aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/xen/xen-asm_32.S
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/xen/xen-asm_32.S')
-rw-r--r--arch/x86/xen/xen-asm_32.S343
1 files changed, 133 insertions, 210 deletions
diff --git a/arch/x86/xen/xen-asm_32.S b/arch/x86/xen/xen-asm_32.S
index 42786f59d9c0..88e15deb8b82 100644
--- a/arch/x86/xen/xen-asm_32.S
+++ b/arch/x86/xen/xen-asm_32.S
@@ -1,117 +1,43 @@
1/* 1/*
2 Asm versions of Xen pv-ops, suitable for either direct use or inlining. 2 * Asm versions of Xen pv-ops, suitable for either direct use or
3 The inline versions are the same as the direct-use versions, with the 3 * inlining. The inline versions are the same as the direct-use
4 pre- and post-amble chopped off. 4 * versions, with the pre- and post-amble chopped off.
5 5 *
6 This code is encoded for size rather than absolute efficiency, 6 * This code is encoded for size rather than absolute efficiency, with
7 with a view to being able to inline as much as possible. 7 * a view to being able to inline as much as possible.
8 8 *
9 We only bother with direct forms (ie, vcpu in pda) of the operations 9 * We only bother with direct forms (ie, vcpu in pda) of the
10 here; the indirect forms are better handled in C, since they're 10 * operations here; the indirect forms are better handled in C, since
11 generally too large to inline anyway. 11 * they're generally too large to inline anyway.
12 */ 12 */
13 13
14#include <linux/linkage.h>
15
16#include <asm/asm-offsets.h>
17#include <asm/thread_info.h> 14#include <asm/thread_info.h>
18#include <asm/percpu.h>
19#include <asm/processor-flags.h> 15#include <asm/processor-flags.h>
20#include <asm/segment.h> 16#include <asm/segment.h>
21 17
22#include <xen/interface/xen.h> 18#include <xen/interface/xen.h>
23 19
24#define RELOC(x, v) .globl x##_reloc; x##_reloc=v 20#include "xen-asm.h"
25#define ENDPATCH(x) .globl x##_end; x##_end=.
26
27/* Pseudo-flag used for virtual NMI, which we don't implement yet */
28#define XEN_EFLAGS_NMI 0x80000000
29
30/*
31 Enable events. This clears the event mask and tests the pending
32 event status with one and operation. If there are pending
33 events, then enter the hypervisor to get them handled.
34 */
35ENTRY(xen_irq_enable_direct)
36 /* Unmask events */
37 movb $0, PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_mask
38
39 /* Preempt here doesn't matter because that will deal with
40 any pending interrupts. The pending check may end up being
41 run on the wrong CPU, but that doesn't hurt. */
42
43 /* Test for pending */
44 testb $0xff, PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_pending
45 jz 1f
46
472: call check_events
481:
49ENDPATCH(xen_irq_enable_direct)
50 ret
51 ENDPROC(xen_irq_enable_direct)
52 RELOC(xen_irq_enable_direct, 2b+1)
53
54
55/*
56 Disabling events is simply a matter of making the event mask
57 non-zero.
58 */
59ENTRY(xen_irq_disable_direct)
60 movb $1, PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_mask
61ENDPATCH(xen_irq_disable_direct)
62 ret
63 ENDPROC(xen_irq_disable_direct)
64 RELOC(xen_irq_disable_direct, 0)
65 21
66/* 22/*
67 (xen_)save_fl is used to get the current interrupt enable status. 23 * Force an event check by making a hypercall, but preserve regs
68 Callers expect the status to be in X86_EFLAGS_IF, and other bits 24 * before making the call.
69 may be set in the return value. We take advantage of this by
70 making sure that X86_EFLAGS_IF has the right value (and other bits
71 in that byte are 0), but other bits in the return value are
72 undefined. We need to toggle the state of the bit, because
73 Xen and x86 use opposite senses (mask vs enable).
74 */ 25 */
75ENTRY(xen_save_fl_direct) 26check_events:
76 testb $0xff, PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_mask 27 push %eax
77 setz %ah 28 push %ecx
78 addb %ah,%ah 29 push %edx
79ENDPATCH(xen_save_fl_direct) 30 call xen_force_evtchn_callback
80 ret 31 pop %edx
81 ENDPROC(xen_save_fl_direct) 32 pop %ecx
82 RELOC(xen_save_fl_direct, 0) 33 pop %eax
83
84
85/*
86 In principle the caller should be passing us a value return
87 from xen_save_fl_direct, but for robustness sake we test only
88 the X86_EFLAGS_IF flag rather than the whole byte. After
89 setting the interrupt mask state, it checks for unmasked
90 pending events and enters the hypervisor to get them delivered
91 if so.
