diff options
Diffstat (limited to 'net/bluetooth/hci_request.c')
| -rw-r--r-- | net/bluetooth/hci_request.c | 556 |
1 files changed, 556 insertions, 0 deletions
diff --git a/net/bluetooth/hci_request.c b/net/bluetooth/hci_request.c new file mode 100644 index 000000000000..b59f92c6df0c --- /dev/null +++ b/net/bluetooth/hci_request.c | |||
| @@ -0,0 +1,556 @@ | |||
| 1 | /* | ||
| 2 | BlueZ - Bluetooth protocol stack for Linux | ||
| 3 | |||
| 4 | Copyright (C) 2014 Intel Corporation | ||
| 5 | |||
| 6 | This program is free software; you can redistribute it and/or modify | ||
| 7 | it under the terms of the GNU General Public License version 2 as | ||
| 8 | published by the Free Software Foundation; | ||
| 9 | |||
| 10 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS | ||
| 11 | OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
| 12 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. | ||
| 13 | IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY | ||
| 14 | CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES | ||
| 15 | WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
| 16 | ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
| 17 | OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
| 18 | |||
| 19 | ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, | ||
| 20 | COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS | ||
| 21 | SOFTWARE IS DISCLAIMED. | ||
| 22 | */ | ||
| 23 | |||
| 24 | #include <net/bluetooth/bluetooth.h> | ||
| 25 | #include <net/bluetooth/hci_core.h> | ||
| 26 | |||
| 27 | #include "smp.h" | ||
| 28 | #include "hci_request.h" | ||
| 29 | |||
| 30 | void hci_req_init(struct hci_request *req, struct hci_dev *hdev) | ||
| 31 | { | ||
| 32 | skb_queue_head_init(&req->cmd_q); | ||
| 33 | req->hdev = hdev; | ||
| 34 | req->err = 0; | ||
| 35 | } | ||
| 36 | |||
| 37 | int hci_req_run(struct hci_request *req, hci_req_complete_t complete) | ||
| 38 | { | ||
| 39 | struct hci_dev *hdev = req->hdev; | ||
| 40 | struct sk_buff *skb; | ||
| 41 | unsigned long flags; | ||
| 42 | |||
| 43 | BT_DBG("length %u", skb_queue_len(&req->cmd_q)); | ||
| 44 | |||
| 45 | /* If an error occurred during request building, remove all HCI | ||
| 46 | * commands queued on the HCI request queue. | ||
| 47 | */ | ||
| 48 | if (req->err) { | ||
| 49 | skb_queue_purge(&req->cmd_q); | ||
| 50 | return req->err; | ||
| 51 | } | ||
| 52 | |||
| 53 | /* Do not allow empty requests */ | ||
| 54 | if (skb_queue_empty(&req->cmd_q)) | ||
| 55 | return -ENODATA; | ||
| 56 | |||
| 57 | skb = skb_peek_tail(&req->cmd_q); | ||
| 58 | bt_cb(skb)->req.complete = complete; | ||
| 59 | |||
| 60 | spin_lock_irqsave(&hdev->cmd_q.lock, flags); | ||
| 61 | skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); | ||
| 62 | spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); | ||
| 63 | |||
| 64 | queue_work(hdev->workqueue, &hdev->cmd_work); | ||
| 65 | |||
| 66 | return 0; | ||
| 67 | } | ||
| 68 | |||
| 69 | struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen, | ||
| 70 | const void *param) | ||
| 71 | { | ||
| 72 | int len = HCI_COMMAND_HDR_SIZE + plen; | ||
| 73 | struct hci_command_hdr *hdr; | ||
| 74 | struct sk_buff *skb; | ||
| 75 | |||
| 76 | skb = bt_skb_alloc(len, GFP_ATOMIC); | ||
| 77 | if (!skb) | ||
| 78 | return NULL; | ||
| 79 | |||
| 80 | hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE); | ||
| 81 | hdr->opcode = cpu_to_le16(opcode); | ||
| 82 | hdr->plen = plen; | ||
| 83 | |||
| 84 | if (plen) | ||
| 85 | memcpy(skb_put(skb, plen), param, plen); | ||
| 86 | |||
| 87 | BT_DBG("skb len %d", skb->len); | ||
| 88 | |||
| 89 | bt_cb(skb)->pkt_type = HCI_COMMAND_PKT; | ||
