_mask,
1292 u64 dma_mask,
1293 unsigned long start)
1294{
1295 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1296 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1297 int i = start >> APERTURE_RANGE_SHIFT;
1298 unsigned long boundary_size;
1299 unsigned long address = -1;
1300 unsigned long limit;
1301
1302 next_bit >>= PAGE_SHIFT;
1303
1304 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1305 PAGE_SIZE) >> PAGE_SHIFT;
1306
1307 for (;i < max_index; ++i) {
1308 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1309
1310 if (dom->aperture[i]->offset >= dma_mask)
1311 break;
1312
1313 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1314 dma_mask >> PAGE_SHIFT);
1315
1316 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1317 limit, next_bit, pages, 0,
1318 boundary_size, align_mask);
1319 if (address != -1) {
1320 address = dom->aperture[i]->offset +
1321 (address << PAGE_SHIFT);
1322 dom->next_address = address + (pages << PAGE_SHIFT);
1323 break;
1324 }
1325
1326 next_bit = 0;
1327 }
1328
1329 return address;
1330}
1331
1332static unsigned long dma_ops_alloc_addresses(struct device *dev,
1333 struct dma_ops_domain *dom,
1334 unsigned int pages,
1335 unsigned long align_mask,
1336 u64 dma_mask)
1337{
1338 unsigned long address;
1339
1340#ifdef CONFIG_IOMMU_STRESS
1341 dom->next_address = 0;
1342 dom->need_flush = true;
1343#endif
1344
1345 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1346 dma_mask, dom->next_address);
1347
1348 if (address == -1) {
1349 dom->next_address = 0;
1350 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1351 dma_mask, 0);
1352 dom->need_flush = true;
1353 }
1354
1355 if (unlikely(address == -1))
1356 address = DMA_ERROR_CODE;
1357
1358 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1359
1360 return address;
1361}
1362
1363/*
1364 * The address free function.
1365 *
1366 * called with domain->lock held
1367 */
1368static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1369 unsigned long address,
1370 unsigned int pages)
1371{
1372 unsigned i = address >> APERTURE_RANGE_SHIFT;
1373 struct aperture_range *range = dom->aperture[i];
1374
1375 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1376
1377#ifdef CONFIG_IOMMU_STRESS
1378 if (i < 4)
1379 return;
1380#endif
1381
1382 if (address >= dom->next_address)
1383 dom->need_flush = true;
1384
1385 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1386
1387 bitmap_clear(range->bitmap, address, pages);
1388
1389}
1390
1391/****************************************************************************
1392 *
1393 * The next functions belong to the domain allocation. A domain is
1394 * allocated for every IOMMU as the default domain. If device isolation
1395 * is enabled, every device get its own domain. The most important thing
1396 * about domains is the page table mapping the DMA address space they
1397 * contain.
1398 *
1399 ****************************************************************************/
1400
1401/*
1402 * This function adds a protection domain to the global protection domain list
1403 */
1404static void add_domain_to_list(struct protection_domain *domain)
1405{
1406 unsigned long flags;
1407
1408 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1409 list_add(&domain->list, &amd_iommu_pd_list);
1410 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1411}
1412
1413/*
1414 * This function removes a protection domain to the global
1415 * protection domain list
1416 */
1417static void del_domain_from_list(struct protection_domain *domain)
1418{
1419 unsigned long flags;
1420
1421 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1422 list_del(&domain->list);
1423 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1424}
1425
1426static u16 domain_id_alloc(void)
1427{
1428 unsigned long flags;
1429 int id;
1430
1431 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1432 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1433 BUG_ON(id == 0);
1434 if (id > 0 && id < MAX_DOMAIN_ID)
1435 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1436 else
1437 id = 0;
1438 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1439
1440 return id;
1441}
1442
1443static void domain_id_free(int id)
1444{
1445 unsigned long flags;
1446
1447 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1448 if (id > 0 && id < MAX_DOMAIN_ID)
1449 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1450 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1451}
1452
1453static void free_pagetable(struct protection_domain *domain)
1454{
1455 int i, j;
1456 u64 *p1, *p2, *p3;
1457
1458 p1 = domain->pt_root;
1459
1460 if (!p1)
1461 return;
1462
1463 for (i = 0; i < 512; ++i) {
1464 if (!IOMMU_PTE_PRESENT(p1[i]))
1465 continue;
1466
1467 p2 = IOMMU_PTE_PAGE(p1[i]);
1468 for (j = 0; j < 512; ++j) {
1469 if (!IOMMU_PTE_PRESENT(p2[j]))
1470 continue;
1471 p3 = IOMMU_PTE_PAGE(p2[j]);
1472 free_page((unsigned long)p3);
1473 }
1474
1475 free_page((unsigned long)p2);
1476 }
1477
1478 free_page((unsigned long)p1);
1479
1480 domain->pt_root = NULL;
1481}
1482
1483/*
1484 * Free a domain, only used if something went wrong in the
1485 * allocation path and we need to free an already allocated page table
1486 */
1487static void dma_ops_domain_free(struct dma_ops_domain *dom)
1488{
1489 int i;
1490
1491 if (!dom)
1492 return;
1493
1494 del_domain_from_list(&dom->domain);
1495
1496 free_pagetable(&dom->domain);
1497
1498 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1499 if (!dom->aperture[i])
1500 continue;
1501 free_page((unsigned long)dom->aperture[i]->bitmap);
1502 kfree(dom->aperture[i]);
1503 }
1504
1505 kfree(dom);
1506}
1507
1508/*
1509 * Allocates a new protection domain usable for the dma_ops functions.
