aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/arm/Booting33
-rw-r--r--Documentation/arm/Samsung/Overview.txt2
-rw-r--r--Documentation/devicetree/booting-without-of.txt48
3 files changed, 73 insertions, 10 deletions
diff --git a/Documentation/arm/Booting b/Documentation/arm/Booting
index 76850295af8f..4e686a2ed91e 100644
--- a/Documentation/arm/Booting
+++ b/Documentation/arm/Booting
@@ -65,13 +65,19 @@ looks at the connected hardware is beyond the scope of this document.
65The boot loader must ultimately be able to provide a MACH_TYPE_xxx 65The boot loader must ultimately be able to provide a MACH_TYPE_xxx
66value to the kernel. (see linux/arch/arm/tools/mach-types). 66value to the kernel. (see linux/arch/arm/tools/mach-types).
67 67
68 684. Setup boot data
694. Setup the kernel tagged list 69------------------
70-------------------------------
71 70
72Existing boot loaders: OPTIONAL, HIGHLY RECOMMENDED 71Existing boot loaders: OPTIONAL, HIGHLY RECOMMENDED
73New boot loaders: MANDATORY 72New boot loaders: MANDATORY
74 73
74The boot loader must provide either a tagged list or a dtb image for
75passing configuration data to the kernel. The physical address of the
76boot data is passed to the kernel in register r2.
77
784a. Setup the kernel tagged list
79--------------------------------
80
75The boot loader must create and initialise the kernel tagged list. 81The boot loader must create and initialise the kernel tagged list.
76A valid tagged list starts with ATAG_CORE and ends with ATAG_NONE. 82A valid tagged list starts with ATAG_CORE and ends with ATAG_NONE.
77The ATAG_CORE tag may or may not be empty. An empty ATAG_CORE tag 83The ATAG_CORE tag may or may not be empty. An empty ATAG_CORE tag
@@ -101,6 +107,24 @@ The tagged list must be placed in a region of memory where neither
101the kernel decompressor nor initrd 'bootp' program will overwrite 107the kernel decompressor nor initrd 'bootp' program will overwrite
102it. The recommended placement is in the first 16KiB of RAM. 108it. The recommended placement is in the first 16KiB of RAM.
103 109
1104b. Setup the device tree
111-------------------------
112
113The boot loader must load a device tree image (dtb) into system ram
114at a 64bit aligned address and initialize it with the boot data. The
115dtb format is documented in Documentation/devicetree/booting-without-of.txt.
116The kernel will look for the dtb magic value of 0xd00dfeed at the dtb
117physical address to determine if a dtb has been passed instead of a
118tagged list.
119
120The boot loader must pass at a minimum the size and location of the
121system memory, and the root filesystem location. The dtb must be
122placed in a region of memory where the kernel decompressor will not
123overwrite it. The recommended placement is in the first 16KiB of RAM
124with the caveat that it may not be located at physical address 0 since
125the kernel interprets a value of 0 in r2 to mean neither a tagged list
126nor a dtb were passed.
127
1045. Calling the kernel image 1285. Calling the kernel image
105--------------------------- 129---------------------------
106 130
@@ -125,7 +149,8 @@ In either case, the following conditions must be met:
125- CPU register settings 149- CPU register settings
126 r0 = 0, 150 r0 = 0,
127 r1 = machine type number discovered in (3) above. 151 r1 = machine type number discovered in (3) above.
128 r2 = physical address of tagged list in system RAM. 152 r2 = physical address of tagged list in system RAM, or
153 physical address of device tree block (dtb) in system RAM
129 154
130- CPU mode 155- CPU mode
131 All forms of interrupts must be disabled (IRQs and FIQs) 156 All forms of interrupts must be disabled (IRQs and FIQs)
diff --git a/Documentation/arm/Samsung/Overview.txt b/Documentation/arm/Samsung/Overview.txt
index c3094ea51aa7..658abb258cef 100644
--- a/Documentation/arm/Samsung/Overview.txt
+++ b/Documentation/arm/Samsung/Overview.txt
@@ -14,7 +14,6 @@ Introduction
14 - S3C24XX: See Documentation/arm/Samsung-S3C24XX/Overview.txt for full list 14 - S3C24XX: See Documentation/arm/Samsung-S3C24XX/Overview.txt for full list
15 - S3C64XX: S3C6400 and S3C6410 15 - S3C64XX: S3C6400 and S3C6410
16 - S5P6440 16 - S5P6440
17 - S5P6442
18 - S5PC100 17 - S5PC100
19 - S5PC110 / S5PV210 18 - S5PC110 / S5PV210
20 19
@@ -36,7 +35,6 @@ Configuration
36 unifying all the SoCs into one kernel. 35 unifying all the SoCs into one kernel.