92 */
93ENTRY(xen_restore_fl_direct)
94 testb $X86_EFLAGS_IF>>8, %ah
95 setz PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_mask
96 /* Preempt here doesn't matter because that will deal with
97 any pending interrupts. The pending check may end up being
98 run on the wrong CPU, but that doesn't hurt. */
99
100 /* check for unmasked and pending */
101 cmpw $0x0001, PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_pending
102 jz 1f
1032: call check_events
1041:
105ENDPATCH(xen_restore_fl_direct)
106 ret 34 ret
107 ENDPROC(xen_restore_fl_direct)
108 RELOC(xen_restore_fl_direct, 2b+1)
109 35
110/* 36/*
111 We can't use sysexit directly, because we're not running in ring0. 37 * We can't use sysexit directly, because we're not running in ring0.
112 But we can easily fake it up using iret. Assuming xen_sysexit 38 * But we can easily fake it up using iret. Assuming xen_sysexit is
113 is jumped to with a standard stack frame, we can just strip it 39 * jumped to with a standard stack frame, we can just strip it back to
114 back to a standard iret frame and use iret. 40 * a standard iret frame and use iret.
115 */ 41 */
116ENTRY(xen_sysexit) 42ENTRY(xen_sysexit)
117 movl PT_EAX(%esp), %eax /* Shouldn't be necessary? */ 43 movl PT_EAX(%esp), %eax /* Shouldn't be necessary? */
@@ -122,33 +48,31 @@ ENTRY(xen_sysexit)
122ENDPROC(xen_sysexit) 48ENDPROC(xen_sysexit)
123 49
124/* 50/*
125 This is run where a normal iret would be run, with the same stack setup: 51 * This is run where a normal iret would be run, with the same stack setup:
126 8: eflags 52 * 8: eflags
127 4: cs 53 * 4: cs
128 esp-> 0: eip 54 * esp-> 0: eip
129 55 *
130 This attempts to make sure that any pending events are dealt 56 * This attempts to make sure that any pending events are dealt with
131 with on return to usermode, but there is a small window in 57 * on return to usermode, but there is a small window in which an
132 which an event can happen just before entering usermode. If 58 * event can happen just before entering usermode. If the nested
133 the nested interrupt ends up setting one of the TIF_WORK_MASK 59 * interrupt ends up setting one of the TIF_WORK_MASK pending work
134 pending work flags, they will not be tested again before 60 * flags, they will not be tested again before returning to
135 returning to usermode. This means that a process can end up 61 * usermode. This means that a process can end up with pending work,
136 with pending work, which will be unprocessed until the process 62 * which will be unprocessed until the process enters and leaves the
137 enters and leaves the kernel again, which could be an 63 * kernel again, which could be an unbounded amount of time. This
138 unbounded amount of time. This means that a pending signal or 64 * means that a pending signal or reschedule event could be
139 reschedule event could be indefinitely delayed. 65 * indefinitely delayed.
140 66 *
141 The fix is to notice a nested interrupt in the critical 67 * The fix is to notice a nested interrupt in the critical window, and
142 window, and if one occurs, then fold the nested interrupt into 68 * if one occurs, then fold the nested interrupt into the current
143 the current interrupt stack frame, and re-process it 69 * interrupt stack frame, and re-process it iteratively rather than
144 iteratively rather than recursively. This means that it will 70 * recursively. This means that it will exit via the normal path, and
145 exit via the normal path, and all pending work will be dealt 71 * all pending work will be dealt with appropriately.
146 with appropriately. 72 *
147 73 * Because the nested interrupt handler needs to deal with the current
148 Because the nested interrupt handler needs to deal with the 74 * stack state in whatever form its in, we keep things simple by only
149 current stack state in whatever form its in, we keep things 75 * using a single register which is pushed/popped on the stack.
150 simple by only using a single register which is pushed/popped
151 on the stack.