1510 * It also initializes the page table and the address allocator data
1511 * structures required for the dma_ops interface
1512 */
1513static struct dma_ops_domain *dma_ops_domain_alloc(void)
1514{
1515 struct dma_ops_domain *dma_dom;
1516
1517 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1518 if (!dma_dom)
1519 return NULL;
1520
1521 spin_lock_init(&dma_dom->domain.lock);
1522
1523 dma_dom->domain.id = domain_id_alloc();
1524 if (dma_dom->domain.id == 0)
1525 goto free_dma_dom;
1526 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1527 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1528 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1529 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1530 dma_dom->domain.priv = dma_dom;
1531 if (!dma_dom->domain.pt_root)
1532 goto free_dma_dom;
1533
1534 dma_dom->need_flush = false;
1535 dma_dom->target_dev = 0xffff;
1536
1537 add_domain_to_list(&dma_dom->domain);
1538
1539 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1540 goto free_dma_dom;
1541
1542 /*
1543 * mark the first page as allocated so we never return 0 as
1544 * a valid dma-address. So we can use 0 as error value
1545 */
1546 dma_dom->aperture[0]->bitmap[0] = 1;
1547 dma_dom->next_address = 0;
1548
1549
1550 return dma_dom;
1551
1552free_dma_dom:
1553 dma_ops_domain_free(dma_dom);
1554
1555 return NULL;
1556}
1557
1558/*
1559 * little helper function to check whether a given protection domain is a
1560 * dma_ops domain
1561 */
1562static bool dma_ops_domain(struct protection_domain *domain)
1563{
1564 return domain->flags & PD_DMA_OPS_MASK;
1565}
1566
1567static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1568{
1569 u64 pte_root = virt_to_phys(domain->pt_root);
1570 u32 flags = 0;
1571
1572 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1573 << DEV_ENTRY_MODE_SHIFT;
1574 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1575
1576 if (ats)
1577 flags |= DTE_FLAG_IOTLB;
1578
1579 amd_iommu_dev_table[devid].data[3] |= flags;
1580 amd_iommu_dev_table[devid].data[2] = domain->id;
1581 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1582 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1583}
1584
1585static void clear_dte_entry(u16 devid)
1586{
1587 /* remove entry from the device table seen by the hardware */
1588 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1589 amd_iommu_dev_table[devid].data[1] = 0;
1590 amd_iommu_dev_table[devid].data[2] = 0;
1591
1592 amd_iommu_apply_erratum_63(devid);
1593}
1594
1595static void do_attach(struct iommu_dev_data *dev_data,
1596 struct protection_domain *domain)
1597{
1598 struct amd_iommu *iommu;
1599 bool ats;
1600
1601 iommu = amd_iommu_rlookup_table[dev_data->devid];
1602 ats = dev_data->ats.enabled;
1603
1604 /* Update data structures */
1605 dev_data->domain = domain;
1606 list_add(&dev_data->list, &domain->dev_list);
1607 set_dte_entry(dev_data->devid, domain, ats);
1608
1609 /* Do reference counting */
1610 domain->dev_iommu[iommu->index] += 1;
1611 domain->dev_cnt += 1;
1612
1613 /* Flush the DTE entry */
1614 device_flush_dte(dev_data);
1615}
1616
1617static void do_detach(struct iommu_dev_data *dev_data)
1618{
1619 struct amd_iommu *iommu;
1620
1621 iommu = amd_iommu_rlookup_table[dev_data->devid];
1622
1623 /* decrease reference counters */
1624 dev_data->domain->dev_iommu[iommu->index] -= 1;
1625 dev_data->domain->dev_cnt -= 1;
1626
1627 /* Update data structures */
1628 dev_data->domain = NULL;
1629 list_del(&dev_data->list);
1630 clear_dte_entry(dev_data->devid);
1631
1632 /* Flush the DTE entry */
1633 device_flush_dte(dev_data);
1634}
1635
1636/*
1637 * If a device is not yet associated with a domain, this function does
1638 * assigns it visible for the hardware
1639 */
1640static int __attach_device(struct iommu_dev_data *dev_data,
1641 struct protection_domain *domain)
1642{
1643 int ret;
1644
1645 /* lock domain */
1646 spin_lock(&domain->lock);
1647
1648 if (dev_data->alias_data != NULL) {
1649 struct iommu_dev_data *alias_data = dev_data->alias_data;
1650
1651 /* Some sanity checks */
1652 ret = -EBUSY;
1653 if (alias_data->domain != NULL &&
1654 alias_data->domain != domain)
1655 goto out_unlock;
1656
1657 if (dev_data->domain != NULL &&
1658 dev_data->domain != domain)
1659 goto out_unlock;
1660
1661 /* Do real assignment */
1662 if (alias_data->domain == NULL)
1663 do_attach(alias_data, domain);
1664
1665 atomic_inc(&alias_data->bind);
1666 }
1667
1668 if (dev_data->domain == NULL)
1669 do_attach(dev_data, domain);
1670
1671 atomic_inc(&dev_data->bind);
1672
1673 ret = 0;
1674
1675out_unlock:
1676
1677 /* ready */
1678 spin_unlock(&domain->lock);
1679
1680 return ret;
1681}
1682
1683/*
1684 * If a device is not yet associated with a domain, this function does
1685 * assigns it visible for the hardware
1686 */
1687static int attach_device(struct device *dev,
1688 struct protection_domain *domain)
1689{
1690 struct pci_dev *pdev = to_pci_dev(dev);
1691 struct iommu_dev_data *dev_data;
1692 unsigned long flags;
1693 int ret;
1694
1695 dev_data = get_dev_data(dev);
1696
1697 if (amd_iommu_iotlb_sup && pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
1698 dev_data->ats.enabled = true;
1699 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
1700 }
1701
1702 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1703 ret = __attach_device(dev_data, domain);
1704 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1705
1706 /*
1707 * We might boot into a crash-kernel here. The crashed kernel
1708 * left the caches in the IOMMU dirty. So we have to flush
1709 * here to evict all dirty stuff.
