diff options
Diffstat (limited to 'lib/swiotlb.c')
-rw-r--r-- | lib/swiotlb.c | 1087 |
1 files changed, 0 insertions, 1087 deletions
diff --git a/lib/swiotlb.c b/lib/swiotlb.c deleted file mode 100644 index 04b68d9dffac..000000000000 --- a/lib/swiotlb.c +++ /dev/null | |||
@@ -1,1087 +0,0 @@ | |||
1 | /* | ||
2 | * Dynamic DMA mapping support. | ||
3 | * | ||
4 | * This implementation is a fallback for platforms that do not support | ||
5 | * I/O TLBs (aka DMA address translation hardware). | ||
6 | * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> | ||
7 | * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> | ||
8 | * Copyright (C) 2000, 2003 Hewlett-Packard Co | ||
9 | * David Mosberger-Tang <davidm@hpl.hp.com> | ||
10 | * | ||
11 | * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. | ||
12 | * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid | ||
13 | * unnecessary i-cache flushing. | ||
14 | * 04/07/.. ak Better overflow handling. Assorted fixes. | ||
15 | * 05/09/10 linville Add support for syncing ranges, support syncing for | ||
16 | * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. | ||
17 | * 08/12/11 beckyb Add highmem support | ||
18 | */ | ||
19 | |||
20 | #include <linux/cache.h> | ||
21 | #include <linux/dma-direct.h> | ||
22 | #include <linux/mm.h> | ||
23 | #include <linux/export.h> | ||
24 | #include <linux/spinlock.h> | ||
25 | #include <linux/string.h> | ||
26 | #include <linux/swiotlb.h> | ||
27 | #include <linux/pfn.h> | ||
28 | #include <linux/types.h> | ||
29 | #include <linux/ctype.h> | ||
30 | #include <linux/highmem.h> | ||
31 | #include <linux/gfp.h> | ||
32 | #include <linux/scatterlist.h> | ||
33 | #include <linux/mem_encrypt.h> | ||
34 | #include <linux/set_memory.h> | ||
35 | |||
36 | #include <asm/io.h> | ||
37 | #include <asm/dma.h> | ||
38 | |||
39 | #include <linux/init.h> | ||
40 | #include <linux/bootmem.h> | ||
41 | #include <linux/iommu-helper.h> | ||
42 | |||
43 | #define CREATE_TRACE_POINTS | ||
44 | #include <trace/events/swiotlb.h> | ||
45 | |||
46 | #define OFFSET(val,align) ((unsigned long) \ | ||
47 | ( (val) & ( (align) - 1))) | ||
48 | |||
49 | #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) | ||
50 | |||
51 | /* | ||
52 | * Minimum IO TLB size to bother booting with. Systems with mainly | ||
53 | * 64bit capable cards will only lightly use the swiotlb. If we can't | ||
54 | * allocate a contiguous 1MB, we're probably in trouble anyway. | ||
55 | */ | ||
56 | #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) | ||
57 | |||
58 | enum swiotlb_force swiotlb_force; | ||
59 | |||
60 | /* | ||
61 | * Used to do a quick range check in swiotlb_tbl_unmap_single and | ||
62 | * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this | ||
63 | * API. | ||
64 | */ | ||
65 | static phys_addr_t io_tlb_start, io_tlb_end; | ||
66 | |||
67 | /* | ||
68 | * The number of IO TLB blocks (in groups of 64) between io_tlb_start and | ||
69 | * io_tlb_end. This is command line adjustable via setup_io_tlb_npages. | ||
70 | */ | ||
71 | static unsigned long io_tlb_nslabs; | ||
72 | |||
73 | /* | ||
74 | * When the IOMMU overflows we return a fallback buffer. This sets the size. | ||
75 | */ | ||
76 | static unsigned long io_tlb_overflow = 32*1024; | ||
77 | |||
78 | static phys_addr_t io_tlb_overflow_buffer; | ||
79 | |||
80 | /* | ||
81 | * This is a free list describing the number of free entries available from | ||
82 | * each index | ||
83 | */ | ||
84 | static unsigned int *io_tlb_list; | ||
85 | static unsigned int io_tlb_index; | ||
86 | |||
87 | /* | ||
88 | * Max segment that we can provide which (if pages are contingous) will | ||
89 | * not be bounced (unless SWIOTLB_FORCE is set). | ||
90 | */ | ||
91 | unsigned int max_segment; | ||
92 | |||
93 | /* | ||
94 | * We need to save away the original address corresponding to a mapped entry | ||
95 | * for the sync operations. | ||
96 | */ | ||
97 | #define INVALID_PHYS_ADDR (~(phys_addr_t)0) | ||
98 | static phys_addr_t *io_tlb_orig_addr; | ||
99 | |||
100 | /* | ||
101 | * Protect the above data structures in the map and unmap calls | ||
102 | */ | ||
103 | static DEFINE_SPINLOCK(io_tlb_lock); | ||
104 | |||
105 | static int late_alloc; | ||
106 | |||
107 | static int __init | ||
108 | setup_io_tlb_npages(char *str) | ||
109 | { | ||
110 | if (isdigit(*str)) { | ||
111 | io_tlb_nslabs = simple_strtoul(str, &str, 0); | ||
112 | /* avoid tail segment of size < IO_TLB_SEGSIZE */ | ||
113 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | ||
114 | } | ||
115 | if (*str == ',') | ||
116 | ++str; | ||
117 | if (!strcmp(str, "force")) { | ||
118 | swiotlb_force = SWIOTLB_FORCE; | ||
119 | } else if (!strcmp(str, "noforce")) { | ||
120 | swiotlb_force = SWIOTLB_NO_FORCE; | ||
121 | io_tlb_nslabs = 1; | ||
122 | } | ||
123 | |||
124 | return 0; | ||
125 | } | ||
126 | early_param("swiotlb", setup_io_tlb_npages); | ||
127 | /* make io_tlb_overflow tunable too? */ | ||
128 | |||
129 | unsigned long swiotlb_nr_tbl(void) | ||
