diff options
Diffstat (limited to 'fs/crypto/crypto.c')
-rw-r--r-- | fs/crypto/crypto.c | 555 |
1 files changed, 555 insertions, 0 deletions
diff --git a/fs/crypto/crypto.c b/fs/crypto/crypto.c new file mode 100644 index 000000000000..06cd1a22240b --- /dev/null +++ b/fs/crypto/crypto.c | |||
@@ -0,0 +1,555 @@ | |||
1 | /* | ||
2 | * This contains encryption functions for per-file encryption. | ||
3 | * | ||
4 | * Copyright (C) 2015, Google, Inc. | ||
5 | * Copyright (C) 2015, Motorola Mobility | ||
6 | * | ||
7 | * Written by Michael Halcrow, 2014. | ||
8 | * | ||
9 | * Filename encryption additions | ||
10 | * Uday Savagaonkar, 2014 | ||
11 | * Encryption policy handling additions | ||
12 | * Ildar Muslukhov, 2014 | ||
13 | * Add fscrypt_pullback_bio_page() | ||
14 | * Jaegeuk Kim, 2015. | ||
15 | * | ||
16 | * This has not yet undergone a rigorous security audit. | ||
17 | * | ||
18 | * The usage of AES-XTS should conform to recommendations in NIST | ||
19 | * Special Publication 800-38E and IEEE P1619/D16. | ||
20 | */ | ||
21 | |||
22 | #include <linux/pagemap.h> | ||
23 | #include <linux/mempool.h> | ||
24 | #include <linux/module.h> | ||
25 | #include <linux/scatterlist.h> | ||
26 | #include <linux/ratelimit.h> | ||
27 | #include <linux/bio.h> | ||
28 | #include <linux/dcache.h> | ||
29 | #include <linux/fscrypto.h> | ||
30 | #include <linux/ecryptfs.h> | ||
31 | |||
32 | static unsigned int num_prealloc_crypto_pages = 32; | ||
33 | static unsigned int num_prealloc_crypto_ctxs = 128; | ||
34 | |||
35 | module_param(num_prealloc_crypto_pages, uint, 0444); | ||
36 | MODULE_PARM_DESC(num_prealloc_crypto_pages, | ||
37 | "Number of crypto pages to preallocate"); | ||
38 | module_param(num_prealloc_crypto_ctxs, uint, 0444); | ||
39 | MODULE_PARM_DESC(num_prealloc_crypto_ctxs, | ||
40 | "Number of crypto contexts to preallocate"); | ||
41 | |||
42 | static mempool_t *fscrypt_bounce_page_pool = NULL; | ||
43 | |||
44 | static LIST_HEAD(fscrypt_free_ctxs); | ||
45 | static DEFINE_SPINLOCK(fscrypt_ctx_lock); | ||
46 | |||
47 | static struct workqueue_struct *fscrypt_read_workqueue; | ||
48 | static DEFINE_MUTEX(fscrypt_init_mutex); | ||
49 | |||
50 | static struct kmem_cache *fscrypt_ctx_cachep; | ||
51 | struct kmem_cache *fscrypt_info_cachep; | ||
52 | |||
53 | /** | ||
54 | * fscrypt_release_ctx() - Releases an encryption context | ||
55 | * @ctx: The encryption context to release. | ||
56 | * | ||
57 | * If the encryption context was allocated from the pre-allocated pool, returns | ||
58 | * it to that pool. Else, frees it. | ||
59 | * | ||
60 | * If there's a bounce page in the context, this frees that. | ||
61 | */ | ||
62 | void fscrypt_release_ctx(struct fscrypt_ctx *ctx) | ||
63 | { | ||
64 | unsigned long flags; | ||
65 | |||
66 | if (ctx->flags & FS_WRITE_PATH_FL && ctx->w.bounce_page) { | ||
67 | mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool); | ||
68 | ctx->w.bounce_page = NULL; | ||
69 | } | ||
70 | ctx->w.control_page = NULL; | ||
71 | if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) { | ||
72 | kmem_cache_free(fscrypt_ctx_cachep, ctx); | ||
73 | } else { | ||
74 | spin_lock_irqsave(&fscrypt_ctx_lock, flags); | ||
75 | list_add(&ctx->free_list, &fscrypt_free_ctxs); | ||
76 | spin_unlock_irqrestore(&fscrypt_ctx_lock, flags); | ||
77 | } | ||
78 | } | ||
