diff options
Diffstat (limited to 'lib')
| -rw-r--r-- | lib/Kconfig | 47 | ||||
| -rw-r--r-- | lib/Makefile | 6 | ||||
| -rw-r--r-- | lib/dma-debug.c | 1773 | ||||
| -rw-r--r-- | lib/dma-direct.c | 204 | ||||
| -rw-r--r-- | lib/dma-noncoherent.c | 102 | ||||
| -rw-r--r-- | lib/dma-virt.c | 61 | ||||
| -rw-r--r-- | lib/swiotlb.c | 1087 |
7 files changed, 1 insertions, 3279 deletions
diff --git a/lib/Kconfig b/lib/Kconfig index e34b04b56057..706836ec314d 100644 --- a/lib/Kconfig +++ b/lib/Kconfig | |||
| @@ -420,60 +420,15 @@ config HAS_IOPORT_MAP | |||
| 420 | depends on HAS_IOMEM && !NO_IOPORT_MAP | 420 | depends on HAS_IOMEM && !NO_IOPORT_MAP |
| 421 | default y | 421 | default y |
| 422 | 422 | ||
| 423 | config HAS_DMA | 423 | source "kernel/dma/Kconfig" |
| 424 | bool | ||
| 425 | depends on !NO_DMA | ||
| 426 | default y | ||
| 427 | 424 | ||
| 428 | config SGL_ALLOC | 425 | config SGL_ALLOC |
| 429 | bool | 426 | bool |
| 430 | default n | 427 | default n |
| 431 | 428 | ||
| 432 | config NEED_SG_DMA_LENGTH | ||
| 433 | bool | ||
| 434 | |||
| 435 | config NEED_DMA_MAP_STATE | ||
| 436 | bool | ||
| 437 | |||
| 438 | config ARCH_DMA_ADDR_T_64BIT | ||
| 439 | def_bool 64BIT || PHYS_ADDR_T_64BIT | ||
| 440 | |||
| 441 | config IOMMU_HELPER | 429 | config IOMMU_HELPER |
| 442 | bool | 430 | bool |
| 443 | 431 | ||
| 444 | config ARCH_HAS_SYNC_DMA_FOR_DEVICE | ||
| 445 | bool | ||
| 446 | |||
| 447 | config ARCH_HAS_SYNC_DMA_FOR_CPU | ||
| 448 | bool | ||
| 449 | select NEED_DMA_MAP_STATE | ||
| 450 | |||
| 451 | config DMA_DIRECT_OPS | ||
| 452 | bool | ||
| 453 | depends on HAS_DMA | ||
| 454 | |||
| 455 | config DMA_NONCOHERENT_OPS | ||
| 456 | bool | ||
| 457 | depends on HAS_DMA | ||
| 458 | select DMA_DIRECT_OPS | ||
| 459 | |||
| 460 | config DMA_NONCOHERENT_MMAP | ||
| 461 | bool | ||
| 462 | depends on DMA_NONCOHERENT_OPS | ||
| 463 | |||
| 464 | config DMA_NONCOHERENT_CACHE_SYNC | ||
| 465 | bool | ||
| 466 | depends on DMA_NONCOHERENT_OPS | ||
| 467 | |||
| 468 | config DMA_VIRT_OPS | ||
| 469 | bool | ||
| 470 | depends on HAS_DMA | ||
| 471 | |||
| 472 | config SWIOTLB | ||
| 473 | bool | ||
| 474 | select DMA_DIRECT_OPS | ||
| 475 | select NEED_DMA_MAP_STATE | ||
| 476 | |||
| 477 | config CHECK_SIGNATURE | 432 | config CHECK_SIGNATURE |
| 478 | bool | 433 | bool |
| 479 | 434 | ||
diff --git a/lib/Makefile b/lib/Makefile index 956b320292fe..8153fdab287f 100644 --- a/lib/Makefile +++ b/lib/Makefile | |||
| @@ -29,9 +29,6 @@ lib-y := ctype.o string.o vsprintf.o cmdline.o \ | |||
| 29 | lib-$(CONFIG_PRINTK) += dump_stack.o | 29 | lib-$(CONFIG_PRINTK) += dump_stack.o |
| 30 | lib-$(CONFIG_MMU) += ioremap.o | 30 | lib-$(CONFIG_MMU) += ioremap.o |
| 31 | lib-$(CONFIG_SMP) += cpumask.o | 31 | lib-$(CONFIG_SMP) += cpumask.o |
| 32 | lib-$(CONFIG_DMA_DIRECT_OPS) += dma-direct.o | ||
| 33 | lib-$(CONFIG_DMA_NONCOHERENT_OPS) += dma-noncoherent.o | ||
| 34 | lib-$(CONFIG_DMA_VIRT_OPS) += dma-virt.o | ||
| 35 | 32 | ||
| 36 | lib-y += kobject.o klist.o | 33 | lib-y += kobject.o klist.o |
| 37 | obj-y += lockref.o | 34 | obj-y += lockref.o |
| @@ -148,7 +145,6 @@ obj-$(CONFIG_SMP) += percpu_counter.o | |||
| 148 | obj-$(CONFIG_AUDIT_GENERIC) += audit.o | 145 | obj-$(CONFIG_AUDIT_GENERIC) += audit.o |
| 149 | obj-$(CONFIG_AUDIT_COMPAT_GENERIC) += compat_audit.o | 146 | obj-$(CONFIG_AUDIT_COMPAT_GENERIC) += compat_audit.o |
| 150 | 147 | ||
| 151 | obj-$(CONFIG_SWIOTLB) += swiotlb.o | ||
| 152 | obj-$(CONFIG_IOMMU_HELPER) += iommu-helper.o | 148 | obj-$(CONFIG_IOMMU_HELPER) += iommu-helper.o |
| 153 | obj-$(CONFIG_FAULT_INJECTION) += fault-inject.o | 149 | obj-$(CONFIG_FAULT_INJECTION) += fault-inject.o |
| 154 | obj-$(CONFIG_NOTIFIER_ERROR_INJECTION) += notifier-error-inject.o | 150 | obj-$(CONFIG_NOTIFIER_ERROR_INJECTION) += notifier-error-inject.o |
| @@ -169,8 +165,6 @@ obj-$(CONFIG_NLATTR) += nlattr.o | |||
| 169 | 165 | ||
| 170 | obj-$(CONFIG_LRU_CACHE) += lru_cache.o | 166 | obj-$(CONFIG_LRU_CACHE) += lru_cache.o |
| 171 | 167 | ||
| 172 | obj-$(CONFIG_DMA_API_DEBUG) += dma-debug.o | ||
| 173 | |||
| 174 | obj-$(CONFIG_GENERIC_CSUM) += checksum.o | 168 | obj-$(CONFIG_GENERIC_CSUM) += checksum.o |
| 175 | 169 | ||
| 176 | obj-$(CONFIG_GENERIC_ATOMIC64) += atomic64.o | 170 | obj-$(CONFIG_GENERIC_ATOMIC64) += atomic64.o |
diff --git a/lib/dma-debug.c b/lib/dma-debug.c deleted file mode 100644 index c007d25bee09..000000000000 --- a/lib/dma-debug.c +++ /dev/null | |||
| @@ -1,1773 +0,0 @@ | |||
| 1 | /* | ||
| 2 | * Copyright (C) 2008 Advanced Micro Devices, Inc. | ||
| 3 | * | ||
| 4 | * Author: Joerg Roedel <joerg.roedel@amd.com> | ||
| 5 | * | ||
| 6 | * This program is free software; you can redistribute it and/or modify it | ||
| 7 | * under the terms of the GNU General Public License version 2 as published | ||
| 8 | * by the Free Software Foundation. | ||
| 9 | * | ||
| 10 | * This program is distributed in the hope that it will be useful, | ||
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 13 | * GNU General Public License for more details. | ||
| 14 | * | ||
| 15 | * You should have received a copy of the GNU General Public License | ||
| 16 | * along with this program; if not, write to the Free Software | ||
| 17 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
| 18 | */ | ||
| 19 | |||
| 20 | #include <linux/sched/task_stack.h> | ||
| 21 | #include <linux/scatterlist.h> | ||
| 22 | #include <linux/dma-mapping.h> | ||
| 23 | #include <linux/sched/task.h> | ||
| 24 | #include <linux/stacktrace.h> | ||
| 25 | #include <linux/dma-debug.h> | ||
| 26 | #include <linux/spinlock.h> | ||
| 27 | #include <linux/vmalloc.h> | ||
| 28 | #include <linux/debugfs.h> | ||
| 29 | #include <linux/uaccess.h> | ||
| 30 | #include <linux/export.h> | ||
| 31 | #include <linux/device.h> | ||
| 32 | #include <linux/types.h> | ||
| 33 | #include <linux/sched.h> | ||
| 34 | #include <linux/ctype.h> | ||
| 35 | #include <linux/list.h> | ||
| 36 | #include <linux/slab.h> | ||
| 37 | |||
| 38 | #include <asm/sections.h> | ||
| 39 | |||
| 40 | #define HASH_SIZE 1024ULL | ||
| 41 | #define HASH_FN_SHIFT 13 | ||
| 42 | #define HASH_FN_MASK (HASH_SIZE - 1) | ||
| 43 | |||
| 44 | /* allow architectures to override this if absolutely required */ | ||
| 45 | #ifndef PREALLOC_DMA_DEBUG_ENTRIES | ||
| 46 | #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16) | ||
| 47 | #endif | ||
| 48 | |||
| 49 | enum { | ||
| 50 | dma_debug_single, | ||
| 51 | dma_debug_page, | ||
| 52 | dma_debug_sg, | ||
| 53 | dma_debug_coherent, | ||
| 54 | dma_debug_resource, | ||
| 55 | }; | ||
| 56 | |||
| 57 | enum map_err_types { | ||
| 58 | MAP_ERR_CHECK_NOT_APPLICABLE, | ||
| 59 | MAP_ERR_NOT_CHECKED, | ||
| 60 | MAP_ERR_CHECKED, | ||
| 61 | }; | ||
| 62 | |||
| 63 | #define DMA_DEBUG_STACKTRACE_ENTRIES 5 | ||
| 64 | |||
| 65 | /** | ||
| 66 | * struct dma_debug_entry - track a dma_map* or dma_alloc_coherent mapping | ||
| 67 | * @list: node on pre-allocated free_entries list | ||
| 68 | * @dev: 'dev' argument to dma_map_{page|single|sg} or dma_alloc_coherent | ||
| 69 | * @type: single, page, sg, coherent | ||
| 70 | * @pfn: page frame of the start address | ||
| 71 | * @offset: offset of mapping relative to pfn | ||
| 72 | * @size: length of the mapping | ||
| 73 | * @direction: enum dma_data_direction | ||
| 74 | * @sg_call_ents: 'nents' from dma_map_sg | ||
| 75 | * @sg_mapped_ents: 'mapped_ents' from dma_map_sg | ||
| 76 | * @map_err_type: track whether dma_mapping_error() was checked | ||
| 77 | * @stacktrace: support backtraces when a violation is detected | ||
| 78 | */ | ||
| 79 | struct dma_debug_entry { | ||
| 80 | struct list_head list; | ||
| 81 | struct device *dev; | ||
| 82 | int type; | ||
| 83 | unsigned long pfn; | ||
| 84 | size_t offset; | ||
| 85 | u64 dev_addr; | ||
| 86 | u64 size; | ||
| 87 | int direction; | ||
| 88 | int sg_call_ents; | ||
| 89 | int sg_mapped_ents; | ||
| 90 | enum map_err_types map_err_type; | ||
| 91 | #ifdef CONFIG_STACKTRACE | ||
| 92 | struct stack_trace stacktrace; | ||
| 93 | unsigned long st_entries[DMA_DEBUG_STACKTRACE_ENTRIES]; | ||
| 94 | #endif | ||
| 95 | }; | ||
| 96 | |||
| 97 | typedef bool (*match_fn)(struct dma_debug_entry *, struct dma_debug_entry *); | ||
| 98 | |||
| 99 | struct hash_bucket { | ||
| 100 | struct list_head list; | ||
| 101 | spinlock_t lock; | ||
| 102 | } ____cacheline_aligned_in_smp; | ||
| 103 | |||
| 104 | /* Hash list to save the allocated dma addresses */ | ||
| 105 | static struct hash_bucket dma_entry_hash[HASH_SIZE]; | ||
| 106 | /* List of pre-allocated dma_debug_entry's */ | ||
| 107 | static LIST_HEAD(free_entries); | ||
| 108 | /* Lock for the list above */ | ||
| 109 | static DEFINE_SPINLOCK(free_entries_lock); | ||
| 110 | |||
| 111 | /* Global disable flag - will be set in case of an error */ | ||
| 112 | static bool global_disable __read_mostly; | ||
| 113 | |||
| 114 | /* Early initialization disable flag, set at the end of dma_debug_init */ | ||
| 115 | static bool dma_debug_initialized __read_mostly; | ||
| 116 | |||
| 117 | static inline bool dma_debug_disabled(void) | ||
| 118 | { | ||
| 119 | return global_disable || !dma_debug_initialized; | ||
| 120 | } | ||
| 121 | |||
| 122 | /* Global error count */ | ||
| 123 | static u32 error_count; | ||
| 124 | |||
| 125 | /* Global error show enable*/ | ||
| 126 | static u32 show_all_errors __read_mostly; | ||
| 127 | /* Number of errors to show */ | ||
| 128 | static u32 show_num_errors = 1; | ||
| 129 | |||
| 130 | static u32 num_free_entries; | ||
| 131 | static u32 min_free_entries; | ||
| 132 | static u32 nr_total_entries; | ||
| 133 | |||
| 134 | /* number of preallocated entries requested by kernel cmdline */ | ||
| 135 | static u32 nr_prealloc_entries = PREALLOC_DMA_DEBUG_ENTRIES; | ||
| 136 | |||
| 137 | /* debugfs dentry's for the stuff above */ | ||
| 138 | static struct dentry *dma_debug_dent __read_mostly; | ||
| 139 | static struct dentry *global_disable_dent __read_mostly; | ||
| 140 | static struct dentry *error_count_dent __read_mostly; | ||
| 141 | static struct dentry *show_all_errors_dent __read_mostly; | ||
| 142 | static struct dentry *show_num_errors_dent __read_mostly; | ||
| 143 | static struct dentry *num_free_entries_dent __read_mostly; | ||
| 144 | static struct dentry *min_free_entries_dent __read_mostly; | ||
| 145 | static struct dentry *filter_dent __read_mostly; | ||
| 146 | |||
| 147 | /* per-driver filter related state */ | ||
| 148 | |||
| 149 | #define NAME_MAX_LEN 64 | ||
| 150 | |||
| 151 | static char current_driver_name[NAME_MAX_LEN] __read_mostly; | ||
| 152 | static struct device_driver *current_driver __read_mostly; | ||
| 153 | |||
| 154 | static DEFINE_RWLOCK(driver_name_lock); | ||
| 155 | |||
| 156 | static const char *const maperr2str[] = { | ||
| 157 | [MAP_ERR_CHECK_NOT_APPLICABLE] = "dma map error check not applicable", | ||
| 158 | [MAP_ERR_NOT_CHECKED] = "dma map error not checked", | ||
| 159 | [MAP_ERR_CHECKED] = "dma map error checked", | ||
| 160 | }; | ||
| 161 | |||
| 162 | static const char *type2name[5] = { "single", "page", | ||
| 163 | "scather-gather", "coherent", | ||
| 164 | "resource" }; | ||
| 165 | |||
| 166 | static const char *dir2name[4] = { "DMA_BIDIRECTIONAL", "DMA_TO_DEVICE", | ||
| 167 | "DMA_FROM_DEVICE", "DMA_NONE" }; | ||
| 168 | |||
| 169 | /* | ||
| 170 | * The access to some variables in this macro is racy. We can't use atomic_t | ||
| 171 | * here because all these variables are exported to debugfs. Some of them even | ||
| 172 | * writeable. This is also the reason why a lock won't help much. But anyway, | ||
| 173 | * the races are no big deal. Here is why: | ||
| 174 | * | ||
| 175 | * error_count: the addition is racy, but the worst thing that can happen is | ||
| 176 | * that we don't count some errors | ||
| 177 | * show_num_errors: the subtraction is racy. Also no big deal because in | ||
| 178 | * worst case this will result in one warning more in the | ||
| 179 | * system log than the user configured. This variable is | ||
| 180 | * writeable via debugfs. | ||
| 181 | */ | ||
| 182 | static inline void dump_entry_trace(struct dma_debug_entry *entry) | ||
| 183 | { | ||
| 184 | #ifdef CONFIG_STACKTRACE | ||
| 185 | if (entry) { | ||
| 186 | pr_warning("Mapped at:\n"); | ||
| 187 | print_stack_trace(&entry->stacktrace, 0); | ||
| 188 | } | ||
| 189 | #endif | ||
| 190 | } | ||
| 191 | |||
| 192 | static bool driver_filter(struct device *dev) | ||
| 193 | { | ||
| 194 | struct device_driver *drv; | ||
| 195 | unsigned long flags; | ||
| 196 | bool ret; | ||
| 197 | |||
| 198 | /* driver filter off */ | ||
| 199 | if (likely(!current_driver_name[0])) | ||
| 200 | return true; | ||
| 201 | |||
| 202 | /* driver filter on and initialized */ | ||
| 203 | if (current_driver && dev && dev->driver == current_driver) | ||
| 204 | return true; | ||
| 205 | |||
| 206 | /* driver filter on, but we can't filter on a NULL device... */ | ||
| 207 | if (!dev) | ||
| 208 | return false; | ||
| 209 | |||
| 210 | if (current_driver || !current_driver_name[0]) | ||
| 211 | return false; | ||
| 212 | |||
| 213 | /* driver filter on but not yet initialized */ | ||
| 214 | drv = dev->driver; | ||
| 215 | if (!drv) | ||
| 216 | return false; | ||
| 217 | |||
| 218 | /* lock to protect against change of current_driver_name */ | ||
| 219 | read_lock_irqsave(&driver_name_lock, flags); | ||
| 220 | |||
| 221 | ret = false; | ||
| 222 | if (drv->name && | ||
| 223 | strncmp(current_driver_name, drv->name, NAME_MAX_LEN - 1) == 0) { | ||
| 224 | current_driver = drv; | ||
| 225 | ret = true; | ||
| 226 | } | ||
| 227 | |||
| 228 | read_unlock_irqrestore(&driver_name_lock, flags); | ||
| 229 | |||
| 230 | return ret; | ||
| 231 | } | ||
| 232 | |||
| 233 | #define err_printk(dev, entry, format, arg...) do { \ | ||
| 234 | error_count += 1; \ | ||
| 235 | if (driver_filter(dev) && \ | ||
| 236 | (show_all_errors || show_num_errors > 0)) { \ | ||
| 237 | WARN(1, "%s %s: " format, \ | ||
| 238 | dev ? dev_driver_string(dev) : "NULL", \ | ||
| 239 | dev ? dev_name(dev) : "NULL", ## arg); \ | ||
| 240 | dump_entry_trace(entry); \ | ||
| 241 | } \ | ||
| 242 | if (!show_all_errors && show_num_errors > 0) \ | ||
| 243 | show_num_errors -= 1; \ | ||
| 244 | } while (0); | ||
| 245 | |||
| 246 | /* | ||
| 247 | * Hash related functions | ||
| 248 | * | ||
| 249 | * Every DMA-API request is saved into a struct dma_debug_entry. To | ||
| 250 | * have quick access to these structs they are stored into a hash. | ||
| 251 | */ | ||
| 252 | static int hash_fn(struct dma_debug_entry *entry) | ||
| 253 | { | ||
| 254 | /* | ||
| 255 | * Hash function is based on the dma address. | ||
| 256 | * We use bits 20-27 here as the index into the hash | ||
| 257 | */ | ||
| 258 | return (entry->dev_addr >> HASH_FN_SHIFT) & HASH_FN_MASK; | ||
| 259 | } | ||
| 260 | |||
| 261 | /* | ||
| 262 | * Request exclusive access to a hash bucket for a given dma_debug_entry. | ||
| 263 | */ | ||
| 264 | static struct hash_bucket *get_hash_bucket(struct dma_debug_entry *entry, | ||
| 265 | unsigned long *flags) | ||
| 266 | __acquires(&dma_entry_hash[idx].lock) | ||
| 267 | { | ||
| 268 | int idx = hash_fn(entry); | ||
| 269 | unsigned long __flags; | ||
| 270 | |||
| 271 | spin_lock_irqsave(&dma_entry_hash[idx].lock, __flags); | ||
| 272 | *flags = __flags; | ||
| 273 | return &dma_entry_hash[idx]; | ||
| 274 | } | ||
| 275 | |||
| 276 | /* | ||
| 277 | * Give up exclusive access to the hash bucket | ||
| 278 | */ | ||
| 279 | static void put_hash_bucket(struct hash_bucket *bucket, | ||
| 280 | unsigned long *flags) | ||
| 281 | __releases(&bucket->lock) | ||
| 282 | { | ||
| 283 | unsigned long __flags = *flags; | ||
| 284 | |||
| 285 | spin_unlock_irqrestore(&bucket->lock, __flags); | ||
| 286 | } | ||
| 287 | |||
| 288 | static bool exact_match(struct dma_debug_entry *a, struct dma_debug_entry *b) | ||
| 289 | { | ||
| 290 | return ((a->dev_addr == b->dev_addr) && | ||