130 | { | ||
131 | return io_tlb_nslabs; | ||
132 | } | ||
133 | EXPORT_SYMBOL_GPL(swiotlb_nr_tbl); | ||
134 | |||
135 | unsigned int swiotlb_max_segment(void) | ||
136 | { | ||
137 | return max_segment; | ||
138 | } | ||
139 | EXPORT_SYMBOL_GPL(swiotlb_max_segment); | ||
140 | |||
141 | void swiotlb_set_max_segment(unsigned int val) | ||
142 | { | ||
143 | if (swiotlb_force == SWIOTLB_FORCE) | ||
144 | max_segment = 1; | ||
145 | else | ||
146 | max_segment = rounddown(val, PAGE_SIZE); | ||
147 | } | ||
148 | |||
149 | /* default to 64MB */ | ||
150 | #define IO_TLB_DEFAULT_SIZE (64UL<<20) | ||
151 | unsigned long swiotlb_size_or_default(void) | ||
152 | { | ||
153 | unsigned long size; | ||
154 | |||
155 | size = io_tlb_nslabs << IO_TLB_SHIFT; | ||
156 | |||
157 | return size ? size : (IO_TLB_DEFAULT_SIZE); | ||
158 | } | ||
159 | |||
160 | static bool no_iotlb_memory; | ||
161 | |||
162 | void swiotlb_print_info(void) | ||
163 | { | ||
164 | unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT; | ||
165 | unsigned char *vstart, *vend; | ||
166 | |||
167 | if (no_iotlb_memory) { | ||
168 | pr_warn("software IO TLB: No low mem\n"); | ||
169 | return; | ||
170 | } | ||
171 | |||
172 | vstart = phys_to_virt(io_tlb_start); | ||
173 | vend = phys_to_virt(io_tlb_end); | ||
174 | |||
175 | printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n", | ||
176 | (unsigned long long)io_tlb_start, | ||
177 | (unsigned long long)io_tlb_end, | ||
178 | bytes >> 20, vstart, vend - 1); | ||
179 | } | ||
180 | |||
181 | /* | ||
182 | * Early SWIOTLB allocation may be too early to allow an architecture to | ||
183 | * perform the desired operations. This function allows the architecture to | ||
184 | * call SWIOTLB when the operations are possible. It needs to be called | ||
185 | * before the SWIOTLB memory is used. | ||
186 | */ | ||
187 | void __init swiotlb_update_mem_attributes(void) | ||
188 | { | ||
189 | void *vaddr; | ||
190 | unsigned long bytes; | ||
191 | |||
192 | if (no_iotlb_memory || late_alloc) | ||
193 | return; | ||
194 | |||
195 | vaddr = phys_to_virt(io_tlb_start); | ||
196 | bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT); | ||
197 | set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); | ||
198 | memset(vaddr, 0, bytes); | ||
199 | |||
200 | vaddr = phys_to_virt(io_tlb_overflow_buffer); | ||
201 | bytes = PAGE_ALIGN(io_tlb_overflow); | ||
202 | set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); | ||
203 | memset(vaddr, 0, bytes); | ||
204 | } | ||
205 | |||
206 | int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) | ||
207 | { | ||
208 | void *v_overflow_buffer; | ||
209 | unsigned long i, bytes; | ||
210 | |||
211 | bytes = nslabs << IO_TLB_SHIFT; | ||
212 | |||
213 | io_tlb_nslabs = nslabs; | ||
214 | io_tlb_start = __pa(tlb); | ||
215 | io_tlb_end = io_tlb_start + bytes; | ||
216 | |||
217 | /* | ||
218 | * Get the overflow emergency buffer | ||
219 | */ | ||
220 | v_overflow_buffer = memblock_virt_alloc_low_nopanic( | ||
221 | PAGE_ALIGN(io_tlb_overflow), | ||
222 | PAGE_SIZE); | ||
223 | if (!v_overflow_buffer) | ||
224 | return -ENOMEM; | ||
225 | |||
226 | io_tlb_overflow_buffer = __pa(v_overflow_buffer); | ||
227 | |||
228 | /* | ||
229 | * Allocate and initialize the free list array. This array is used | ||
230 | * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE | ||
231 | * between io_tlb_start and io_tlb_end. | ||
232 | */ | ||
233 | io_tlb_list = memblock_virt_alloc( | ||
234 | PAGE_ALIGN(io_tlb_nslabs * sizeof(int)), | ||
235 | PAGE_SIZE); | ||
236 | io_tlb_orig_addr = memblock_virt_alloc( | ||
237 | PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)), | ||
238 | PAGE_SIZE); | ||
239 | for (i = 0; i < io_tlb_nslabs; i++) { | ||
240 | io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); | ||
241 | io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; | ||
242 | } | ||
243 | io_tlb_index = 0; | ||
244 | |||
245 | if (verbose) | ||
246 | swiotlb_print_info(); | ||
247 | |||
248 | swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); | ||
249 | return 0; | ||
250 | } | ||
251 | |||
252 | /* | ||
253 | * Statically reserve bounce buffer space and initialize bounce buffer data | ||
254 | * structures for the software IO TLB used to implement the DMA API. | ||
255 | */ | ||
256 | void __init | ||
257 | swiotlb_init(int verbose) | ||
258 | { | ||
259 | size_t default_size = IO_TLB_DEFAULT_SIZE; | ||
260 | unsigned char *vstart; | ||
261 | unsigned long bytes; | ||
262 | |||
263 | if (!io_tlb_nslabs) { | ||
264 | io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); | ||
265 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | ||
266 | } | ||
267 | |||
268 | bytes = io_tlb_nslabs << IO_TLB_SHIFT; | ||
269 | |||
270 | /* Get IO TLB memory from the low pages */ | ||
271 | vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE); | ||
272 | if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose)) | ||
273 | return; | ||
274 | |||
275 | if (io_tlb_start) | ||
