aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/acpi/cppc_acpi.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/acpi/cppc_acpi.c')
-rw-r--r--drivers/acpi/cppc_acpi.c664
1 files changed, 513 insertions, 151 deletions
diff --git a/drivers/acpi/cppc_acpi.c b/drivers/acpi/cppc_acpi.c
index 2e981732805b..d0d0504b7c89 100644
--- a/drivers/acpi/cppc_acpi.c
+++ b/drivers/acpi/cppc_acpi.c
@@ -40,15 +40,48 @@
40#include <linux/cpufreq.h> 40#include <linux/cpufreq.h>
41#include <linux/delay.h> 41#include <linux/delay.h>
42#include <linux/ktime.h> 42#include <linux/ktime.h>
43#include <linux/rwsem.h>
44#include <linux/wait.h>
43 45
44#include <acpi/cppc_acpi.h> 46#include <acpi/cppc_acpi.h>
45/* 47
46 * Lock to provide mutually exclusive access to the PCC 48struct cppc_pcc_data {
47 * channel. e.g. When the remote updates the shared region 49 struct mbox_chan *pcc_channel;
48 * with new data, the reader needs to be protected from 50 void __iomem *pcc_comm_addr;
49 * other CPUs activity on the same channel. 51 int pcc_subspace_idx;
50 */ 52 bool pcc_channel_acquired;
51static DEFINE_SPINLOCK(pcc_lock); 53 ktime_t deadline;
54 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
55
56 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
57 bool platform_owns_pcc; /* Ownership of PCC subspace */
58 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
59
60 /*
61 * Lock to provide controlled access to the PCC channel.
62 *
63 * For performance critical usecases(currently cppc_set_perf)
64 * We need to take read_lock and check if channel belongs to OSPM
65 * before reading or writing to PCC subspace
66 * We need to take write_lock before transferring the channel
67 * ownership to the platform via a Doorbell
68 * This allows us to batch a number of CPPC requests if they happen
69 * to originate in about the same time
70 *
71 * For non-performance critical usecases(init)
72 * Take write_lock for all purposes which gives exclusive access
73 */
74 struct rw_semaphore pcc_lock;
75
76 /* Wait queue for CPUs whose requests were batched */
77 wait_queue_head_t pcc_write_wait_q;
78};
79
80/* Structure to represent the single PCC channel */
81static struct cppc_pcc_data pcc_data = {
82 .pcc_subspace_idx = -1,
83 .platform_owns_pcc = true,
84};
52 85
53/* 86/*
54 * The cpc_desc structure contains the ACPI register details 87 * The cpc_desc structure contains the ACPI register details
@@ -59,18 +92,25 @@ static DEFINE_SPINLOCK(pcc_lock);
59 */ 92 */
60static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr); 93static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
61 94
62/* This layer handles all the PCC specifics for CPPC. */
63static struct mbox_chan *pcc_channel;
64static void __iomem *pcc_comm_addr;
65static u64 comm_base_addr;
66static int pcc_subspace_idx = -1;
67static bool pcc_channel_acquired;
68static ktime_t deadline;
69static unsigned int pcc_mpar, pcc_mrtt;
70
71/* pcc mapped address + header size + offset within PCC subspace */ 95/* pcc mapped address + header size + offset within PCC subspace */
72#define GET_PCC_VADDR(offs) (pcc_comm_addr + 0x8 + (offs)) 96#define GET_PCC_VADDR(offs) (pcc_data.pcc_comm_addr + 0x8 + (offs))
73 97
98/* Check if a CPC regsiter is in PCC */
99#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
100 (cpc)->cpc_entry.reg.space_id == \
101 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103/* Evalutes to True if reg is a NULL register descriptor */
104#define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105 (reg)->address == 0 && \
106 (reg)->bit_width == 0 && \
107 (reg)->bit_offset == 0 && \
108 (reg)->access_width == 0)
109
110/* Evalutes to True if an optional cpc field is supported */