| 291 | (a->dev == b->dev)) ? true : false; | ||
| 292 | } | ||
| 293 | |||
| 294 | static bool containing_match(struct dma_debug_entry *a, | ||
| 295 | struct dma_debug_entry *b) | ||
| 296 | { | ||
| 297 | if (a->dev != b->dev) | ||
| 298 | return false; | ||
| 299 | |||
| 300 | if ((b->dev_addr <= a->dev_addr) && | ||
| 301 | ((b->dev_addr + b->size) >= (a->dev_addr + a->size))) | ||
| 302 | return true; | ||
| 303 | |||
| 304 | return false; | ||
| 305 | } | ||
| 306 | |||
| 307 | /* | ||
| 308 | * Search a given entry in the hash bucket list | ||
| 309 | */ | ||
| 310 | static struct dma_debug_entry *__hash_bucket_find(struct hash_bucket *bucket, | ||
| 311 | struct dma_debug_entry *ref, | ||
| 312 | match_fn match) | ||
| 313 | { | ||
| 314 | struct dma_debug_entry *entry, *ret = NULL; | ||
| 315 | int matches = 0, match_lvl, last_lvl = -1; | ||
| 316 | |||
| 317 | list_for_each_entry(entry, &bucket->list, list) { | ||
| 318 | if (!match(ref, entry)) | ||
| 319 | continue; | ||
| 320 | |||
| 321 | /* | ||
| 322 | * Some drivers map the same physical address multiple | ||
| 323 | * times. Without a hardware IOMMU this results in the | ||
| 324 | * same device addresses being put into the dma-debug | ||
| 325 | * hash multiple times too. This can result in false | ||
| 326 | * positives being reported. Therefore we implement a | ||
| 327 | * best-fit algorithm here which returns the entry from | ||
| 328 | * the hash which fits best to the reference value | ||
| 329 | * instead of the first-fit. | ||
| 330 | */ | ||
| 331 | matches += 1; | ||
| 332 | match_lvl = 0; | ||
| 333 | entry->size == ref->size ? ++match_lvl : 0; | ||
| 334 | entry->type == ref->type ? ++match_lvl : 0; | ||
| 335 | entry->direction == ref->direction ? ++match_lvl : 0; | ||
| 336 | entry->sg_call_ents == ref->sg_call_ents ? ++match_lvl : 0; | ||
| 337 | |||
| 338 | if (match_lvl == 4) { | ||
| 339 | /* perfect-fit - return the result */ | ||
| 340 | return entry; | ||
| 341 | } else if (match_lvl > last_lvl) { | ||
| 342 | /* | ||
| 343 | * We found an entry that fits better then the | ||
| 344 | * previous one or it is the 1st match. | ||
| 345 | */ | ||
| 346 | last_lvl = match_lvl; | ||
| 347 | ret = entry; | ||
| 348 | } | ||
| 349 | } | ||
| 350 | |||
| 351 | /* | ||
| 352 | * If we have multiple matches but no perfect-fit, just return | ||
| 353 | * NULL. | ||
| 354 | */ | ||
| 355 | ret = (matches == 1) ? ret : NULL; | ||
| 356 | |||
| 357 | return ret; | ||
| 358 | } | ||
| 359 | |||
| 360 | static struct dma_debug_entry *bucket_find_exact(struct hash_bucket *bucket, | ||
| 361 | struct dma_debug_entry *ref) | ||
| 362 | { | ||
| 363 | return __hash_bucket_find(bucket, ref, exact_match); | ||
| 364 | } | ||
| 365 | |||
| 366 | static struct dma_debug_entry *bucket_find_contain(struct hash_bucket **bucket, | ||
| 367 | struct dma_debug_entry *ref, | ||
| 368 | unsigned long *flags) | ||
| 369 | { | ||
| 370 | |||
| 371 | unsigned int max_range = dma_get_max_seg_size(ref->dev); | ||
| 372 | struct dma_debug_entry *entry, index = *ref; | ||
| 373 | unsigned int range = 0; | ||
| 374 | |||
| 375 | while (range <= max_range) { | ||
| 376 | entry = __hash_bucket_find(*bucket, ref, containing_match); | ||
| 377 | |||
| 378 | if (entry) | ||
| 379 | return entry; | ||
| 380 | |||
| 381 | /* | ||
| 382 | * Nothing found, go back a hash bucket | ||
| 383 | */ | ||
| 384 | put_hash_bucket(*bucket, flags); | ||
| 385 | range += (1 << HASH_FN_SHIFT); | ||
| 386 | index.dev_addr -= (1 << HASH_FN_SHIFT); | ||
| 387 | *bucket = get_hash_bucket(&index, flags); | ||
| 388 | } | ||
| 389 | |||
| 390 | return NULL; | ||
| 391 | } | ||
| 392 | |||
| 393 | /* | ||
| 394 | * Add an entry to a hash bucket | ||
| 395 | */ | ||
| 396 | static void hash_bucket_add(struct hash_bucket *bucket, | ||
| 397 | struct dma_debug_entry *entry) | ||
| 398 | { | ||
| 399 | list_add_tail(&entry->list, &bucket->list); | ||
| 400 | } | ||
| 401 | |||
| 402 | /* | ||
| 403 | * Remove entry from a hash bucket list | ||
| 404 | */ | ||
| 405 | static void hash_bucket_del(struct dma_debug_entry *entry) | ||
| 406 | { | ||
| 407 | list_del(&entry->list); | ||
| 408 | } | ||
| 409 | |||
| 410 | static unsigned long long phys_addr(struct dma_debug_entry *entry) | ||
| 411 | { | ||
| 412 | if (entry->type == dma_debug_resource) | ||
| 413 | return __pfn_to_phys(entry->pfn) + entry->offset; | ||
| 414 | |||
| 415 | return page_to_phys(pfn_to_page(entry->pfn)) + entry->offset; | ||
| 416 | } | ||
| 417 | |||
| 418 | /* | ||
| 419 | * Dump mapping entries for debugging purposes | ||
| 420 | */ | ||
| 421 | void debug_dma_dump_mappings(struct device *dev) | ||
| 422 | { | ||
| 423 | int idx; | ||
| 424 | |||
| 425 | for (idx = 0; idx < HASH_SIZE; idx++) { | ||
| 426 | struct hash_bucket *bucket = &dma_entry_hash[idx]; | ||
| 427 | struct dma_debug_entry *entry; | ||
| 428 | unsigned long flags; | ||
| 429 | |||
| 430 | spin_lock_irqsave(&bucket->lock, flags); | ||
| 431 | |||
| 432 | list_for_each_entry(entry, &bucket->list, list) { | ||
| 433 | if (!dev || dev == entry->dev) { | ||
| 434 | dev_info(entry->dev, | ||
| 435 | "%s idx %d P=%Lx N=%lx D=%Lx L=%Lx %s %s\n", | ||
| 436 | type2name[entry->type], idx, | ||
| 437 | phys_addr(entry), entry->pfn, | ||
| 438 | entry->dev_addr, entry->size, | ||
| 439 | dir2name[entry->direction], | ||
| 440 | maperr2str[entry->map_err_type]); | ||
| 441 | } | ||
| 442 | } | ||
| 443 | |||
| 444 | spin_unlock_irqrestore(&bucket->lock, flags); | ||
| 445 | } | ||
| 446 | } | ||
| 447 | |||
| 448 | /* | ||
| 449 | * For each mapping (initial cacheline in the case of | ||
| 450 | * dma_alloc_coherent/dma_map_page, initial cacheline in each page of a | ||
| 451 | * scatterlist, or the cacheline specified in dma_map_single) insert | ||
| 452 | * into this tree using the cacheline as the key. At | ||
| 453 | * dma_unmap_{single|sg|page} or dma_free_coherent delete the entry. If | ||
| 454 | * the entry already exists at insertion time add a tag as a reference | ||
| 455 | * count for the overlapping mappings. For now, the overlap tracking | ||
| 456 | * just ensures that 'unmaps' balance 'maps' before marking the | ||
| 457 | * cacheline idle, but we should also be flagging overlaps as an API | ||
| 458 | * violation. | ||
| 459 | * | ||
| 460 | * Memory usage is mostly constrained by the maximum number of available | ||
| 461 | * dma-debug entries in that we need a free dma_debug_entry before | ||
| 462 | * inserting into the tree. In the case of dma_map_page and | ||
| 463 | * dma_alloc_coherent there is only one dma_debug_entry and one | ||
| 464 | * dma_active_cacheline entry to track per event. dma_map_sg(), on the | ||
| 465 | * other hand, consumes a single dma_debug_entry, but inserts 'nents' | ||
| 466 | * entries into the tree. | ||
| 467 | * | ||
| 468 | * At any time debug_dma_assert_idle() can be called to trigger a | ||
| 469 | * warning if any cachelines in the given page are in the active set. | ||
| 470 | */ | ||
| 471 | static RADIX_TREE(dma_active_cacheline, GFP_NOWAIT); | ||
| 472 | static DEFINE_SPINLOCK(radix_lock); | ||
| 473 | #define ACTIVE_CACHELINE_MAX_OVERLAP ((1 << RADIX_TREE_MAX_TAGS) - 1) | ||
| 474 | #define CACHELINE_PER_PAGE_SHIFT (PAGE_SHIFT - L1_CACHE_SHIFT) | ||
| 475 | #define CACHELINES_PER_PAGE (1 << CACHELINE_PER_PAGE_SHIFT) | ||
| 476 | |||
| 477 | static phys_addr_t to_cacheline_number(struct dma_debug_entry *entry) | ||
| 478 | { | ||
| 479 | return (entry->pfn << CACHELINE_PER_PAGE_SHIFT) + | ||
| 480 | (entry->offset >> L1_CACHE_SHIFT); | ||
| 481 | } | ||
| 482 | |||
| 483 | static int active_cacheline_read_overlap(phys_addr_t cln) | ||
| 484 | { | ||
| 485 | int overlap = 0, i; | ||
| 486 | |||
| 487 | for (i = RADIX_TREE_MAX_TAGS - 1; i >= 0; i--) | ||
| 488 | if (radix_tree_tag_get(&dma_active_cacheline, cln, i)) | ||
| 489 | overlap |= 1 << i; | ||
| 490 | return overlap; | ||
| 491 | } | ||
| 492 | |||
| 493 | static int active_cacheline_set_overlap(phys_addr_t cln, int overlap) | ||
| 494 | { | ||
| 495 | int i; | ||
| 496 | |||
| 497 | if (overlap > ACTIVE_CACHELINE_MAX_OVERLAP || overlap < 0) | ||
| 498 | return overlap; | ||
| 499 | |||
| 500 | for (i = RADIX_TREE_MAX_TAGS - 1; i >= 0; i--) | ||
| 501 | if (overlap & 1 << i) | ||
| 502 | radix_tree_tag_set(&dma_active_cacheline, cln, i); | ||
| 503 | else | ||
| 504 | radix_tree_tag_clear(&dma_active_cacheline, cln, i); | ||
| 505 | |||
| 506 | return overlap; | ||
| 507 | } | ||
| 508 | |||
| 509 | static void active_cacheline_inc_overlap(phys_addr_t cln) | ||
| 510 | { | ||
| 511 | int overlap = active_cacheline_read_overlap(cln); | ||
| 512 | |||
| 513 | overlap = active_cacheline_set_overlap(cln, ++overlap); | ||
| 514 | |||
| 515 | /* If we overflowed the overlap counter then we're potentially | ||
| 516 | * leaking dma-mappings. Otherwise, if maps and unmaps are | ||
| 517 | * balanced then this overflow may cause false negatives in | ||
| 518 | * debug_dma_assert_idle() as the cacheline may be marked idle | ||
| 519 | * prematurely. | ||
| 520 | */ | ||
| 521 | WARN_ONCE(overlap > ACTIVE_CACHELINE_MAX_OVERLAP, | ||
| 522 | "DMA-API: exceeded %d overlapping mappings of cacheline %pa\n", | ||
| 523 | ACTIVE_CACHELINE_MAX_OVERLAP, &cln); | ||
| 524 | } | ||
| 525 | |||
| 526 | static int active_cacheline_dec_overlap(phys_addr_t cln) | ||
| 527 | { | ||
| 528 | int overlap = active_cacheline_read_overlap(cln); | ||
| 529 | |||
| 530 | return active_cacheline_set_overlap(cln, --overlap); | ||
| 531 | } | ||
| 532 | |||
| 533 | static int active_cacheline_insert(struct dma_debug_entry *entry) | ||
| 534 | { | ||
| 535 | phys_addr_t cln = to_cacheline_number(entry); | ||
| 536 | unsigned long flags; | ||
| 537 | int rc; | ||
| 538 | |||
| 539 | /* If the device is not writing memory then we don't have any | ||
| 540 | * concerns about the cpu consuming stale data. This mitigates | ||
| 541 | * legitimate usages of overlapping mappings. | ||
| 542 | */ | ||
| 543 | if (entry->direction == DMA_TO_DEVICE) | ||
| 544 | return 0; | ||
| 545 | |||
| 546 | spin_lock_irqsave(&radix_lock, flags); | ||
| 547 | rc = radix_tree_insert(&dma_active_cacheline, cln, entry); | ||
| 548 | if (rc == -EEXIST) | ||
| 549 | active_cacheline_inc_overlap(cln); | ||
| 550 | spin_unlock_irqrestore(&radix_lock, flags); | ||
| 551 | |||
| 552 | return rc; | ||
| 553 | } | ||
| 554 | |||
| 555 | static void active_cacheline_remove(struct dma_debug_entry *entry) | ||
| 556 | { | ||
| 557 | phys_addr_t cln = to_cacheline_number(entry); | ||
| 558 | unsigned long flags; | ||
| 559 | |||
| 560 | /* ...mirror the insert case */ | ||
| 561 | if (entry->direction == DMA_TO_DEVICE) | ||
| 562 | return; | ||
| 563 | |||
| 564 | spin_lock_irqsave(&radix_lock, flags); | ||
| 565 | /* since we are counting overlaps the final put of the | ||
| 566 | * cacheline will occur when the overlap count is 0. | ||
| 567 | * active_cacheline_dec_overlap() returns -1 in that case | ||
| 568 | */ | ||
| 569 | if (active_cacheline_dec_overlap(cln) < 0) | ||
| 570 | radix_tree_delete(&dma_active_cacheline, cln); | ||
| 571 | spin_unlock_irqrestore(&radix_lock, flags); | ||
| 572 | } | ||
| 573 | |||
| 574 | /** | ||
| 575 | * debug_dma_assert_idle() - assert that a page is not undergoing dma | ||
| 576 | * @page: page to lookup in the dma_active_cacheline tree | ||
| 577 | * | ||
| 578 | * Place a call to this routine in cases where the cpu touching the page | ||
| 579 | * before the dma completes (page is dma_unmapped) will lead to data | ||
| 580 | * corruption. | ||
| 581 | */ | ||
| 582 | void debug_dma_assert_idle(struct page *page) | ||
| 583 | { | ||
| 584 | static struct dma_debug_entry *ents[CACHELINES_PER_PAGE]; | ||
| 585 | struct dma_debug_entry *entry = NULL; | ||
| 586 | void **results = (void **) &ents; | ||
| 587 | unsigned int nents, i; | ||
| 588 | unsigned long flags; | ||
| 589 | phys_addr_t cln; | ||
| 590 | |||
| 591 | if (dma_debug_disabled()) | ||
| 592 | return; | ||
| 593 | |||
| 594 | if (!page) | ||
| 595 | return; | ||
| 596 | |||
| 597 | cln = (phys_addr_t) page_to_pfn(page) << CACHELINE_PER_PAGE_SHIFT; | ||
| 598 | spin_lock_irqsave(&radix_lock, flags); | ||
| 599 | nents = radix_tree_gang_lookup(&dma_active_cacheline, results, cln, | ||
| 600 | CACHELINES_PER_PAGE); | ||
| 601 | for (i = 0; i < nents; i++) { | ||
| 602 | phys_addr_t ent_cln = to_cacheline_number(ents[i]); | ||
| 603 | |||
| 604 | if (ent_cln == cln) { | ||
| 605 | entry = ents[i]; | ||
| 606 | break; | ||
| 607 | } else if (ent_cln >= cln + CACHELINES_PER_PAGE) | ||
| 608 | break; | ||
| 609 | } | ||
| 610 | spin_unlock_irqrestore(&radix_lock, flags); | ||
| 611 | |||
| 612 | if (!entry) | ||
| 613 | return; | ||
| 614 | |||
| 615 | cln = to_cacheline_number(entry); | ||
| 616 | err_printk(entry->dev, entry, | ||
| 617 | "DMA-API: cpu touching an active dma mapped cacheline [cln=%pa]\n", | ||
| 618 | &cln); | ||
| 619 | } | ||
| 620 | |||
| 621 | /* | ||
| 622 | * Wrapper function for adding an entry to the hash. | ||
| 623 | * This function takes care of locking itself. | ||
| 624 | */ | ||
| 625 | static void add_dma_entry(struct dma_debug_entry *entry) | ||
| 626 | { | ||
| 627 | struct hash_bucket *bucket; | ||
| 628 | unsigned long flags; | ||
| 629 | int rc; | ||
| 630 | |||
| 631 | bucket = get_hash_bucket(entry, &flags); | ||
| 632 | hash_bucket_add(bucket, entry); | ||
| 633 | put_hash_bucket(bucket, &flags); | ||
| 634 | |||
| 635 | rc = active_cacheline_insert(entry); | ||
| 636 | if (rc == -ENOMEM) { | ||
| 637 | pr_err("DMA-API: cacheline tracking ENOMEM, dma-debug disabled\n"); | ||
| 638 | global_disable = true; | ||
| 639 | } | ||
| 640 | |||
| 641 | /* TODO: report -EEXIST errors here as overlapping mappings are | ||
| 642 | * not supported by the DMA API | ||
| 643 | */ | ||
| 644 | } | ||
| 645 | |||
| 646 | static struct dma_debug_entry *__dma_entry_alloc(void) | ||
| 647 | { | ||
| 648 | struct dma_debug_entry *entry; | ||
| 649 | |||
| 650 | entry = list_entry(free_entries.next, struct dma_debug_entry, list); | ||
| 651 | list_del(&entry->list); | ||
| 652 | memset(entry, 0, sizeof(*entry)); | ||
| 653 | |||
| 654 | num_free_entries -= 1; | ||
| 655 | if (num_free_entries < min_free_entries) | ||
| 656 | min_free_entries = num_free_entries; | ||
| 657 | |||
| 658 | return entry; | ||
| 659 | } | ||
| 660 | |||
| 661 | /* struct dma_entry allocator | ||
| 662 | * | ||
| 663 | * The next two functions implement the allocator for | ||
| 664 | * struct dma_debug_entries. | ||
| 665 | */ | ||
| 666 | static struct dma_debug_entry *dma_entry_alloc(void) | ||
| 667 | { | ||
| 668 | struct dma_debug_entry *entry; | ||
| 669 | unsigned long flags; | ||
| 670 | |||
| 671 | spin_lock_irqsave(&free_entries_lock, flags); | ||
| 672 | |||
| 673 | if (list_empty(&free_entries)) { | ||
| 674 | global_disable = true; | ||
| 675 | spin_unlock_irqrestore(&free_entries_lock, flags); | ||
| 676 | pr_err("DMA-API: debugging out of memory - disabling\n"); | ||
| 677 | return NULL; | ||
| 678 | } | ||
| 679 | |||
| 680 | entry = __dma_entry_alloc(); | ||
| 681 | |||
| 682 | spin_unlock_irqrestore(&free_entries_lock, flags); | ||
| 683 | |||
| 684 | #ifdef CONFIG_STACKTRACE | ||
| 685 | entry->stacktrace.max_entries = DMA_DEBUG_STACKTRACE_ENTRIES; | ||
| 686 | entry->stacktrace.entries = entry->st_entries; | ||
| 687 | entry->stacktrace.skip = 2; | ||
| 688 | save_stack_trace(&entry->stacktrace); | ||
| 689 | #endif | ||
| 690 | |||
| 691 | return entry; | ||
| 692 | } | ||
| 693 | |||
| 694 | static void dma_entry_free(struct dma_debug_entry *entry) | ||
| 695 | { | ||
| 696 | unsigned long flags; | ||
| 697 | |||
| 698 | active_cacheline_remove(entry); | ||
| 699 | |||
| 700 | /* | ||
| 701 | * add to beginning of the list - this way the entries are | ||
| 702 | * more likely cache hot when they are reallocated. | ||
| 703 | */ | ||