276 | memblock_free_early(io_tlb_start, | ||
277 | PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); | ||
278 | pr_warn("Cannot allocate SWIOTLB buffer"); | ||
279 | no_iotlb_memory = true; | ||
280 | } | ||
281 | |||
282 | /* | ||
283 | * Systems with larger DMA zones (those that don't support ISA) can | ||
284 | * initialize the swiotlb later using the slab allocator if needed. | ||
285 | * This should be just like above, but with some error catching. | ||
286 | */ | ||
287 | int | ||
288 | swiotlb_late_init_with_default_size(size_t default_size) | ||
289 | { | ||
290 | unsigned long bytes, req_nslabs = io_tlb_nslabs; | ||
291 | unsigned char *vstart = NULL; | ||
292 | unsigned int order; | ||
293 | int rc = 0; | ||
294 | |||
295 | if (!io_tlb_nslabs) { | ||
296 | io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); | ||
297 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | ||
298 | } | ||
299 | |||
300 | /* | ||
301 | * Get IO TLB memory from the low pages | ||
302 | */ | ||
303 | order = get_order(io_tlb_nslabs << IO_TLB_SHIFT); | ||
304 | io_tlb_nslabs = SLABS_PER_PAGE << order; | ||
305 | bytes = io_tlb_nslabs << IO_TLB_SHIFT; | ||
306 | |||
307 | while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { | ||
308 | vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, | ||
309 | order); | ||
310 | if (vstart) | ||
311 | break; | ||
312 | order--; | ||
313 | } | ||
314 | |||
315 | if (!vstart) { | ||
316 | io_tlb_nslabs = req_nslabs; | ||
317 | return -ENOMEM; | ||
318 | } | ||
319 | if (order != get_order(bytes)) { | ||
320 | printk(KERN_WARNING "Warning: only able to allocate %ld MB " | ||
321 | "for software IO TLB\n", (PAGE_SIZE << order) >> 20); | ||
322 | io_tlb_nslabs = SLABS_PER_PAGE << order; | ||
323 | } | ||
324 | rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs); | ||
325 | if (rc) | ||
326 | free_pages((unsigned long)vstart, order); | ||
327 | |||
328 | return rc; | ||
329 | } | ||
330 | |||
331 | int | ||
332 | swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs) | ||
333 | { | ||
334 | unsigned long i, bytes; | ||
335 | unsigned char *v_overflow_buffer; | ||
336 | |||
337 | bytes = nslabs << IO_TLB_SHIFT; | ||
338 | |||
339 | io_tlb_nslabs = nslabs; | ||
340 | io_tlb_start = virt_to_phys(tlb); | ||
341 | io_tlb_end = io_tlb_start + bytes; | ||
342 | |||
343 | set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT); | ||
344 | memset(tlb, 0, bytes); | ||
345 | |||
346 | /* | ||
347 | * Get the overflow emergency buffer | ||
348 | */ | ||
349 | v_overflow_buffer = (void *)__get_free_pages(GFP_DMA, | ||
350 | get_order(io_tlb_overflow)); | ||
351 | if (!v_overflow_buffer) | ||
352 | goto cleanup2; | ||
353 | |||
354 | set_memory_decrypted((unsigned long)v_overflow_buffer, | ||
355 | io_tlb_overflow >> PAGE_SHIFT); | ||
356 | memset(v_overflow_buffer, 0, io_tlb_overflow); | ||
357 | io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer); | ||
358 | |||
359 | /* | ||
360 | * Allocate and initialize the free list array. This array is used | ||
361 | * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE | ||
362 | * between io_tlb_start and io_tlb_end. | ||
363 | */ | ||
364 | io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, | ||
365 | get_order(io_tlb_nslabs * sizeof(int))); | ||
366 | if (!io_tlb_list) | ||
367 | goto cleanup3; | ||
368 | |||
369 | io_tlb_orig_addr = (phys_addr_t *) | ||
370 | __get_free_pages(GFP_KERNEL, | ||
371 | get_order(io_tlb_nslabs * | ||
372 | sizeof(phys_addr_t))); | ||
373 | if (!io_tlb_orig_addr) | ||
374 | goto cleanup4; | ||
375 | |||
376 | for (i = 0; i < io_tlb_nslabs; i++) { | ||
377 | io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); | ||
378 | io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; | ||
379 | } | ||
380 | io_tlb_index = 0; | ||
381 | |||
382 | swiotlb_print_info(); | ||
383 | |||
384 | late_alloc = 1; | ||
385 | |||
386 | swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); | ||
387 | |||
388 | return 0; | ||
389 | |||
390 | cleanup4: | ||
391 | free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * | ||
392 | sizeof(int))); | ||
393 | io_tlb_list = NULL; | ||
394 | cleanup3: | ||
395 | free_pages((unsigned long)v_overflow_buffer, | ||
396 | get_order(io_tlb_overflow)); | ||
397 | io_tlb_overflow_buffer = 0; | ||
398 | cleanup2: | ||
399 | io_tlb_end = 0; | ||
400 | io_tlb_start = 0; | ||
401 | io_tlb_nslabs = 0; | ||
402 | max_segment = 0; | ||
403 | return -ENOMEM; | ||
404 | } | ||
405 | |||
406 | void __init swiotlb_exit(void) | ||
407 | { | ||
408 | if (!io_tlb_orig_addr) | ||
409 | return; | ||
410 | |||
411 | if (late_alloc) { | ||
412 | free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer), | ||
413 | get_order(io_tlb_overflow)); | ||
414 | free_pages((unsigned long)io_tlb_orig_addr, | ||
415 | get_order(io_tlb_nslabs * sizeof(phys_addr_t))); | ||
416 | free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * | ||
417 | sizeof(int))); | ||
418 | free_pages((unsigned long)phys_to_virt(io_tlb_start), | ||