111#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
112 !!(cpc)->cpc_entry.int_value : \
113 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
74/* 114/*
75 * Arbitrary Retries in case the remote processor is slow to respond 115 * Arbitrary Retries in case the remote processor is slow to respond
76 * to PCC commands. Keeping it high enough to cover emulators where 116 * to PCC commands. Keeping it high enough to cover emulators where
@@ -78,11 +118,79 @@ static unsigned int pcc_mpar, pcc_mrtt;
78 */ 118 */
79#define NUM_RETRIES 500 119#define NUM_RETRIES 500
80 120
81static int check_pcc_chan(void) 121struct cppc_attr {
122 struct attribute attr;
123 ssize_t (*show)(struct kobject *kobj,
124 struct attribute *attr, char *buf);
125 ssize_t (*store)(struct kobject *kobj,
126 struct attribute *attr, const char *c, ssize_t count);
127};
128
129#define define_one_cppc_ro(_name) \
130static struct cppc_attr _name = \
131__ATTR(_name, 0444, show_##_name, NULL)
132
133#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
134
135static ssize_t show_feedback_ctrs(struct kobject *kobj,
136 struct attribute *attr, char *buf)
137{
138 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
139 struct cppc_perf_fb_ctrs fb_ctrs = {0};
140
141 cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
142
143 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
144 fb_ctrs.reference, fb_ctrs.delivered);
145}
146define_one_cppc_ro(feedback_ctrs);
147
148static ssize_t show_reference_perf(struct kobject *kobj,
149 struct attribute *attr, char *buf)
150{
151 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
152 struct cppc_perf_fb_ctrs fb_ctrs = {0};
153
154 cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
155
156 return scnprintf(buf, PAGE_SIZE, "%llu\n",
157 fb_ctrs.reference_perf);
158}
159define_one_cppc_ro(reference_perf);
160
161static ssize_t show_wraparound_time(struct kobject *kobj,
162 struct attribute *attr, char *buf)
163{
164 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
165 struct cppc_perf_fb_ctrs fb_ctrs = {0};
166
167 cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
168
169 return scnprintf(buf, PAGE_SIZE, "%llu\n", fb_ctrs.ctr_wrap_time);
170
171}
172define_one_cppc_ro(wraparound_time);
173
174static struct attribute *cppc_attrs[] = {
175 &feedback_ctrs.attr,
176 &reference_perf.attr,
177 &wraparound_time.attr,
178 NULL
179};
180
181static struct kobj_type cppc_ktype = {
182 .sysfs_ops = &kobj_sysfs_ops,
183 .default_attrs = cppc_attrs,
184};
185
186static int check_pcc_chan(bool chk_err_bit)
82{ 187{
83 int ret = -EIO; 188 int ret = -EIO, status = 0;
84 struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_comm_addr; 189 struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_data.pcc_comm_addr;
85 ktime_t next_deadline = ktime_add(ktime_get(), deadline); 190 ktime_t next_deadline = ktime_add(ktime_get(), pcc_data.deadline);
191
192 if (!pcc_data.platform_owns_pcc)
193 return 0;
86 194
87 /* Retry in case the remote processor was too slow to catch up. */ 195 /* Retry in case the remote processor was too slow to catch up. */
88 while (!ktime_after(ktime_get(), next_deadline)) { 196 while (!ktime_after(ktime_get(), next_deadline)) {
@@ -91,8 +199,11 @@ static int check_pcc_chan(void)
91 * platform and should have set the command completion bit when 199 * platform and should have set the command completion bit when
92 * PCC can be used by OSPM 200 * PCC can be used by OSPM
93 */ 201 */
94 if (readw_relaxed(&generic_comm_base->status) & PCC_CMD_COMPLETE) { 202 status = readw_relaxed(&generic_comm_base->status);
203 if (status & PCC_CMD_COMPLETE_MASK) {
95 ret = 0; 204 ret = 0;
205 if (chk_err_bit && (status & PCC_ERROR_MASK))
206 ret = -EIO;
