diff options
Diffstat (limited to 'mm/sparse-vmemmap.c')
-rw-r--r-- | mm/sparse-vmemmap.c | 148 |
1 files changed, 148 insertions, 0 deletions
diff --git a/mm/sparse-vmemmap.c b/mm/sparse-vmemmap.c new file mode 100644 index 000000000000..d3b718b0c20a --- /dev/null +++ b/mm/sparse-vmemmap.c | |||
@@ -0,0 +1,148 @@ | |||
1 | /* | ||
2 | * Virtual Memory Map support | ||
3 | * | ||
4 | * (C) 2007 sgi. Christoph Lameter <clameter@sgi.com>. | ||
5 | * | ||
6 | * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn, | ||
7 | * virt_to_page, page_address() to be implemented as a base offset | ||
8 | * calculation without memory access. | ||
9 | * | ||
10 | * However, virtual mappings need a page table and TLBs. Many Linux | ||
11 | * architectures already map their physical space using 1-1 mappings | ||
12 | * via TLBs. For those arches the virtual memmory map is essentially | ||
13 | * for free if we use the same page size as the 1-1 mappings. In that | ||
14 | * case the overhead consists of a few additional pages that are | ||
15 | * allocated to create a view of memory for vmemmap. | ||
16 | * | ||
17 | * The architecture is expected to provide a vmemmap_populate() function | ||
18 | * to instantiate the mapping. | ||
19 | */ | ||
20 | #include <linux/mm.h> | ||
21 | #include <linux/mmzone.h> | ||
22 | #include <linux/bootmem.h> | ||
23 | #include <linux/highmem.h> | ||
24 | #include <linux/module.h> | ||
25 | #include <linux/spinlock.h> | ||
26 | #include <linux/vmalloc.h> | ||
27 | #include <asm/dma.h> | ||
28 | #include <asm/pgalloc.h> | ||
29 | #include <asm/pgtable.h> | ||
30 | |||
31 | /* | ||
32 | * Allocate a block of memory to be used to back the virtual memory map | ||
33 | * or to back the page tables that are used to create the mapping. | ||
34 | * Uses the main allocators if they are available, else bootmem. | ||
35 | */ | ||
36 | void * __meminit vmemmap_alloc_block(unsigned long size, int node) | ||
37 | { | ||
38 | /* If the main allocator is up use that, fallback to bootmem. */ | ||
39 | if (slab_is_available()) { | ||
40 | struct page *page = alloc_pages_node(node, | ||
41 | GFP_KERNEL | __GFP_ZERO, get_order(size)); | ||
42 | if (page) | ||
43 | return page_address(page); | ||
44 | return NULL; | ||
45 | } else | ||
46 | return __alloc_bootmem_node(NODE_DATA(node), size, size, | ||
47 | __pa(MAX_DMA_ADDRESS)); | ||
48 | } | ||
49 | |||
50 | void __meminit vmemmap_verify(pte_t *pte, int node, | ||
51 | unsigned long start, unsigned long end) | ||
52 | { | ||
53 | unsigned long pfn = pte_pfn(*pte); | ||
54 | int actual_node = early_pfn_to_nid(pfn); | ||
55 | |||
56 | if (actual_node != node) | ||
57 | printk(KERN_WARNING "[%lx-%lx] potential offnode " | ||
58 | "page_structs\n", start, end - 1); | ||
59 | } | ||
60 | |||
61 | pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node) | ||
62 | { | ||
63 | pte_t *pte = pte_offset_kernel(pmd, addr); | ||
64 | if (pte_none(*pte)) { | ||
65 | pte_t entry; | ||
66 | void *p = vmemmap_alloc_block(PAGE_SIZE, node); | ||
67 | if (!p) | ||
68 | return 0; | ||
69 | entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL); | ||
70 | set_pte_at(&init_mm, addr, pte, entry); | ||
71 | } | ||
72 | return pte; | ||
73 | } | ||
74 | |||
75 | pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node) | ||
76 | { | ||
77 | pmd_t *pmd = pmd_offset(pud, addr); | ||
78 | if (pmd_none(*pmd)) { | ||
79 | void *p = vmemmap_alloc_block(PAGE_SIZE, node); | ||
80 | if (!p) | ||
81 | return 0; | ||
82 | pmd_populate_kernel(&init_mm, pmd, p); | ||
83 | } | ||
84 | return pmd; | ||
85 | } | ||
86 | |||
87 | pud_t * __meminit vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node) | ||
88 | { | ||
89 | pud_t *pud = pud_offset(pgd, addr); | ||
90 | if (pud_none(*pud)) { | ||
91 | void *p = vmemmap_alloc_block(PAGE_SIZE, node); | ||
92 | if (!p) | ||
93 | return 0; | ||
94 | pud_populate(&init_mm, pud, p); | ||
95 | } | ||
96 | return pud; | ||
97 | } | ||
98 | |||
99 | pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node) | ||
100 | { | ||
101 | pgd_t *pgd = pgd_offset_k(addr); | ||
102 | if (pgd_none(*pgd)) { | ||
103 | void *p = vmemmap_alloc_block(PAGE_SIZE, node); | ||
104 | if (!p) | ||
105 | return 0; | ||
106 | pgd_populate(&init_mm, pgd, p); | ||
107 | } | ||
108 | return pgd; | ||
109 | } | ||
110 | |||
111 | int __meminit vmemmap_populate_basepages(struct page *start_page, | ||
112 | unsigned long size, int node) | ||
113 | { | ||
114 | unsigned long addr = (unsigned long)start_page; | ||
115 | unsigned long end = (unsigned long)(start_page + size); | ||
116 | pgd_t *pgd; | ||
117 | pud_t *pud; | ||
118 | pmd_t *pmd; | ||
119 | pte_t *pte; | ||
120 | |||
121 | for (; addr < end; addr += PAGE_SIZE) { | ||
122 | pgd = vmemmap_pgd_populate(addr, node); | ||
123 | if (!pgd) | ||
124 | return -ENOMEM; | ||
125 | pud = vmemmap_pud_populate(pgd, addr, node); | ||
126 | if (!pud) | ||
127 | return -ENOMEM; | ||
128 | pmd = vmemmap_pmd_populate(pud, addr, node); | ||
129 | if (!pmd) | ||
130 | return -ENOMEM; | ||
131 | pte = vmemmap_pte_populate(pmd, addr, node); | ||
132 | if (!pte) | ||
133 | return -ENOMEM; | ||
134 | vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); | ||
135 | } | ||
136 | |||
137 | return 0; | ||
138 | } | ||
139 | |||
140 | struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid) | ||
141 | { | ||
142 | struct page *map = pfn_to_page(pnum * PAGES_PER_SECTION); | ||
143 | int error = vmemmap_populate(map, PAGES_PER_SECTION, nid); | ||
144 | if (error) | ||
145 | return NULL; | ||
146 | |||
147 | return map; | ||
148 | } | ||