152 */ 76 */
153ENTRY(xen_iret) 77ENTRY(xen_iret)
154 /* test eflags for special cases */ 78 /* test eflags for special cases */
@@ -158,13 +82,15 @@ ENTRY(xen_iret)
158 push %eax 82 push %eax
159 ESP_OFFSET=4 # bytes pushed onto stack 83 ESP_OFFSET=4 # bytes pushed onto stack
160 84
161 /* Store vcpu_info pointer for easy access. Do it this 85 /*
162 way to avoid having to reload %fs */ 86 * Store vcpu_info pointer for easy access. Do it this way to
87 * avoid having to reload %fs
88 */
163#ifdef CONFIG_SMP 89#ifdef CONFIG_SMP
164 GET_THREAD_INFO(%eax) 90 GET_THREAD_INFO(%eax)
165 movl TI_cpu(%eax),%eax 91 movl TI_cpu(%eax), %eax
166 movl __per_cpu_offset(,%eax,4),%eax 92 movl __per_cpu_offset(,%eax,4), %eax
167 mov per_cpu__xen_vcpu(%eax),%eax 93 mov per_cpu__xen_vcpu(%eax), %eax
168#else 94#else
169 movl per_cpu__xen_vcpu, %eax 95 movl per_cpu__xen_vcpu, %eax
170#endif 96#endif
@@ -172,37 +98,46 @@ ENTRY(xen_iret)
172 /* check IF state we're restoring */ 98 /* check IF state we're restoring */
173 testb $X86_EFLAGS_IF>>8, 8+1+ESP_OFFSET(%esp) 99 testb $X86_EFLAGS_IF>>8, 8+1+ESP_OFFSET(%esp)
174 100
175 /* Maybe enable events. Once this happens we could get a 101 /*
176 recursive event, so the critical region starts immediately 102 * Maybe enable events. Once this happens we could get a
177 afterwards. However, if that happens we don't end up 103 * recursive event, so the critical region starts immediately
178 resuming the code, so we don't have to be worried about 104 * afterwards. However, if that happens we don't end up
179 being preempted to another CPU. */ 105 * resuming the code, so we don't have to be worried about
106 * being preempted to another CPU.
107 */
180 setz XEN_vcpu_info_mask(%eax) 108 setz XEN_vcpu_info_mask(%eax)
181xen_iret_start_crit: 109xen_iret_start_crit:
182 110
183 /* check for unmasked and pending */ 111 /* check for unmasked and pending */
184 cmpw $0x0001, XEN_vcpu_info_pending(%eax) 112 cmpw $0x0001, XEN_vcpu_info_pending(%eax)
185 113
186 /* If there's something pending, mask events again so we 114 /*
187 can jump back into xen_hypervisor_callback */ 115 * If there's something pending, mask events again so we can
116 * jump back into xen_hypervisor_callback
117 */
188 sete XEN_vcpu_info_mask(%eax) 118 sete XEN_vcpu_info_mask(%eax)
189 119
190 popl %eax 120 popl %eax
191 121
192 /* From this point on the registers are restored and the stack 122 /*
193 updated, so we don't need to worry about it if we're preempted */ 123 * From this point on the registers are restored and the stack
124 * updated, so we don't need to worry about it if we're
125 * preempted
126 */
194iret_restore_end: 127iret_restore_end:
195 128
196 /* Jump to hypervisor_callback after fixing up the stack. 129 /*
197 Events are masked, so jumping out of the critical 130 * Jump to hypervisor_callback after fixing up the stack.
198 region is OK. */ 131 * Events are masked, so jumping out of the critical region is
132 * OK.
133 */
199 je xen_hypervisor_callback 134 je xen_hypervisor_callback
200 135
2011: iret 1361: iret
202xen_iret_end_crit: 137xen_iret_end_crit:
203.section __ex_table,"a" 138.section __ex_table, "a"
204 .align 4 139 .align 4
205 .long 1b,iret_exc 140 .long 1b, iret_exc
206.previous 141.previous
207 142
208hyper_iret: 143hyper_iret:
@@ -212,55 +147,55 @@ hyper_iret:
212 .globl xen_iret_start_crit, xen_iret_end_crit 147 .globl xen_iret_start_crit, xen_iret_end_crit
213 148
214/* 149/*
215 This is called by xen_hypervisor_callback in entry.S when it sees 150 * This is called by xen_hypervisor_callback in entry.S when it sees
216 that the EIP at the time of interrupt was between xen_iret_start_crit 151 * that the EIP at the time of interrupt was between
217 and xen_iret_end_crit. We're passed the EIP in %eax so we can do 152 * xen_iret_start_crit and xen_iret_end_crit. We're passed the EIP in
218 a more refined determination of what to do. 153 * %eax so we can do a more refined determination of what to do.