| 704 | spin_lock_irqsave(&free_entries_lock, flags); | ||
| 705 | list_add(&entry->list, &free_entries); | ||
| 706 | num_free_entries += 1; | ||
| 707 | spin_unlock_irqrestore(&free_entries_lock, flags); | ||
| 708 | } | ||
| 709 | |||
| 710 | int dma_debug_resize_entries(u32 num_entries) | ||
| 711 | { | ||
| 712 | int i, delta, ret = 0; | ||
| 713 | unsigned long flags; | ||
| 714 | struct dma_debug_entry *entry; | ||
| 715 | LIST_HEAD(tmp); | ||
| 716 | |||
| 717 | spin_lock_irqsave(&free_entries_lock, flags); | ||
| 718 | |||
| 719 | if (nr_total_entries < num_entries) { | ||
| 720 | delta = num_entries - nr_total_entries; | ||
| 721 | |||
| 722 | spin_unlock_irqrestore(&free_entries_lock, flags); | ||
| 723 | |||
| 724 | for (i = 0; i < delta; i++) { | ||
| 725 | entry = kzalloc(sizeof(*entry), GFP_KERNEL); | ||
| 726 | if (!entry) | ||
| 727 | break; | ||
| 728 | |||
| 729 | list_add_tail(&entry->list, &tmp); | ||
| 730 | } | ||
| 731 | |||
| 732 | spin_lock_irqsave(&free_entries_lock, flags); | ||
| 733 | |||
| 734 | list_splice(&tmp, &free_entries); | ||
| 735 | nr_total_entries += i; | ||
| 736 | num_free_entries += i; | ||
| 737 | } else { | ||
| 738 | delta = nr_total_entries - num_entries; | ||
| 739 | |||
| 740 | for (i = 0; i < delta && !list_empty(&free_entries); i++) { | ||
| 741 | entry = __dma_entry_alloc(); | ||
| 742 | kfree(entry); | ||
| 743 | } | ||
| 744 | |||
| 745 | nr_total_entries -= i; | ||
| 746 | } | ||
| 747 | |||
| 748 | if (nr_total_entries != num_entries) | ||
| 749 | ret = 1; | ||
| 750 | |||
| 751 | spin_unlock_irqrestore(&free_entries_lock, flags); | ||
| 752 | |||
| 753 | return ret; | ||
| 754 | } | ||
| 755 | |||
| 756 | /* | ||
| 757 | * DMA-API debugging init code | ||
| 758 | * | ||
| 759 | * The init code does two things: | ||
| 760 | * 1. Initialize core data structures | ||
| 761 | * 2. Preallocate a given number of dma_debug_entry structs | ||
| 762 | */ | ||
| 763 | |||
| 764 | static int prealloc_memory(u32 num_entries) | ||
| 765 | { | ||
| 766 | struct dma_debug_entry *entry, *next_entry; | ||
| 767 | int i; | ||
| 768 | |||
| 769 | for (i = 0; i < num_entries; ++i) { | ||
| 770 | entry = kzalloc(sizeof(*entry), GFP_KERNEL); | ||
| 771 | if (!entry) | ||
| 772 | goto out_err; | ||
| 773 | |||
| 774 | list_add_tail(&entry->list, &free_entries); | ||
| 775 | } | ||
| 776 | |||
| 777 | num_free_entries = num_entries; | ||
| 778 | min_free_entries = num_entries; | ||
| 779 | |||
| 780 | pr_info("DMA-API: preallocated %d debug entries\n", num_entries); | ||
| 781 | |||
| 782 | return 0; | ||
| 783 | |||
| 784 | out_err: | ||
| 785 | |||
| 786 | list_for_each_entry_safe(entry, next_entry, &free_entries, list) { | ||
| 787 | list_del(&entry->list); | ||
| 788 | kfree(entry); | ||
| 789 | } | ||
| 790 | |||
| 791 | return -ENOMEM; | ||
| 792 | } | ||
| 793 | |||
| 794 | static ssize_t filter_read(struct file *file, char __user *user_buf, | ||
| 795 | size_t count, loff_t *ppos) | ||
| 796 | { | ||
| 797 | char buf[NAME_MAX_LEN + 1]; | ||
| 798 | unsigned long flags; | ||
| 799 | int len; | ||
| 800 | |||
| 801 | if (!current_driver_name[0]) | ||
| 802 | return 0; | ||
| 803 | |||
| 804 | /* | ||
| 805 | * We can't copy to userspace directly because current_driver_name can | ||
| 806 | * only be read under the driver_name_lock with irqs disabled. So | ||
| 807 | * create a temporary copy first. | ||
| 808 | */ | ||
| 809 | read_lock_irqsave(&driver_name_lock, flags); | ||
| 810 | len = scnprintf(buf, NAME_MAX_LEN + 1, "%s\n", current_driver_name); | ||
| 811 | read_unlock_irqrestore(&driver_name_lock, flags); | ||
| 812 | |||
| 813 | return simple_read_from_buffer(user_buf, count, ppos, buf, len); | ||
| 814 | } | ||
| 815 | |||
| 816 | static ssize_t filter_write(struct file *file, const char __user *userbuf, | ||
| 817 | size_t count, loff_t *ppos) | ||
| 818 | { | ||
| 819 | char buf[NAME_MAX_LEN]; | ||
| 820 | unsigned long flags; | ||
| 821 | size_t len; | ||
| 822 | int i; | ||
| 823 | |||
| 824 | /* | ||
| 825 | * We can't copy from userspace directly. Access to | ||
| 826 | * current_driver_name is protected with a write_lock with irqs | ||
| 827 | * disabled. Since copy_from_user can fault and may sleep we | ||
| 828 | * need to copy to temporary buffer first | ||
| 829 | */ | ||
| 830 | len = min(count, (size_t)(NAME_MAX_LEN - 1)); | ||
| 831 | if (copy_from_user(buf, userbuf, len)) | ||
| 832 | return -EFAULT; | ||
| 833 | |||
| 834 | buf[len] = 0; | ||
| 835 | |||
| 836 | write_lock_irqsave(&driver_name_lock, flags); | ||
| 837 | |||
| 838 | /* | ||
| 839 | * Now handle the string we got from userspace very carefully. | ||
| 840 | * The rules are: | ||
| 841 | * - only use the first token we got | ||
| 842 | * - token delimiter is everything looking like a space | ||
| 843 | * character (' ', '\n', '\t' ...) | ||
| 844 | * | ||
| 845 | */ | ||
| 846 | if (!isalnum(buf[0])) { | ||
| 847 | /* | ||
| 848 | * If the first character userspace gave us is not | ||
| 849 | * alphanumerical then assume the filter should be | ||
| 850 | * switched off. | ||
| 851 | */ | ||
| 852 | if (current_driver_name[0]) | ||
| 853 | pr_info("DMA-API: switching off dma-debug driver filter\n"); | ||
| 854 | current_driver_name[0] = 0; | ||
| 855 | current_driver = NULL; | ||
| 856 | goto out_unlock; | ||
| 857 | } | ||
| 858 | |||
| 859 | /* | ||
| 860 | * Now parse out the first token and use it as the name for the | ||
| 861 | * driver to filter for. | ||
| 862 | */ | ||
| 863 | for (i = 0; i < NAME_MAX_LEN - 1; ++i) { | ||
| 864 | current_driver_name[i] = buf[i]; | ||
| 865 | if (isspace(buf[i]) || buf[i] == ' ' || buf[i] == 0) | ||
| 866 | break; | ||
| 867 | } | ||
| 868 | current_driver_name[i] = 0; | ||
| 869 | current_driver = NULL; | ||
| 870 | |||
| 871 | pr_info("DMA-API: enable driver filter for driver [%s]\n", | ||
| 872 | current_driver_name); | ||
| 873 | |||
| 874 | out_unlock: | ||
| 875 | write_unlock_irqrestore(&driver_name_lock, flags); | ||
| 876 | |||
| 877 | return count; | ||
| 878 | } | ||
| 879 | |||
| 880 | static const struct file_operations filter_fops = { | ||
| 881 | .read = filter_read, | ||
| 882 | .write = filter_write, | ||
| 883 | .llseek = default_llseek, | ||
| 884 | }; | ||
| 885 | |||
| 886 | static int dma_debug_fs_init(void) | ||
| 887 | { | ||
| 888 | dma_debug_dent = debugfs_create_dir("dma-api", NULL); | ||
| 889 | if (!dma_debug_dent) { | ||
| 890 | pr_err("DMA-API: can not create debugfs directory\n"); | ||
| 891 | return -ENOMEM; | ||
| 892 | } | ||
| 893 | |||
| 894 | global_disable_dent = debugfs_create_bool("disabled", 0444, | ||
| 895 | dma_debug_dent, | ||
| 896 | &global_disable); | ||
| 897 | if (!global_disable_dent) | ||
| 898 | goto out_err; | ||
| 899 | |||
| 900 | error_count_dent = debugfs_create_u32("error_count", 0444, | ||
| 901 | dma_debug_dent, &error_count); | ||
| 902 | if (!error_count_dent) | ||
| 903 | goto out_err; | ||
| 904 | |||
| 905 | show_all_errors_dent = debugfs_create_u32("all_errors", 0644, | ||
| 906 | dma_debug_dent, | ||
| 907 | &show_all_errors); | ||
| 908 | if (!show_all_errors_dent) | ||
| 909 | goto out_err; | ||
| 910 | |||
| 911 | show_num_errors_dent = debugfs_create_u32("num_errors", 0644, | ||
| 912 | dma_debug_dent, | ||
| 913 | &show_num_errors); | ||
| 914 | if (!show_num_errors_dent) | ||
| 915 | goto out_err; | ||
| 916 | |||
| 917 | num_free_entries_dent = debugfs_create_u32("num_free_entries", 0444, | ||
| 918 | dma_debug_dent, | ||
| 919 | &num_free_entries); | ||
| 920 | if (!num_free_entries_dent) | ||
| 921 | goto out_err; | ||
| 922 | |||
| 923 | min_free_entries_dent = debugfs_create_u32("min_free_entries", 0444, | ||
| 924 | dma_debug_dent, | ||
| 925 | &min_free_entries); | ||
| 926 | if (!min_free_entries_dent) | ||
| 927 | goto out_err; | ||
| 928 | |||
| 929 | filter_dent = debugfs_create_file("driver_filter", 0644, | ||
| 930 | dma_debug_dent, NULL, &filter_fops); | ||
| 931 | if (!filter_dent) | ||
| 932 | goto out_err; | ||
| 933 | |||
| 934 | return 0; | ||
| 935 | |||
| 936 | out_err: | ||
| 937 | debugfs_remove_recursive(dma_debug_dent); | ||
| 938 | |||
| 939 | return -ENOMEM; | ||
| 940 | } | ||
| 941 | |||
| 942 | static int device_dma_allocations(struct device *dev, struct dma_debug_entry **out_entry) | ||
| 943 | { | ||
| 944 | struct dma_debug_entry *entry; | ||
| 945 | unsigned long flags; | ||
| 946 | int count = 0, i; | ||
| 947 | |||
| 948 | for (i = 0; i < HASH_SIZE; ++i) { | ||
| 949 | spin_lock_irqsave(&dma_entry_hash[i].lock, flags); | ||
| 950 | list_for_each_entry(entry, &dma_entry_hash[i].list, list) { | ||
| 951 | if (entry->dev == dev) { | ||
| 952 | count += 1; | ||
| 953 | *out_entry = entry; | ||
| 954 | } | ||
| 955 | } | ||
| 956 | spin_unlock_irqrestore(&dma_entry_hash[i].lock, flags); | ||
| 957 | } | ||
| 958 | |||
| 959 | return count; | ||
| 960 | } | ||
| 961 | |||
| 962 | static int dma_debug_device_change(struct notifier_block *nb, unsigned long action, void *data) | ||
| 963 | { | ||
| 964 | struct device *dev = data; | ||
| 965 | struct dma_debug_entry *uninitialized_var(entry); | ||
| 966 | int count; | ||
| 967 | |||
| 968 | if (dma_debug_disabled()) | ||
| 969 | return 0; | ||
| 970 | |||
| 971 | switch (action) { | ||
| 972 | case BUS_NOTIFY_UNBOUND_DRIVER: | ||
| 973 | count = device_dma_allocations(dev, &entry); | ||
| 974 | if (count == 0) | ||
| 975 | break; | ||
| 976 | err_printk(dev, entry, "DMA-API: device driver has pending " | ||
| 977 | "DMA allocations while released from device " | ||
| 978 | "[count=%d]\n" | ||
| 979 | "One of leaked entries details: " | ||
| 980 | "[device address=0x%016llx] [size=%llu bytes] " | ||
| 981 | "[mapped with %s] [mapped as %s]\n", | ||
| 982 | count, entry->dev_addr, entry->size, | ||
| 983 | dir2name[entry->direction], type2name[entry->type]); | ||
| 984 | break; | ||
| 985 | default: | ||
| 986 | break; | ||
| 987 | } | ||
| 988 | |||
| 989 | return 0; | ||
| 990 | } | ||
| 991 | |||
| 992 | void dma_debug_add_bus(struct bus_type *bus) | ||
| 993 | { | ||
| 994 | struct notifier_block *nb; | ||
| 995 | |||
| 996 | if (dma_debug_disabled()) | ||
| 997 | return; | ||
| 998 | |||
| 999 | nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL); | ||
| 1000 | if (nb == NULL) { | ||
| 1001 | pr_err("dma_debug_add_bus: out of memory\n"); | ||
| 1002 | return; | ||
| 1003 | } | ||
| 1004 | |||
| 1005 | nb->notifier_call = dma_debug_device_change; | ||
| 1006 | |||
| 1007 | bus_register_notifier(bus, nb); | ||
| 1008 | } | ||
| 1009 | |||
| 1010 | static int dma_debug_init(void) | ||
| 1011 | { | ||
| 1012 | int i; | ||
| 1013 | |||
| 1014 | /* Do not use dma_debug_initialized here, since we really want to be | ||
| 1015 | * called to set dma_debug_initialized | ||
| 1016 | */ | ||
| 1017 | if (global_disable) | ||
| 1018 | return 0; | ||
| 1019 | |||
| 1020 | for (i = 0; i < HASH_SIZE; ++i) { | ||
| 1021 | INIT_LIST_HEAD(&dma_entry_hash[i].list); | ||
| 1022 | spin_lock_init(&dma_entry_hash[i].lock); | ||
| 1023 | } | ||
| 1024 | |||
| 1025 | if (dma_debug_fs_init() != 0) { | ||
| 1026 | pr_err("DMA-API: error creating debugfs entries - disabling\n"); | ||
| 1027 | global_disable = true; | ||
| 1028 | |||
| 1029 | return 0; | ||
| 1030 | } | ||
| 1031 | |||
| 1032 | if (prealloc_memory(nr_prealloc_entries) != 0) { | ||
| 1033 | pr_err("DMA-API: debugging out of memory error - disabled\n"); | ||
| 1034 | global_disable = true; | ||
| 1035 | |||
| 1036 | return 0; | ||
| 1037 | } | ||
| 1038 | |||
| 1039 | nr_total_entries = num_free_entries; | ||
| 1040 | |||
| 1041 | dma_debug_initialized = true; | ||
| 1042 | |||
| 1043 | pr_info("DMA-API: debugging enabled by kernel config\n"); | ||
| 1044 | return 0; | ||
| 1045 | } | ||
| 1046 | core_initcall(dma_debug_init); | ||
| 1047 | |||
| 1048 | static __init int dma_debug_cmdline(char *str) | ||
| 1049 | { | ||
| 1050 | if (!str) | ||
| 1051 | return -EINVAL; | ||
| 1052 | |||
| 1053 | if (strncmp(str, "off", 3) == 0) { | ||
| 1054 | pr_info("DMA-API: debugging disabled on kernel command line\n"); | ||
| 1055 | global_disable = true; | ||
| 1056 | } | ||
| 1057 | |||
| 1058 | return 0; | ||
| 1059 | } | ||
| 1060 | |||
| 1061 | static __init int dma_debug_entries_cmdline(char *str) | ||
| 1062 | { | ||
| 1063 | if (!str) | ||
| 1064 | return -EINVAL; | ||
| 1065 | if (!get_option(&str, &nr_prealloc_entries)) | ||
| 1066 | nr_prealloc_entries = PREALLOC_DMA_DEBUG_ENTRIES; | ||
| 1067 | return 0; | ||
| 1068 | } | ||
| 1069 | |||
| 1070 | __setup("dma_debug=", dma_debug_cmdline); | ||
| 1071 | __setup("dma_debug_entries=", dma_debug_entries_cmdline); | ||
| 1072 | |||
| 1073 | static void check_unmap(struct dma_debug_entry *ref) | ||
| 1074 | { | ||
| 1075 | struct dma_debug_entry *entry; | ||
| 1076 | struct hash_bucket *bucket; | ||
| 1077 | unsigned long flags; | ||
| 1078 | |||
| 1079 | bucket = get_hash_bucket(ref, &flags); | ||
| 1080 | entry = bucket_find_exact(bucket, ref); | ||
| 1081 | |||
| 1082 | if (!entry) { | ||
| 1083 | /* must drop lock before calling dma_mapping_error */ | ||
| 1084 | put_hash_bucket(bucket, &flags); | ||
| 1085 | |||
| 1086 | if (dma_mapping_error(ref->dev, ref->dev_addr)) { | ||
| 1087 | err_printk(ref->dev, NULL, | ||
| 1088 | "DMA-API: device driver tries to free an " | ||
| 1089 | "invalid DMA memory address\n"); | ||
| 1090 | } else { | ||
| 1091 | err_printk(ref->dev, NULL, | ||
| 1092 | "DMA-API: device driver tries to free DMA " | ||
| 1093 | "memory it has not allocated [device " | ||
| 1094 | "address=0x%016llx] [size=%llu bytes]\n", | ||
| 1095 | ref->dev_addr, ref->size); | ||
| 1096 | } | ||
| 1097 | return; | ||
| 1098 | } | ||
| 1099 | |||
| 1100 | if (ref->size != entry->size) { | ||
| 1101 | err_printk(ref->dev, entry, "DMA-API: device driver frees " | ||
| 1102 | "DMA memory with different size " | ||
| 1103 | "[device address=0x%016llx] [map size=%llu bytes] " | ||
| 1104 | "[unmap size=%llu bytes]\n", | ||
| 1105 | ref->dev_addr, entry->size, ref->size); | ||
| 1106 | } | ||
| 1107 | |||
| 1108 | if (ref->type != entry->type) { | ||
| 1109 | err_printk(ref->dev, entry, "DMA-API: device driver frees " | ||
| 1110 | "DMA memory with wrong function " | ||
| 1111 | "[device address=0x%016llx] [size=%llu bytes] " | ||
| 1112 | "[mapped as %s] [unmapped as %s]\n", | ||
| 1113 | ref->dev_addr, ref->size, | ||
| 1114 | type2name[entry->type], type2name[ref->type]); | ||
| 1115 | } else if ((entry->type == dma_debug_coherent) && | ||
| 1116 | (phys_addr(ref) != phys_addr(entry))) { | ||
| 1117 | err_printk(ref->dev, entry, "DMA-API: device driver frees " | ||
| 1118 | "DMA memory with different CPU address " | ||
| 1119 | "[device address=0x%016llx] [size=%llu bytes] " | ||
| 1120 | "[cpu alloc address=0x%016llx] " | ||
| 1121 | "[cpu free address=0x%016llx]", | ||
| 1122 | ref->dev_addr, ref->size, | ||
| 1123 | phys_addr(entry), | ||
| 1124 | phys_addr(ref)); | ||
| 1125 | } | ||
| 1126 | |||
| 1127 | if (ref->sg_call_ents && ref->type == dma_debug_sg && | ||
| 1128 | ref->sg_call_ents != entry->sg_call_ents) { | ||
| 1129 | err_printk(ref->dev, entry, "DMA-API: device driver frees " | ||
| 1130 | "DMA sg list with different entry count " | ||
| 1131 | "[map count=%d] [unmap count=%d]\n", | ||
| 1132 | entry->sg_call_ents, ref->sg_call_ents); | ||
| 1133 | } | ||
| 1134 | |||
| 1135 | /* | ||
| 1136 | * This may be no bug in reality - but most implementations of the | ||
| 1137 | * DMA API don't handle this properly, so check for it here | ||
| 1138 | */ | ||
| 1139 | if (ref->direction != entry->direction) { | ||
| 1140 | err_printk(ref->dev, entry, "DMA-API: device driver frees " | ||
| 1141 | "DMA memory with different direction " | ||
| 1142 | "[device address=0x%016llx] [size=%llu bytes] " | ||
| 1143 | "[mapped with %s] [unmapped with %s]\n", | ||
| 1144 | ref->dev_addr, ref->size, | ||
| 1145 | dir2name[entry->direction], | ||
| 1146 | dir2name[ref->direction]); | ||
| 1147 | } | ||
| 1148 | |||