79 | EXPORT_SYMBOL(fscrypt_release_ctx); | ||
80 | |||
81 | /** | ||
82 | * fscrypt_get_ctx() - Gets an encryption context | ||
83 | * @inode: The inode for which we are doing the crypto | ||
84 | * | ||
85 | * Allocates and initializes an encryption context. | ||
86 | * | ||
87 | * Return: An allocated and initialized encryption context on success; error | ||
88 | * value or NULL otherwise. | ||
89 | */ | ||
90 | struct fscrypt_ctx *fscrypt_get_ctx(struct inode *inode) | ||
91 | { | ||
92 | struct fscrypt_ctx *ctx = NULL; | ||
93 | struct fscrypt_info *ci = inode->i_crypt_info; | ||
94 | unsigned long flags; | ||
95 | |||
96 | if (ci == NULL) | ||
97 | return ERR_PTR(-ENOKEY); | ||
98 | |||
99 | /* | ||
100 | * We first try getting the ctx from a free list because in | ||
101 | * the common case the ctx will have an allocated and | ||
102 | * initialized crypto tfm, so it's probably a worthwhile | ||
103 | * optimization. For the bounce page, we first try getting it | ||
104 | * from the kernel allocator because that's just about as fast | ||
105 | * as getting it from a list and because a cache of free pages | ||
106 | * should generally be a "last resort" option for a filesystem | ||
107 | * to be able to do its job. | ||
108 | */ | ||
109 | spin_lock_irqsave(&fscrypt_ctx_lock, flags); | ||
110 | ctx = list_first_entry_or_null(&fscrypt_free_ctxs, | ||
111 | struct fscrypt_ctx, free_list); | ||
112 | if (ctx) | ||
113 | list_del(&ctx->free_list); | ||
114 | spin_unlock_irqrestore(&fscrypt_ctx_lock, flags); | ||
115 | if (!ctx) { | ||
116 | ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS); | ||
117 | if (!ctx) | ||
118 | return ERR_PTR(-ENOMEM); | ||
119 | ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL; | ||
120 | } else { | ||
121 | ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL; | ||
122 | } | ||
123 | ctx->flags &= ~FS_WRITE_PATH_FL; | ||
124 | return ctx; | ||
125 | } | ||
126 | EXPORT_SYMBOL(fscrypt_get_ctx); | ||
127 | |||
128 | /** | ||
129 | * fscrypt_complete() - The completion callback for page encryption | ||
130 | * @req: The asynchronous encryption request context | ||
131 | * @res: The result of the encryption operation | ||
132 | */ | ||
133 | static void fscrypt_complete(struct crypto_async_request *req, int res) | ||
134 | { | ||
135 | struct fscrypt_completion_result *ecr = req->data; | ||
136 | |||
137 | if (res == -EINPROGRESS) | ||
138 | return; | ||
139 | ecr->res = res; | ||
140 | complete(&ecr->completion); | ||
141 | } | ||
142 | |||
143 | typedef enum { | ||
144 | FS_DECRYPT = 0, | ||
145 | FS_ENCRYPT, | ||
146 | } fscrypt_direction_t; | ||
147 | |||
148 | static int do_page_crypto(struct inode *inode, | ||
149 | fscrypt_direction_t rw, pgoff_t index, | ||
150 | struct page *src_page, struct page *dest_page) | ||
151 | { | ||
152 | u8 xts_tweak[FS_XTS_TWEAK_SIZE]; | ||
153 | struct skcipher_request *req = NULL; | ||
154 | DECLARE_FS_COMPLETION_RESULT(ecr); | ||
155 | struct scatterlist dst, src; | ||
156 | struct fscrypt_info *ci = inode->i_crypt_info; | ||
157 | struct crypto_skcipher *tfm = ci->ci_ctfm; | ||
158 | int res = 0; | ||
159 | |||
160 | req = skcipher_request_alloc(tfm, GFP_NOFS); | ||
161 | if (!req) { | ||
162 | printk_ratelimited(KERN_ERR | ||
163 | "%s: crypto_request_alloc() failed\n", | ||
164 | __func__); | ||
165 | return -ENOMEM; | ||