| 90 | bt_cb(skb)->opcode = opcode; | ||
| 91 | |||
| 92 | return skb; | ||
| 93 | } | ||
| 94 | |||
| 95 | /* Queue a command to an asynchronous HCI request */ | ||
| 96 | void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen, | ||
| 97 | const void *param, u8 event) | ||
| 98 | { | ||
| 99 | struct hci_dev *hdev = req->hdev; | ||
| 100 | struct sk_buff *skb; | ||
| 101 | |||
| 102 | BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); | ||
| 103 | |||
| 104 | /* If an error occurred during request building, there is no point in | ||
| 105 | * queueing the HCI command. We can simply return. | ||
| 106 | */ | ||
| 107 | if (req->err) | ||
| 108 | return; | ||
| 109 | |||
| 110 | skb = hci_prepare_cmd(hdev, opcode, plen, param); | ||
| 111 | if (!skb) { | ||
| 112 | BT_ERR("%s no memory for command (opcode 0x%4.4x)", | ||
| 113 | hdev->name, opcode); | ||
| 114 | req->err = -ENOMEM; | ||
| 115 | return; | ||
| 116 | } | ||
| 117 | |||
| 118 | if (skb_queue_empty(&req->cmd_q)) | ||
| 119 | bt_cb(skb)->req.start = true; | ||
| 120 | |||
| 121 | bt_cb(skb)->req.event = event; | ||
| 122 | |||
| 123 | skb_queue_tail(&req->cmd_q, skb); | ||
| 124 | } | ||
| 125 | |||
| 126 | void hci_req_add(struct hci_request *req, u16 opcode, u32 plen, | ||
| 127 | const void *param) | ||
| 128 | { | ||
| 129 | hci_req_add_ev(req, opcode, plen, param, 0); | ||
| 130 | } | ||
| 131 | |||
| 132 | void hci_req_add_le_scan_disable(struct hci_request *req) | ||
| 133 | { | ||
| 134 | struct hci_cp_le_set_scan_enable cp; | ||
| 135 | |||
| 136 | memset(&cp, 0, sizeof(cp)); | ||
| 137 | cp.enable = LE_SCAN_DISABLE; | ||
| 138 | hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); | ||
| 139 | } | ||
| 140 | |||
| 141 | static void add_to_white_list(struct hci_request *req, | ||
| 142 | struct hci_conn_params *params) | ||
| 143 | { | ||
| 144 | struct hci_cp_le_add_to_white_list cp; | ||
| 145 | |||
| 146 | cp.bdaddr_type = params->addr_type; | ||
| 147 | bacpy(&cp.bdaddr, ¶ms->addr); | ||
| 148 | |||
| 149 | hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp); | ||
| 150 | } | ||
| 151 | |||
| 152 | static u8 update_white_list(struct hci_request *req) | ||
| 153 | { | ||
| 154 | struct hci_dev *hdev = req->hdev; | ||
| 155 | struct hci_conn_params *params; | ||
| 156 | struct bdaddr_list *b; | ||
| 157 | uint8_t white_list_entries = 0; | ||
| 158 | |||
| 159 | /* Go through the current white list programmed into the | ||
| 160 | * controller one by one and check if that address is still | ||
| 161 | * in the list of pending connections or list of devices to | ||
| 162 | * report. If not present in either list, then queue the | ||
| 163 | * command to remove it from the controller. | ||
| 164 | */ | ||
| 165 | list_for_each_entry(b, &hdev->le_white_list, list) { | ||
| 166 | struct hci_cp_le_del_from_white_list cp; | ||
| 167 | |||
| 168 | if (hci_pend_le_action_lookup(&hdev->pend_le_conns, | ||
| 169 | &b->bdaddr, b->bdaddr_type) || | ||
| 170 | hci_pend_le_action_lookup(&hdev->pend_le_reports, | ||
| 171 | &b->bdaddr, b->bdaddr_type)) { | ||
| 172 | white_list_entries++; | ||
| 173 | continue; | ||
| 174 | } | ||
| 175 | |||
| 176 | cp.bdaddr_type = b->bdaddr_type; | ||
| 177 | bacpy(&cp.bdaddr, &b->bdaddr); | ||
| 178 | |||
| 179 | hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST, | ||
| 180 | sizeof(cp), &cp); | ||
| 181 | } | ||
| 182 | |||
| 183 | /* Since all no longer valid white list entries have been | ||
| 184 | * removed, walk through the list of pending connections | ||
| 185 | * and ensure that any new device gets programmed into | ||
| 186 | * the controller. | ||
| 187 | * | ||