1710 */
1711 domain_flush_tlb_pde(domain);
1712
1713 return ret;
1714}
1715
1716/*
1717 * Removes a device from a protection domain (unlocked)
1718 */
1719static void __detach_device(struct iommu_dev_data *dev_data)
1720{
1721 struct protection_domain *domain;
1722 unsigned long flags;
1723
1724 BUG_ON(!dev_data->domain);
1725
1726 domain = dev_data->domain;
1727
1728 spin_lock_irqsave(&domain->lock, flags);
1729
1730 if (dev_data->alias_data != NULL) {
1731 struct iommu_dev_data *alias_data = dev_data->alias_data;
1732
1733 if (atomic_dec_and_test(&alias_data->bind))
1734 do_detach(alias_data);
1735 }
1736
1737 if (atomic_dec_and_test(&dev_data->bind))
1738 do_detach(dev_data);
1739
1740 spin_unlock_irqrestore(&domain->lock, flags);
1741
1742 /*
1743 * If we run in passthrough mode the device must be assigned to the
1744 * passthrough domain if it is detached from any other domain.
1745 * Make sure we can deassign from the pt_domain itself.
1746 */
1747 if (iommu_pass_through &&
1748 (dev_data->domain == NULL && domain != pt_domain))
1749 __attach_device(dev_data, pt_domain);
1750}
1751
1752/*
1753 * Removes a device from a protection domain (with devtable_lock held)
1754 */
1755static void detach_device(struct device *dev)
1756{
1757 struct iommu_dev_data *dev_data;
1758 unsigned long flags;
1759
1760 dev_data = get_dev_data(dev);
1761
1762 /* lock device table */
1763 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1764 __detach_device(dev_data);
1765 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1766
1767 if (dev_data->ats.enabled) {
1768 pci_disable_ats(to_pci_dev(dev));
1769 dev_data->ats.enabled = false;
1770 }
1771}
1772
1773/*
1774 * Find out the protection domain structure for a given PCI device. This
1775 * will give us the pointer to the page table root for example.
1776 */
1777static struct protection_domain *domain_for_device(struct device *dev)
1778{
1779 struct iommu_dev_data *dev_data;
1780 struct protection_domain *dom = NULL;
1781 unsigned long flags;
1782
1783 dev_data = get_dev_data(dev);
1784
1785 if (dev_data->domain)
1786 return dev_data->domain;
1787
1788 if (dev_data->alias_data != NULL) {
1789 struct iommu_dev_data *alias_data = dev_data->alias_data;
1790
1791 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1792 if (alias_data->domain != NULL) {
1793 __attach_device(dev_data, alias_data->domain);
1794 dom = alias_data->domain;
1795 }
1796 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1797 }
1798
1799 return dom;
1800}
1801
1802static int device_change_notifier(struct notifier_block *nb,
1803 unsigned long action, void *data)
1804{
1805 struct device *dev = data;
1806 u16 devid;
1807 struct protection_domain *domain;
1808 struct dma_ops_domain *dma_domain;
1809 struct amd_iommu *iommu;
1810 unsigned long flags;
1811
1812 if (!check_device(dev))
1813 return 0;
1814
1815 devid = get_device_id(dev);
1816 iommu = amd_iommu_rlookup_table[devid];
1817
1818 switch (action) {
1819 case BUS_NOTIFY_UNBOUND_DRIVER:
1820
1821 domain = domain_for_device(dev);
1822
1823 if (!domain)
1824 goto out;
1825 if (iommu_pass_through)
1826 break;
1827 detach_device(dev);
1828 break;
1829 case BUS_NOTIFY_ADD_DEVICE:
1830
1831 iommu_init_device(dev);
1832
1833 domain = domain_for_device(dev);
1834
1835 /* allocate a protection domain if a device is added */
1836 dma_domain = find_protection_domain(devid);
1837 if (dma_domain)
1838 goto out;
1839 dma_domain = dma_ops_domain_alloc();
1840 if (!dma_domain)
1841 goto out;
1842 dma_domain->target_dev = devid;
1843
1844 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1845 list_add_tail(&dma_domain->list, &iommu_pd_list);
1846 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1847
1848 break;
1849 case BUS_NOTIFY_DEL_DEVICE:
1850
1851 iommu_uninit_device(dev);
1852
1853 default:
1854 goto out;
1855 }
1856
1857 iommu_completion_wait(iommu);
1858
1859out:
1860 return 0;
1861}
1862
1863static struct notifier_block device_nb = {
1864 .notifier_call = device_change_notifier,
1865};
1866
1867void amd_iommu_init_notifier(void)
1868{
1869 bus_register_notifier(&pci_bus_type, &device_nb);
1870}
1871
1872/*****************************************************************************
1873 *
1874 * The next functions belong to the dma_ops mapping/unmapping code.