419 | get_order(io_tlb_nslabs << IO_TLB_SHIFT)); | ||
420 | } else { | ||
421 | memblock_free_late(io_tlb_overflow_buffer, | ||
422 | PAGE_ALIGN(io_tlb_overflow)); | ||
423 | memblock_free_late(__pa(io_tlb_orig_addr), | ||
424 | PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); | ||
425 | memblock_free_late(__pa(io_tlb_list), | ||
426 | PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); | ||
427 | memblock_free_late(io_tlb_start, | ||
428 | PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); | ||
429 | } | ||
430 | io_tlb_nslabs = 0; | ||
431 | max_segment = 0; | ||
432 | } | ||
433 | |||
434 | int is_swiotlb_buffer(phys_addr_t paddr) | ||
435 | { | ||
436 | return paddr >= io_tlb_start && paddr < io_tlb_end; | ||
437 | } | ||
438 | |||
439 | /* | ||
440 | * Bounce: copy the swiotlb buffer back to the original dma location | ||
441 | */ | ||
442 | static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr, | ||
443 | size_t size, enum dma_data_direction dir) | ||
444 | { | ||
445 | unsigned long pfn = PFN_DOWN(orig_addr); | ||
446 | unsigned char *vaddr = phys_to_virt(tlb_addr); | ||
447 | |||
448 | if (PageHighMem(pfn_to_page(pfn))) { | ||
449 | /* The buffer does not have a mapping. Map it in and copy */ | ||
450 | unsigned int offset = orig_addr & ~PAGE_MASK; | ||
451 | char *buffer; | ||
452 | unsigned int sz = 0; | ||
453 | unsigned long flags; | ||
454 | |||
455 | while (size) { | ||
456 | sz = min_t(size_t, PAGE_SIZE - offset, size); | ||
457 | |||
458 | local_irq_save(flags); | ||
459 | buffer = kmap_atomic(pfn_to_page(pfn)); | ||
460 | if (dir == DMA_TO_DEVICE) | ||
461 | memcpy(vaddr, buffer + offset, sz); | ||
462 | else | ||
463 | memcpy(buffer + offset, vaddr, sz); | ||
464 | kunmap_atomic(buffer); | ||
465 | local_irq_restore(flags); | ||
466 | |||
467 | size -= sz; | ||
468 | pfn++; | ||
469 | vaddr += sz; | ||
470 | offset = 0; | ||
471 | } | ||
472 | } else if (dir == DMA_TO_DEVICE) { | ||
473 | memcpy(vaddr, phys_to_virt(orig_addr), size); | ||
474 | } else { | ||
475 | memcpy(phys_to_virt(orig_addr), vaddr, size); | ||
476 | } | ||
477 | } | ||
478 | |||
479 | phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, | ||
480 | dma_addr_t tbl_dma_addr, | ||
481 | phys_addr_t orig_addr, size_t size, | ||
482 | enum dma_data_direction dir, | ||
483 | unsigned long attrs) | ||
484 | { | ||
485 | unsigned long flags; | ||
486 | phys_addr_t tlb_addr; | ||
487 | unsigned int nslots, stride, index, wrap; | ||
488 | int i; | ||
489 | unsigned long mask; | ||
490 | unsigned long offset_slots; | ||
491 | unsigned long max_slots; | ||
492 | |||
493 | if (no_iotlb_memory) | ||
494 | panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); | ||
495 | |||
496 | if (mem_encrypt_active()) | ||
497 | pr_warn_once("%s is active and system is using DMA bounce buffers\n", | ||
498 | sme_active() ? "SME" : "SEV"); | ||
499 | |||
500 | mask = dma_get_seg_boundary(hwdev); | ||
501 | |||
502 | tbl_dma_addr &= mask; | ||
503 | |||
504 | offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | ||
505 | |||
506 | /* | ||
507 | * Carefully handle integer overflow which can occur when mask == ~0UL. | ||
508 | */ | ||
509 | max_slots = mask + 1 | ||
510 | ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT | ||
511 | : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); | ||
512 | |||
513 | /* | ||
514 | * For mappings greater than or equal to a page, we limit the stride | ||
515 | * (and hence alignment) to a page size. | ||
516 | */ | ||
517 | nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | ||
518 | if (size >= PAGE_SIZE) | ||
519 | stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); | ||
520 | else | ||
521 | stride = 1; | ||
522 | |||
523 | BUG_ON(!nslots); | ||
524 | |||
525 | /* | ||
526 | * Find suitable number of IO TLB entries size that will fit this | ||
527 | * request and allocate a buffer from that IO TLB pool. | ||
528 | */ | ||
529 | spin_lock_irqsave(&io_tlb_lock, flags); | ||
530 | index = ALIGN(io_tlb_index, stride); | ||
531 | if (index >= io_tlb_nslabs) | ||
532 | index = 0; | ||
533 | wrap = index; | ||
534 | |||
535 | do { | ||
536 | while (iommu_is_span_boundary(index, nslots, offset_slots, | ||
537 | max_slots)) { | ||
538 | index += stride; | ||
539 | if (index >= io_tlb_nslabs) | ||
540 | index = 0; | ||
541 | if (index == wrap) | ||
542 | goto not_found; | ||
543 | } | ||
544 | |||
545 | /* | ||
546 | * If we find a slot that indicates we have 'nslots' number of | ||
547 | * contiguous buffers, we allocate the buffers from that slot | ||
548 | * and mark the entries as '0' indicating unavailable. | ||
549 | */ | ||
550 | if (io_tlb_list[index] >= nslots) { | ||
551 | int count = 0; | ||
552 | |||
553 | for (i = index; i < (int) (index + nslots); i++) | ||
554 | io_tlb_list[i] = 0; | ||
555 | for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--) | ||
556 | io_tlb_list[i] = ++count; | ||
557 | tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT); | ||