| 188 | * If the list of the devices is larger than the list of | ||
| 189 | * available white list entries in the controller, then | ||
| 190 | * just abort and return filer policy value to not use the | ||
| 191 | * white list. | ||
| 192 | */ | ||
| 193 | list_for_each_entry(params, &hdev->pend_le_conns, action) { | ||
| 194 | if (hci_bdaddr_list_lookup(&hdev->le_white_list, | ||
| 195 | ¶ms->addr, params->addr_type)) | ||
| 196 | continue; | ||
| 197 | |||
| 198 | if (white_list_entries >= hdev->le_white_list_size) { | ||
| 199 | /* Select filter policy to accept all advertising */ | ||
| 200 | return 0x00; | ||
| 201 | } | ||
| 202 | |||
| 203 | if (hci_find_irk_by_addr(hdev, ¶ms->addr, | ||
| 204 | params->addr_type)) { | ||
| 205 | /* White list can not be used with RPAs */ | ||
| 206 | return 0x00; | ||
| 207 | } | ||
| 208 | |||
| 209 | white_list_entries++; | ||
| 210 | add_to_white_list(req, params); | ||
| 211 | } | ||
| 212 | |||
| 213 | /* After adding all new pending connections, walk through | ||
| 214 | * the list of pending reports and also add these to the | ||
| 215 | * white list if there is still space. | ||
| 216 | */ | ||
| 217 | list_for_each_entry(params, &hdev->pend_le_reports, action) { | ||
| 218 | if (hci_bdaddr_list_lookup(&hdev->le_white_list, | ||
| 219 | ¶ms->addr, params->addr_type)) | ||
| 220 | continue; | ||
| 221 | |||
| 222 | if (white_list_entries >= hdev->le_white_list_size) { | ||
| 223 | /* Select filter policy to accept all advertising */ | ||
| 224 | return 0x00; | ||
| 225 | } | ||
| 226 | |||
| 227 | if (hci_find_irk_by_addr(hdev, ¶ms->addr, | ||
| 228 | params->addr_type)) { | ||
| 229 | /* White list can not be used with RPAs */ | ||
| 230 | return 0x00; | ||
| 231 | } | ||
| 232 | |||
| 233 | white_list_entries++; | ||
| 234 | add_to_white_list(req, params); | ||
| 235 | } | ||
| 236 | |||
| 237 | /* Select filter policy to use white list */ | ||
| 238 | return 0x01; | ||
| 239 | } | ||
| 240 | |||
| 241 | void hci_req_add_le_passive_scan(struct hci_request *req) | ||
| 242 | { | ||
| 243 | struct hci_cp_le_set_scan_param param_cp; | ||
| 244 | struct hci_cp_le_set_scan_enable enable_cp; | ||
| 245 | struct hci_dev *hdev = req->hdev; | ||
| 246 | u8 own_addr_type; | ||
| 247 | u8 filter_policy; | ||
| 248 | |||
| 249 | /* Set require_privacy to false since no SCAN_REQ are send | ||
| 250 | * during passive scanning. Not using an non-resolvable address | ||
| 251 | * here is important so that peer devices using direct | ||
| 252 | * advertising with our address will be correctly reported | ||
| 253 | * by the controller. | ||
| 254 | */ | ||
| 255 | if (hci_update_random_address(req, false, &own_addr_type)) | ||
| 256 | return; | ||
| 257 | |||
| 258 | /* Adding or removing entries from the white list must | ||
| 259 | * happen before enabling scanning. The controller does | ||
| 260 | * not allow white list modification while scanning. | ||
| 261 | */ | ||
| 262 | filter_policy = update_white_list(req); | ||
| 263 | |||
| 264 | /* When the controller is using random resolvable addresses and | ||
| 265 | * with that having LE privacy enabled, then controllers with | ||
| 266 | * Extended Scanner Filter Policies support can now enable support | ||
| 267 | * for handling directed advertising. | ||
| 268 | * | ||
| 269 | * So instead of using filter polices 0x00 (no whitelist) | ||
| 270 | * and 0x01 (whitelist enabled) use the new filter policies | ||
| 271 | * 0x02 (no whitelist) and 0x03 (whitelist enabled). | ||
| 272 | */ | ||
| 273 | if (test_bit(HCI_PRIVACY, &hdev->dev_flags) && | ||
| 274 | (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) | ||