96 break; 207 break;
97 } 208 }
98 /* 209 /*
@@ -102,14 +213,23 @@ static int check_pcc_chan(void)
102 udelay(3); 213 udelay(3);
103 } 214 }
104 215
216 if (likely(!ret))
217 pcc_data.platform_owns_pcc = false;
218 else
219 pr_err("PCC check channel failed. Status=%x\n", status);
220
105 return ret; 221 return ret;
106} 222}
107 223
224/*
225 * This function transfers the ownership of the PCC to the platform
226 * So it must be called while holding write_lock(pcc_lock)
227 */
108static int send_pcc_cmd(u16 cmd) 228static int send_pcc_cmd(u16 cmd)
109{ 229{
110 int ret = -EIO; 230 int ret = -EIO, i;
111 struct acpi_pcct_shared_memory *generic_comm_base = 231 struct acpi_pcct_shared_memory *generic_comm_base =
112 (struct acpi_pcct_shared_memory *) pcc_comm_addr; 232 (struct acpi_pcct_shared_memory *) pcc_data.pcc_comm_addr;
113 static ktime_t last_cmd_cmpl_time, last_mpar_reset; 233 static ktime_t last_cmd_cmpl_time, last_mpar_reset;
114 static int mpar_count; 234 static int mpar_count;
115 unsigned int time_delta; 235 unsigned int time_delta;
@@ -119,20 +239,29 @@ static int send_pcc_cmd(u16 cmd)
119 * the channel before writing to PCC space 239 * the channel before writing to PCC space
120 */ 240 */
121 if (cmd == CMD_READ) { 241 if (cmd == CMD_READ) {
122 ret = check_pcc_chan(); 242 /*
243 * If there are pending cpc_writes, then we stole the channel
244 * before write completion, so first send a WRITE command to
245 * platform
246 */
247 if (pcc_data.pending_pcc_write_cmd)
248 send_pcc_cmd(CMD_WRITE);
249
250 ret = check_pcc_chan(false);
123 if (ret) 251 if (ret)
124 return ret; 252 goto end;
125 } 253 } else /* CMD_WRITE */
254 pcc_data.pending_pcc_write_cmd = FALSE;
126 255
127 /* 256 /*
128 * Handle the Minimum Request Turnaround Time(MRTT) 257 * Handle the Minimum Request Turnaround Time(MRTT)
129 * "The minimum amount of time that OSPM must wait after the completion 258 * "The minimum amount of time that OSPM must wait after the completion
130 * of a command before issuing the next command, in microseconds" 259 * of a command before issuing the next command, in microseconds"
131 */ 260 */
132 if (pcc_mrtt) { 261 if (pcc_data.pcc_mrtt) {
133 time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time); 262 time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time);
134 if (pcc_mrtt > time_delta) 263 if (pcc_data.pcc_mrtt > time_delta)
135 udelay(pcc_mrtt - time_delta); 264 udelay(pcc_data.pcc_mrtt - time_delta);
136 } 265 }
137 266
138 /* 267 /*
@@ -146,15 +275,16 @@ static int send_pcc_cmd(u16 cmd)
146 * not send the request to the platform after hitting the MPAR limit in 275 * not send the request to the platform after hitting the MPAR limit in
147 * any 60s window 276 * any 60s window
148 */ 277 */
149 if (pcc_mpar) { 278 if (pcc_data.pcc_mpar) {
150 if (mpar_count == 0) { 279 if (mpar_count == 0) {
151 time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset); 280 time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset);
152 if (time_delta < 60 * MSEC_PER_SEC) { 281 if (time_delta < 60 * MSEC_PER_SEC) {
153 pr_debug("PCC cmd not sent due to MPAR limit"); 282 pr_debug("PCC cmd not sent due to MPAR limit");
154 return -EIO; 283 ret = -EIO;
284 goto end;
155 } 285 }
156 last_mpar_reset = ktime_get(); 286 last_mpar_reset = ktime_get();
157 mpar_count = pcc_mpar; 287 mpar_count = pcc_data.pcc_mpar;
158 } 288 }
159 mpar_count--; 289 mpar_count--;
160 } 290 }
@@ -165,33 +295,43 @@ static int send_pcc_cmd(u16 cmd)
165 /* Flip CMD COMPLETE bit */ 295 /* Flip CMD COMPLETE bit */
166 writew_relaxed(0, &generic_comm_base->status); 296 writew_relaxed(0, &generic_comm_base->status);
167 297
298 pcc_data.platform_owns_pcc = true;
299
168 /* Ring doorbell */ 300 /* Ring doorbell */