166 | } | ||
167 | |||
168 | skcipher_request_set_callback( | ||
169 | req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, | ||
170 | fscrypt_complete, &ecr); | ||
171 | |||
172 | BUILD_BUG_ON(FS_XTS_TWEAK_SIZE < sizeof(index)); | ||
173 | memcpy(xts_tweak, &index, sizeof(index)); | ||
174 | memset(&xts_tweak[sizeof(index)], 0, | ||
175 | FS_XTS_TWEAK_SIZE - sizeof(index)); | ||
176 | |||
177 | sg_init_table(&dst, 1); | ||
178 | sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0); | ||
179 | sg_init_table(&src, 1); | ||
180 | sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0); | ||
181 | skcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE, | ||
182 | xts_tweak); | ||
183 | if (rw == FS_DECRYPT) | ||
184 | res = crypto_skcipher_decrypt(req); | ||
185 | else | ||
186 | res = crypto_skcipher_encrypt(req); | ||
187 | if (res == -EINPROGRESS || res == -EBUSY) { | ||
188 | BUG_ON(req->base.data != &ecr); | ||
189 | wait_for_completion(&ecr.completion); | ||
190 | res = ecr.res; | ||
191 | } | ||
192 | skcipher_request_free(req); | ||
193 | if (res) { | ||
194 | printk_ratelimited(KERN_ERR | ||
195 | "%s: crypto_skcipher_encrypt() returned %d\n", | ||
196 | __func__, res); | ||
197 | return res; | ||
198 | } | ||
199 | return 0; | ||
200 | } | ||
201 | |||
202 | static struct page *alloc_bounce_page(struct fscrypt_ctx *ctx) | ||
203 | { | ||
204 | ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, | ||
205 | GFP_NOWAIT); | ||
206 | if (ctx->w.bounce_page == NULL) | ||
207 | return ERR_PTR(-ENOMEM); | ||
208 | ctx->flags |= FS_WRITE_PATH_FL; | ||
209 | return ctx->w.bounce_page; | ||
210 | } | ||
211 | |||
212 | /** | ||
213 | * fscypt_encrypt_page() - Encrypts a page | ||
214 | * @inode: The inode for which the encryption should take place | ||
215 | * @plaintext_page: The page to encrypt. Must be locked. | ||
216 | * | ||
217 | * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx | ||
218 | * encryption context. | ||
219 | * | ||
220 | * Called on the page write path. The caller must call | ||
221 | * fscrypt_restore_control_page() on the returned ciphertext page to | ||
222 | * release the bounce buffer and the encryption context. | ||
223 | * | ||
224 | * Return: An allocated page with the encrypted content on success. Else, an | ||
225 | * error value or NULL. | ||
226 | */ | ||
227 | struct page *fscrypt_encrypt_page(struct inode *inode, | ||
228 | struct page *plaintext_page) | ||
229 | { | ||
230 | struct fscrypt_ctx *ctx; | ||
231 | struct page *ciphertext_page = NULL; | ||
232 | int err; | ||
233 | |||
234 | BUG_ON(!PageLocked(plaintext_page)); | ||
235 | |||
236 | ctx = fscrypt_get_ctx(inode); | ||
237 | if (IS_ERR(ctx)) | ||
238 | return (struct page *)ctx; | ||
239 | |||
240 | /* The encryption operation will require a bounce page. */ | ||
241 | ciphertext_page = alloc_bounce_page(ctx); | ||
242 | if (IS_ERR(ciphertext_page)) | ||
243 | goto errout; | ||
244 | |||
245 | ctx->w.control_page = plaintext_page; | ||
246 | err = do_page_crypto(inode, FS_ENCRYPT, plaintext_page->index, | ||
247 | plaintext_page, ciphertext_page); | ||
248 | if (err) { | ||
249 | ciphertext_page = ERR_PTR(err); | ||
250 | goto errout; | ||
251 | } | ||
252 | SetPagePrivate(ciphertext_page); | ||
253 | set_page_private(ciphertext_page, (unsigned long)ctx); | ||