| 275 | filter_policy |= 0x02; | ||
| 276 | |||
| 277 | memset(¶m_cp, 0, sizeof(param_cp)); | ||
| 278 | param_cp.type = LE_SCAN_PASSIVE; | ||
| 279 | param_cp.interval = cpu_to_le16(hdev->le_scan_interval); | ||
| 280 | param_cp.window = cpu_to_le16(hdev->le_scan_window); | ||
| 281 | param_cp.own_address_type = own_addr_type; | ||
| 282 | param_cp.filter_policy = filter_policy; | ||
| 283 | hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp), | ||
| 284 | ¶m_cp); | ||
| 285 | |||
| 286 | memset(&enable_cp, 0, sizeof(enable_cp)); | ||
| 287 | enable_cp.enable = LE_SCAN_ENABLE; | ||
| 288 | enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; | ||
| 289 | hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp), | ||
| 290 | &enable_cp); | ||
| 291 | } | ||
| 292 | |||
| 293 | static void set_random_addr(struct hci_request *req, bdaddr_t *rpa) | ||
| 294 | { | ||
| 295 | struct hci_dev *hdev = req->hdev; | ||
| 296 | |||
| 297 | /* If we're advertising or initiating an LE connection we can't | ||
| 298 | * go ahead and change the random address at this time. This is | ||
| 299 | * because the eventual initiator address used for the | ||
| 300 | * subsequently created connection will be undefined (some | ||
| 301 | * controllers use the new address and others the one we had | ||
| 302 | * when the operation started). | ||
| 303 | * | ||
| 304 | * In this kind of scenario skip the update and let the random | ||
| 305 | * address be updated at the next cycle. | ||
| 306 | */ | ||
| 307 | if (test_bit(HCI_LE_ADV, &hdev->dev_flags) || | ||
| 308 | hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT)) { | ||
| 309 | BT_DBG("Deferring random address update"); | ||
| 310 | set_bit(HCI_RPA_EXPIRED, &hdev->dev_flags); | ||
| 311 | return; | ||
| 312 | } | ||
| 313 | |||
| 314 | hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa); | ||
| 315 | } | ||
| 316 | |||
| 317 | int hci_update_random_address(struct hci_request *req, bool require_privacy, | ||
| 318 | u8 *own_addr_type) | ||
| 319 | { | ||
| 320 | struct hci_dev *hdev = req->hdev; | ||
| 321 | int err; | ||
| 322 | |||
| 323 | /* If privacy is enabled use a resolvable private address. If | ||
| 324 | * current RPA has expired or there is something else than | ||
| 325 | * the current RPA in use, then generate a new one. | ||
| 326 | */ | ||
| 327 | if (test_bit(HCI_PRIVACY, &hdev->dev_flags)) { | ||
| 328 | int to; | ||
| 329 | |||
| 330 | *own_addr_type = ADDR_LE_DEV_RANDOM; | ||
| 331 | |||
| 332 | if (!test_and_clear_bit(HCI_RPA_EXPIRED, &hdev->dev_flags) && | ||
| 333 | !bacmp(&hdev->random_addr, &hdev->rpa)) | ||
| 334 | return 0; | ||
| 335 | |||
| 336 | err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); | ||
| 337 | if (err < 0) { | ||
| 338 | BT_ERR("%s failed to generate new RPA", hdev->name); | ||
| 339 | return err; | ||
| 340 | } | ||
| 341 | |||
| 342 | set_random_addr(req, &hdev->rpa); | ||
| 343 | |||
| 344 | to = msecs_to_jiffies(hdev->rpa_timeout * 1000); | ||
| 345 | queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to); | ||
| 346 | |||
| 347 | return 0; | ||
| 348 | } | ||
| 349 | |||
| 350 | /* In case of required privacy without resolvable private address, | ||
| 351 | * use an non-resolvable private address. This is useful for active | ||
| 352 | * scanning and non-connectable advertising. | ||
| 353 | */ | ||
| 354 | if (require_privacy) { | ||
| 355 | bdaddr_t nrpa; | ||
| 356 | |||
| 357 | while (true) { | ||
| 358 | /* The non-resolvable private address is generated | ||
| 359 | * from random six bytes with the two most significant | ||
| 360 | * bits cleared. | ||
| 361 | */ | ||