1875 *
1876 *****************************************************************************/
1877
1878/*
1879 * In the dma_ops path we only have the struct device. This function
1880 * finds the corresponding IOMMU, the protection domain and the
1881 * requestor id for a given device.
1882 * If the device is not yet associated with a domain this is also done
1883 * in this function.
1884 */
1885static struct protection_domain *get_domain(struct device *dev)
1886{
1887 struct protection_domain *domain;
1888 struct dma_ops_domain *dma_dom;
1889 u16 devid = get_device_id(dev);
1890
1891 if (!check_device(dev))
1892 return ERR_PTR(-EINVAL);
1893
1894 domain = domain_for_device(dev);
1895 if (domain != NULL && !dma_ops_domain(domain))
1896 return ERR_PTR(-EBUSY);
1897
1898 if (domain != NULL)
1899 return domain;
1900
1901 /* Device not bount yet - bind it */
1902 dma_dom = find_protection_domain(devid);
1903 if (!dma_dom)
1904 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
1905 attach_device(dev, &dma_dom->domain);
1906 DUMP_printk("Using protection domain %d for device %s\n",
1907 dma_dom->domain.id, dev_name(dev));
1908
1909 return &dma_dom->domain;
1910}
1911
1912static void update_device_table(struct protection_domain *domain)
1913{
1914 struct iommu_dev_data *dev_data;
1915
1916 list_for_each_entry(dev_data, &domain->dev_list, list)
1917 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
1918}
1919
1920static void update_domain(struct protection_domain *domain)
1921{
1922 if (!domain->updated)
1923 return;
1924
1925 update_device_table(domain);
1926
1927 domain_flush_devices(domain);
1928 domain_flush_tlb_pde(domain);
1929
1930 domain->updated = false;
1931}
1932
1933/*
1934 * This function fetches the PTE for a given address in the aperture
1935 */
1936static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1937 unsigned long address)
1938{
1939 struct aperture_range *aperture;
1940 u64 *pte, *pte_page;
1941
1942 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1943 if (!aperture)
1944 return NULL;
1945
1946 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1947 if (!pte) {
1948 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
1949 GFP_ATOMIC);
1950 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1951 } else
1952 pte += PM_LEVEL_INDEX(0, address);
1953
1954 update_domain(&dom->domain);
1955
1956 return pte;
1957}
1958
1959/*
1960 * This is the generic map function. It maps one 4kb page at paddr to
1961 * the given address in the DMA address space for the domain.
1962 */
1963static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1964 unsigned long address,
1965 phys_addr_t paddr,
1966 int direction)
1967{
1968 u64 *pte, __pte;
1969
1970 WARN_ON(address > dom->aperture_size);
1971
1972 paddr &= PAGE_MASK;
1973
1974 pte = dma_ops_get_pte(dom, address);
1975 if (!pte)
1976 return DMA_ERROR_CODE;
1977
1978 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1979
1980 if (direction == DMA_TO_DEVICE)
1981 __pte |= IOMMU_PTE_IR;
1982 else if (direction == DMA_FROM_DEVICE)
1983 __pte |= IOMMU_PTE_IW;
1984 else if (direction == DMA_BIDIRECTIONAL)
1985 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1986
1987 WARN_ON(*pte);
1988
1989 *pte = __pte;
1990
1991 return (dma_addr_t)address;
1992}
1993
1994/*
1995 * The generic unmapping function for on page in the DMA address space.
1996 */
1997static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
1998 unsigned long address)
1999{
2000 struct aperture_range *aperture;
2001 u64 *pte;
2002
2003 if (address >= dom->aperture_size)
2004 return;
2005
2006 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2007 if (!aperture)
2008 return;
2009
2010 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2011 if (!pte)
2012 return;
2013
2014 pte += PM_LEVEL_INDEX(0, address);
2015
2016 WARN_ON(!*pte);
2017
2018 *pte = 0ULL;
2019}
2020
2021/*
2022 * This function contains common code for mapping of a physically
2023 * contiguous memory region into DMA address space. It is used by all
2024 * mapping functions provided with this IOMMU driver.
2025 * Must be called with the domain lock held.
2026 */
2027static dma_addr_t __map_single(struct device *dev,
2028 struct dma_ops_domain *dma_dom,
2029 phys_addr_t paddr,
2030 size_t size,
2031 int dir,
2032 bool align,
2033 u64 dma_mask)
2034{
2035 dma_addr_t offset = paddr & ~PAGE_MASK;
2036 dma_addr_t address, start, ret;
2037 unsigned int pages;
2038 unsigned long align_mask = 0;
2039 int i;
2040
2041 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2042 paddr &= PAGE_MASK;
2043
2044 INC_STATS_COUNTER(total_map_requests);
2045
2046 if (pages > 1)
2047 INC_STATS_COUNTER(cross_page);
2048
2049 if (align)
2050 align_mask = (1UL << get_order(size)) - 1;
2051
2052retry:
2053 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2054 dma_mask);
2055 if (unlikely(address == DMA_ERROR_CODE)) {
2056 /*
2057 * setting next_address here will let the address
2058 * allocator only scan the new allocated range in the
2059 * first run. This is a small optimization.