558 | |||
559 | /* | ||
560 | * Update the indices to avoid searching in the next | ||
561 | * round. | ||
562 | */ | ||
563 | io_tlb_index = ((index + nslots) < io_tlb_nslabs | ||
564 | ? (index + nslots) : 0); | ||
565 | |||
566 | goto found; | ||
567 | } | ||
568 | index += stride; | ||
569 | if (index >= io_tlb_nslabs) | ||
570 | index = 0; | ||
571 | } while (index != wrap); | ||
572 | |||
573 | not_found: | ||
574 | spin_unlock_irqrestore(&io_tlb_lock, flags); | ||
575 | if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) | ||
576 | dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size); | ||
577 | return SWIOTLB_MAP_ERROR; | ||
578 | found: | ||
579 | spin_unlock_irqrestore(&io_tlb_lock, flags); | ||
580 | |||
581 | /* | ||
582 | * Save away the mapping from the original address to the DMA address. | ||
583 | * This is needed when we sync the memory. Then we sync the buffer if | ||
584 | * needed. | ||
585 | */ | ||
586 | for (i = 0; i < nslots; i++) | ||
587 | io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT); | ||
588 | if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && | ||
589 | (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) | ||
590 | swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE); | ||
591 | |||
592 | return tlb_addr; | ||
593 | } | ||
594 | |||
595 | /* | ||
596 | * Allocates bounce buffer and returns its physical address. | ||
597 | */ | ||
598 | static phys_addr_t | ||
599 | map_single(struct device *hwdev, phys_addr_t phys, size_t size, | ||
600 | enum dma_data_direction dir, unsigned long attrs) | ||
601 | { | ||
602 | dma_addr_t start_dma_addr; | ||
603 | |||
604 | if (swiotlb_force == SWIOTLB_NO_FORCE) { | ||
605 | dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n", | ||
606 | &phys); | ||
607 | return SWIOTLB_MAP_ERROR; | ||
608 | } | ||
609 | |||
610 | start_dma_addr = __phys_to_dma(hwdev, io_tlb_start); | ||
611 | return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, | ||
612 | dir, attrs); | ||
613 | } | ||
614 | |||
615 | /* | ||
616 | * tlb_addr is the physical address of the bounce buffer to unmap. | ||
617 | */ | ||
618 | void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, | ||
619 | size_t size, enum dma_data_direction dir, | ||
620 | unsigned long attrs) | ||
621 | { | ||
622 | unsigned long flags; | ||
623 | int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | ||
624 | int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; | ||
625 | phys_addr_t orig_addr = io_tlb_orig_addr[index]; | ||
626 | |||
627 | /* | ||
628 | * First, sync the memory before unmapping the entry | ||
629 | */ | ||
630 | if (orig_addr != INVALID_PHYS_ADDR && | ||
631 | !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && | ||
632 | ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) | ||
633 | swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE); | ||
634 | |||
635 | /* | ||
636 | * Return the buffer to the free list by setting the corresponding | ||
637 | * entries to indicate the number of contiguous entries available. | ||
638 | * While returning the entries to the free list, we merge the entries | ||
639 | * with slots below and above the pool being returned. | ||
640 | */ | ||
641 | spin_lock_irqsave(&io_tlb_lock, flags); | ||
642 | { | ||
643 | count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? | ||
644 | io_tlb_list[index + nslots] : 0); | ||
645 | /* | ||
646 | * Step 1: return the slots to the free list, merging the | ||
647 | * slots with superceeding slots | ||
648 | */ | ||
649 | for (i = index + nslots - 1; i >= index; i--) { | ||
650 | io_tlb_list[i] = ++count; | ||
651 | io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; | ||
652 | } | ||
653 | /* | ||
654 | * Step 2: merge the returned slots with the preceding slots, | ||
655 | * if available (non zero) | ||
656 | */ | ||
657 | for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) | ||
658 | io_tlb_list[i] = ++count; | ||
659 | } | ||
660 | spin_unlock_irqrestore(&io_tlb_lock, flags); | ||
661 | } | ||
662 | |||
663 | void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr, | ||
664 | size_t size, enum dma_data_direction dir, | ||
665 | enum dma_sync_target target) | ||
666 | { | ||
667 | int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; | ||
668 | phys_addr_t orig_addr = io_tlb_orig_addr[index]; | ||
669 | |||
670 | if (orig_addr == INVALID_PHYS_ADDR) | ||
671 | return; | ||
672 | orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1); | ||
673 | |||
674 | switch (target) { | ||
675 | case SYNC_FOR_CPU: | ||
676 | if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) | ||
677 | swiotlb_bounce(orig_addr, tlb_addr, | ||
678 | size, DMA_FROM_DEVICE); | ||
679 | else | ||
680 | BUG_ON(dir != DMA_TO_DEVICE); | ||
681 | break; | ||
682 | case SYNC_FOR_DEVICE: | ||
683 | if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) | ||
684 | swiotlb_bounce(orig_addr, tlb_addr, | ||
685 | size, DMA_TO_DEVICE); | ||
686 | else | ||