| 362 | get_random_bytes(&nrpa, 6); | ||
| 363 | nrpa.b[5] &= 0x3f; | ||
| 364 | |||
| 365 | /* The non-resolvable private address shall not be | ||
| 366 | * equal to the public address. | ||
| 367 | */ | ||
| 368 | if (bacmp(&hdev->bdaddr, &nrpa)) | ||
| 369 | break; | ||
| 370 | } | ||
| 371 | |||
| 372 | *own_addr_type = ADDR_LE_DEV_RANDOM; | ||
| 373 | set_random_addr(req, &nrpa); | ||
| 374 | return 0; | ||
| 375 | } | ||
| 376 | |||
| 377 | /* If forcing static address is in use or there is no public | ||
| 378 | * address use the static address as random address (but skip | ||
| 379 | * the HCI command if the current random address is already the | ||
| 380 | * static one. | ||
| 381 | * | ||
| 382 | * In case BR/EDR has been disabled on a dual-mode controller | ||
| 383 | * and a static address has been configured, then use that | ||
| 384 | * address instead of the public BR/EDR address. | ||
| 385 | */ | ||
| 386 | if (test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dbg_flags) || | ||
| 387 | !bacmp(&hdev->bdaddr, BDADDR_ANY) || | ||
| 388 | (!test_bit(HCI_BREDR_ENABLED, &hdev->dev_flags) && | ||
| 389 | bacmp(&hdev->static_addr, BDADDR_ANY))) { | ||
| 390 | *own_addr_type = ADDR_LE_DEV_RANDOM; | ||
| 391 | if (bacmp(&hdev->static_addr, &hdev->random_addr)) | ||
| 392 | hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, | ||
| 393 | &hdev->static_addr); | ||
| 394 | return 0; | ||
| 395 | } | ||
| 396 | |||
| 397 | /* Neither privacy nor static address is being used so use a | ||
| 398 | * public address. | ||
| 399 | */ | ||
| 400 | *own_addr_type = ADDR_LE_DEV_PUBLIC; | ||
| 401 | |||
| 402 | return 0; | ||
| 403 | } | ||
| 404 | |||
| 405 | static bool disconnected_whitelist_entries(struct hci_dev *hdev) | ||
| 406 | { | ||
| 407 | struct bdaddr_list *b; | ||
| 408 | |||
| 409 | list_for_each_entry(b, &hdev->whitelist, list) { | ||
| 410 | struct hci_conn *conn; | ||
| 411 | |||
| 412 | conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); | ||
| 413 | if (!conn) | ||
| 414 | return true; | ||
| 415 | |||
| 416 | if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) | ||
| 417 | return true; | ||
| 418 | } | ||
| 419 | |||
| 420 | return false; | ||
| 421 | } | ||
| 422 | |||
| 423 | void __hci_update_page_scan(struct hci_request *req) | ||
| 424 | { | ||
| 425 | struct hci_dev *hdev = req->hdev; | ||
| 426 | u8 scan; | ||
| 427 | |||
| 428 | if (!test_bit(HCI_BREDR_ENABLED, &hdev->dev_flags)) | ||
| 429 | return; | ||
| 430 | |||
| 431 | if (!hdev_is_powered(hdev)) | ||
| 432 | return; | ||
| 433 | |||
| 434 | if (mgmt_powering_down(hdev)) | ||
| 435 | return; | ||
| 436 | |||
| 437 | if (test_bit(HCI_CONNECTABLE, &hdev->dev_flags) || | ||
| 438 | disconnected_whitelist_entries(hdev)) | ||
| 439 | scan = SCAN_PAGE; | ||
| 440 | else | ||
| 441 | scan = SCAN_DISABLED; | ||
| 442 | |||
| 443 | if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE)) | ||
| 444 | return; | ||
| 445 | |||
| 446 | if (test_bit(HCI_DISCOVERABLE, &hdev->dev_flags)) | ||
| 447 | scan |= SCAN_INQUIRY; | ||
| 448 | |||
| 449 | hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); | ||
| 450 | } | ||
| 451 | |||
| 452 | void hci_update_page_scan(struct hci_dev *hdev) | ||
| 453 | { | ||
| 454 | struct hci_request req; | ||
| 455 | |||
| 456 | hci_req_init(&req, hdev); | ||
| 457 | __hci_update_page_scan(&req); | ||
| 458 | hci_req_run(&req, NULL); | ||
| 459 | } | ||
| 460 | |||
| 461 | /* This function controls the background scanning based on hdev->pend_le_conns | ||
| 462 | * list. If there are pending LE connection we start the background scanning, | ||
| 463 | * otherwise we stop it. | ||
| 464 | * | ||