2060 */
2061 dma_dom->next_address = dma_dom->aperture_size;
2062
2063 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2064 goto out;
2065
2066 /*
2067 * aperture was successfully enlarged by 128 MB, try
2068 * allocation again
2069 */
2070 goto retry;
2071 }
2072
2073 start = address;
2074 for (i = 0; i < pages; ++i) {
2075 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2076 if (ret == DMA_ERROR_CODE)
2077 goto out_unmap;
2078
2079 paddr += PAGE_SIZE;
2080 start += PAGE_SIZE;
2081 }
2082 address += offset;
2083
2084 ADD_STATS_COUNTER(alloced_io_mem, size);
2085
2086 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2087 domain_flush_tlb(&dma_dom->domain);
2088 dma_dom->need_flush = false;
2089 } else if (unlikely(amd_iommu_np_cache))
2090 domain_flush_pages(&dma_dom->domain, address, size);
2091
2092out:
2093 return address;
2094
2095out_unmap:
2096
2097 for (--i; i >= 0; --i) {
2098 start -= PAGE_SIZE;
2099 dma_ops_domain_unmap(dma_dom, start);
2100 }
2101
2102 dma_ops_free_addresses(dma_dom, address, pages);
2103
2104 return DMA_ERROR_CODE;
2105}
2106
2107/*
2108 * Does the reverse of the __map_single function. Must be called with
2109 * the domain lock held too
2110 */
2111static void __unmap_single(struct dma_ops_domain *dma_dom,
2112 dma_addr_t dma_addr,
2113 size_t size,
2114 int dir)
2115{
2116 dma_addr_t flush_addr;
2117 dma_addr_t i, start;
2118 unsigned int pages;
2119
2120 if ((dma_addr == DMA_ERROR_CODE) ||
2121 (dma_addr + size > dma_dom->aperture_size))
2122 return;
2123
2124 flush_addr = dma_addr;
2125 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2126 dma_addr &= PAGE_MASK;
2127 start = dma_addr;
2128
2129 for (i = 0; i < pages; ++i) {
2130 dma_ops_domain_unmap(dma_dom, start);
2131 start += PAGE_SIZE;
2132 }
2133
2134 SUB_STATS_COUNTER(alloced_io_mem, size);
2135
2136 dma_ops_free_addresses(dma_dom, dma_addr, pages);
2137
2138 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2139 domain_flush_pages(&dma_dom->domain, flush_addr, size);
2140 dma_dom->need_flush = false;
2141 }
2142}
2143
2144/*
2145 * The exported map_single function for dma_ops.
2146 */
2147static dma_addr_t map_page(struct device *dev, struct page *page,
2148 unsigned long offset, size_t size,
2149 enum dma_data_direction dir,
2150 struct dma_attrs *attrs)
2151{
2152 unsigned long flags;
2153 struct protection_domain *domain;
2154 dma_addr_t addr;
2155 u64 dma_mask;
2156 phys_addr_t paddr = page_to_phys(page) + offset;
2157
2158 INC_STATS_COUNTER(cnt_map_single);
2159
2160 domain = get_domain(dev);
2161 if (PTR_ERR(domain) == -EINVAL)
2162 return (dma_addr_t)paddr;
2163 else if (IS_ERR(domain))
2164 return DMA_ERROR_CODE;
2165
2166 dma_mask = *dev->dma_mask;
2167
2168 spin_lock_irqsave(&domain->lock, flags);
2169
2170 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2171 dma_mask);
2172 if (addr == DMA_ERROR_CODE)
2173 goto out;
2174
2175 domain_flush_complete(domain);
2176
2177out:
2178 spin_unlock_irqrestore(&domain->lock, flags);
2179
2180 return addr;
2181}
2182
2183/*
2184 * The exported unmap_single function for dma_ops.
2185 */
2186static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2187 enum dma_data_direction dir, struct dma_attrs *attrs)
2188{
2189 unsigned long flags;
2190 struct protection_domain *domain;
2191
2192 INC_STATS_COUNTER(cnt_unmap_single);
2193
2194 domain = get_domain(dev);
2195 if (IS_ERR(domain))
2196 return;
2197
2198 spin_lock_irqsave(&domain->lock, flags);
2199
2200 __unmap_single(domain->priv, dma_addr, size, dir);
2201
2202 domain_flush_complete(domain);
2203
2204 spin_unlock_irqrestore(&domain->lock, flags);
2205}
2206
2207/*
2208 * This is a special map_sg function which is used if we should map a
2209 * device which is not handled by an AMD IOMMU in the system.
2210 */
2211static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2212 int nelems, int dir)
2213{
2214 struct scatterlist *s;
2215 int i;
2216
2217 for_each_sg(sglist, s, nelems, i) {
2218 s->dma_address = (dma_addr_t)sg_phys(s);
2219 s->dma_length = s->length;
2220 }
2221
2222 return nelems;
2223}
2224
2225/*
2226 * The exported map_sg function for dma_ops (handles scatter-gather
2227 * lists).