169 ret = mbox_send_message(pcc_channel, &cmd); 301 ret = mbox_send_message(pcc_data.pcc_channel, &cmd);
170 if (ret < 0) { 302 if (ret < 0) {
171 pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n", 303 pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
172 cmd, ret); 304 cmd, ret);
173 return ret; 305 goto end;
174 } 306 }
175 307
176 /* 308 /* wait for completion and check for PCC errro bit */
177 * For READs we need to ensure the cmd completed to ensure 309 ret = check_pcc_chan(true);
178 * the ensuing read()s can proceed. For WRITEs we dont care 310
179 * because the actual write()s are done before coming here 311 if (pcc_data.pcc_mrtt)
180 * and the next READ or WRITE will check if the channel 312 last_cmd_cmpl_time = ktime_get();
181 * is busy/free at the entry of this call. 313
182 * 314 if (pcc_data.pcc_channel->mbox->txdone_irq)
183 * If Minimum Request Turnaround Time is non-zero, we need 315 mbox_chan_txdone(pcc_data.pcc_channel, ret);
184 * to record the completion time of both READ and WRITE 316 else
185 * command for proper handling of MRTT, so we need to check 317 mbox_client_txdone(pcc_data.pcc_channel, ret);
186 * for pcc_mrtt in addition to CMD_READ 318
187 */ 319end:
188 if (cmd == CMD_READ || pcc_mrtt) { 320 if (cmd == CMD_WRITE) {
189 ret = check_pcc_chan(); 321 if (unlikely(ret)) {
190 if (pcc_mrtt) 322 for_each_possible_cpu(i) {
191 last_cmd_cmpl_time = ktime_get(); 323 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
324 if (!desc)
325 continue;
326
327 if (desc->write_cmd_id == pcc_data.pcc_write_cnt)
328 desc->write_cmd_status = ret;
329 }
330 }
331 pcc_data.pcc_write_cnt++;
332 wake_up_all(&pcc_data.pcc_write_wait_q);
192 } 333 }
193 334
194 mbox_client_txdone(pcc_channel, ret);
195 return ret; 335 return ret;
196} 336}
197 337
@@ -272,13 +412,13 @@ end:
272 * 412 *
273 * Return: 0 for success or negative value for err. 413 * Return: 0 for success or negative value for err.
274 */ 414 */
275int acpi_get_psd_map(struct cpudata **all_cpu_data) 415int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
276{ 416{
277 int count_target; 417 int count_target;
278 int retval = 0; 418 int retval = 0;
279 unsigned int i, j; 419 unsigned int i, j;
280 cpumask_var_t covered_cpus; 420 cpumask_var_t covered_cpus;
281 struct cpudata *pr, *match_pr; 421 struct cppc_cpudata *pr, *match_pr;
282 struct acpi_psd_package *pdomain; 422 struct acpi_psd_package *pdomain;
283 struct acpi_psd_package *match_pdomain; 423 struct acpi_psd_package *match_pdomain;
284 struct cpc_desc *cpc_ptr, *match_cpc_ptr; 424 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
@@ -394,14 +534,13 @@ EXPORT_SYMBOL_GPL(acpi_get_psd_map);
394static int register_pcc_channel(int pcc_subspace_idx) 534static int register_pcc_channel(int pcc_subspace_idx)
395{ 535{
396 struct acpi_pcct_hw_reduced *cppc_ss; 536 struct acpi_pcct_hw_reduced *cppc_ss;
397 unsigned int len;
398 u64 usecs_lat; 537 u64 usecs_lat;
399 538
400 if (pcc_subspace_idx >= 0) { 539 if (pcc_subspace_idx >= 0) {
401 pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl, 540 pcc_data.pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
402 pcc_subspace_idx); 541 pcc_subspace_idx);
403 542
404 if (IS_ERR(pcc_channel)) { 543 if (IS_ERR(pcc_data.pcc_channel)) {
405 pr_err("Failed to find PCC communication channel\n"); 544 pr_err("Failed to find PCC communication channel\n");
406 return -ENODEV; 545 return -ENODEV;
407 } 546 }
@@ -412,7 +551,7 @@ static int register_pcc_channel(int pcc_subspace_idx)
412 * PCC channels) and stored pointers to the 551 * PCC channels) and stored pointers to the
413 * subspace communication region in con_priv. 552 * subspace communication region in con_priv.