| 1149 | /* | ||
| 1150 | * Drivers should use dma_mapping_error() to check the returned | ||
| 1151 | * addresses of dma_map_single() and dma_map_page(). | ||
| 1152 | * If not, print this warning message. See Documentation/DMA-API.txt. | ||
| 1153 | */ | ||
| 1154 | if (entry->map_err_type == MAP_ERR_NOT_CHECKED) { | ||
| 1155 | err_printk(ref->dev, entry, | ||
| 1156 | "DMA-API: device driver failed to check map error" | ||
| 1157 | "[device address=0x%016llx] [size=%llu bytes] " | ||
| 1158 | "[mapped as %s]", | ||
| 1159 | ref->dev_addr, ref->size, | ||
| 1160 | type2name[entry->type]); | ||
| 1161 | } | ||
| 1162 | |||
| 1163 | hash_bucket_del(entry); | ||
| 1164 | dma_entry_free(entry); | ||
| 1165 | |||
| 1166 | put_hash_bucket(bucket, &flags); | ||
| 1167 | } | ||
| 1168 | |||
| 1169 | static void check_for_stack(struct device *dev, | ||
| 1170 | struct page *page, size_t offset) | ||
| 1171 | { | ||
| 1172 | void *addr; | ||
| 1173 | struct vm_struct *stack_vm_area = task_stack_vm_area(current); | ||
| 1174 | |||
| 1175 | if (!stack_vm_area) { | ||
| 1176 | /* Stack is direct-mapped. */ | ||
| 1177 | if (PageHighMem(page)) | ||
| 1178 | return; | ||
| 1179 | addr = page_address(page) + offset; | ||
| 1180 | if (object_is_on_stack(addr)) | ||
| 1181 | err_printk(dev, NULL, "DMA-API: device driver maps memory from stack [addr=%p]\n", addr); | ||
| 1182 | } else { | ||
| 1183 | /* Stack is vmalloced. */ | ||
| 1184 | int i; | ||
| 1185 | |||
| 1186 | for (i = 0; i < stack_vm_area->nr_pages; i++) { | ||
| 1187 | if (page != stack_vm_area->pages[i]) | ||
| 1188 | continue; | ||
| 1189 | |||
| 1190 | addr = (u8 *)current->stack + i * PAGE_SIZE + offset; | ||
| 1191 | err_printk(dev, NULL, "DMA-API: device driver maps memory from stack [probable addr=%p]\n", addr); | ||
| 1192 | break; | ||
| 1193 | } | ||
| 1194 | } | ||
| 1195 | } | ||
| 1196 | |||
| 1197 | static inline bool overlap(void *addr, unsigned long len, void *start, void *end) | ||
| 1198 | { | ||
| 1199 | unsigned long a1 = (unsigned long)addr; | ||
| 1200 | unsigned long b1 = a1 + len; | ||
| 1201 | unsigned long a2 = (unsigned long)start; | ||
| 1202 | unsigned long b2 = (unsigned long)end; | ||
| 1203 | |||
| 1204 | return !(b1 <= a2 || a1 >= b2); | ||
| 1205 | } | ||
| 1206 | |||
| 1207 | static void check_for_illegal_area(struct device *dev, void *addr, unsigned long len) | ||
| 1208 | { | ||
| 1209 | if (overlap(addr, len, _stext, _etext) || | ||
| 1210 | overlap(addr, len, __start_rodata, __end_rodata)) | ||
| 1211 | err_printk(dev, NULL, "DMA-API: device driver maps memory from kernel text or rodata [addr=%p] [len=%lu]\n", addr, len); | ||
| 1212 | } | ||
| 1213 | |||
| 1214 | static void check_sync(struct device *dev, | ||
| 1215 | struct dma_debug_entry *ref, | ||
| 1216 | bool to_cpu) | ||
| 1217 | { | ||
| 1218 | struct dma_debug_entry *entry; | ||
| 1219 | struct hash_bucket *bucket; | ||
| 1220 | unsigned long flags; | ||
| 1221 | |||
| 1222 | bucket = get_hash_bucket(ref, &flags); | ||
| 1223 | |||
| 1224 | entry = bucket_find_contain(&bucket, ref, &flags); | ||
| 1225 | |||
| 1226 | if (!entry) { | ||
| 1227 | err_printk(dev, NULL, "DMA-API: device driver tries " | ||
| 1228 | "to sync DMA memory it has not allocated " | ||
| 1229 | "[device address=0x%016llx] [size=%llu bytes]\n", | ||
| 1230 | (unsigned long long)ref->dev_addr, ref->size); | ||
| 1231 | goto out; | ||
| 1232 | } | ||
| 1233 | |||
| 1234 | if (ref->size > entry->size) { | ||
| 1235 | err_printk(dev, entry, "DMA-API: device driver syncs" | ||
| 1236 | " DMA memory outside allocated range " | ||
| 1237 | "[device address=0x%016llx] " | ||
| 1238 | "[allocation size=%llu bytes] " | ||
| 1239 | "[sync offset+size=%llu]\n", | ||
| 1240 | entry->dev_addr, entry->size, | ||
| 1241 | ref->size); | ||
| 1242 | } | ||
| 1243 | |||
| 1244 | if (entry->direction == DMA_BIDIRECTIONAL) | ||
| 1245 | goto out; | ||
| 1246 | |||
| 1247 | if (ref->direction != entry->direction) { | ||
| 1248 | err_printk(dev, entry, "DMA-API: device driver syncs " | ||
| 1249 | "DMA memory with different direction " | ||
| 1250 | "[device address=0x%016llx] [size=%llu bytes] " | ||
| 1251 | "[mapped with %s] [synced with %s]\n", | ||
| 1252 | (unsigned long long)ref->dev_addr, entry->size, | ||
| 1253 | dir2name[entry->direction], | ||
| 1254 | dir2name[ref->direction]); | ||
| 1255 | } | ||
| 1256 | |||
| 1257 | if (to_cpu && !(entry->direction == DMA_FROM_DEVICE) && | ||
| 1258 | !(ref->direction == DMA_TO_DEVICE)) | ||
| 1259 | err_printk(dev, entry, "DMA-API: device driver syncs " | ||
| 1260 | "device read-only DMA memory for cpu " | ||
| 1261 | "[device address=0x%016llx] [size=%llu bytes] " | ||
| 1262 | "[mapped with %s] [synced with %s]\n", | ||
| 1263 | (unsigned long long)ref->dev_addr, entry->size, | ||
| 1264 | dir2name[entry->direction], | ||
| 1265 | dir2name[ref->direction]); | ||
| 1266 | |||
| 1267 | if (!to_cpu && !(entry->direction == DMA_TO_DEVICE) && | ||
| 1268 | !(ref->direction == DMA_FROM_DEVICE)) | ||
| 1269 | err_printk(dev, entry, "DMA-API: device driver syncs " | ||
| 1270 | "device write-only DMA memory to device " | ||
| 1271 | "[device address=0x%016llx] [size=%llu bytes] " | ||
| 1272 | "[mapped with %s] [synced with %s]\n", | ||
| 1273 | (unsigned long long)ref->dev_addr, entry->size, | ||
| 1274 | dir2name[entry->direction], | ||
| 1275 | dir2name[ref->direction]); | ||
| 1276 | |||
| 1277 | if (ref->sg_call_ents && ref->type == dma_debug_sg && | ||
| 1278 | ref->sg_call_ents != entry->sg_call_ents) { | ||
| 1279 | err_printk(ref->dev, entry, "DMA-API: device driver syncs " | ||
| 1280 | "DMA sg list with different entry count " | ||
| 1281 | "[map count=%d] [sync count=%d]\n", | ||
| 1282 | entry->sg_call_ents, ref->sg_call_ents); | ||
| 1283 | } | ||
| 1284 | |||
| 1285 | out: | ||
| 1286 | put_hash_bucket(bucket, &flags); | ||
| 1287 | } | ||
| 1288 | |||
| 1289 | static void check_sg_segment(struct device *dev, struct scatterlist *sg) | ||
| 1290 | { | ||
| 1291 | #ifdef CONFIG_DMA_API_DEBUG_SG | ||
| 1292 | unsigned int max_seg = dma_get_max_seg_size(dev); | ||
| 1293 | u64 start, end, boundary = dma_get_seg_boundary(dev); | ||
| 1294 | |||
| 1295 | /* | ||
| 1296 | * Either the driver forgot to set dma_parms appropriately, or | ||
| 1297 | * whoever generated the list forgot to check them. | ||
| 1298 | */ | ||
| 1299 | if (sg->length > max_seg) | ||
| 1300 | err_printk(dev, NULL, "DMA-API: mapping sg segment longer than device claims to support [len=%u] [max=%u]\n", | ||
| 1301 | sg->length, max_seg); | ||
| 1302 | /* | ||
| 1303 | * In some cases this could potentially be the DMA API | ||
| 1304 | * implementation's fault, but it would usually imply that | ||
| 1305 | * the scatterlist was built inappropriately to begin with. | ||
| 1306 | */ | ||
| 1307 | start = sg_dma_address(sg); | ||
| 1308 | end = start + sg_dma_len(sg) - 1; | ||
| 1309 | if ((start ^ end) & ~boundary) | ||
| 1310 | err_printk(dev, NULL, "DMA-API: mapping sg segment across boundary [start=0x%016llx] [end=0x%016llx] [boundary=0x%016llx]\n", | ||
| 1311 | start, end, boundary); | ||
| 1312 | #endif | ||
| 1313 | } | ||
| 1314 | |||
| 1315 | void debug_dma_map_page(struct device *dev, struct page *page, size_t offset, | ||
| 1316 | size_t size, int direction, dma_addr_t dma_addr, | ||
| 1317 | bool map_single) | ||
| 1318 | { | ||
| 1319 | struct dma_debug_entry *entry; | ||
| 1320 | |||
| 1321 | if (unlikely(dma_debug_disabled())) | ||
| 1322 | return; | ||
| 1323 | |||
| 1324 | if (dma_mapping_error(dev, dma_addr)) | ||
| 1325 | return; | ||
| 1326 | |||
| 1327 | entry = dma_entry_alloc(); | ||
| 1328 | if (!entry) | ||
| 1329 | return; | ||
| 1330 | |||
| 1331 | entry->dev = dev; | ||
| 1332 | entry->type = dma_debug_page; | ||
| 1333 | entry->pfn = page_to_pfn(page); | ||
| 1334 | entry->offset = offset, | ||
| 1335 | entry->dev_addr = dma_addr; | ||
| 1336 | entry->size = size; | ||
| 1337 | entry->direction = direction; | ||
| 1338 | entry->map_err_type = MAP_ERR_NOT_CHECKED; | ||
| 1339 | |||
| 1340 | if (map_single) | ||
| 1341 | entry->type = dma_debug_single; | ||
| 1342 | |||
| 1343 | check_for_stack(dev, page, offset); | ||
| 1344 | |||
| 1345 | if (!PageHighMem(page)) { | ||
| 1346 | void *addr = page_address(page) + offset; | ||
| 1347 | |||
| 1348 | check_for_illegal_area(dev, addr, size); | ||
| 1349 | } | ||
| 1350 | |||
| 1351 | add_dma_entry(entry); | ||
| 1352 | } | ||
| 1353 | EXPORT_SYMBOL(debug_dma_map_page); | ||
| 1354 | |||
| 1355 | void debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) | ||
| 1356 | { | ||
| 1357 | struct dma_debug_entry ref; | ||
| 1358 | struct dma_debug_entry *entry; | ||
| 1359 | struct hash_bucket *bucket; | ||
| 1360 | unsigned long flags; | ||
| 1361 | |||
| 1362 | if (unlikely(dma_debug_disabled())) | ||
| 1363 | return; | ||
| 1364 | |||
| 1365 | ref.dev = dev; | ||
| 1366 | ref.dev_addr = dma_addr; | ||
| 1367 | bucket = get_hash_bucket(&ref, &flags); | ||
| 1368 | |||
| 1369 | list_for_each_entry(entry, &bucket->list, list) { | ||
| 1370 | if (!exact_match(&ref, entry)) | ||
| 1371 | continue; | ||
| 1372 | |||
| 1373 | /* | ||
| 1374 | * The same physical address can be mapped multiple | ||
| 1375 | * times. Without a hardware IOMMU this results in the | ||
| 1376 | * same device addresses being put into the dma-debug | ||
| 1377 | * hash multiple times too. This can result in false | ||
| 1378 | * positives being reported. Therefore we implement a | ||
| 1379 | * best-fit algorithm here which updates the first entry | ||
| 1380 | * from the hash which fits the reference value and is | ||
| 1381 | * not currently listed as being checked. | ||
| 1382 | */ | ||
| 1383 | if (entry->map_err_type == MAP_ERR_NOT_CHECKED) { | ||
| 1384 | entry->map_err_type = MAP_ERR_CHECKED; | ||
| 1385 | break; | ||
| 1386 | } | ||
| 1387 | } | ||
| 1388 | |||
| 1389 | put_hash_bucket(bucket, &flags); | ||
| 1390 | } | ||
| 1391 | EXPORT_SYMBOL(debug_dma_mapping_error); | ||
| 1392 | |||
| 1393 | void debug_dma_unmap_page(struct device *dev, dma_addr_t addr, | ||
| 1394 | size_t size, int direction, bool map_single) | ||
| 1395 | { | ||
| 1396 | struct dma_debug_entry ref = { | ||
| 1397 | .type = dma_debug_page, | ||
| 1398 | .dev = dev, | ||
| 1399 | .dev_addr = addr, | ||
| 1400 | .size = size, | ||
| 1401 | .direction = direction, | ||
| 1402 | }; | ||
| 1403 | |||
| 1404 | if (unlikely(dma_debug_disabled())) | ||
| 1405 | return; | ||
| 1406 | |||
| 1407 | if (map_single) | ||
| 1408 | ref.type = dma_debug_single; | ||
| 1409 | |||
| 1410 | check_unmap(&ref); | ||
| 1411 | } | ||
| 1412 | EXPORT_SYMBOL(debug_dma_unmap_page); | ||
| 1413 | |||
| 1414 | void debug_dma_map_sg(struct device *dev, struct scatterlist *sg, | ||
| 1415 | int nents, int mapped_ents, int direction) | ||
| 1416 | { | ||
| 1417 | struct dma_debug_entry *entry; | ||
| 1418 | struct scatterlist *s; | ||
| 1419 | int i; | ||
| 1420 | |||
| 1421 | if (unlikely(dma_debug_disabled())) | ||
| 1422 | return; | ||
| 1423 | |||
| 1424 | for_each_sg(sg, s, mapped_ents, i) { | ||
| 1425 | entry = dma_entry_alloc(); | ||
| 1426 | if (!entry) | ||
| 1427 | return; | ||
| 1428 | |||
| 1429 | entry->type = dma_debug_sg; | ||
| 1430 | entry->dev = dev; | ||
| 1431 | entry->pfn = page_to_pfn(sg_page(s)); | ||
| 1432 | entry->offset = s->offset, | ||
| 1433 | entry->size = sg_dma_len(s); | ||
| 1434 | entry->dev_addr = sg_dma_address(s); | ||
| 1435 | entry->direction = direction; | ||
| 1436 | entry->sg_call_ents = nents; | ||
| 1437 | entry->sg_mapped_ents = mapped_ents; | ||
| 1438 | |||
| 1439 | check_for_stack(dev, sg_page(s), s->offset); | ||
| 1440 | |||
| 1441 | if (!PageHighMem(sg_page(s))) { | ||
| 1442 | check_for_illegal_area(dev, sg_virt(s), sg_dma_len(s)); | ||
| 1443 | } | ||
| 1444 | |||
| 1445 | check_sg_segment(dev, s); | ||
| 1446 | |||
| 1447 | add_dma_entry(entry); | ||
| 1448 | } | ||
| 1449 | } | ||
| 1450 | EXPORT_SYMBOL(debug_dma_map_sg); | ||
| 1451 | |||
| 1452 | static int get_nr_mapped_entries(struct device *dev, | ||
| 1453 | struct dma_debug_entry *ref) | ||
| 1454 | { | ||
| 1455 | struct dma_debug_entry *entry; | ||
| 1456 | struct hash_bucket *bucket; | ||
| 1457 | unsigned long flags; | ||
| 1458 | int mapped_ents; | ||
| 1459 | |||
| 1460 | bucket = get_hash_bucket(ref, &flags); | ||
| 1461 | entry = bucket_find_exact(bucket, ref); | ||
| 1462 | mapped_ents = 0; | ||
| 1463 | |||
| 1464 | if (entry) | ||
| 1465 | mapped_ents = entry->sg_mapped_ents; | ||
| 1466 | put_hash_bucket(bucket, &flags); | ||
| 1467 | |||
| 1468 | return mapped_ents; | ||
| 1469 | } | ||
| 1470 | |||
| 1471 | void debug_dma_unmap_sg(struct device *dev, struct scatterlist *sglist, | ||
| 1472 | int nelems, int dir) | ||
| 1473 | { | ||
| 1474 | struct scatterlist *s; | ||
| 1475 | int mapped_ents = 0, i; | ||
| 1476 | |||
| 1477 | if (unlikely(dma_debug_disabled())) | ||
| 1478 | return; | ||
| 1479 | |||
| 1480 | for_each_sg(sglist, s, nelems, i) { | ||
| 1481 | |||
| 1482 | struct dma_debug_entry ref = { | ||
| 1483 | .type = dma_debug_sg, | ||
| 1484 | .dev = dev, | ||
| 1485 | .pfn = page_to_pfn(sg_page(s)), | ||
| 1486 | .offset = s->offset, | ||
| 1487 | .dev_addr = sg_dma_address(s), | ||
| 1488 | .size = sg_dma_len(s), | ||
| 1489 | .direction = dir, | ||
| 1490 | .sg_call_ents = nelems, | ||
| 1491 | }; | ||
| 1492 | |||
| 1493 | if (mapped_ents && i >= mapped_ents) | ||
| 1494 | break; | ||
| 1495 | |||
| 1496 | if (!i) | ||
| 1497 | mapped_ents = get_nr_mapped_entries(dev, &ref); | ||
| 1498 | |||
| 1499 | check_unmap(&ref); | ||
| 1500 | } | ||
| 1501 | } | ||
| 1502 | EXPORT_SYMBOL(debug_dma_unmap_sg); | ||
| 1503 | |||
| 1504 | void debug_dma_alloc_coherent(struct device *dev, size_t size, | ||
| 1505 | dma_addr_t dma_addr, void *virt) | ||
| 1506 | { | ||
| 1507 | struct dma_debug_entry *entry; | ||
| 1508 | |||
| 1509 | if (unlikely(dma_debug_disabled())) | ||
| 1510 | return; | ||
| 1511 | |||
| 1512 | if (unlikely(virt == NULL)) | ||
| 1513 | return; | ||
| 1514 | |||
| 1515 | /* handle vmalloc and linear addresses */ | ||
| 1516 | if (!is_vmalloc_addr(virt) && !virt_addr_valid(virt)) | ||
| 1517 | return; | ||
| 1518 | |||
| 1519 | entry = dma_entry_alloc(); | ||
| 1520 | if (!entry) | ||
| 1521 | return; | ||
| 1522 | |||
| 1523 | entry->type = dma_debug_coherent; | ||
| 1524 | entry->dev = dev; | ||
| 1525 | entry->offset = offset_in_page(virt); | ||
| 1526 | entry->size = size; | ||
| 1527 | entry->dev_addr = dma_addr; | ||
| 1528 | entry->direction = DMA_BIDIRECTIONAL; | ||
| 1529 | |||
| 1530 | if (is_vmalloc_addr(virt)) | ||
| 1531 | entry->pfn = vmalloc_to_pfn(virt); | ||
| 1532 | else | ||
| 1533 | entry->pfn = page_to_pfn(virt_to_page(virt)); | ||
| 1534 | |||
| 1535 | add_dma_entry(entry); | ||
| 1536 | } | ||
| 1537 | EXPORT_SYMBOL(debug_dma_alloc_coherent); | ||
| 1538 | |||
| 1539 | void debug_dma_free_coherent(struct device *dev, size_t size, | ||
| 1540 | void *virt, dma_addr_t addr) | ||
| 1541 | { | ||
| 1542 | struct dma_debug_entry ref = { | ||
| 1543 | .type = dma_debug_coherent, | ||
| 1544 | .dev = dev, | ||
| 1545 | .offset = offset_in_page(virt), | ||
| 1546 | .dev_addr = addr, | ||
| 1547 | .size = size, | ||
| 1548 | .direction = DMA_BIDIRECTIONAL, | ||
| 1549 | }; | ||
| 1550 | |||
| 1551 | /* handle vmalloc and linear addresses */ | ||
| 1552 | if (!is_vmalloc_addr(virt) && !virt_addr_valid(virt)) | ||
| 1553 | return; | ||
| 1554 | |||
| 1555 | if (is_vmalloc_addr(virt)) | ||
| 1556 | ref.pfn = vmalloc_to_pfn(virt); | ||
| 1557 | else | ||
| 1558 | ref.pfn = page_to_pfn(virt_to_page(virt)); | ||
| 1559 | |||
| 1560 | if (unlikely(dma_debug_disabled())) | ||
| 1561 | return; | ||
| 1562 | |||
| 1563 | check_unmap(&ref); | ||
| 1564 | } | ||
| 1565 | EXPORT_SYMBOL(debug_dma_free_coherent); | ||
| 1566 | |||
| 1567 | void debug_dma_map_resource(struct device *dev, phys_addr_t addr, size_t size, | ||