254 | lock_page(ciphertext_page); | ||
255 | return ciphertext_page; | ||
256 | |||
257 | errout: | ||
258 | fscrypt_release_ctx(ctx); | ||
259 | return ciphertext_page; | ||
260 | } | ||
261 | EXPORT_SYMBOL(fscrypt_encrypt_page); | ||
262 | |||
263 | /** | ||
264 | * f2crypt_decrypt_page() - Decrypts a page in-place | ||
265 | * @page: The page to decrypt. Must be locked. | ||
266 | * | ||
267 | * Decrypts page in-place using the ctx encryption context. | ||
268 | * | ||
269 | * Called from the read completion callback. | ||
270 | * | ||
271 | * Return: Zero on success, non-zero otherwise. | ||
272 | */ | ||
273 | int fscrypt_decrypt_page(struct page *page) | ||
274 | { | ||
275 | BUG_ON(!PageLocked(page)); | ||
276 | |||
277 | return do_page_crypto(page->mapping->host, | ||
278 | FS_DECRYPT, page->index, page, page); | ||
279 | } | ||
280 | EXPORT_SYMBOL(fscrypt_decrypt_page); | ||
281 | |||
282 | int fscrypt_zeroout_range(struct inode *inode, pgoff_t lblk, | ||
283 | sector_t pblk, unsigned int len) | ||
284 | { | ||
285 | struct fscrypt_ctx *ctx; | ||
286 | struct page *ciphertext_page = NULL; | ||
287 | struct bio *bio; | ||
288 | int ret, err = 0; | ||
289 | |||
290 | BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE); | ||
291 | |||
292 | ctx = fscrypt_get_ctx(inode); | ||
293 | if (IS_ERR(ctx)) | ||
294 | return PTR_ERR(ctx); | ||
295 | |||
296 | ciphertext_page = alloc_bounce_page(ctx); | ||
297 | if (IS_ERR(ciphertext_page)) { | ||
298 | err = PTR_ERR(ciphertext_page); | ||
299 | goto errout; | ||
300 | } | ||
301 | |||
302 | while (len--) { | ||
303 | err = do_page_crypto(inode, FS_ENCRYPT, lblk, | ||
304 | ZERO_PAGE(0), ciphertext_page); | ||
305 | if (err) | ||
306 | goto errout; | ||
307 | |||
308 | bio = bio_alloc(GFP_KERNEL, 1); | ||
309 | if (!bio) { | ||
310 | err = -ENOMEM; | ||
311 | goto errout; | ||
312 | } | ||
313 | bio->bi_bdev = inode->i_sb->s_bdev; | ||
314 | bio->bi_iter.bi_sector = | ||
315 | pblk << (inode->i_sb->s_blocksize_bits - 9); | ||
316 | ret = bio_add_page(bio, ciphertext_page, | ||
317 | inode->i_sb->s_blocksize, 0); | ||
318 | if (ret != inode->i_sb->s_blocksize) { | ||
319 | /* should never happen! */ | ||
320 | WARN_ON(1); | ||
321 | bio_put(bio); | ||
322 | err = -EIO; | ||
323 | goto errout; | ||
324 | } | ||
325 | err = submit_bio_wait(WRITE, bio); | ||
326 | if ((err == 0) && bio->bi_error) | ||
327 | err = -EIO; | ||
328 | bio_put(bio); | ||
329 | if (err) | ||
330 | goto errout; | ||
331 | lblk++; | ||
332 | pblk++; | ||
333 | } | ||
334 | err = 0; | ||
335 | errout: | ||
336 | fscrypt_release_ctx(ctx); | ||
337 | return err; | ||
338 | } | ||
339 | EXPORT_SYMBOL(fscrypt_zeroout_range); | ||
340 | |||
341 | /* | ||
342 | * Validate dentries for encrypted directories to make sure we aren't | ||
343 | * potentially caching stale data after a key has been added or | ||
344 | * removed. | ||
345 | */ | ||
346 | static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags) | ||
347 | { | ||
348 | struct inode *dir = d_inode(dentry->d_parent); | ||
349 | struct fscrypt_info *ci = dir->i_crypt_info; | ||
350 | int dir_has_key, cached_with_key; | ||
351 | |||
352 | if (!dir->i_sb->s_cop->is_encrypted(dir)) | ||
353 | return 0; | ||
354 | |||
355 | if (ci && ci->ci_keyring_key && | ||
356 | (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) | | ||