2228 */
2229static int map_sg(struct device *dev, struct scatterlist *sglist,
2230 int nelems, enum dma_data_direction dir,
2231 struct dma_attrs *attrs)
2232{
2233 unsigned long flags;
2234 struct protection_domain *domain;
2235 int i;
2236 struct scatterlist *s;
2237 phys_addr_t paddr;
2238 int mapped_elems = 0;
2239 u64 dma_mask;
2240
2241 INC_STATS_COUNTER(cnt_map_sg);
2242
2243 domain = get_domain(dev);
2244 if (PTR_ERR(domain) == -EINVAL)
2245 return map_sg_no_iommu(dev, sglist, nelems, dir);
2246 else if (IS_ERR(domain))
2247 return 0;
2248
2249 dma_mask = *dev->dma_mask;
2250
2251 spin_lock_irqsave(&domain->lock, flags);
2252
2253 for_each_sg(sglist, s, nelems, i) {
2254 paddr = sg_phys(s);
2255
2256 s->dma_address = __map_single(dev, domain->priv,
2257 paddr, s->length, dir, false,
2258 dma_mask);
2259
2260 if (s->dma_address) {
2261 s->dma_length = s->length;
2262 mapped_elems++;
2263 } else
2264 goto unmap;
2265 }
2266
2267 domain_flush_complete(domain);
2268
2269out:
2270 spin_unlock_irqrestore(&domain->lock, flags);
2271
2272 return mapped_elems;
2273unmap:
2274 for_each_sg(sglist, s, mapped_elems, i) {
2275 if (s->dma_address)
2276 __unmap_single(domain->priv, s->dma_address,
2277 s->dma_length, dir);
2278 s->dma_address = s->dma_length = 0;
2279 }
2280
2281 mapped_elems = 0;
2282
2283 goto out;
2284}
2285
2286/*
2287 * The exported map_sg function for dma_ops (handles scatter-gather
2288 * lists).
2289 */
2290static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2291 int nelems, enum dma_data_direction dir,
2292 struct dma_attrs *attrs)
2293{
2294 unsigned long flags;
2295 struct protection_domain *domain;
2296 struct scatterlist *s;
2297 int i;
2298
2299 INC_STATS_COUNTER(cnt_unmap_sg);
2300
2301 domain = get_domain(dev);
2302 if (IS_ERR(domain))
2303 return;
2304
2305 spin_lock_irqsave(&domain->lock, flags);
2306
2307 for_each_sg(sglist, s, nelems, i) {
2308 __unmap_single(domain->priv, s->dma_address,
2309 s->dma_length, dir);
2310 s->dma_address = s->dma_length = 0;
2311 }
2312
2313 domain_flush_complete(domain);
2314
2315 spin_unlock_irqrestore(&domain->lock, flags);
2316}
2317
2318/*
2319 * The exported alloc_coherent function for dma_ops.
2320 */
2321static void *alloc_coherent(struct device *dev, size_t size,
2322 dma_addr_t *dma_addr, gfp_t flag)
2323{
2324 unsigned long flags;
2325 void *virt_addr;
2326 struct protection_domain *domain;
2327 phys_addr_t paddr;
2328 u64 dma_mask = dev->coherent_dma_mask;
2329
2330 INC_STATS_COUNTER(cnt_alloc_coherent);
2331
2332 domain = get_domain(dev);
2333 if (PTR_ERR(domain) == -EINVAL) {
2334 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2335 *dma_addr = __pa(virt_addr);
2336 return virt_addr;
2337 } else if (IS_ERR(domain))
2338 return NULL;
2339
2340 dma_mask = dev->coherent_dma_mask;
2341 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2342 flag |= __GFP_ZERO;
2343
2344 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2345 if (!virt_addr)
2346 return NULL;
2347
2348 paddr = virt_to_phys(virt_addr);
2349
2350 if (!dma_mask)
2351 dma_mask = *dev->dma_mask;
2352
2353 spin_lock_irqsave(&domain->lock, flags);
2354
2355 *dma_addr = __map_single(dev, domain->priv, paddr,
2356 size, DMA_BIDIRECTIONAL, true, dma_mask);
2357
2358 if (*dma_addr == DMA_ERROR_CODE) {
2359 spin_unlock_irqrestore(&domain->lock, flags);
2360 goto out_free;
2361 }
2362
2363 domain_flush_complete(domain);
2364
2365 spin_unlock_irqrestore(&domain->lock, flags);
2366
2367 return virt_addr;
2368
2369out_free:
2370
2371 free_pages((unsigned long)virt_addr, get_order(size));
2372
2373 return NULL;
2374}
2375
2376/*
2377 * The exported free_coherent function for dma_ops.
2378 */
2379static void free_coherent(struct device *dev, size_t size,
2380 void *virt_addr, dma_addr_t dma_addr)
2381{
2382 unsigned long flags;
2383 struct protection_domain *domain;
2384
2385 INC_STATS_COUNTER(cnt_free_coherent);
2386
2387 domain = get_domain(dev);
2388 if (IS_ERR(domain))
2389 goto free_mem;
2390
2391 spin_lock_irqsave(&domain->lock, flags);
2392
2393 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2394
2395 domain_flush_complete(domain);
2396
2397 spin_unlock_irqrestore(&domain->lock, flags);
2398
2399free_mem:
2400 free_pages((unsigned long)virt_addr, get_order(size));
2401}
2402
2403/*
2404 * This function is called by the DMA layer to find out if we can handle a
2405 * particular device. It is part of the dma_ops.
2406 */
2407static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2408{
2409 return check_device(dev);
2410}
2411
2412/*
2413 * The function for pre-allocating protection domains.
2414 *
2415 * If the driver core informs the DMA layer if a driver grabs a device
2416 * we don't need to preallocate the protection domains anymore.
2417 * For now we have to.