| 1568 | int direction, dma_addr_t dma_addr) | ||
| 1569 | { | ||
| 1570 | struct dma_debug_entry *entry; | ||
| 1571 | |||
| 1572 | if (unlikely(dma_debug_disabled())) | ||
| 1573 | return; | ||
| 1574 | |||
| 1575 | entry = dma_entry_alloc(); | ||
| 1576 | if (!entry) | ||
| 1577 | return; | ||
| 1578 | |||
| 1579 | entry->type = dma_debug_resource; | ||
| 1580 | entry->dev = dev; | ||
| 1581 | entry->pfn = PHYS_PFN(addr); | ||
| 1582 | entry->offset = offset_in_page(addr); | ||
| 1583 | entry->size = size; | ||
| 1584 | entry->dev_addr = dma_addr; | ||
| 1585 | entry->direction = direction; | ||
| 1586 | entry->map_err_type = MAP_ERR_NOT_CHECKED; | ||
| 1587 | |||
| 1588 | add_dma_entry(entry); | ||
| 1589 | } | ||
| 1590 | EXPORT_SYMBOL(debug_dma_map_resource); | ||
| 1591 | |||
| 1592 | void debug_dma_unmap_resource(struct device *dev, dma_addr_t dma_addr, | ||
| 1593 | size_t size, int direction) | ||
| 1594 | { | ||
| 1595 | struct dma_debug_entry ref = { | ||
| 1596 | .type = dma_debug_resource, | ||
| 1597 | .dev = dev, | ||
| 1598 | .dev_addr = dma_addr, | ||
| 1599 | .size = size, | ||
| 1600 | .direction = direction, | ||
| 1601 | }; | ||
| 1602 | |||
| 1603 | if (unlikely(dma_debug_disabled())) | ||
| 1604 | return; | ||
| 1605 | |||
| 1606 | check_unmap(&ref); | ||
| 1607 | } | ||
| 1608 | EXPORT_SYMBOL(debug_dma_unmap_resource); | ||
| 1609 | |||
| 1610 | void debug_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, | ||
| 1611 | size_t size, int direction) | ||
| 1612 | { | ||
| 1613 | struct dma_debug_entry ref; | ||
| 1614 | |||
| 1615 | if (unlikely(dma_debug_disabled())) | ||
| 1616 | return; | ||
| 1617 | |||
| 1618 | ref.type = dma_debug_single; | ||
| 1619 | ref.dev = dev; | ||
| 1620 | ref.dev_addr = dma_handle; | ||
| 1621 | ref.size = size; | ||
| 1622 | ref.direction = direction; | ||
| 1623 | ref.sg_call_ents = 0; | ||
| 1624 | |||
| 1625 | check_sync(dev, &ref, true); | ||
| 1626 | } | ||
| 1627 | EXPORT_SYMBOL(debug_dma_sync_single_for_cpu); | ||
| 1628 | |||
| 1629 | void debug_dma_sync_single_for_device(struct device *dev, | ||
| 1630 | dma_addr_t dma_handle, size_t size, | ||
| 1631 | int direction) | ||
| 1632 | { | ||
| 1633 | struct dma_debug_entry ref; | ||
| 1634 | |||
| 1635 | if (unlikely(dma_debug_disabled())) | ||
| 1636 | return; | ||
| 1637 | |||
| 1638 | ref.type = dma_debug_single; | ||
| 1639 | ref.dev = dev; | ||
| 1640 | ref.dev_addr = dma_handle; | ||
| 1641 | ref.size = size; | ||
| 1642 | ref.direction = direction; | ||
| 1643 | ref.sg_call_ents = 0; | ||
| 1644 | |||
| 1645 | check_sync(dev, &ref, false); | ||
| 1646 | } | ||
| 1647 | EXPORT_SYMBOL(debug_dma_sync_single_for_device); | ||
| 1648 | |||
| 1649 | void debug_dma_sync_single_range_for_cpu(struct device *dev, | ||
| 1650 | dma_addr_t dma_handle, | ||
| 1651 | unsigned long offset, size_t size, | ||
| 1652 | int direction) | ||
| 1653 | { | ||
| 1654 | struct dma_debug_entry ref; | ||
| 1655 | |||
| 1656 | if (unlikely(dma_debug_disabled())) | ||
| 1657 | return; | ||
| 1658 | |||
| 1659 | ref.type = dma_debug_single; | ||
| 1660 | ref.dev = dev; | ||
| 1661 | ref.dev_addr = dma_handle; | ||
| 1662 | ref.size = offset + size; | ||
| 1663 | ref.direction = direction; | ||
| 1664 | ref.sg_call_ents = 0; | ||
| 1665 | |||
| 1666 | check_sync(dev, &ref, true); | ||
| 1667 | } | ||
| 1668 | EXPORT_SYMBOL(debug_dma_sync_single_range_for_cpu); | ||
| 1669 | |||
| 1670 | void debug_dma_sync_single_range_for_device(struct device *dev, | ||
| 1671 | dma_addr_t dma_handle, | ||
| 1672 | unsigned long offset, | ||
| 1673 | size_t size, int direction) | ||
| 1674 | { | ||
| 1675 | struct dma_debug_entry ref; | ||
| 1676 | |||
| 1677 | if (unlikely(dma_debug_disabled())) | ||
| 1678 | return; | ||
| 1679 | |||
| 1680 | ref.type = dma_debug_single; | ||
| 1681 | ref.dev = dev; | ||
| 1682 | ref.dev_addr = dma_handle; | ||
| 1683 | ref.size = offset + size; | ||
| 1684 | ref.direction = direction; | ||
| 1685 | ref.sg_call_ents = 0; | ||
| 1686 | |||
| 1687 | check_sync(dev, &ref, false); | ||
| 1688 | } | ||
| 1689 | EXPORT_SYMBOL(debug_dma_sync_single_range_for_device); | ||
| 1690 | |||
| 1691 | void debug_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, | ||
| 1692 | int nelems, int direction) | ||
| 1693 | { | ||
| 1694 | struct scatterlist *s; | ||
| 1695 | int mapped_ents = 0, i; | ||
| 1696 | |||
| 1697 | if (unlikely(dma_debug_disabled())) | ||
| 1698 | return; | ||
| 1699 | |||
| 1700 | for_each_sg(sg, s, nelems, i) { | ||
| 1701 | |||
| 1702 | struct dma_debug_entry ref = { | ||
| 1703 | .type = dma_debug_sg, | ||
| 1704 | .dev = dev, | ||
| 1705 | .pfn = page_to_pfn(sg_page(s)), | ||
| 1706 | .offset = s->offset, | ||
| 1707 | .dev_addr = sg_dma_address(s), | ||
| 1708 | .size = sg_dma_len(s), | ||
| 1709 | .direction = direction, | ||
| 1710 | .sg_call_ents = nelems, | ||
| 1711 | }; | ||
| 1712 | |||
| 1713 | if (!i) | ||
| 1714 | mapped_ents = get_nr_mapped_entries(dev, &ref); | ||
| 1715 | |||
| 1716 | if (i >= mapped_ents) | ||
| 1717 | break; | ||
| 1718 | |||
| 1719 | check_sync(dev, &ref, true); | ||
| 1720 | } | ||
| 1721 | } | ||
| 1722 | EXPORT_SYMBOL(debug_dma_sync_sg_for_cpu); | ||
| 1723 | |||
| 1724 | void debug_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, | ||
| 1725 | int nelems, int direction) | ||
| 1726 | { | ||
| 1727 | struct scatterlist *s; | ||
| 1728 | int mapped_ents = 0, i; | ||
| 1729 | |||
| 1730 | if (unlikely(dma_debug_disabled())) | ||
| 1731 | return; | ||
| 1732 | |||
| 1733 | for_each_sg(sg, s, nelems, i) { | ||
| 1734 | |||
| 1735 | struct dma_debug_entry ref = { | ||
| 1736 | .type = dma_debug_sg, | ||
| 1737 | .dev = dev, | ||
| 1738 | .pfn = page_to_pfn(sg_page(s)), | ||
| 1739 | .offset = s->offset, | ||
| 1740 | .dev_addr = sg_dma_address(s), | ||
| 1741 | .size = sg_dma_len(s), | ||
| 1742 | .direction = direction, | ||
| 1743 | .sg_call_ents = nelems, | ||
| 1744 | }; | ||
| 1745 | if (!i) | ||
| 1746 | mapped_ents = get_nr_mapped_entries(dev, &ref); | ||
| 1747 | |||
| 1748 | if (i >= mapped_ents) | ||
| 1749 | break; | ||
| 1750 | |||
| 1751 | check_sync(dev, &ref, false); | ||
| 1752 | } | ||
| 1753 | } | ||
| 1754 | EXPORT_SYMBOL(debug_dma_sync_sg_for_device); | ||
| 1755 | |||
| 1756 | static int __init dma_debug_driver_setup(char *str) | ||
| 1757 | { | ||
| 1758 | int i; | ||
| 1759 | |||
| 1760 | for (i = 0; i < NAME_MAX_LEN - 1; ++i, ++str) { | ||
| 1761 | current_driver_name[i] = *str; | ||
| 1762 | if (*str == 0) | ||
| 1763 | break; | ||
| 1764 | } | ||
| 1765 | |||
| 1766 | if (current_driver_name[0]) | ||
| 1767 | pr_info("DMA-API: enable driver filter for driver [%s]\n", | ||
| 1768 | current_driver_name); | ||
| 1769 | |||
| 1770 | |||
| 1771 | return 1; | ||
| 1772 | } | ||
| 1773 | __setup("dma_debug_driver=", dma_debug_driver_setup); | ||
diff --git a/lib/dma-direct.c b/lib/dma-direct.c deleted file mode 100644 index 8be8106270c2..000000000000 --- a/lib/dma-direct.c +++ /dev/null | |||
| @@ -1,204 +0,0 @@ | |||
| 1 | // SPDX-License-Identifier: GPL-2.0 | ||
| 2 | /* | ||
| 3 | * DMA operations that map physical memory directly without using an IOMMU or | ||
| 4 | * flushing caches. | ||
| 5 | */ | ||
| 6 | #include <linux/export.h> | ||
| 7 | #include <linux/mm.h> | ||
| 8 | #include <linux/dma-direct.h> | ||
| 9 | #include <linux/scatterlist.h> | ||
| 10 | #include <linux/dma-contiguous.h> | ||
| 11 | #include <linux/pfn.h> | ||
| 12 | #include <linux/set_memory.h> | ||
| 13 | |||
| 14 | #define DIRECT_MAPPING_ERROR 0 | ||
| 15 | |||
| 16 | /* | ||
| 17 | * Most architectures use ZONE_DMA for the first 16 Megabytes, but | ||
| 18 | * some use it for entirely different regions: | ||
| 19 | */ | ||
| 20 | #ifndef ARCH_ZONE_DMA_BITS | ||
| 21 | #define ARCH_ZONE_DMA_BITS 24 | ||
| 22 | #endif | ||
| 23 | |||
| 24 | /* | ||
| 25 | * For AMD SEV all DMA must be to unencrypted addresses. | ||
| 26 | */ | ||
| 27 | static inline bool force_dma_unencrypted(void) | ||
| 28 | { | ||
| 29 | return sev_active(); | ||
| 30 | } | ||
| 31 | |||
| 32 | static bool | ||
| 33 | check_addr(struct device *dev, dma_addr_t dma_addr, size_t size, | ||
| 34 | const char *caller) | ||
| 35 | { | ||
| 36 | if (unlikely(dev && !dma_capable(dev, dma_addr, size))) { | ||
| 37 | if (!dev->dma_mask) { | ||
| 38 | dev_err(dev, | ||
| 39 | "%s: call on device without dma_mask\n", | ||
| 40 | caller); | ||
| 41 | return false; | ||
| 42 | } | ||
| 43 | |||
| 44 | if (*dev->dma_mask >= DMA_BIT_MASK(32)) { | ||
| 45 | dev_err(dev, | ||
| 46 | "%s: overflow %pad+%zu of device mask %llx\n", | ||
| 47 | caller, &dma_addr, size, *dev->dma_mask); | ||
| 48 | } | ||
| 49 | return false; | ||
| 50 | } | ||
| 51 | return true; | ||
| 52 | } | ||
| 53 | |||
| 54 | static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) | ||
| 55 | { | ||
| 56 | dma_addr_t addr = force_dma_unencrypted() ? | ||
| 57 | __phys_to_dma(dev, phys) : phys_to_dma(dev, phys); | ||
| 58 | return addr + size - 1 <= dev->coherent_dma_mask; | ||
| 59 | } | ||
| 60 | |||
| 61 | void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, | ||
| 62 | gfp_t gfp, unsigned long attrs) | ||
| 63 | { | ||
| 64 | unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; | ||
| 65 | int page_order = get_order(size); | ||
| 66 | struct page *page = NULL; | ||
| 67 | void *ret; | ||
| 68 | |||
| 69 | /* we always manually zero the memory once we are done: */ | ||
| 70 | gfp &= ~__GFP_ZERO; | ||
| 71 | |||
| 72 | /* GFP_DMA32 and GFP_DMA are no ops without the corresponding zones: */ | ||
| 73 | if (dev->coherent_dma_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS)) | ||
| 74 | gfp |= GFP_DMA; | ||
| 75 | if (dev->coherent_dma_mask <= DMA_BIT_MASK(32) && !(gfp & GFP_DMA)) | ||
| 76 | gfp |= GFP_DMA32; | ||
| 77 | |||
| 78 | again: | ||
| 79 | /* CMA can be used only in the context which permits sleeping */ | ||
| 80 | if (gfpflags_allow_blocking(gfp)) { | ||
| 81 | page = dma_alloc_from_contiguous(dev, count, page_order, gfp); | ||
| 82 | if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { | ||
| 83 | dma_release_from_contiguous(dev, page, count); | ||
| 84 | page = NULL; | ||
| 85 | } | ||
| 86 | } | ||
| 87 | if (!page) | ||
| 88 | page = alloc_pages_node(dev_to_node(dev), gfp, page_order); | ||
| 89 | |||
| 90 | if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { | ||
| 91 | __free_pages(page, page_order); | ||
| 92 | page = NULL; | ||
| 93 | |||
| 94 | if (IS_ENABLED(CONFIG_ZONE_DMA32) && | ||
| 95 | dev->coherent_dma_mask < DMA_BIT_MASK(64) && | ||
| 96 | !(gfp & (GFP_DMA32 | GFP_DMA))) { | ||
| 97 | gfp |= GFP_DMA32; | ||
| 98 | goto again; | ||
| 99 | } | ||
| 100 | |||
| 101 | if (IS_ENABLED(CONFIG_ZONE_DMA) && | ||
| 102 | dev->coherent_dma_mask < DMA_BIT_MASK(32) && | ||
| 103 | !(gfp & GFP_DMA)) { | ||
| 104 | gfp = (gfp & ~GFP_DMA32) | GFP_DMA; | ||
| 105 | goto again; | ||
| 106 | } | ||
| 107 | } | ||
| 108 | |||
| 109 | if (!page) | ||
| 110 | return NULL; | ||
| 111 | ret = page_address(page); | ||
| 112 | if (force_dma_unencrypted()) { | ||
| 113 | set_memory_decrypted((unsigned long)ret, 1 << page_order); | ||
| 114 | *dma_handle = __phys_to_dma(dev, page_to_phys(page)); | ||
| 115 | } else { | ||
| 116 | *dma_handle = phys_to_dma(dev, page_to_phys(page)); | ||
| 117 | } | ||
| 118 | memset(ret, 0, size); | ||
| 119 | return ret; | ||
| 120 | } | ||
| 121 | |||
| 122 | /* | ||
| 123 | * NOTE: this function must never look at the dma_addr argument, because we want | ||
| 124 | * to be able to use it as a helper for iommu implementations as well. | ||
| 125 | */ | ||
| 126 | void dma_direct_free(struct device *dev, size_t size, void *cpu_addr, | ||
| 127 | dma_addr_t dma_addr, unsigned long attrs) | ||
| 128 | { | ||
| 129 | unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; | ||
| 130 | unsigned int page_order = get_order(size); | ||
| 131 | |||
| 132 | if (force_dma_unencrypted()) | ||
| 133 | set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order); | ||
| 134 | if (!dma_release_from_contiguous(dev, virt_to_page(cpu_addr), count)) | ||
| 135 | free_pages((unsigned long)cpu_addr, page_order); | ||
| 136 | } | ||
| 137 | |||
| 138 | dma_addr_t dma_direct_map_page(struct device *dev, struct page *page, | ||
| 139 | unsigned long offset, size_t size, enum dma_data_direction dir, | ||
| 140 | unsigned long attrs) | ||
| 141 | { | ||
| 142 | dma_addr_t dma_addr = phys_to_dma(dev, page_to_phys(page)) + offset; | ||
| 143 | |||
| 144 | if (!check_addr(dev, dma_addr, size, __func__)) | ||
| 145 | return DIRECT_MAPPING_ERROR; | ||
| 146 | return dma_addr; | ||
| 147 | } | ||
| 148 | |||
| 149 | int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, | ||
| 150 | enum dma_data_direction dir, unsigned long attrs) | ||
| 151 | { | ||
| 152 | int i; | ||
| 153 | struct scatterlist *sg; | ||
| 154 | |||
| 155 | for_each_sg(sgl, sg, nents, i) { | ||
| 156 | BUG_ON(!sg_page(sg)); | ||
| 157 | |||
| 158 | sg_dma_address(sg) = phys_to_dma(dev, sg_phys(sg)); | ||
| 159 | if (!check_addr(dev, sg_dma_address(sg), sg->length, __func__)) | ||
| 160 | return 0; | ||
| 161 | sg_dma_len(sg) = sg->length; | ||
| 162 | } | ||
| 163 | |||
| 164 | return nents; | ||
| 165 | } | ||
| 166 | |||
| 167 | int dma_direct_supported(struct device *dev, u64 mask) | ||
| 168 | { | ||
| 169 | #ifdef CONFIG_ZONE_DMA | ||
| 170 | if (mask < DMA_BIT_MASK(ARCH_ZONE_DMA_BITS)) | ||
| 171 | return 0; | ||
| 172 | #else | ||
| 173 | /* | ||
| 174 | * Because 32-bit DMA masks are so common we expect every architecture | ||
| 175 | * to be able to satisfy them - either by not supporting more physical | ||
| 176 | * memory, or by providing a ZONE_DMA32. If neither is the case, the | ||
| 177 | * architecture needs to use an IOMMU instead of the direct mapping. | ||
| 178 | */ | ||
| 179 | if (mask < DMA_BIT_MASK(32)) | ||
| 180 | return 0; | ||
| 181 | #endif | ||
| 182 | /* | ||
| 183 | * Various PCI/PCIe bridges have broken support for > 32bit DMA even | ||
| 184 | * if the device itself might support it. | ||
| 185 | */ | ||
| 186 | if (dev->dma_32bit_limit && mask > DMA_BIT_MASK(32)) | ||
| 187 | return 0; | ||
| 188 | return 1; | ||
| 189 | } | ||
| 190 | |||
| 191 | int dma_direct_mapping_error(struct device *dev, dma_addr_t dma_addr) | ||
| 192 | { | ||
| 193 | return dma_addr == DIRECT_MAPPING_ERROR; | ||
| 194 | } | ||
| 195 | |||
| 196 | const struct dma_map_ops dma_direct_ops = { | ||
| 197 | .alloc = dma_direct_alloc, | ||
| 198 | .free = dma_direct_free, | ||
| 199 | .map_page = dma_direct_map_page, | ||
| 200 | .map_sg = dma_direct_map_sg, | ||
| 201 | .dma_supported = dma_direct_supported, | ||
| 202 | .mapping_error = dma_direct_mapping_error, | ||
| 203 | }; | ||
| 204 | EXPORT_SYMBOL(dma_direct_ops); | ||
diff --git a/lib/dma-noncoherent.c b/lib/dma-noncoherent.c deleted file mode 100644 index 79e9a757387f..000000000000 --- a/lib/dma-noncoherent.c +++ /dev/null | |||
| @@ -1,102 +0,0 @@ | |||
| 1 | // SPDX-License-Identifier: GPL-2.0 | ||
| 2 | /* | ||
| 3 | * Copyright (C) 2018 Christoph Hellwig. | ||
| 4 | * | ||
| 5 | * DMA operations that map physical memory directly without providing cache | ||
| 6 | * coherence. | ||
| 7 | */ | ||
| 8 | #include <linux/export.h> | ||
| 9 | #include <linux/mm.h> | ||
| 10 | #include <linux/dma-direct.h> | ||
| 11 | #include <linux/dma-noncoherent.h> | ||
| 12 | #include <linux/scatterlist.h> | ||
| 13 | |||
| 14 | static void dma_noncoherent_sync_single_for_device(struct device *dev, | ||
| 15 | dma_addr_t addr, size_t size, enum dma_data_direction dir) | ||
| 16 | { | ||
| 17 | arch_sync_dma_for_device(dev, dma_to_phys(dev, addr), size, dir); | ||
| 18 | } | ||
| 19 | |||
| 20 | static void dma_noncoherent_sync_sg_for_device(struct device *dev, | ||
| 21 | struct scatterlist *sgl, int nents, enum dma_data_direction dir) | ||
| 22 | { | ||
| 23 | struct scatterlist *sg; | ||
| 24 | int i; | ||
| 25 | |||
| 26 | for_each_sg(sgl, sg, nents, i) | ||