357 | (1 << KEY_FLAG_REVOKED) | | ||
358 | (1 << KEY_FLAG_DEAD)))) | ||
359 | ci = NULL; | ||
360 | |||
361 | /* this should eventually be an flag in d_flags */ | ||
362 | spin_lock(&dentry->d_lock); | ||
363 | cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY; | ||
364 | spin_unlock(&dentry->d_lock); | ||
365 | dir_has_key = (ci != NULL); | ||
366 | |||
367 | /* | ||
368 | * If the dentry was cached without the key, and it is a | ||
369 | * negative dentry, it might be a valid name. We can't check | ||
370 | * if the key has since been made available due to locking | ||
371 | * reasons, so we fail the validation so ext4_lookup() can do | ||
372 | * this check. | ||
373 | * | ||
374 | * We also fail the validation if the dentry was created with | ||
375 | * the key present, but we no longer have the key, or vice versa. | ||
376 | */ | ||
377 | if ((!cached_with_key && d_is_negative(dentry)) || | ||
378 | (!cached_with_key && dir_has_key) || | ||
379 | (cached_with_key && !dir_has_key)) | ||
380 | return 0; | ||
381 | return 1; | ||
382 | } | ||
383 | |||
384 | const struct dentry_operations fscrypt_d_ops = { | ||
385 | .d_revalidate = fscrypt_d_revalidate, | ||
386 | }; | ||
387 | EXPORT_SYMBOL(fscrypt_d_ops); | ||
388 | |||
389 | /* | ||
390 | * Call fscrypt_decrypt_page on every single page, reusing the encryption | ||
391 | * context. | ||
392 | */ | ||
393 | static void completion_pages(struct work_struct *work) | ||
394 | { | ||
395 | struct fscrypt_ctx *ctx = | ||
396 | container_of(work, struct fscrypt_ctx, r.work); | ||
397 | struct bio *bio = ctx->r.bio; | ||
398 | struct bio_vec *bv; | ||
399 | int i; | ||
400 | |||
401 | bio_for_each_segment_all(bv, bio, i) { | ||
402 | struct page *page = bv->bv_page; | ||
403 | int ret = fscrypt_decrypt_page(page); | ||
404 | |||
405 | if (ret) { | ||
406 | WARN_ON_ONCE(1); | ||
407 | SetPageError(page); | ||
408 | } else { | ||
409 | SetPageUptodate(page); | ||
410 | } | ||
411 | unlock_page(page); | ||
412 | } | ||
413 | fscrypt_release_ctx(ctx); | ||
414 | bio_put(bio); | ||
415 | } | ||
416 | |||
417 | void fscrypt_decrypt_bio_pages(struct fscrypt_ctx *ctx, struct bio *bio) | ||
418 | { | ||
419 | INIT_WORK(&ctx->r.work, completion_pages); | ||
420 | ctx->r.bio = bio; | ||
421 | queue_work(fscrypt_read_workqueue, &ctx->r.work); | ||
422 | } | ||
423 | EXPORT_SYMBOL(fscrypt_decrypt_bio_pages); | ||
424 | |||
425 | void fscrypt_pullback_bio_page(struct page **page, bool restore) | ||
426 | { | ||
427 | struct fscrypt_ctx *ctx; | ||
428 | struct page *bounce_page; | ||
429 | |||
430 | /* The bounce data pages are unmapped. */ | ||
431 | if ((*page)->mapping) | ||
432 | return; | ||
433 | |||
434 | /* The bounce data page is unmapped. */ | ||
435 | bounce_page = *page; | ||
436 | ctx = (struct fscrypt_ctx *)page_private(bounce_page); | ||
437 | |||
438 | /* restore control page */ | ||
439 | *page = ctx->w.control_page; | ||
440 | |||
441 | if (restore) | ||
442 | fscrypt_restore_control_page(bounce_page); | ||
443 | } | ||
444 | EXPORT_SYMBOL(fscrypt_pullback_bio_page); | ||
445 | |||
446 | void fscrypt_restore_control_page(struct page *page) | ||
447 | { | ||
448 | struct fscrypt_ctx *ctx; | ||
449 | |||
450 | ctx = (struct fscrypt_ctx *)page_private(page); | ||
451 | set_page_private(page, (unsigned long)NULL); | ||
452 | ClearPagePrivate(page); | ||