37 36
38 s5p6440_defconfig - S5P6440 specific default configuration 37 s5p6440_defconfig - S5P6440 specific default configuration
39 s5p6442_defconfig - S5P6442 specific default configuration
40 s5pc100_defconfig - S5PC100 specific default configuration 38 s5pc100_defconfig - S5PC100 specific default configuration
41 s5pc110_defconfig - S5PC110 specific default configuration 39 s5pc110_defconfig - S5PC110 specific default configuration
42 s5pv210_defconfig - S5PV210 specific default configuration 40 s5pv210_defconfig - S5PV210 specific default configuration
diff --git a/Documentation/devicetree/booting-without-of.txt b/Documentation/devicetree/booting-without-of.txt
index 50619a0720a8..7c1329de0596 100644
--- a/Documentation/devicetree/booting-without-of.txt
+++ b/Documentation/devicetree/booting-without-of.txt
@@ -12,8 +12,9 @@ Table of Contents
12================= 12=================
13 13
14 I - Introduction 14 I - Introduction
15 1) Entry point for arch/powerpc 15 1) Entry point for arch/arm
16 2) Entry point for arch/x86 16 2) Entry point for arch/powerpc
17 3) Entry point for arch/x86
17 18
18 II - The DT block format 19 II - The DT block format
19 1) Header 20 1) Header
@@ -148,7 +149,46 @@ upgrades without significantly impacting the kernel code or cluttering
148it with special cases. 149it with special cases.
149 150
150 151
1511) Entry point for arch/powerpc 1521) Entry point for arch/arm
153---------------------------
154
155 There is one single entry point to the kernel, at the start
156 of the kernel image. That entry point supports two calling
157 conventions. A summary of the interface is described here. A full
158 description of the boot requirements is documented in
159 Documentation/arm/Booting
160
161 a) ATAGS interface. Minimal information is passed from firmware
162 to the kernel with a tagged list of predefined parameters.
163
164 r0 : 0
165
166 r1 : Machine type number
167
168 r2 : Physical address of tagged list in system RAM
169
170 b) Entry with a flattened device-tree block. Firmware loads the
171 physical address of the flattened device tree block (dtb) into r2,
172 r1 is not used, but it is considered good practise to use a valid
173 machine number as described in Documentation/arm/Booting.
174
175 r0 : 0
176
177 r1 : Valid machine type number. When using a device tree,
178 a single machine type number will often be assigned to
179 represent a class or family of SoCs.
180
181 r2 : physical pointer to the device-tree block
182 (defined in chapter II) in RAM. Device tree can be located
183 anywhere in system RAM, but it should be aligned on a 64 bit
184 boundary.
185
186 The kernel will differentiate between ATAGS and device tree booting by
187 reading the memory pointed to by r2 and looking for either the flattened
188 device tree block magic value (0xd00dfeed) or the ATAG_CORE value at
189 offset 0x4 from r2 (0x54410001).
190
1912) Entry point for arch/powerpc
152------------------------------- 192-------------------------------
153 193
154 There is one single entry point to the kernel, at the start 194 There is one single entry point to the kernel, at the start
@@ -226,7 +266,7 @@ it with special cases.
226 cannot support both configurations with Book E and configurations 266 cannot support both configurations with Book E and configurations
227 with classic Powerpc architectures. 267 with classic Powerpc architectures.
228 268
2292) Entry point for arch/x86 2693) Entry point for arch/x86
230------------------------------- 270-------------------------------
231 271
232 There is one single 32bit entry point to the kernel at code32_start, 272 There is one single 32bit entry point to the kernel at code32_start,