| 27 | arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir); | ||
| 28 | } | ||
| 29 | |||
| 30 | static dma_addr_t dma_noncoherent_map_page(struct device *dev, struct page *page, | ||
| 31 | unsigned long offset, size_t size, enum dma_data_direction dir, | ||
| 32 | unsigned long attrs) | ||
| 33 | { | ||
| 34 | dma_addr_t addr; | ||
| 35 | |||
| 36 | addr = dma_direct_map_page(dev, page, offset, size, dir, attrs); | ||
| 37 | if (!dma_mapping_error(dev, addr) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) | ||
| 38 | arch_sync_dma_for_device(dev, page_to_phys(page) + offset, | ||
| 39 | size, dir); | ||
| 40 | return addr; | ||
| 41 | } | ||
| 42 | |||
| 43 | static int dma_noncoherent_map_sg(struct device *dev, struct scatterlist *sgl, | ||
| 44 | int nents, enum dma_data_direction dir, unsigned long attrs) | ||
| 45 | { | ||
| 46 | nents = dma_direct_map_sg(dev, sgl, nents, dir, attrs); | ||
| 47 | if (nents > 0 && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) | ||
| 48 | dma_noncoherent_sync_sg_for_device(dev, sgl, nents, dir); | ||
| 49 | return nents; | ||
| 50 | } | ||
| 51 | |||
| 52 | #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU | ||
| 53 | static void dma_noncoherent_sync_single_for_cpu(struct device *dev, | ||
| 54 | dma_addr_t addr, size_t size, enum dma_data_direction dir) | ||
| 55 | { | ||
| 56 | arch_sync_dma_for_cpu(dev, dma_to_phys(dev, addr), size, dir); | ||
| 57 | } | ||
| 58 | |||
| 59 | static void dma_noncoherent_sync_sg_for_cpu(struct device *dev, | ||
| 60 | struct scatterlist *sgl, int nents, enum dma_data_direction dir) | ||
| 61 | { | ||
| 62 | struct scatterlist *sg; | ||
| 63 | int i; | ||
| 64 | |||
| 65 | for_each_sg(sgl, sg, nents, i) | ||
| 66 | arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir); | ||
| 67 | } | ||
| 68 | |||
| 69 | static void dma_noncoherent_unmap_page(struct device *dev, dma_addr_t addr, | ||
| 70 | size_t size, enum dma_data_direction dir, unsigned long attrs) | ||
| 71 | { | ||
| 72 | if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) | ||
| 73 | dma_noncoherent_sync_single_for_cpu(dev, addr, size, dir); | ||
| 74 | } | ||
| 75 | |||
| 76 | static void dma_noncoherent_unmap_sg(struct device *dev, struct scatterlist *sgl, | ||
| 77 | int nents, enum dma_data_direction dir, unsigned long attrs) | ||
| 78 | { | ||
| 79 | if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) | ||
| 80 | dma_noncoherent_sync_sg_for_cpu(dev, sgl, nents, dir); | ||
| 81 | } | ||
| 82 | #endif | ||
| 83 | |||
| 84 | const struct dma_map_ops dma_noncoherent_ops = { | ||
| 85 | .alloc = arch_dma_alloc, | ||
| 86 | .free = arch_dma_free, | ||
| 87 | .mmap = arch_dma_mmap, | ||
| 88 | .sync_single_for_device = dma_noncoherent_sync_single_for_device, | ||
| 89 | .sync_sg_for_device = dma_noncoherent_sync_sg_for_device, | ||
| 90 | .map_page = dma_noncoherent_map_page, | ||
| 91 | .map_sg = dma_noncoherent_map_sg, | ||
| 92 | #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU | ||
| 93 | .sync_single_for_cpu = dma_noncoherent_sync_single_for_cpu, | ||
| 94 | .sync_sg_for_cpu = dma_noncoherent_sync_sg_for_cpu, | ||
| 95 | .unmap_page = dma_noncoherent_unmap_page, | ||
| 96 | .unmap_sg = dma_noncoherent_unmap_sg, | ||
| 97 | #endif | ||
| 98 | .dma_supported = dma_direct_supported, | ||
| 99 | .mapping_error = dma_direct_mapping_error, | ||
| 100 | .cache_sync = arch_dma_cache_sync, | ||
| 101 | }; | ||
| 102 | EXPORT_SYMBOL(dma_noncoherent_ops); | ||
diff --git a/lib/dma-virt.c b/lib/dma-virt.c deleted file mode 100644 index 8e61a02ef9ca..000000000000 --- a/lib/dma-virt.c +++ /dev/null | |||
| @@ -1,61 +0,0 @@ | |||
| 1 | // SPDX-License-Identifier: GPL-2.0 | ||
| 2 | /* | ||
| 3 | * lib/dma-virt.c | ||
| 4 | * | ||
| 5 | * DMA operations that map to virtual addresses without flushing memory. | ||
| 6 | */ | ||
| 7 | #include <linux/export.h> | ||
| 8 | #include <linux/mm.h> | ||
| 9 | #include <linux/dma-mapping.h> | ||
| 10 | #include <linux/scatterlist.h> | ||
| 11 | |||
| 12 | static void *dma_virt_alloc(struct device *dev, size_t size, | ||
| 13 | dma_addr_t *dma_handle, gfp_t gfp, | ||
| 14 | unsigned long attrs) | ||
| 15 | { | ||
| 16 | void *ret; | ||
| 17 | |||
| 18 | ret = (void *)__get_free_pages(gfp, get_order(size)); | ||
| 19 | if (ret) | ||
| 20 | *dma_handle = (uintptr_t)ret; | ||
| 21 | return ret; | ||
| 22 | } | ||
| 23 | |||
| 24 | static void dma_virt_free(struct device *dev, size_t size, | ||
| 25 | void *cpu_addr, dma_addr_t dma_addr, | ||
| 26 | unsigned long attrs) | ||
| 27 | { | ||
| 28 | free_pages((unsigned long)cpu_addr, get_order(size)); | ||
| 29 | } | ||
| 30 | |||
| 31 | static dma_addr_t dma_virt_map_page(struct device *dev, struct page *page, | ||
| 32 | unsigned long offset, size_t size, | ||
| 33 | enum dma_data_direction dir, | ||
| 34 | unsigned long attrs) | ||
| 35 | { | ||
| 36 | return (uintptr_t)(page_address(page) + offset); | ||
| 37 | } | ||
| 38 | |||
| 39 | static int dma_virt_map_sg(struct device *dev, struct scatterlist *sgl, | ||
| 40 | int nents, enum dma_data_direction dir, | ||
| 41 | unsigned long attrs) | ||
| 42 | { | ||
| 43 | int i; | ||
| 44 | struct scatterlist *sg; | ||
| 45 | |||
| 46 | for_each_sg(sgl, sg, nents, i) { | ||
| 47 | BUG_ON(!sg_page(sg)); | ||
| 48 | sg_dma_address(sg) = (uintptr_t)sg_virt(sg); | ||
| 49 | sg_dma_len(sg) = sg->length; | ||
| 50 | } | ||
| 51 | |||
| 52 | return nents; | ||
| 53 | } | ||
| 54 | |||
| 55 | const struct dma_map_ops dma_virt_ops = { | ||
| 56 | .alloc = dma_virt_alloc, | ||
| 57 | .free = dma_virt_free, | ||
| 58 | .map_page = dma_virt_map_page, | ||
| 59 | .map_sg = dma_virt_map_sg, | ||
| 60 | }; | ||
| 61 | EXPORT_SYMBOL(dma_virt_ops); | ||
diff --git a/lib/swiotlb.c b/lib/swiotlb.c deleted file mode 100644 index 04b68d9dffac..000000000000 --- a/lib/swiotlb.c +++ /dev/null | |||
| @@ -1,1087 +0,0 @@ | |||
| 1 | /* | ||
| 2 | * Dynamic DMA mapping support. | ||
| 3 | * | ||
| 4 | * This implementation is a fallback for platforms that do not support | ||
| 5 | * I/O TLBs (aka DMA address translation hardware). | ||
| 6 | * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> | ||
| 7 | * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> | ||
| 8 | * Copyright (C) 2000, 2003 Hewlett-Packard Co | ||
| 9 | * David Mosberger-Tang <davidm@hpl.hp.com> | ||
| 10 | * | ||
| 11 | * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. | ||
| 12 | * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid | ||
| 13 | * unnecessary i-cache flushing. | ||
| 14 | * 04/07/.. ak Better overflow handling. Assorted fixes. | ||
| 15 | * 05/09/10 linville Add support for syncing ranges, support syncing for | ||
| 16 | * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. | ||
| 17 | * 08/12/11 beckyb Add highmem support | ||
| 18 | */ | ||
| 19 | |||
| 20 | #include <linux/cache.h> | ||
| 21 | #include <linux/dma-direct.h> | ||
| 22 | #include <linux/mm.h> | ||
| 23 | #include <linux/export.h> | ||
| 24 | #include <linux/spinlock.h> | ||
| 25 | #include <linux/string.h> | ||
| 26 | #include <linux/swiotlb.h> | ||
| 27 | #include <linux/pfn.h> | ||
| 28 | #include <linux/types.h> | ||
| 29 | #include <linux/ctype.h> | ||
| 30 | #include <linux/highmem.h> | ||
| 31 | #include <linux/gfp.h> | ||
| 32 | #include <linux/scatterlist.h> | ||
| 33 | #include <linux/mem_encrypt.h> | ||
| 34 | #include <linux/set_memory.h> | ||
| 35 | |||
| 36 | #include <asm/io.h> | ||
| 37 | #include <asm/dma.h> | ||
| 38 | |||
| 39 | #include <linux/init.h> | ||
| 40 | #include <linux/bootmem.h> | ||
| 41 | #include <linux/iommu-helper.h> | ||
| 42 | |||
| 43 | #define CREATE_TRACE_POINTS | ||
| 44 | #include <trace/events/swiotlb.h> | ||
| 45 | |||
| 46 | #define OFFSET(val,align) ((unsigned long) \ | ||
| 47 | ( (val) & ( (align) - 1))) | ||
| 48 | |||
| 49 | #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) | ||
| 50 | |||
| 51 | /* | ||
| 52 | * Minimum IO TLB size to bother booting with. Systems with mainly | ||
| 53 | * 64bit capable cards will only lightly use the swiotlb. If we can't | ||
| 54 | * allocate a contiguous 1MB, we're probably in trouble anyway. | ||
| 55 | */ | ||
| 56 | #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) | ||
| 57 | |||
| 58 | enum swiotlb_force swiotlb_force; | ||
| 59 | |||
| 60 | /* | ||
| 61 | * Used to do a quick range check in swiotlb_tbl_unmap_single and | ||
| 62 | * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this | ||
| 63 | * API. | ||
| 64 | */ | ||
| 65 | static phys_addr_t io_tlb_start, io_tlb_end; | ||
| 66 | |||
| 67 | /* | ||
| 68 | * The number of IO TLB blocks (in groups of 64) between io_tlb_start and | ||
| 69 | * io_tlb_end. This is command line adjustable via setup_io_tlb_npages. | ||
| 70 | */ | ||
| 71 | static unsigned long io_tlb_nslabs; | ||
| 72 | |||
| 73 | /* | ||
| 74 | * When the IOMMU overflows we return a fallback buffer. This sets the size. | ||
| 75 | */ | ||
| 76 | static unsigned long io_tlb_overflow = 32*1024; | ||
| 77 | |||
| 78 | static phys_addr_t io_tlb_overflow_buffer; | ||
| 79 | |||
| 80 | /* | ||
| 81 | * This is a free list describing the number of free entries available from | ||
| 82 | * each index | ||
| 83 | */ | ||
| 84 | static unsigned int *io_tlb_list; | ||
| 85 | static unsigned int io_tlb_index; | ||
| 86 | |||
| 87 | /* | ||
| 88 | * Max segment that we can provide which (if pages are contingous) will | ||
| 89 | * not be bounced (unless SWIOTLB_FORCE is set). | ||
| 90 | */ | ||
| 91 | unsigned int max_segment; | ||
| 92 | |||
| 93 | /* | ||
| 94 | * We need to save away the original address corresponding to a mapped entry | ||
| 95 | * for the sync operations. | ||
| 96 | */ | ||
| 97 | #define INVALID_PHYS_ADDR (~(phys_addr_t)0) | ||
| 98 | static phys_addr_t *io_tlb_orig_addr; | ||
| 99 | |||
| 100 | /* | ||
| 101 | * Protect the above data structures in the map and unmap calls | ||
| 102 | */ | ||
| 103 | static DEFINE_SPINLOCK(io_tlb_lock); | ||
| 104 | |||
| 105 | static int late_alloc; | ||
| 106 | |||
| 107 | static int __init | ||
| 108 | setup_io_tlb_npages(char *str) | ||
| 109 | { | ||
| 110 | if (isdigit(*str)) { | ||
| 111 | io_tlb_nslabs = simple_strtoul(str, &str, 0); | ||
| 112 | /* avoid tail segment of size < IO_TLB_SEGSIZE */ | ||
| 113 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | ||
| 114 | } | ||
| 115 | if (*str == ',') | ||
| 116 | ++str; | ||
| 117 | if (!strcmp(str, "force")) { | ||
| 118 | swiotlb_force = SWIOTLB_FORCE; | ||
| 119 | } else if (!strcmp(str, "noforce")) { | ||
| 120 | swiotlb_force = SWIOTLB_NO_FORCE; | ||
| 121 | io_tlb_nslabs = 1; | ||
| 122 | } | ||
| 123 | |||
| 124 | return 0; | ||
| 125 | } | ||
| 126 | early_param("swiotlb", setup_io_tlb_npages); | ||
| 127 | /* make io_tlb_overflow tunable too? */ | ||
| 128 | |||
| 129 | unsigned long swiotlb_nr_tbl(void) | ||
| 130 | { | ||
| 131 | return io_tlb_nslabs; | ||
| 132 | } | ||
| 133 | EXPORT_SYMBOL_GPL(swiotlb_nr_tbl); | ||
| 134 | |||
| 135 | unsigned int swiotlb_max_segment(void) | ||
| 136 | { | ||
| 137 | return max_segment; | ||
| 138 | } | ||
| 139 | EXPORT_SYMBOL_GPL(swiotlb_max_segment); | ||
| 140 | |||
| 141 | void swiotlb_set_max_segment(unsigned int val) | ||
| 142 | { | ||
| 143 | if (swiotlb_force == SWIOTLB_FORCE) | ||
| 144 | max_segment = 1; | ||
| 145 | else | ||
| 146 | max_segment = rounddown(val, PAGE_SIZE); | ||
| 147 | } | ||
| 148 | |||
| 149 | /* default to 64MB */ | ||
| 150 | #define IO_TLB_DEFAULT_SIZE (64UL<<20) | ||
| 151 | unsigned long swiotlb_size_or_default(void) | ||
| 152 | { | ||
| 153 | unsigned long size; | ||
| 154 | |||
| 155 | size = io_tlb_nslabs << IO_TLB_SHIFT; | ||
| 156 | |||
| 157 | return size ? size : (IO_TLB_DEFAULT_SIZE); | ||
| 158 | } | ||
| 159 | |||
| 160 | static bool no_iotlb_memory; | ||
| 161 | |||
| 162 | void swiotlb_print_info(void) | ||
| 163 | { | ||
| 164 | unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT; | ||
| 165 | unsigned char *vstart, *vend; | ||
| 166 | |||
| 167 | if (no_iotlb_memory) { | ||
| 168 | pr_warn("software IO TLB: No low mem\n"); | ||
| 169 | return; | ||
| 170 | } | ||
| 171 | |||
| 172 | vstart = phys_to_virt(io_tlb_start); | ||
| 173 | vend = phys_to_virt(io_tlb_end); | ||
| 174 | |||
| 175 | printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n", | ||
| 176 | (unsigned long long)io_tlb_start, | ||
| 177 | (unsigned long long)io_tlb_end, | ||
| 178 | bytes >> 20, vstart, vend - 1); | ||
| 179 | } | ||
| 180 | |||
| 181 | /* | ||
| 182 | * Early SWIOTLB allocation may be too early to allow an architecture to | ||
| 183 | * perform the desired operations. This function allows the architecture to | ||
| 184 | * call SWIOTLB when the operations are possible. It needs to be called | ||
| 185 | * before the SWIOTLB memory is used. | ||
| 186 | */ | ||
| 187 | void __init swiotlb_update_mem_attributes(void) | ||
| 188 | { | ||
| 189 | void *vaddr; | ||
| 190 | unsigned long bytes; | ||
| 191 | |||
| 192 | if (no_iotlb_memory || late_alloc) | ||
| 193 | return; | ||
| 194 | |||
| 195 | vaddr = phys_to_virt(io_tlb_start); | ||
| 196 | bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT); | ||
| 197 | set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); | ||
| 198 | memset(vaddr, 0, bytes); | ||
| 199 | |||
| 200 | vaddr = phys_to_virt(io_tlb_overflow_buffer); | ||
| 201 | bytes = PAGE_ALIGN(io_tlb_overflow); | ||
| 202 | set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); | ||
| 203 | memset(vaddr, 0, bytes); | ||
| 204 | } | ||
| 205 | |||
| 206 | int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) | ||
| 207 | { | ||
| 208 | void *v_overflow_buffer; | ||
| 209 | unsigned long i, bytes; | ||
| 210 | |||
| 211 | bytes = nslabs << IO_TLB_SHIFT; | ||
| 212 | |||
| 213 | io_tlb_nslabs = nslabs; | ||
| 214 | io_tlb_start = __pa(tlb); | ||
| 215 | io_tlb_end = io_tlb_start + bytes; | ||
| 216 | |||
| 217 | /* | ||
| 218 | * Get the overflow emergency buffer | ||
| 219 | */ | ||
| 220 | v_overflow_buffer = memblock_virt_alloc_low_nopanic( | ||
| 221 | PAGE_ALIGN(io_tlb_overflow), | ||
| 222 | PAGE_SIZE); | ||
| 223 | if (!v_overflow_buffer) | ||
| 224 | return -ENOMEM; | ||
| 225 | |||
| 226 | io_tlb_overflow_buffer = __pa(v_overflow_buffer); | ||
| 227 | |||
| 228 | /* | ||
| 229 | * Allocate and initialize the free list array. This array is used | ||
| 230 | * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE | ||
| 231 | * between io_tlb_start and io_tlb_end. | ||
| 232 | */ | ||
| 233 | io_tlb_list = memblock_virt_alloc( | ||
| 234 | PAGE_ALIGN(io_tlb_nslabs * sizeof(int)), | ||
| 235 | PAGE_SIZE); | ||
| 236 | io_tlb_orig_addr = memblock_virt_alloc( | ||
| 237 | PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)), | ||
| 238 | PAGE_SIZE); | ||
| 239 | for (i = 0; i < io_tlb_nslabs; i++) { | ||
| 240 | io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); | ||
| 241 | io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; | ||
| 242 | } | ||
| 243 | io_tlb_index = 0; | ||
| 244 | |||
| 245 | if (verbose) | ||
| 246 | swiotlb_print_info(); | ||
| 247 | |||
| 248 | swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); | ||
| 249 | return 0; | ||
| 250 | } | ||
| 251 | |||
| 252 | /* | ||
| 253 | * Statically reserve bounce buffer space and initialize bounce buffer data | ||
| 254 | * structures for the software IO TLB used to implement the DMA API. | ||
| 255 | */ | ||
| 256 | void __init | ||
| 257 | swiotlb_init(int verbose) | ||
| 258 | { | ||
| 259 | size_t default_size = IO_TLB_DEFAULT_SIZE; | ||
| 260 | unsigned char *vstart; | ||
| 261 | unsigned long bytes; | ||
| 262 | |||
| 263 | if (!io_tlb_nslabs) { | ||
| 264 | io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); | ||
| 265 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | ||
| 266 | } | ||
| 267 | |||
| 268 | bytes = io_tlb_nslabs << IO_TLB_SHIFT; | ||
| 269 | |||
| 270 | /* Get IO TLB memory from the low pages */ | ||