| 465 | * This function requires the caller holds hdev->lock. | ||
| 466 | */ | ||
| 467 | void __hci_update_background_scan(struct hci_request *req) | ||
| 468 | { | ||
| 469 | struct hci_dev *hdev = req->hdev; | ||
| 470 | struct hci_conn *conn; | ||
| 471 | |||
| 472 | if (!test_bit(HCI_UP, &hdev->flags) || | ||
| 473 | test_bit(HCI_INIT, &hdev->flags) || | ||
| 474 | test_bit(HCI_SETUP, &hdev->dev_flags) || | ||
| 475 | test_bit(HCI_CONFIG, &hdev->dev_flags) || | ||
| 476 | test_bit(HCI_AUTO_OFF, &hdev->dev_flags) || | ||
| 477 | test_bit(HCI_UNREGISTER, &hdev->dev_flags)) | ||
| 478 | return; | ||
| 479 | |||
| 480 | /* No point in doing scanning if LE support hasn't been enabled */ | ||
| 481 | if (!test_bit(HCI_LE_ENABLED, &hdev->dev_flags)) | ||
| 482 | return; | ||
| 483 | |||
| 484 | /* If discovery is active don't interfere with it */ | ||
| 485 | if (hdev->discovery.state != DISCOVERY_STOPPED) | ||
| 486 | return; | ||
| 487 | |||
| 488 | /* Reset RSSI and UUID filters when starting background scanning | ||
| 489 | * since these filters are meant for service discovery only. | ||
| 490 | * | ||
| 491 | * The Start Discovery and Start Service Discovery operations | ||
| 492 | * ensure to set proper values for RSSI threshold and UUID | ||
| 493 | * filter list. So it is safe to just reset them here. | ||
| 494 | */ | ||
| 495 | hci_discovery_filter_clear(hdev); | ||
| 496 | |||
| 497 | if (list_empty(&hdev->pend_le_conns) && | ||
| 498 | list_empty(&hdev->pend_le_reports)) { | ||
| 499 | /* If there is no pending LE connections or devices | ||
| 500 | * to be scanned for, we should stop the background | ||
| 501 | * scanning. | ||
| 502 | */ | ||
| 503 | |||
| 504 | /* If controller is not scanning we are done. */ | ||
| 505 | if (!test_bit(HCI_LE_SCAN, &hdev->dev_flags)) | ||
| 506 | return; | ||
| 507 | |||
| 508 | hci_req_add_le_scan_disable(req); | ||
| 509 | |||
| 510 | BT_DBG("%s stopping background scanning", hdev->name); | ||
| 511 | } else { | ||
| 512 | /* If there is at least one pending LE connection, we should | ||
| 513 | * keep the background scan running. | ||
| 514 | */ | ||
| 515 | |||
| 516 | /* If controller is connecting, we should not start scanning | ||
| 517 | * since some controllers are not able to scan and connect at | ||
| 518 | * the same time. | ||
| 519 | */ | ||
| 520 | conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT); | ||
| 521 | if (conn) | ||
| 522 | return; | ||
| 523 | |||
| 524 | /* If controller is currently scanning, we stop it to ensure we | ||
| 525 | * don't miss any advertising (due to duplicates filter). | ||
| 526 | */ | ||
| 527 | if (test_bit(HCI_LE_SCAN, &hdev->dev_flags)) | ||
| 528 | hci_req_add_le_scan_disable(req); | ||
| 529 | |||
| 530 | hci_req_add_le_passive_scan(req); | ||
| 531 | |||
| 532 | BT_DBG("%s starting background scanning", hdev->name); | ||
| 533 | } | ||
| 534 | } | ||
| 535 | |||
| 536 | static void update_background_scan_complete(struct hci_dev *hdev, u8 status, | ||
| 537 | u16 opcode) | ||
| 538 | { | ||
| 539 | if (status) | ||
| 540 | BT_DBG("HCI request failed to update background scanning: " | ||
| 541 | "status 0x%2.2x", status); | ||
| 542 | } | ||
| 543 | |||
| 544 | void hci_update_background_scan(struct hci_dev *hdev) | ||
| 545 | { | ||
| 546 | int err; | ||
| 547 | struct hci_request req; | ||
| 548 | |||
| 549 | hci_req_init(&req, hdev); | ||
| 550 | |||
| 551 | __hci_update_background_scan(&req); | ||
| 552 | |||
| 553 | err = hci_req_run(&req, update_background_scan_complete); | ||
| 554 | if (err && err != -ENODATA) | ||
| 555 | BT_ERR("Failed to run HCI request: err %d", err); | ||
| 556 | } | ||