687 | BUG_ON(dir != DMA_FROM_DEVICE); | ||
688 | break; | ||
689 | default: | ||
690 | BUG(); | ||
691 | } | ||
692 | } | ||
693 | |||
694 | static inline bool dma_coherent_ok(struct device *dev, dma_addr_t addr, | ||
695 | size_t size) | ||
696 | { | ||
697 | u64 mask = DMA_BIT_MASK(32); | ||
698 | |||
699 | if (dev && dev->coherent_dma_mask) | ||
700 | mask = dev->coherent_dma_mask; | ||
701 | return addr + size - 1 <= mask; | ||
702 | } | ||
703 | |||
704 | static void * | ||
705 | swiotlb_alloc_buffer(struct device *dev, size_t size, dma_addr_t *dma_handle, | ||
706 | unsigned long attrs) | ||
707 | { | ||
708 | phys_addr_t phys_addr; | ||
709 | |||
710 | if (swiotlb_force == SWIOTLB_NO_FORCE) | ||
711 | goto out_warn; | ||
712 | |||
713 | phys_addr = swiotlb_tbl_map_single(dev, | ||
714 | __phys_to_dma(dev, io_tlb_start), | ||
715 | 0, size, DMA_FROM_DEVICE, attrs); | ||
716 | if (phys_addr == SWIOTLB_MAP_ERROR) | ||
717 | goto out_warn; | ||
718 | |||
719 | *dma_handle = __phys_to_dma(dev, phys_addr); | ||
720 | if (!dma_coherent_ok(dev, *dma_handle, size)) | ||
721 | goto out_unmap; | ||
722 | |||
723 | memset(phys_to_virt(phys_addr), 0, size); | ||
724 | return phys_to_virt(phys_addr); | ||
725 | |||
726 | out_unmap: | ||
727 | dev_warn(dev, "hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n", | ||
728 | (unsigned long long)dev->coherent_dma_mask, | ||
729 | (unsigned long long)*dma_handle); | ||
730 | |||
731 | /* | ||
732 | * DMA_TO_DEVICE to avoid memcpy in unmap_single. | ||
733 | * DMA_ATTR_SKIP_CPU_SYNC is optional. | ||
734 | */ | ||
735 | swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE, | ||
736 | DMA_ATTR_SKIP_CPU_SYNC); | ||
737 | out_warn: | ||
738 | if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) { | ||
739 | dev_warn(dev, | ||
740 | "swiotlb: coherent allocation failed, size=%zu\n", | ||
741 | size); | ||
742 | dump_stack(); | ||
743 | } | ||
744 | return NULL; | ||
745 | } | ||
746 | |||
747 | static bool swiotlb_free_buffer(struct device *dev, size_t size, | ||
748 | dma_addr_t dma_addr) | ||
749 | { | ||
750 | phys_addr_t phys_addr = dma_to_phys(dev, dma_addr); | ||
751 | |||
752 | WARN_ON_ONCE(irqs_disabled()); | ||
753 | |||
754 | if (!is_swiotlb_buffer(phys_addr)) | ||
755 | return false; | ||
756 | |||
757 | /* | ||
758 | * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single. | ||
759 | * DMA_ATTR_SKIP_CPU_SYNC is optional. | ||
760 | */ | ||
761 | swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE, | ||
762 | DMA_ATTR_SKIP_CPU_SYNC); | ||
763 | return true; | ||
764 | } | ||
765 | |||
766 | static void | ||
767 | swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir, | ||
768 | int do_panic) | ||
769 | { | ||
770 | if (swiotlb_force == SWIOTLB_NO_FORCE) | ||
771 | return; | ||
772 | |||
773 | /* | ||
774 | * Ran out of IOMMU space for this operation. This is very bad. | ||
775 | * Unfortunately the drivers cannot handle this operation properly. | ||
776 | * unless they check for dma_mapping_error (most don't) | ||
777 | * When the mapping is small enough return a static buffer to limit | ||
778 | * the damage, or panic when the transfer is too big. | ||
779 | */ | ||
780 | dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n", | ||
781 | size); | ||
782 | |||
783 | if (size <= io_tlb_overflow || !do_panic) | ||
784 | return; | ||
785 | |||
786 | if (dir == DMA_BIDIRECTIONAL) | ||
787 | panic("DMA: Random memory could be DMA accessed\n"); | ||
788 | if (dir == DMA_FROM_DEVICE) | ||
789 | panic("DMA: Random memory could be DMA written\n"); | ||
790 | if (dir == DMA_TO_DEVICE) | ||
791 | panic("DMA: Random memory could be DMA read\n"); | ||
792 | } | ||
793 | |||
794 | /* | ||
795 | * Map a single buffer of the indicated size for DMA in streaming mode. The | ||
796 | * physical address to use is returned. | ||
797 | * | ||
798 | * Once the device is given the dma address, the device owns this memory until | ||
799 | * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed. | ||
800 | */ | ||
801 | dma_addr_t swiotlb_map_page(struct device *dev, struct page *page, | ||
802 | unsigned long offset, size_t size, | ||
803 | enum dma_data_direction dir, | ||
804 | unsigned long attrs) | ||
805 | { | ||
806 | phys_addr_t map, phys = page_to_phys(page) + offset; | ||
807 | dma_addr_t dev_addr = phys_to_dma(dev, phys); | ||
808 | |||
809 | BUG_ON(dir == DMA_NONE); | ||
810 | /* | ||
811 | * If the address happens to be in the device's DMA window, | ||
812 | * we can safely return the device addr and not worry about bounce | ||
813 | * buffering it. | ||
814 | */ | ||
815 | if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE) | ||
816 | return dev_addr; | ||
817 | |||
818 | trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); | ||
819 | |||
820 | /* Oh well, have to allocate and map a bounce buffer. */ | ||
821 | map = map_single(dev, phys, size, dir, attrs); | ||
822 | if (map == SWIOTLB_MAP_ERROR) { | ||
823 | swiotlb_full(dev, size, dir, 1); | ||
824 | return __phys_to_dma(dev, io_tlb_overflow_buffer); | ||