453 | unlock_page(page); | ||
454 | fscrypt_release_ctx(ctx); | ||
455 | } | ||
456 | EXPORT_SYMBOL(fscrypt_restore_control_page); | ||
457 | |||
458 | static void fscrypt_destroy(void) | ||
459 | { | ||
460 | struct fscrypt_ctx *pos, *n; | ||
461 | |||
462 | list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list) | ||
463 | kmem_cache_free(fscrypt_ctx_cachep, pos); | ||
464 | INIT_LIST_HEAD(&fscrypt_free_ctxs); | ||
465 | mempool_destroy(fscrypt_bounce_page_pool); | ||
466 | fscrypt_bounce_page_pool = NULL; | ||
467 | } | ||
468 | |||
469 | /** | ||
470 | * fscrypt_initialize() - allocate major buffers for fs encryption. | ||
471 | * | ||
472 | * We only call this when we start accessing encrypted files, since it | ||
473 | * results in memory getting allocated that wouldn't otherwise be used. | ||
474 | * | ||
475 | * Return: Zero on success, non-zero otherwise. | ||
476 | */ | ||
477 | int fscrypt_initialize(void) | ||
478 | { | ||
479 | int i, res = -ENOMEM; | ||
480 | |||
481 | if (fscrypt_bounce_page_pool) | ||
482 | return 0; | ||
483 | |||
484 | mutex_lock(&fscrypt_init_mutex); | ||
485 | if (fscrypt_bounce_page_pool) | ||
486 | goto already_initialized; | ||
487 | |||
488 | for (i = 0; i < num_prealloc_crypto_ctxs; i++) { | ||
489 | struct fscrypt_ctx *ctx; | ||
490 | |||
491 | ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS); | ||
492 | if (!ctx) | ||
493 | goto fail; | ||
494 | list_add(&ctx->free_list, &fscrypt_free_ctxs); | ||
495 | } | ||
496 | |||
497 | fscrypt_bounce_page_pool = | ||
498 | mempool_create_page_pool(num_prealloc_crypto_pages, 0); | ||
499 | if (!fscrypt_bounce_page_pool) | ||
500 | goto fail; | ||
501 | |||
502 | already_initialized: | ||
503 | mutex_unlock(&fscrypt_init_mutex); | ||
504 | return 0; | ||
505 | fail: | ||
506 | fscrypt_destroy(); | ||
507 | mutex_unlock(&fscrypt_init_mutex); | ||
508 | return res; | ||
509 | } | ||
510 | EXPORT_SYMBOL(fscrypt_initialize); | ||
511 | |||
512 | /** | ||
513 | * fscrypt_init() - Set up for fs encryption. | ||
514 | */ | ||
515 | static int __init fscrypt_init(void) | ||
516 | { | ||
517 | fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue", | ||
518 | WQ_HIGHPRI, 0); | ||
519 | if (!fscrypt_read_workqueue) | ||
520 | goto fail; | ||
521 | |||
522 | fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT); | ||
523 | if (!fscrypt_ctx_cachep) | ||
524 | goto fail_free_queue; | ||
525 | |||
526 | fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT); | ||
527 | if (!fscrypt_info_cachep) | ||
528 | goto fail_free_ctx; | ||
529 | |||
530 | return 0; | ||
531 | |||
532 | fail_free_ctx: | ||
533 | kmem_cache_destroy(fscrypt_ctx_cachep); | ||
534 | fail_free_queue: | ||
535 | destroy_workqueue(fscrypt_read_workqueue); | ||
536 | fail: | ||
537 | return -ENOMEM; | ||
538 | } | ||
539 | module_init(fscrypt_init) | ||
540 | |||
541 | /** | ||
542 | * fscrypt_exit() - Shutdown the fs encryption system | ||
543 | */ | ||
544 | static void __exit fscrypt_exit(void) | ||
545 | { | ||
546 | fscrypt_destroy(); | ||
547 | |||
548 | if (fscrypt_read_workqueue) | ||
549 | destroy_workqueue(fscrypt_read_workqueue); | ||
550 | kmem_cache_destroy(fscrypt_ctx_cachep); | ||
551 | kmem_cache_destroy(fscrypt_info_cachep); | ||
552 | } | ||
553 | module_exit(fscrypt_exit); | ||
554 | |||
555 | MODULE_LICENSE("GPL"); | ||