414 */ 553 */
415 cppc_ss = pcc_channel->con_priv; 554 cppc_ss = (pcc_data.pcc_channel)->con_priv;
416 555
417 if (!cppc_ss) { 556 if (!cppc_ss) {
418 pr_err("No PCC subspace found for CPPC\n"); 557 pr_err("No PCC subspace found for CPPC\n");
@@ -420,35 +559,42 @@ static int register_pcc_channel(int pcc_subspace_idx)
420 } 559 }
421 560
422 /* 561 /*
423 * This is the shared communication region
424 * for the OS and Platform to communicate over.
425 */
426 comm_base_addr = cppc_ss->base_address;
427 len = cppc_ss->length;
428
429 /*
430 * cppc_ss->latency is just a Nominal value. In reality 562 * cppc_ss->latency is just a Nominal value. In reality
431 * the remote processor could be much slower to reply. 563 * the remote processor could be much slower to reply.
432 * So add an arbitrary amount of wait on top of Nominal. 564 * So add an arbitrary amount of wait on top of Nominal.
433 */ 565 */
434 usecs_lat = NUM_RETRIES * cppc_ss->latency; 566 usecs_lat = NUM_RETRIES * cppc_ss->latency;
435 deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC); 567 pcc_data.deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
436 pcc_mrtt = cppc_ss->min_turnaround_time; 568 pcc_data.pcc_mrtt = cppc_ss->min_turnaround_time;
437 pcc_mpar = cppc_ss->max_access_rate; 569 pcc_data.pcc_mpar = cppc_ss->max_access_rate;
570 pcc_data.pcc_nominal = cppc_ss->latency;
438 571
439 pcc_comm_addr = acpi_os_ioremap(comm_base_addr, len); 572 pcc_data.pcc_comm_addr = acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
440 if (!pcc_comm_addr) { 573 if (!pcc_data.pcc_comm_addr) {
441 pr_err("Failed to ioremap PCC comm region mem\n"); 574 pr_err("Failed to ioremap PCC comm region mem\n");
442 return -ENOMEM; 575 return -ENOMEM;
443 } 576 }
444 577
445 /* Set flag so that we dont come here for each CPU. */ 578 /* Set flag so that we dont come here for each CPU. */
446 pcc_channel_acquired = true; 579 pcc_data.pcc_channel_acquired = true;
447 } 580 }
448 581
449 return 0; 582 return 0;
450} 583}
451 584
585/**
586 * cpc_ffh_supported() - check if FFH reading supported
587 *
588 * Check if the architecture has support for functional fixed hardware
589 * read/write capability.
590 *
591 * Return: true for supported, false for not supported
592 */
593bool __weak cpc_ffh_supported(void)
594{
595 return false;
596}
597
452/* 598/*
453 * An example CPC table looks like the following. 599 * An example CPC table looks like the following.
454 * 600 *
@@ -507,6 +653,7 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
507 union acpi_object *out_obj, *cpc_obj; 653 union acpi_object *out_obj, *cpc_obj;
508 struct cpc_desc *cpc_ptr; 654 struct cpc_desc *cpc_ptr;
509 struct cpc_reg *gas_t; 655 struct cpc_reg *gas_t;
656 struct device *cpu_dev;
510 acpi_handle handle = pr->handle; 657 acpi_handle handle = pr->handle;
511 unsigned int num_ent, i, cpc_rev; 658 unsigned int num_ent, i, cpc_rev;
512 acpi_status status; 659 acpi_status status;
@@ -545,6 +692,8 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
545 goto out_free; 692 goto out_free;
546 } 693 }
547 694
695 cpc_ptr->num_entries = num_ent;
696
548 /* Second entry should be revision. */ 697 /* Second entry should be revision. */
549 cpc_obj = &out_obj->package.elements[1]; 698 cpc_obj = &out_obj->package.elements[1];
550 if (cpc_obj->type == ACPI_TYPE_INTEGER) { 699 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
@@ -579,16 +728,27 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
579 * so extract it only once. 728 * so extract it only once.