825 | } | ||
826 | |||
827 | dev_addr = __phys_to_dma(dev, map); | ||
828 | |||
829 | /* Ensure that the address returned is DMA'ble */ | ||
830 | if (dma_capable(dev, dev_addr, size)) | ||
831 | return dev_addr; | ||
832 | |||
833 | attrs |= DMA_ATTR_SKIP_CPU_SYNC; | ||
834 | swiotlb_tbl_unmap_single(dev, map, size, dir, attrs); | ||
835 | |||
836 | return __phys_to_dma(dev, io_tlb_overflow_buffer); | ||
837 | } | ||
838 | |||
839 | /* | ||
840 | * Unmap a single streaming mode DMA translation. The dma_addr and size must | ||
841 | * match what was provided for in a previous swiotlb_map_page call. All | ||
842 | * other usages are undefined. | ||
843 | * | ||
844 | * After this call, reads by the cpu to the buffer are guaranteed to see | ||
845 | * whatever the device wrote there. | ||
846 | */ | ||
847 | static void unmap_single(struct device *hwdev, dma_addr_t dev_addr, | ||
848 | size_t size, enum dma_data_direction dir, | ||
849 | unsigned long attrs) | ||
850 | { | ||
851 | phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); | ||
852 | |||
853 | BUG_ON(dir == DMA_NONE); | ||
854 | |||
855 | if (is_swiotlb_buffer(paddr)) { | ||
856 | swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs); | ||
857 | return; | ||
858 | } | ||
859 | |||
860 | if (dir != DMA_FROM_DEVICE) | ||
861 | return; | ||
862 | |||
863 | /* | ||
864 | * phys_to_virt doesn't work with hihgmem page but we could | ||
865 | * call dma_mark_clean() with hihgmem page here. However, we | ||
866 | * are fine since dma_mark_clean() is null on POWERPC. We can | ||
867 | * make dma_mark_clean() take a physical address if necessary. | ||
868 | */ | ||
869 | dma_mark_clean(phys_to_virt(paddr), size); | ||
870 | } | ||
871 | |||
872 | void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, | ||
873 | size_t size, enum dma_data_direction dir, | ||
874 | unsigned long attrs) | ||
875 | { | ||
876 | unmap_single(hwdev, dev_addr, size, dir, attrs); | ||
877 | } | ||
878 | |||
879 | /* | ||
880 | * Make physical memory consistent for a single streaming mode DMA translation | ||
881 | * after a transfer. | ||
882 | * | ||
883 | * If you perform a swiotlb_map_page() but wish to interrogate the buffer | ||
884 | * using the cpu, yet do not wish to teardown the dma mapping, you must | ||
885 | * call this function before doing so. At the next point you give the dma | ||
886 | * address back to the card, you must first perform a | ||
887 | * swiotlb_dma_sync_for_device, and then the device again owns the buffer | ||
888 | */ | ||
889 | static void | ||
890 | swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, | ||
891 | size_t size, enum dma_data_direction dir, | ||
892 | enum dma_sync_target target) | ||
893 | { | ||
894 | phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); | ||
895 | |||
896 | BUG_ON(dir == DMA_NONE); | ||
897 | |||
898 | if (is_swiotlb_buffer(paddr)) { | ||
899 | swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target); | ||
900 | return; | ||
901 | } | ||
902 | |||
903 | if (dir != DMA_FROM_DEVICE) | ||
904 | return; | ||
905 | |||
906 | dma_mark_clean(phys_to_virt(paddr), size); | ||
907 | } | ||
908 | |||
909 | void | ||
910 | swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, | ||
911 | size_t size, enum dma_data_direction dir) | ||
912 | { | ||
913 | swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); | ||
914 | } | ||
915 | |||
916 | void | ||
917 | swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, | ||
918 | size_t size, enum dma_data_direction dir) | ||
919 | { | ||
920 | swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); | ||
921 | } | ||
922 | |||
923 | /* | ||
924 | * Map a set of buffers described by scatterlist in streaming mode for DMA. | ||
925 | * This is the scatter-gather version of the above swiotlb_map_page | ||
926 | * interface. Here the scatter gather list elements are each tagged with the | ||
927 | * appropriate dma address and length. They are obtained via | ||
928 | * sg_dma_{address,length}(SG). | ||
929 | * | ||
930 | * NOTE: An implementation may be able to use a smaller number of | ||
931 | * DMA address/length pairs than there are SG table elements. | ||
932 | * (for example via virtual mapping capabilities) | ||
933 | * The routine returns the number of addr/length pairs actually | ||
934 | * used, at most nents. | ||
935 | * | ||
936 | * Device ownership issues as mentioned above for swiotlb_map_page are the | ||
937 | * same here. | ||
938 | */ | ||
939 | int | ||
940 | swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems, | ||
941 | enum dma_data_direction dir, unsigned long attrs) | ||
942 | { | ||
943 | struct scatterlist *sg; | ||
944 | int i; | ||
945 | |||
946 | BUG_ON(dir == DMA_NONE); | ||
947 | |||
948 | for_each_sg(sgl, sg, nelems, i) { | ||
949 | phys_addr_t paddr = sg_phys(sg); | ||
950 | dma_addr_t dev_addr = phys_to_dma(hwdev, paddr); | ||
951 | |||
952 | if (swiotlb_force == SWIOTLB_FORCE || | ||