| 271 | vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE); | ||
| 272 | if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose)) | ||
| 273 | return; | ||
| 274 | |||
| 275 | if (io_tlb_start) | ||
| 276 | memblock_free_early(io_tlb_start, | ||
| 277 | PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); | ||
| 278 | pr_warn("Cannot allocate SWIOTLB buffer"); | ||
| 279 | no_iotlb_memory = true; | ||
| 280 | } | ||
| 281 | |||
| 282 | /* | ||
| 283 | * Systems with larger DMA zones (those that don't support ISA) can | ||
| 284 | * initialize the swiotlb later using the slab allocator if needed. | ||
| 285 | * This should be just like above, but with some error catching. | ||
| 286 | */ | ||
| 287 | int | ||
| 288 | swiotlb_late_init_with_default_size(size_t default_size) | ||
| 289 | { | ||
| 290 | unsigned long bytes, req_nslabs = io_tlb_nslabs; | ||
| 291 | unsigned char *vstart = NULL; | ||
| 292 | unsigned int order; | ||
| 293 | int rc = 0; | ||
| 294 | |||
| 295 | if (!io_tlb_nslabs) { | ||
| 296 | io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); | ||
| 297 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | ||
| 298 | } | ||
| 299 | |||
| 300 | /* | ||
| 301 | * Get IO TLB memory from the low pages | ||
| 302 | */ | ||
| 303 | order = get_order(io_tlb_nslabs << IO_TLB_SHIFT); | ||
| 304 | io_tlb_nslabs = SLABS_PER_PAGE << order; | ||
| 305 | bytes = io_tlb_nslabs << IO_TLB_SHIFT; | ||
| 306 | |||
| 307 | while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { | ||
| 308 | vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, | ||
| 309 | order); | ||
| 310 | if (vstart) | ||
| 311 | break; | ||
| 312 | order--; | ||
| 313 | } | ||
| 314 | |||
| 315 | if (!vstart) { | ||
| 316 | io_tlb_nslabs = req_nslabs; | ||
| 317 | return -ENOMEM; | ||
| 318 | } | ||
| 319 | if (order != get_order(bytes)) { | ||
| 320 | printk(KERN_WARNING "Warning: only able to allocate %ld MB " | ||
| 321 | "for software IO TLB\n", (PAGE_SIZE << order) >> 20); | ||
| 322 | io_tlb_nslabs = SLABS_PER_PAGE << order; | ||
| 323 | } | ||
| 324 | rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs); | ||
| 325 | if (rc) | ||
| 326 | free_pages((unsigned long)vstart, order); | ||
| 327 | |||
| 328 | return rc; | ||
| 329 | } | ||
| 330 | |||
| 331 | int | ||
| 332 | swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs) | ||
| 333 | { | ||
| 334 | unsigned long i, bytes; | ||
| 335 | unsigned char *v_overflow_buffer; | ||
| 336 | |||
| 337 | bytes = nslabs << IO_TLB_SHIFT; | ||
| 338 | |||
| 339 | io_tlb_nslabs = nslabs; | ||
| 340 | io_tlb_start = virt_to_phys(tlb); | ||
| 341 | io_tlb_end = io_tlb_start + bytes; | ||
| 342 | |||
| 343 | set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT); | ||
| 344 | memset(tlb, 0, bytes); | ||
| 345 | |||
| 346 | /* | ||
| 347 | * Get the overflow emergency buffer | ||
| 348 | */ | ||
| 349 | v_overflow_buffer = (void *)__get_free_pages(GFP_DMA, | ||
| 350 | get_order(io_tlb_overflow)); | ||
| 351 | if (!v_overflow_buffer) | ||
| 352 | goto cleanup2; | ||
| 353 | |||
| 354 | set_memory_decrypted((unsigned long)v_overflow_buffer, | ||
| 355 | io_tlb_overflow >> PAGE_SHIFT); | ||
| 356 | memset(v_overflow_buffer, 0, io_tlb_overflow); | ||
| 357 | io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer); | ||
| 358 | |||
| 359 | /* | ||
| 360 | * Allocate and initialize the free list array. This array is used | ||
| 361 | * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE | ||
| 362 | * between io_tlb_start and io_tlb_end. | ||
| 363 | */ | ||
| 364 | io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, | ||
| 365 | get_order(io_tlb_nslabs * sizeof(int))); | ||
| 366 | if (!io_tlb_list) | ||
| 367 | goto cleanup3; | ||
| 368 | |||
| 369 | io_tlb_orig_addr = (phys_addr_t *) | ||
| 370 | __get_free_pages(GFP_KERNEL, | ||
| 371 | get_order(io_tlb_nslabs * | ||
| 372 | sizeof(phys_addr_t))); | ||
| 373 | if (!io_tlb_orig_addr) | ||
| 374 | goto cleanup4; | ||
| 375 | |||
| 376 | for (i = 0; i < io_tlb_nslabs; i++) { | ||
| 377 | io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); | ||
| 378 | io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; | ||
| 379 | } | ||
| 380 | io_tlb_index = 0; | ||
| 381 | |||
| 382 | swiotlb_print_info(); | ||
| 383 | |||
| 384 | late_alloc = 1; | ||
| 385 | |||
| 386 | swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); | ||
| 387 | |||
| 388 | return 0; | ||
| 389 | |||
| 390 | cleanup4: | ||
| 391 | free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * | ||
| 392 | sizeof(int))); | ||
| 393 | io_tlb_list = NULL; | ||
| 394 | cleanup3: | ||
| 395 | free_pages((unsigned long)v_overflow_buffer, | ||
| 396 | get_order(io_tlb_overflow)); | ||
| 397 | io_tlb_overflow_buffer = 0; | ||
| 398 | cleanup2: | ||
| 399 | io_tlb_end = 0; | ||
| 400 | io_tlb_start = 0; | ||
| 401 | io_tlb_nslabs = 0; | ||
| 402 | max_segment = 0; | ||
| 403 | return -ENOMEM; | ||
| 404 | } | ||
| 405 | |||
| 406 | void __init swiotlb_exit(void) | ||
| 407 | { | ||
| 408 | if (!io_tlb_orig_addr) | ||
| 409 | return; | ||
| 410 | |||
| 411 | if (late_alloc) { | ||
| 412 | free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer), | ||
| 413 | get_order(io_tlb_overflow)); | ||
| 414 | free_pages((unsigned long)io_tlb_orig_addr, | ||
| 415 | get_order(io_tlb_nslabs * sizeof(phys_addr_t))); | ||
| 416 | free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * | ||
| 417 | sizeof(int))); | ||
| 418 | free_pages((unsigned long)phys_to_virt(io_tlb_start), | ||
| 419 | get_order(io_tlb_nslabs << IO_TLB_SHIFT)); | ||
| 420 | } else { | ||
| 421 | memblock_free_late(io_tlb_overflow_buffer, | ||
| 422 | PAGE_ALIGN(io_tlb_overflow)); | ||
| 423 | memblock_free_late(__pa(io_tlb_orig_addr), | ||
| 424 | PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); | ||
| 425 | memblock_free_late(__pa(io_tlb_list), | ||
| 426 | PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); | ||
| 427 | memblock_free_late(io_tlb_start, | ||
| 428 | PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); | ||
| 429 | } | ||
| 430 | io_tlb_nslabs = 0; | ||
| 431 | max_segment = 0; | ||
| 432 | } | ||
| 433 | |||
| 434 | int is_swiotlb_buffer(phys_addr_t paddr) | ||
| 435 | { | ||
| 436 | return paddr >= io_tlb_start && paddr < io_tlb_end; | ||
| 437 | } | ||
| 438 | |||
| 439 | /* | ||
| 440 | * Bounce: copy the swiotlb buffer back to the original dma location | ||
| 441 | */ | ||
| 442 | static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr, | ||
| 443 | size_t size, enum dma_data_direction dir) | ||
| 444 | { | ||
| 445 | unsigned long pfn = PFN_DOWN(orig_addr); | ||
| 446 | unsigned char *vaddr = phys_to_virt(tlb_addr); | ||
| 447 | |||
| 448 | if (PageHighMem(pfn_to_page(pfn))) { | ||
| 449 | /* The buffer does not have a mapping. Map it in and copy */ | ||
| 450 | unsigned int offset = orig_addr & ~PAGE_MASK; | ||
| 451 | char *buffer; | ||
| 452 | unsigned int sz = 0; | ||
| 453 | unsigned long flags; | ||
| 454 | |||
| 455 | while (size) { | ||
| 456 | sz = min_t(size_t, PAGE_SIZE - offset, size); | ||
| 457 | |||
| 458 | local_irq_save(flags); | ||
| 459 | buffer = kmap_atomic(pfn_to_page(pfn)); | ||
| 460 | if (dir == DMA_TO_DEVICE) | ||
| 461 | memcpy(vaddr, buffer + offset, sz); | ||
| 462 | else | ||
| 463 | memcpy(buffer + offset, vaddr, sz); | ||
| 464 | kunmap_atomic(buffer); | ||
| 465 | local_irq_restore(flags); | ||
| 466 | |||
| 467 | size -= sz; | ||
| 468 | pfn++; | ||
| 469 | vaddr += sz; | ||
| 470 | offset = 0; | ||
| 471 | } | ||
| 472 | } else if (dir == DMA_TO_DEVICE) { | ||
| 473 | memcpy(vaddr, phys_to_virt(orig_addr), size); | ||
| 474 | } else { | ||
| 475 | memcpy(phys_to_virt(orig_addr), vaddr, size); | ||
| 476 | } | ||
| 477 | } | ||
| 478 | |||
| 479 | phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, | ||
| 480 | dma_addr_t tbl_dma_addr, | ||
| 481 | phys_addr_t orig_addr, size_t size, | ||
| 482 | enum dma_data_direction dir, | ||
| 483 | unsigned long attrs) | ||
| 484 | { | ||
| 485 | unsigned long flags; | ||
| 486 | phys_addr_t tlb_addr; | ||
| 487 | unsigned int nslots, stride, index, wrap; | ||
| 488 | int i; | ||
| 489 | unsigned long mask; | ||
| 490 | unsigned long offset_slots; | ||
| 491 | unsigned long max_slots; | ||
| 492 | |||
| 493 | if (no_iotlb_memory) | ||
| 494 | panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); | ||
| 495 | |||
| 496 | if (mem_encrypt_active()) | ||
| 497 | pr_warn_once("%s is active and system is using DMA bounce buffers\n", | ||
| 498 | sme_active() ? "SME" : "SEV"); | ||
| 499 | |||
| 500 | mask = dma_get_seg_boundary(hwdev); | ||
| 501 | |||
| 502 | tbl_dma_addr &= mask; | ||
| 503 | |||
| 504 | offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | ||
| 505 | |||
| 506 | /* | ||
| 507 | * Carefully handle integer overflow which can occur when mask == ~0UL. | ||
| 508 | */ | ||
| 509 | max_slots = mask + 1 | ||
| 510 | ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT | ||
| 511 | : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); | ||
| 512 | |||
| 513 | /* | ||
| 514 | * For mappings greater than or equal to a page, we limit the stride | ||
| 515 | * (and hence alignment) to a page size. | ||
| 516 | */ | ||
| 517 | nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | ||
| 518 | if (size >= PAGE_SIZE) | ||
| 519 | stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); | ||
| 520 | else | ||
| 521 | stride = 1; | ||
| 522 | |||
| 523 | BUG_ON(!nslots); | ||
| 524 | |||
| 525 | /* | ||
| 526 | * Find suitable number of IO TLB entries size that will fit this | ||
| 527 | * request and allocate a buffer from that IO TLB pool. | ||
| 528 | */ | ||
| 529 | spin_lock_irqsave(&io_tlb_lock, flags); | ||
| 530 | index = ALIGN(io_tlb_index, stride); | ||
| 531 | if (index >= io_tlb_nslabs) | ||
| 532 | index = 0; | ||
| 533 | wrap = index; | ||
| 534 | |||
| 535 | do { | ||
| 536 | while (iommu_is_span_boundary(index, nslots, offset_slots, | ||
| 537 | max_slots)) { | ||
| 538 | index += stride; | ||
| 539 | if (index >= io_tlb_nslabs) | ||
| 540 | index = 0; | ||
| 541 | if (index == wrap) | ||
| 542 | goto not_found; | ||
| 543 | } | ||
| 544 | |||
| 545 | /* | ||
| 546 | * If we find a slot that indicates we have 'nslots' number of | ||
| 547 | * contiguous buffers, we allocate the buffers from that slot | ||
| 548 | * and mark the entries as '0' indicating unavailable. | ||
| 549 | */ | ||
| 550 | if (io_tlb_list[index] >= nslots) { | ||
| 551 | int count = 0; | ||
| 552 | |||
| 553 | for (i = index; i < (int) (index + nslots); i++) | ||
| 554 | io_tlb_list[i] = 0; | ||
| 555 | for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--) | ||
| 556 | io_tlb_list[i] = ++count; | ||
| 557 | tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT); | ||
| 558 | |||
| 559 | /* | ||
| 560 | * Update the indices to avoid searching in the next | ||
| 561 | * round. | ||
| 562 | */ | ||
| 563 | io_tlb_index = ((index + nslots) < io_tlb_nslabs | ||
| 564 | ? (index + nslots) : 0); | ||
| 565 | |||
| 566 | goto found; | ||
| 567 | } | ||
| 568 | index += stride; | ||
| 569 | if (index >= io_tlb_nslabs) | ||
| 570 | index = 0; | ||
| 571 | } while (index != wrap); | ||
| 572 | |||
| 573 | not_found: | ||
| 574 | spin_unlock_irqrestore(&io_tlb_lock, flags); | ||
| 575 | if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) | ||
| 576 | dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size); | ||
| 577 | return SWIOTLB_MAP_ERROR; | ||
| 578 | found: | ||
| 579 | spin_unlock_irqrestore(&io_tlb_lock, flags); | ||
| 580 | |||
| 581 | /* | ||
| 582 | * Save away the mapping from the original address to the DMA address. | ||
| 583 | * This is needed when we sync the memory. Then we sync the buffer if | ||
| 584 | * needed. | ||
| 585 | */ | ||
| 586 | for (i = 0; i < nslots; i++) | ||
| 587 | io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT); | ||
| 588 | if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && | ||
| 589 | (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) | ||
| 590 | swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE); | ||
| 591 | |||
| 592 | return tlb_addr; | ||
| 593 | } | ||
| 594 | |||
| 595 | /* | ||
| 596 | * Allocates bounce buffer and returns its physical address. | ||
| 597 | */ | ||
| 598 | static phys_addr_t | ||
| 599 | map_single(struct device *hwdev, phys_addr_t phys, size_t size, | ||
| 600 | enum dma_data_direction dir, unsigned long attrs) | ||
| 601 | { | ||
| 602 | dma_addr_t start_dma_addr; | ||
| 603 | |||
| 604 | if (swiotlb_force == SWIOTLB_NO_FORCE) { | ||
| 605 | dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n", | ||
| 606 | &phys); | ||
| 607 | return SWIOTLB_MAP_ERROR; | ||
| 608 | } | ||
| 609 | |||
| 610 | start_dma_addr = __phys_to_dma(hwdev, io_tlb_start); | ||
| 611 | return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, | ||
| 612 | dir, attrs); | ||
| 613 | } | ||
| 614 | |||
| 615 | /* | ||
| 616 | * tlb_addr is the physical address of the bounce buffer to unmap. | ||
| 617 | */ | ||
| 618 | void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, | ||
| 619 | size_t size, enum dma_data_direction dir, | ||
| 620 | unsigned long attrs) | ||
| 621 | { | ||
| 622 | unsigned long flags; | ||
| 623 | int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | ||
| 624 | int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; | ||
| 625 | phys_addr_t orig_addr = io_tlb_orig_addr[index]; | ||
| 626 | |||
| 627 | /* | ||
| 628 | * First, sync the memory before unmapping the entry | ||
| 629 | */ | ||
| 630 | if (orig_addr != INVALID_PHYS_ADDR && | ||
| 631 | !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && | ||
| 632 | ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) | ||
| 633 | swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE); | ||
| 634 | |||
| 635 | /* | ||
| 636 | * Return the buffer to the free list by setting the corresponding | ||
| 637 | * entries to indicate the number of contiguous entries available. | ||
| 638 | * While returning the entries to the free list, we merge the entries | ||
| 639 | * with slots below and above the pool being returned. | ||
| 640 | */ | ||
| 641 | spin_lock_irqsave(&io_tlb_lock, flags); | ||
| 642 | { | ||
| 643 | count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? | ||
| 644 | io_tlb_list[index + nslots] : 0); | ||
| 645 | /* | ||
| 646 | * Step 1: return the slots to the free list, merging the | ||
| 647 | * slots with superceeding slots | ||
| 648 | */ | ||
| 649 | for (i = index + nslots - 1; i >= index; i--) { | ||
| 650 | io_tlb_list[i] = ++count; | ||
| 651 | io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; | ||
| 652 | } | ||
| 653 | /* | ||
| 654 | * Step 2: merge the returned slots with the preceding slots, | ||
| 655 | * if available (non zero) | ||
| 656 | */ | ||
| 657 | for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) | ||
| 658 | io_tlb_list[i] = ++count; | ||
| 659 | } | ||
| 660 | spin_unlock_irqrestore(&io_tlb_lock, flags); | ||
| 661 | } | ||
| 662 | |||
| 663 | void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr, | ||
| 664 | size_t size, enum dma_data_direction dir, | ||
| 665 | enum dma_sync_target target) | ||
| 666 | { | ||
| 667 | int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; | ||
| 668 | phys_addr_t orig_addr = io_tlb_orig_addr[index]; | ||
| 669 | |||
| 670 | if (orig_addr == INVALID_PHYS_ADDR) | ||
| 671 | return; | ||
| 672 | orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1); | ||
| 673 | |||
| 674 | switch (target) { | ||
| 675 | case SYNC_FOR_CPU: | ||
| 676 | if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) | ||
| 677 | swiotlb_bounce(orig_addr, tlb_addr, | ||
| 678 | size, DMA_FROM_DEVICE); | ||
| 679 | else | ||
| 680 | BUG_ON(dir != DMA_TO_DEVICE); | ||
| 681 | break; | ||
| 682 | case SYNC_FOR_DEVICE: | ||
| 683 | if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) | ||