219 154 *
220 The stack format at this point is: 155 * The stack format at this point is:
221 ---------------- 156 * ----------------
222 ss : (ss/esp may be present if we came from usermode) 157 * ss : (ss/esp may be present if we came from usermode)
223 esp : 158 * esp :
224 eflags } outer exception info 159 * eflags } outer exception info
225 cs } 160 * cs }
226 eip } 161 * eip }
227 ---------------- <- edi (copy dest) 162 * ---------------- <- edi (copy dest)
228 eax : outer eax if it hasn't been restored 163 * eax : outer eax if it hasn't been restored
229 ---------------- 164 * ----------------
230 eflags } nested exception info 165 * eflags } nested exception info
231 cs } (no ss/esp because we're nested 166 * cs } (no ss/esp because we're nested
232 eip } from the same ring) 167 * eip } from the same ring)
233 orig_eax }<- esi (copy src) 168 * orig_eax }<- esi (copy src)
234 - - - - - - - - 169 * - - - - - - - -
235 fs } 170 * fs }
236 es } 171 * es }
237 ds } SAVE_ALL state 172 * ds } SAVE_ALL state
238 eax } 173 * eax }
239 : : 174 * : :
240 ebx }<- esp 175 * ebx }<- esp
241 ---------------- 176 * ----------------
242 177 *
243 In order to deliver the nested exception properly, we need to shift 178 * In order to deliver the nested exception properly, we need to shift
244 everything from the return addr up to the error code so it 179 * everything from the return addr up to the error code so it sits
245 sits just under the outer exception info. This means that when we 180 * just under the outer exception info. This means that when we
246 handle the exception, we do it in the context of the outer exception 181 * handle the exception, we do it in the context of the outer
247 rather than starting a new one. 182 * exception rather than starting a new one.
248 183 *
249 The only caveat is that if the outer eax hasn't been 184 * The only caveat is that if the outer eax hasn't been restored yet
250 restored yet (ie, it's still on stack), we need to insert 185 * (ie, it's still on stack), we need to insert its value into the
251 its value into the SAVE_ALL state before going on, since 186 * SAVE_ALL state before going on, since it's usermode state which we
252 it's usermode state which we eventually need to restore. 187 * eventually need to restore.
253 */ 188 */
254ENTRY(xen_iret_crit_fixup) 189ENTRY(xen_iret_crit_fixup)
255 /* 190 /*
256 Paranoia: Make sure we're really coming from kernel space. 191 * Paranoia: Make sure we're really coming from kernel space.
257 One could imagine a case where userspace jumps into the 192 * One could imagine a case where userspace jumps into the
258 critical range address, but just before the CPU delivers a GP, 193 * critical range address, but just before the CPU delivers a
259 it decides to deliver an interrupt instead. Unlikely? 194 * GP, it decides to deliver an interrupt instead. Unlikely?
260 Definitely. Easy to avoid? Yes. The Intel documents 195 * Definitely. Easy to avoid? Yes. The Intel documents
261 explicitly say that the reported EIP for a bad jump is the 196 * explicitly say that the reported EIP for a bad jump is the
262 jump instruction itself, not the destination, but some virtual 197 * jump instruction itself, not the destination, but some
263 environments get this wrong. 198 * virtual environments get this wrong.
264 */ 199 */
265 movl PT_CS(%esp), %ecx 200 movl PT_CS(%esp), %ecx
266 andl $SEGMENT_RPL_MASK, %ecx 201 andl $SEGMENT_RPL_MASK, %ecx
@@ -270,15 +205,17 @@ ENTRY(xen_iret_crit_fixup)
270 lea PT_ORIG_EAX(%esp), %esi 205 lea PT_ORIG_EAX(%esp), %esi
271 lea PT_EFLAGS(%esp), %edi 206 lea PT_EFLAGS(%esp), %edi
272 207
273 /* If eip is before iret_restore_end then stack 208 /*
274 hasn't been restored yet. */ 209 * If eip is before iret_restore_end then stack
210 * hasn't been restored yet.
211 */
275 cmp $iret_restore_end, %eax 212 cmp $iret_restore_end, %eax
276 jae 1f 213 jae 1f
277 214
278 movl 0+4(%edi),%eax /* copy EAX (just above top of frame) */ 215 movl 0+4(%edi), %eax /* copy EAX (just above top of frame) */
279 movl %eax, PT_EAX(%esp) 216 movl %eax, PT_EAX(%esp)
280 217
281 lea ESP_OFFSET(%edi),%edi /* move dest up over saved regs */ 218 lea ESP_OFFSET(%edi), %edi /* move dest up over saved regs */
282 219
283 /* set up the copy */ 220 /* set up the copy */
2841: std 2211: std
@@ -286,20 +223,6 @@ ENTRY(xen_iret_crit_fixup)
286 rep movsl 223 rep movsl
287 cld 224 cld
288 225
289 lea 4(%edi),%esp /* point esp to new frame */ 226 lea 4(%edi), %esp /* point esp to new frame */
2902: jmp xen_do_upcall 2272: jmp xen_do_upcall
291 228
292
293/*
294 Force an event check by making a hypercall,
295 but preserve regs before making the call.
296 */
297check_events:
298 push %eax
299 push %ecx
300 push %edx
301 call xen_force_evtchn_callback
302 pop %edx
303 pop %ecx
304 pop %eax
305 ret