580 */ 729 */
581 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { 730 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
582 if (pcc_subspace_idx < 0) 731 if (pcc_data.pcc_subspace_idx < 0)
583 pcc_subspace_idx = gas_t->access_width; 732 pcc_data.pcc_subspace_idx = gas_t->access_width;
584 else if (pcc_subspace_idx != gas_t->access_width) { 733 else if (pcc_data.pcc_subspace_idx != gas_t->access_width) {
585 pr_debug("Mismatched PCC ids.\n"); 734 pr_debug("Mismatched PCC ids.\n");
586 goto out_free; 735 goto out_free;
587 } 736 }
588 } else if (gas_t->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) { 737 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
589 /* Support only PCC and SYS MEM type regs */ 738 if (gas_t->address) {
590 pr_debug("Unsupported register type: %d\n", gas_t->space_id); 739 void __iomem *addr;
591 goto out_free; 740
741 addr = ioremap(gas_t->address, gas_t->bit_width/8);
742 if (!addr)
743 goto out_free;
744 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
745 }
746 } else {
747 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
748 /* Support only PCC ,SYS MEM and FFH type regs */
749 pr_debug("Unsupported register type: %d\n", gas_t->space_id);
750 goto out_free;
751 }
592 } 752 }
593 753
594 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER; 754 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
@@ -607,10 +767,13 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
607 goto out_free; 767 goto out_free;
608 768
609 /* Register PCC channel once for all CPUs. */ 769 /* Register PCC channel once for all CPUs. */
610 if (!pcc_channel_acquired) { 770 if (!pcc_data.pcc_channel_acquired) {
611 ret = register_pcc_channel(pcc_subspace_idx); 771 ret = register_pcc_channel(pcc_data.pcc_subspace_idx);
612 if (ret) 772 if (ret)
613 goto out_free; 773 goto out_free;
774
775 init_rwsem(&pcc_data.pcc_lock);
776 init_waitqueue_head(&pcc_data.pcc_write_wait_q);
614 } 777 }
615 778
616 /* Plug PSD data into this CPUs CPC descriptor. */ 779 /* Plug PSD data into this CPUs CPC descriptor. */
@@ -619,10 +782,27 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
619 /* Everything looks okay */ 782 /* Everything looks okay */
620 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id); 783 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
621 784
785 /* Add per logical CPU nodes for reading its feedback counters. */
786 cpu_dev = get_cpu_device(pr->id);
787 if (!cpu_dev)
788 goto out_free;
789
790 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
791 "acpi_cppc");
792 if (ret)
793 goto out_free;
794
622 kfree(output.pointer); 795 kfree(output.pointer);
623 return 0; 796 return 0;
624 797
625out_free: 798out_free:
799 /* Free all the mapped sys mem areas for this CPU */
800 for (i = 2; i < cpc_ptr->num_entries; i++) {
801 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
802
803 if (addr)
804 iounmap(addr);
805 }
626 kfree(cpc_ptr); 806 kfree(cpc_ptr);
627 807
628out_buf_free: 808out_buf_free:
@@ -640,26 +820,82 @@ EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
640void acpi_cppc_processor_exit(struct acpi_processor *pr) 820void acpi_cppc_processor_exit(struct acpi_processor *pr)
641{ 821{
642 struct cpc_desc *cpc_ptr; 822 struct cpc_desc *cpc_ptr;
823 unsigned int i;
824 void __iomem *addr;
825
643 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id); 826 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
827
828 /* Free all the mapped sys mem areas for this CPU */
829 for (i = 2; i < cpc_ptr->num_entries; i++) {
830 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
831 if (addr)
832 iounmap(addr);
833 }
834
835 kobject_put(&cpc_ptr->kobj);
644 kfree(cpc_ptr); 836 kfree(cpc_ptr);
645} 837}
646EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit); 838EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
647 839
840/**
841 * cpc_read_ffh() - Read FFH register
842 * @cpunum: cpu number to read
843 * @reg: cppc register information
844 * @val: place holder for return value
845 *
846 * Read bit_width bits from a specified address and bit_offset
847 *
848 * Return: 0 for success and error code
849 */
850int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
851{
852 return -ENOTSUPP;
853}
854
855/**
856 * cpc_write_ffh() - Write FFH register
857 * @cpunum: cpu number to write
858 * @reg: cppc register information
859 * @val: value to write
860 *
861 * Write value of bit_width bits to a specified address and bit_offset
862 *
863 * Return: 0 for success and error code
864 */
865int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
866{
867 return -ENOTSUPP;
868}
869
648/* 870/*
649 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be 871 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
650 * as fast as possible. We have already mapped the PCC subspace during init, so 872 * as fast as possible. We have already mapped the PCC subspace during init, so
651 * we can directly write to it. 873 * we can directly write to it.