| 684 | swiotlb_bounce(orig_addr, tlb_addr, | ||
| 685 | size, DMA_TO_DEVICE); | ||
| 686 | else | ||
| 687 | BUG_ON(dir != DMA_FROM_DEVICE); | ||
| 688 | break; | ||
| 689 | default: | ||
| 690 | BUG(); | ||
| 691 | } | ||
| 692 | } | ||
| 693 | |||
| 694 | static inline bool dma_coherent_ok(struct device *dev, dma_addr_t addr, | ||
| 695 | size_t size) | ||
| 696 | { | ||
| 697 | u64 mask = DMA_BIT_MASK(32); | ||
| 698 | |||
| 699 | if (dev && dev->coherent_dma_mask) | ||
| 700 | mask = dev->coherent_dma_mask; | ||
| 701 | return addr + size - 1 <= mask; | ||
| 702 | } | ||
| 703 | |||
| 704 | static void * | ||
| 705 | swiotlb_alloc_buffer(struct device *dev, size_t size, dma_addr_t *dma_handle, | ||
| 706 | unsigned long attrs) | ||
| 707 | { | ||
| 708 | phys_addr_t phys_addr; | ||
| 709 | |||
| 710 | if (swiotlb_force == SWIOTLB_NO_FORCE) | ||
| 711 | goto out_warn; | ||
| 712 | |||
| 713 | phys_addr = swiotlb_tbl_map_single(dev, | ||
| 714 | __phys_to_dma(dev, io_tlb_start), | ||
| 715 | 0, size, DMA_FROM_DEVICE, attrs); | ||
| 716 | if (phys_addr == SWIOTLB_MAP_ERROR) | ||
| 717 | goto out_warn; | ||
| 718 | |||
| 719 | *dma_handle = __phys_to_dma(dev, phys_addr); | ||
| 720 | if (!dma_coherent_ok(dev, *dma_handle, size)) | ||
| 721 | goto out_unmap; | ||
| 722 | |||
| 723 | memset(phys_to_virt(phys_addr), 0, size); | ||
| 724 | return phys_to_virt(phys_addr); | ||
| 725 | |||
| 726 | out_unmap: | ||
| 727 | dev_warn(dev, "hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n", | ||
| 728 | (unsigned long long)dev->coherent_dma_mask, | ||
| 729 | (unsigned long long)*dma_handle); | ||
| 730 | |||
| 731 | /* | ||
| 732 | * DMA_TO_DEVICE to avoid memcpy in unmap_single. | ||
| 733 | * DMA_ATTR_SKIP_CPU_SYNC is optional. | ||
| 734 | */ | ||
| 735 | swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE, | ||
| 736 | DMA_ATTR_SKIP_CPU_SYNC); | ||
| 737 | out_warn: | ||
| 738 | if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) { | ||
| 739 | dev_warn(dev, | ||
| 740 | "swiotlb: coherent allocation failed, size=%zu\n", | ||
| 741 | size); | ||
| 742 | dump_stack(); | ||
| 743 | } | ||
| 744 | return NULL; | ||
| 745 | } | ||
| 746 | |||
| 747 | static bool swiotlb_free_buffer(struct device *dev, size_t size, | ||
| 748 | dma_addr_t dma_addr) | ||
| 749 | { | ||
| 750 | phys_addr_t phys_addr = dma_to_phys(dev, dma_addr); | ||
| 751 | |||
| 752 | WARN_ON_ONCE(irqs_disabled()); | ||
| 753 | |||
| 754 | if (!is_swiotlb_buffer(phys_addr)) | ||
| 755 | return false; | ||
| 756 | |||
| 757 | /* | ||
| 758 | * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single. | ||
| 759 | * DMA_ATTR_SKIP_CPU_SYNC is optional. | ||
| 760 | */ | ||
| 761 | swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE, | ||
| 762 | DMA_ATTR_SKIP_CPU_SYNC); | ||
| 763 | return true; | ||
| 764 | } | ||
| 765 | |||
| 766 | static void | ||
| 767 | swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir, | ||
| 768 | int do_panic) | ||
| 769 | { | ||
| 770 | if (swiotlb_force == SWIOTLB_NO_FORCE) | ||
| 771 | return; | ||
| 772 | |||
| 773 | /* | ||
| 774 | * Ran out of IOMMU space for this operation. This is very bad. | ||
| 775 | * Unfortunately the drivers cannot handle this operation properly. | ||
| 776 | * unless they check for dma_mapping_error (most don't) | ||
| 777 | * When the mapping is small enough return a static buffer to limit | ||
| 778 | * the damage, or panic when the transfer is too big. | ||
| 779 | */ | ||
| 780 | dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n", | ||
| 781 | size); | ||
| 782 | |||
| 783 | if (size <= io_tlb_overflow || !do_panic) | ||
| 784 | return; | ||
| 785 | |||
| 786 | if (dir == DMA_BIDIRECTIONAL) | ||
| 787 | panic("DMA: Random memory could be DMA accessed\n"); | ||
| 788 | if (dir == DMA_FROM_DEVICE) | ||
| 789 | panic("DMA: Random memory could be DMA written\n"); | ||
| 790 | if (dir == DMA_TO_DEVICE) | ||
| 791 | panic("DMA: Random memory could be DMA read\n"); | ||
| 792 | } | ||
| 793 | |||
| 794 | /* | ||
| 795 | * Map a single buffer of the indicated size for DMA in streaming mode. The | ||
| 796 | * physical address to use is returned. | ||
| 797 | * | ||
| 798 | * Once the device is given the dma address, the device owns this memory until | ||
| 799 | * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed. | ||
| 800 | */ | ||
| 801 | dma_addr_t swiotlb_map_page(struct device *dev, struct page *page, | ||
| 802 | unsigned long offset, size_t size, | ||
| 803 | enum dma_data_direction dir, | ||
| 804 | unsigned long attrs) | ||
| 805 | { | ||
| 806 | phys_addr_t map, phys = page_to_phys(page) + offset; | ||
| 807 | dma_addr_t dev_addr = phys_to_dma(dev, phys); | ||
| 808 | |||
| 809 | BUG_ON(dir == DMA_NONE); | ||
| 810 | /* | ||
| 811 | * If the address happens to be in the device's DMA window, | ||
| 812 | * we can safely return the device addr and not worry about bounce | ||
| 813 | * buffering it. | ||
| 814 | */ | ||
| 815 | if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE) | ||
| 816 | return dev_addr; | ||
| 817 | |||
| 818 | trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); | ||
| 819 | |||
| 820 | /* Oh well, have to allocate and map a bounce buffer. */ | ||
| 821 | map = map_single(dev, phys, size, dir, attrs); | ||
| 822 | if (map == SWIOTLB_MAP_ERROR) { | ||
| 823 | swiotlb_full(dev, size, dir, 1); | ||
| 824 | return __phys_to_dma(dev, io_tlb_overflow_buffer); | ||
| 825 | } | ||
| 826 | |||
| 827 | dev_addr = __phys_to_dma(dev, map); | ||
| 828 | |||
| 829 | /* Ensure that the address returned is DMA'ble */ | ||
| 830 | if (dma_capable(dev, dev_addr, size)) | ||
| 831 | return dev_addr; | ||
| 832 | |||
| 833 | attrs |= DMA_ATTR_SKIP_CPU_SYNC; | ||
| 834 | swiotlb_tbl_unmap_single(dev, map, size, dir, attrs); | ||
| 835 | |||
| 836 | return __phys_to_dma(dev, io_tlb_overflow_buffer); | ||
| 837 | } | ||
| 838 | |||
| 839 | /* | ||
| 840 | * Unmap a single streaming mode DMA translation. The dma_addr and size must | ||
| 841 | * match what was provided for in a previous swiotlb_map_page call. All | ||
| 842 | * other usages are undefined. | ||
| 843 | * | ||
| 844 | * After this call, reads by the cpu to the buffer are guaranteed to see | ||
| 845 | * whatever the device wrote there. | ||
| 846 | */ | ||
| 847 | static void unmap_single(struct device *hwdev, dma_addr_t dev_addr, | ||
| 848 | size_t size, enum dma_data_direction dir, | ||
| 849 | unsigned long attrs) | ||
| 850 | { | ||
| 851 | phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); | ||
| 852 | |||
| 853 | BUG_ON(dir == DMA_NONE); | ||
| 854 | |||
| 855 | if (is_swiotlb_buffer(paddr)) { | ||
| 856 | swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs); | ||
| 857 | return; | ||
| 858 | } | ||
| 859 | |||
| 860 | if (dir != DMA_FROM_DEVICE) | ||
| 861 | return; | ||
| 862 | |||
| 863 | /* | ||
| 864 | * phys_to_virt doesn't work with hihgmem page but we could | ||
| 865 | * call dma_mark_clean() with hihgmem page here. However, we | ||
| 866 | * are fine since dma_mark_clean() is null on POWERPC. We can | ||
| 867 | * make dma_mark_clean() take a physical address if necessary. | ||
| 868 | */ | ||
| 869 | dma_mark_clean(phys_to_virt(paddr), size); | ||
| 870 | } | ||
| 871 | |||
| 872 | void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, | ||
| 873 | size_t size, enum dma_data_direction dir, | ||
| 874 | unsigned long attrs) | ||
| 875 | { | ||
| 876 | unmap_single(hwdev, dev_addr, size, dir, attrs); | ||
| 877 | } | ||
| 878 | |||
| 879 | /* | ||
| 880 | * Make physical memory consistent for a single streaming mode DMA translation | ||
| 881 | * after a transfer. | ||
| 882 | * | ||
| 883 | * If you perform a swiotlb_map_page() but wish to interrogate the buffer | ||
| 884 | * using the cpu, yet do not wish to teardown the dma mapping, you must | ||
| 885 | * call this function before doing so. At the next point you give the dma | ||
| 886 | * address back to the card, you must first perform a | ||
| 887 | * swiotlb_dma_sync_for_device, and then the device again owns the buffer | ||
| 888 | */ | ||
| 889 | static void | ||
| 890 | swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, | ||
| 891 | size_t size, enum dma_data_direction dir, | ||
| 892 | enum dma_sync_target target) | ||
| 893 | { | ||
| 894 | phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); | ||
| 895 | |||
| 896 | BUG_ON(dir == DMA_NONE); | ||
| 897 | |||
| 898 | if (is_swiotlb_buffer(paddr)) { | ||
| 899 | swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target); | ||
| 900 | return; | ||
| 901 | } | ||
| 902 | |||
| 903 | if (dir != DMA_FROM_DEVICE) | ||
| 904 | return; | ||
| 905 | |||
| 906 | dma_mark_clean(phys_to_virt(paddr), size); | ||
| 907 | } | ||
| 908 | |||
| 909 | void | ||
| 910 | swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, | ||
| 911 | size_t size, enum dma_data_direction dir) | ||
| 912 | { | ||
| 913 | swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); | ||
| 914 | } | ||
| 915 | |||
| 916 | void | ||
| 917 | swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, | ||
| 918 | size_t size, enum dma_data_direction dir) | ||
| 919 | { | ||
| 920 | swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); | ||
| 921 | } | ||
| 922 | |||
| 923 | /* | ||
| 924 | * Map a set of buffers described by scatterlist in streaming mode for DMA. | ||
| 925 | * This is the scatter-gather version of the above swiotlb_map_page | ||
| 926 | * interface. Here the scatter gather list elements are each tagged with the | ||
| 927 | * appropriate dma address and length. They are obtained via | ||
| 928 | * sg_dma_{address,length}(SG). | ||
| 929 | * | ||
| 930 | * NOTE: An implementation may be able to use a smaller number of | ||
| 931 | * DMA address/length pairs than there are SG table elements. | ||
| 932 | * (for example via virtual mapping capabilities) | ||
| 933 | * The routine returns the number of addr/length pairs actually | ||
| 934 | * used, at most nents. | ||
| 935 | * | ||
| 936 | * Device ownership issues as mentioned above for swiotlb_map_page are the | ||
| 937 | * same here. | ||
| 938 | */ | ||
| 939 | int | ||
| 940 | swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems, | ||
| 941 | enum dma_data_direction dir, unsigned long attrs) | ||
| 942 | { | ||
| 943 | struct scatterlist *sg; | ||
| 944 | int i; | ||
| 945 | |||
| 946 | BUG_ON(dir == DMA_NONE); | ||
| 947 | |||
| 948 | for_each_sg(sgl, sg, nelems, i) { | ||
| 949 | phys_addr_t paddr = sg_phys(sg); | ||
| 950 | dma_addr_t dev_addr = phys_to_dma(hwdev, paddr); | ||
| 951 | |||
| 952 | if (swiotlb_force == SWIOTLB_FORCE || | ||
| 953 | !dma_capable(hwdev, dev_addr, sg->length)) { | ||
| 954 | phys_addr_t map = map_single(hwdev, sg_phys(sg), | ||
| 955 | sg->length, dir, attrs); | ||
| 956 | if (map == SWIOTLB_MAP_ERROR) { | ||
| 957 | /* Don't panic here, we expect map_sg users | ||
| 958 | to do proper error handling. */ | ||
| 959 | swiotlb_full(hwdev, sg->length, dir, 0); | ||
| 960 | attrs |= DMA_ATTR_SKIP_CPU_SYNC; | ||
| 961 | swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, | ||
| 962 | attrs); | ||
| 963 | sg_dma_len(sgl) = 0; | ||
| 964 | return 0; | ||
| 965 | } | ||
| 966 | sg->dma_address = __phys_to_dma(hwdev, map); | ||
| 967 | } else | ||
| 968 | sg->dma_address = dev_addr; | ||
| 969 | sg_dma_len(sg) = sg->length; | ||
| 970 | } | ||
| 971 | return nelems; | ||
| 972 | } | ||
| 973 | |||
| 974 | /* | ||
| 975 | * Unmap a set of streaming mode DMA translations. Again, cpu read rules | ||
| 976 | * concerning calls here are the same as for swiotlb_unmap_page() above. | ||
| 977 | */ | ||
| 978 | void | ||
| 979 | swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, | ||
| 980 | int nelems, enum dma_data_direction dir, | ||
| 981 | unsigned long attrs) | ||
| 982 | { | ||
| 983 | struct scatterlist *sg; | ||
| 984 | int i; | ||
| 985 | |||
| 986 | BUG_ON(dir == DMA_NONE); | ||
| 987 | |||
| 988 | for_each_sg(sgl, sg, nelems, i) | ||
| 989 | unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, | ||
| 990 | attrs); | ||
| 991 | } | ||
| 992 | |||
| 993 | /* | ||
| 994 | * Make physical memory consistent for a set of streaming mode DMA translations | ||
| 995 | * after a transfer. | ||
| 996 | * | ||
| 997 | * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules | ||
| 998 | * and usage. | ||
| 999 | */ | ||
| 1000 | static void | ||
| 1001 | swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, | ||
| 1002 | int nelems, enum dma_data_direction dir, | ||
| 1003 | enum dma_sync_target target) | ||
| 1004 | { | ||
| 1005 | struct scatterlist *sg; | ||
| 1006 | int i; | ||
| 1007 | |||
| 1008 | for_each_sg(sgl, sg, nelems, i) | ||
| 1009 | swiotlb_sync_single(hwdev, sg->dma_address, | ||
| 1010 | sg_dma_len(sg), dir, target); | ||
| 1011 | } | ||
| 1012 | |||
| 1013 | void | ||
| 1014 | swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, | ||
| 1015 | int nelems, enum dma_data_direction dir) | ||
| 1016 | { | ||
| 1017 | swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); | ||
| 1018 | } | ||
| 1019 | |||
| 1020 | void | ||
| 1021 | swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, | ||
| 1022 | int nelems, enum dma_data_direction dir) | ||
| 1023 | { | ||
| 1024 | swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); | ||
| 1025 | } | ||
| 1026 | |||
| 1027 | int | ||
| 1028 | swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) | ||
| 1029 | { | ||
| 1030 | return (dma_addr == __phys_to_dma(hwdev, io_tlb_overflow_buffer)); | ||
| 1031 | } | ||
| 1032 | |||
| 1033 | /* | ||
| 1034 | * Return whether the given device DMA address mask can be supported | ||
| 1035 | * properly. For example, if your device can only drive the low 24-bits | ||
| 1036 | * during bus mastering, then you would pass 0x00ffffff as the mask to | ||
| 1037 | * this function. | ||
| 1038 | */ | ||
| 1039 | int | ||
| 1040 | swiotlb_dma_supported(struct device *hwdev, u64 mask) | ||
| 1041 | { | ||
| 1042 | return __phys_to_dma(hwdev, io_tlb_end - 1) <= mask; | ||
| 1043 | } | ||
| 1044 | |||
| 1045 | void *swiotlb_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, | ||
| 1046 | gfp_t gfp, unsigned long attrs) | ||
| 1047 | { | ||
| 1048 | void *vaddr; | ||
| 1049 | |||
| 1050 | /* temporary workaround: */ | ||
| 1051 | if (gfp & __GFP_NOWARN) | ||
| 1052 | attrs |= DMA_ATTR_NO_WARN; | ||
| 1053 | |||
| 1054 | /* | ||
| 1055 | * Don't print a warning when the first allocation attempt fails. | ||
| 1056 | * swiotlb_alloc_coherent() will print a warning when the DMA memory | ||
| 1057 | * allocation ultimately failed. | ||
| 1058 | */ | ||
| 1059 | gfp |= __GFP_NOWARN; | ||
| 1060 | |||
| 1061 | vaddr = dma_direct_alloc(dev, size, dma_handle, gfp, attrs); | ||
| 1062 | if (!vaddr) | ||
| 1063 | vaddr = swiotlb_alloc_buffer(dev, size, dma_handle, attrs); | ||
| 1064 | return vaddr; | ||
| 1065 | } | ||
| 1066 | |||
| 1067 | void swiotlb_free(struct device *dev, size_t size, void *vaddr, | ||
| 1068 | dma_addr_t dma_addr, unsigned long attrs) | ||
| 1069 | { | ||
| 1070 | if (!swiotlb_free_buffer(dev, size, dma_addr)) | ||
| 1071 | dma_direct_free(dev, size, vaddr, dma_addr, attrs); | ||
| 1072 | } | ||
| 1073 | |||
| 1074 | const struct dma_map_ops swiotlb_dma_ops = { | ||
| 1075 | .mapping_error = swiotlb_dma_mapping_error, | ||
| 1076 | .alloc = swiotlb_alloc, | ||
| 1077 | .free = swiotlb_free, | ||
| 1078 | .sync_single_for_cpu = swiotlb_sync_single_for_cpu, | ||
| 1079 | .sync_single_for_device = swiotlb_sync_single_for_device, | ||
| 1080 | .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu, | ||
| 1081 | .sync_sg_for_device = swiotlb_sync_sg_for_device, | ||
| 1082 | .map_sg = swiotlb_map_sg_attrs, | ||
| 1083 | .unmap_sg = swiotlb_unmap_sg_attrs, | ||
| 1084 | .map_page = swiotlb_map_page, | ||
| 1085 | .unmap_page = swiotlb_unmap_page, | ||
| 1086 | .dma_supported = dma_direct_supported, | ||
| 1087 | }; | ||