2418 */
2419static void prealloc_protection_domains(void)
2420{
2421 struct pci_dev *dev = NULL;
2422 struct dma_ops_domain *dma_dom;
2423 u16 devid;
2424
2425 for_each_pci_dev(dev) {
2426
2427 /* Do we handle this device? */
2428 if (!check_device(&dev->dev))
2429 continue;
2430
2431 /* Is there already any domain for it? */
2432 if (domain_for_device(&dev->dev))
2433 continue;
2434
2435 devid = get_device_id(&dev->dev);
2436
2437 dma_dom = dma_ops_domain_alloc();
2438 if (!dma_dom)
2439 continue;
2440 init_unity_mappings_for_device(dma_dom, devid);
2441 dma_dom->target_dev = devid;
2442
2443 attach_device(&dev->dev, &dma_dom->domain);
2444
2445 list_add_tail(&dma_dom->list, &iommu_pd_list);
2446 }
2447}
2448
2449static struct dma_map_ops amd_iommu_dma_ops = {
2450 .alloc_coherent = alloc_coherent,
2451 .free_coherent = free_coherent,
2452 .map_page = map_page,
2453 .unmap_page = unmap_page,
2454 .map_sg = map_sg,
2455 .unmap_sg = unmap_sg,
2456 .dma_supported = amd_iommu_dma_supported,
2457};
2458
2459static unsigned device_dma_ops_init(void)
2460{
2461 struct pci_dev *pdev = NULL;
2462 unsigned unhandled = 0;
2463
2464 for_each_pci_dev(pdev) {
2465 if (!check_device(&pdev->dev)) {
2466 unhandled += 1;
2467 continue;
2468 }
2469
2470 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
2471 }
2472
2473 return unhandled;
2474}
2475
2476/*
2477 * The function which clues the AMD IOMMU driver into dma_ops.
2478 */
2479
2480void __init amd_iommu_init_api(void)
2481{
2482 register_iommu(&amd_iommu_ops);
2483}
2484
2485int __init amd_iommu_init_dma_ops(void)
2486{
2487 struct amd_iommu *iommu;
2488 int ret, unhandled;
2489
2490 /*
2491 * first allocate a default protection domain for every IOMMU we
2492 * found in the system. Devices not assigned to any other
2493 * protection domain will be assigned to the default one.
2494 */
2495 for_each_iommu(iommu) {
2496 iommu->default_dom = dma_ops_domain_alloc();
2497 if (iommu->default_dom == NULL)
2498 return -ENOMEM;
2499 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2500 ret = iommu_init_unity_mappings(iommu);
2501 if (ret)
2502 goto free_domains;
2503 }
2504
2505 /*
2506 * Pre-allocate the protection domains for each device.
2507 */
2508 prealloc_protection_domains();
2509
2510 iommu_detected = 1;
2511 swiotlb = 0;
2512
2513 /* Make the driver finally visible to the drivers */
2514 unhandled = device_dma_ops_init();
2515 if (unhandled && max_pfn > MAX_DMA32_PFN) {
2516 /* There are unhandled devices - initialize swiotlb for them */
2517 swiotlb = 1;
2518 }
2519
2520 amd_iommu_stats_init();
2521
2522 return 0;
2523
2524free_domains:
2525
2526 for_each_iommu(iommu) {
2527 if (iommu->default_dom)
2528 dma_ops_domain_free(iommu->default_dom);
2529 }
2530
2531 return ret;
2532}
2533
2534/*****************************************************************************
2535 *
2536 * The following functions belong to the exported interface of AMD IOMMU
2537 *
2538 * This interface allows access to lower level functions of the IOMMU
2539 * like protection domain handling and assignement of devices to domains
2540 * which is not possible with the dma_ops interface.
2541 *
2542 *****************************************************************************/
2543
2544static void cleanup_domain(struct protection_domain *domain)
2545{
2546 struct iommu_dev_data *dev_data, *next;
2547 unsigned long flags;
2548
2549 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2550
2551 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2552 __detach_device(dev_data);
2553 atomic_set(&dev_data->bind, 0);
2554 }
2555
2556 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2557}
2558
2559static void protection_domain_free(struct protection_domain *domain)
2560{
2561 if (!domain)
2562 return;
2563
2564 del_domain_from_list(domain);
2565
2566 if (domain->id)
2567 domain_id_free(domain->id);
2568
2569 kfree(domain);
2570}
2571
2572static struct protection_domain *protection_domain_alloc(void)
2573{
2574 struct protection_domain *domain;
2575
2576 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2577 if (!domain)
2578 return NULL;
2579
2580 spin_lock_init(&domain->lock);
2581 mutex_init(&domain->api_lock);
2582 domain->id = domain_id_alloc();
2583 if (!domain->id)
2584 goto out_err;
2585 INIT_LIST_HEAD(&domain->dev_list);
2586
2587 add_domain_to_list(domain);
2588
2589 return domain;
2590
2591out_err:
2592 kfree(domain);
2593
2594 return NULL;
2595}
2596
2597static int amd_iommu_domain_init(struct iommu_domain *dom)
2598{
2599 struct protection_domain *domain;
2600
2601 domain = protection_domain_alloc();
2602 if (!domain)
2603 goto out_free;
2604
2605 domain->mode = PAGE_MODE_3_LEVEL;
2606 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2607 if (!domain->pt_root)
2608 goto out_free;
2609
2610 dom->priv = domain;