953 | !dma_capable(hwdev, dev_addr, sg->length)) { | ||
954 | phys_addr_t map = map_single(hwdev, sg_phys(sg), | ||
955 | sg->length, dir, attrs); | ||
956 | if (map == SWIOTLB_MAP_ERROR) { | ||
957 | /* Don't panic here, we expect map_sg users | ||
958 | to do proper error handling. */ | ||
959 | swiotlb_full(hwdev, sg->length, dir, 0); | ||
960 | attrs |= DMA_ATTR_SKIP_CPU_SYNC; | ||
961 | swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, | ||
962 | attrs); | ||
963 | sg_dma_len(sgl) = 0; | ||
964 | return 0; | ||
965 | } | ||
966 | sg->dma_address = __phys_to_dma(hwdev, map); | ||
967 | } else | ||
968 | sg->dma_address = dev_addr; | ||
969 | sg_dma_len(sg) = sg->length; | ||
970 | } | ||
971 | return nelems; | ||
972 | } | ||
973 | |||
974 | /* | ||
975 | * Unmap a set of streaming mode DMA translations. Again, cpu read rules | ||
976 | * concerning calls here are the same as for swiotlb_unmap_page() above. | ||
977 | */ | ||
978 | void | ||
979 | swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, | ||
980 | int nelems, enum dma_data_direction dir, | ||
981 | unsigned long attrs) | ||
982 | { | ||
983 | struct scatterlist *sg; | ||
984 | int i; | ||
985 | |||
986 | BUG_ON(dir == DMA_NONE); | ||
987 | |||
988 | for_each_sg(sgl, sg, nelems, i) | ||
989 | unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, | ||
990 | attrs); | ||
991 | } | ||
992 | |||
993 | /* | ||
994 | * Make physical memory consistent for a set of streaming mode DMA translations | ||
995 | * after a transfer. | ||
996 | * | ||
997 | * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules | ||
998 | * and usage. | ||
999 | */ | ||
1000 | static void | ||
1001 | swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, | ||
1002 | int nelems, enum dma_data_direction dir, | ||
1003 | enum dma_sync_target target) | ||
1004 | { | ||
1005 | struct scatterlist *sg; | ||
1006 | int i; | ||
1007 | |||
1008 | for_each_sg(sgl, sg, nelems, i) | ||
1009 | swiotlb_sync_single(hwdev, sg->dma_address, | ||
1010 | sg_dma_len(sg), dir, target); | ||
1011 | } | ||
1012 | |||
1013 | void | ||
1014 | swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, | ||
1015 | int nelems, enum dma_data_direction dir) | ||
1016 | { | ||
1017 | swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); | ||
1018 | } | ||
1019 | |||
1020 | void | ||
1021 | swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, | ||
1022 | int nelems, enum dma_data_direction dir) | ||
1023 | { | ||
1024 | swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); | ||
1025 | } | ||
1026 | |||
1027 | int | ||
1028 | swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) | ||
1029 | { | ||
1030 | return (dma_addr == __phys_to_dma(hwdev, io_tlb_overflow_buffer)); | ||
1031 | } | ||
1032 | |||
1033 | /* | ||
1034 | * Return whether the given device DMA address mask can be supported | ||
1035 | * properly. For example, if your device can only drive the low 24-bits | ||
1036 | * during bus mastering, then you would pass 0x00ffffff as the mask to | ||
1037 | * this function. | ||
1038 | */ | ||
1039 | int | ||
1040 | swiotlb_dma_supported(struct device *hwdev, u64 mask) | ||
1041 | { | ||
1042 | return __phys_to_dma(hwdev, io_tlb_end - 1) <= mask; | ||
1043 | } | ||
1044 | |||
1045 | void *swiotlb_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, | ||
1046 | gfp_t gfp, unsigned long attrs) | ||
1047 | { | ||
1048 | void *vaddr; | ||
1049 | |||
1050 | /* temporary workaround: */ | ||
1051 | if (gfp & __GFP_NOWARN) | ||
1052 | attrs |= DMA_ATTR_NO_WARN; | ||
1053 | |||
1054 | /* | ||
1055 | * Don't print a warning when the first allocation attempt fails. | ||
1056 | * swiotlb_alloc_coherent() will print a warning when the DMA memory | ||
1057 | * allocation ultimately failed. | ||
1058 | */ | ||
1059 | gfp |= __GFP_NOWARN; | ||
1060 | |||
1061 | vaddr = dma_direct_alloc(dev, size, dma_handle, gfp, attrs); | ||
1062 | if (!vaddr) | ||
1063 | vaddr = swiotlb_alloc_buffer(dev, size, dma_handle, attrs); | ||
1064 | return vaddr; | ||
1065 | } | ||
1066 | |||
1067 | void swiotlb_free(struct device *dev, size_t size, void *vaddr, | ||
1068 | dma_addr_t dma_addr, unsigned long attrs) | ||
1069 | { | ||
1070 | if (!swiotlb_free_buffer(dev, size, dma_addr)) | ||
1071 | dma_direct_free(dev, size, vaddr, dma_addr, attrs); | ||
1072 | } | ||
1073 | |||
1074 | const struct dma_map_ops swiotlb_dma_ops = { | ||
1075 | .mapping_error = swiotlb_dma_mapping_error, | ||
1076 | .alloc = swiotlb_alloc, | ||
1077 | .free = swiotlb_free, | ||
1078 | .sync_single_for_cpu = swiotlb_sync_single_for_cpu, | ||
1079 | .sync_single_for_device = swiotlb_sync_single_for_device, | ||
1080 | .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu, | ||
1081 | .sync_sg_for_device = swiotlb_sync_sg_for_device, | ||
1082 | .map_sg = swiotlb_map_sg_attrs, | ||
1083 | .unmap_sg = swiotlb_unmap_sg_attrs, | ||
1084 | .map_page = swiotlb_map_page, | ||
1085 | .unmap_page = swiotlb_unmap_page, | ||
1086 | .dma_supported = dma_direct_supported, | ||
1087 | }; | ||