2611
2612 return 0;
2613
2614out_free:
2615 protection_domain_free(domain);
2616
2617 return -ENOMEM;
2618}
2619
2620static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2621{
2622 struct protection_domain *domain = dom->priv;
2623
2624 if (!domain)
2625 return;
2626
2627 if (domain->dev_cnt > 0)
2628 cleanup_domain(domain);
2629
2630 BUG_ON(domain->dev_cnt != 0);
2631
2632 free_pagetable(domain);
2633
2634 protection_domain_free(domain);
2635
2636 dom->priv = NULL;
2637}
2638
2639static void amd_iommu_detach_device(struct iommu_domain *dom,
2640 struct device *dev)
2641{
2642 struct iommu_dev_data *dev_data = dev->archdata.iommu;
2643 struct amd_iommu *iommu;
2644 u16 devid;
2645
2646 if (!check_device(dev))
2647 return;
2648
2649 devid = get_device_id(dev);
2650
2651 if (dev_data->domain != NULL)
2652 detach_device(dev);
2653
2654 iommu = amd_iommu_rlookup_table[devid];
2655 if (!iommu)
2656 return;
2657
2658 iommu_completion_wait(iommu);
2659}
2660
2661static int amd_iommu_attach_device(struct iommu_domain *dom,
2662 struct device *dev)
2663{
2664 struct protection_domain *domain = dom->priv;
2665 struct iommu_dev_data *dev_data;
2666 struct amd_iommu *iommu;
2667 int ret;
2668
2669 if (!check_device(dev))
2670 return -EINVAL;
2671
2672 dev_data = dev->archdata.iommu;
2673
2674 iommu = amd_iommu_rlookup_table[dev_data->devid];
2675 if (!iommu)
2676 return -EINVAL;
2677
2678 if (dev_data->domain)
2679 detach_device(dev);
2680
2681 ret = attach_device(dev, domain);
2682
2683 iommu_completion_wait(iommu);
2684
2685 return ret;
2686}
2687
2688static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2689 phys_addr_t paddr, int gfp_order, int iommu_prot)
2690{
2691 unsigned long page_size = 0x1000UL << gfp_order;
2692 struct protection_domain *domain = dom->priv;
2693 int prot = 0;
2694 int ret;
2695
2696 if (iommu_prot & IOMMU_READ)
2697 prot |= IOMMU_PROT_IR;
2698 if (iommu_prot & IOMMU_WRITE)
2699 prot |= IOMMU_PROT_IW;
2700
2701 mutex_lock(&domain->api_lock);
2702 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2703 mutex_unlock(&domain->api_lock);
2704
2705 return ret;
2706}
2707
2708static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2709 int gfp_order)
2710{
2711 struct protection_domain *domain = dom->priv;
2712 unsigned long page_size, unmap_size;
2713
2714 page_size = 0x1000UL << gfp_order;
2715
2716 mutex_lock(&domain->api_lock);
2717 unmap_size = iommu_unmap_page(domain, iova, page_size);
2718 mutex_unlock(&domain->api_lock);
2719
2720 domain_flush_tlb_pde(domain);
2721
2722 return get_order(unmap_size);
2723}
2724
2725static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2726 unsigned long iova)
2727{
2728 struct protection_domain *domain = dom->priv;
2729 unsigned long offset_mask;
2730 phys_addr_t paddr;
2731 u64 *pte, __pte;
2732
2733 pte = fetch_pte(domain, iova);
2734
2735 if (!pte || !IOMMU_PTE_PRESENT(*pte))
2736 return 0;
2737
2738 if (PM_PTE_LEVEL(*pte) == 0)
2739 offset_mask = PAGE_SIZE - 1;
2740 else
2741 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
2742
2743 __pte = *pte & PM_ADDR_MASK;
2744 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
2745
2746 return paddr;
2747}
2748
2749static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2750 unsigned long cap)
2751{
2752 switch (cap) {
2753 case IOMMU_CAP_CACHE_COHERENCY:
2754 return 1;
2755 }
2756
2757 return 0;
2758}
2759
2760static struct iommu_ops amd_iommu_ops = {
2761 .domain_init = amd_iommu_domain_init,
2762 .domain_destroy = amd_iommu_domain_destroy,
2763 .attach_dev = amd_iommu_attach_device,
2764 .detach_dev = amd_iommu_detach_device,
2765 .map = amd_iommu_map,
2766 .unmap = amd_iommu_unmap,
2767 .iova_to_phys = amd_iommu_iova_to_phys,
2768 .domain_has_cap = amd_iommu_domain_has_cap,
2769};
2770
2771/*****************************************************************************
2772 *
2773 * The next functions do a basic initialization of IOMMU for pass through
2774 * mode
2775 *
2776 * In passthrough mode the IOMMU is initialized and enabled but not used for
2777 * DMA-API translation.
2778 *
2779 *****************************************************************************/
2780
2781int __init amd_iommu_init_passthrough(void)
2782{
2783 struct amd_iommu *iommu;
2784 struct pci_dev *dev = NULL;
2785 u16 devid;
2786
2787 /* allocate passthrough domain */
2788 pt_domain = protection_domain_alloc();
2789 if (!pt_domain)
2790 return -ENOMEM;
2791
2792 pt_domain->mode |= PAGE_MODE_NONE;
2793
2794 for_each_pci_dev(dev) {
2795 if (!check_device(&dev->dev))
2796 continue;
2797
2798 devid = get_device_id(&dev->dev);
2799
2800 iommu = amd_iommu_rlookup_table[devid];
2801 if (!iommu)
2802 continue;
2803
2804 attach_device(&dev->dev, pt_domain);
2805 }
2806
2807 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2808
2809 return 0;
2810}