652 */ 874 */
653 875
654static int cpc_read(struct cpc_reg *reg, u64 *val) 876static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
655{ 877{
656 int ret_val = 0; 878 int ret_val = 0;
879 void __iomem *vaddr = 0;
880 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
881
882 if (reg_res->type == ACPI_TYPE_INTEGER) {
883 *val = reg_res->cpc_entry.int_value;
884 return ret_val;
885 }
657 886
658 *val = 0; 887 *val = 0;
659 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { 888 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
660 void __iomem *vaddr = GET_PCC_VADDR(reg->address); 889 vaddr = GET_PCC_VADDR(reg->address);
890 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
891 vaddr = reg_res->sys_mem_vaddr;
892 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
893 return cpc_read_ffh(cpu, reg, val);
894 else
895 return acpi_os_read_memory((acpi_physical_address)reg->address,
896 val, reg->bit_width);
661 897
662 switch (reg->bit_width) { 898 switch (reg->bit_width) {
663 case 8: 899 case 8:
664 *val = readb_relaxed(vaddr); 900 *val = readb_relaxed(vaddr);
665 break; 901 break;
@@ -674,23 +910,30 @@ static int cpc_read(struct cpc_reg *reg, u64 *val)
674 break; 910 break;
675 default: 911 default:
676 pr_debug("Error: Cannot read %u bit width from PCC\n", 912 pr_debug("Error: Cannot read %u bit width from PCC\n",
677 reg->bit_width); 913 reg->bit_width);
678 ret_val = -EFAULT; 914 ret_val = -EFAULT;
679 } 915 }
680 } else 916
681 ret_val = acpi_os_read_memory((acpi_physical_address)reg->address,
682 val, reg->bit_width);
683 return ret_val; 917 return ret_val;
684} 918}
685 919
686static int cpc_write(struct cpc_reg *reg, u64 val) 920static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
687{ 921{
688 int ret_val = 0; 922 int ret_val = 0;
923 void __iomem *vaddr = 0;
924 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
925
926 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
927 vaddr = GET_PCC_VADDR(reg->address);
928 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
929 vaddr = reg_res->sys_mem_vaddr;
930 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
931 return cpc_write_ffh(cpu, reg, val);
932 else
933 return acpi_os_write_memory((acpi_physical_address)reg->address,
934 val, reg->bit_width);
689 935
690 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { 936 switch (reg->bit_width) {
691 void __iomem *vaddr = GET_PCC_VADDR(reg->address);
692
693 switch (reg->bit_width) {
694 case 8: 937 case 8:
695 writeb_relaxed(val, vaddr); 938 writeb_relaxed(val, vaddr);
696 break; 939 break;
@@ -705,13 +948,11 @@ static int cpc_write(struct cpc_reg *reg, u64 val)
705 break; 948 break;
706 default: 949 default:
707 pr_debug("Error: Cannot write %u bit width to PCC\n", 950 pr_debug("Error: Cannot write %u bit width to PCC\n",
708 reg->bit_width); 951 reg->bit_width);
709 ret_val = -EFAULT; 952 ret_val = -EFAULT;
710 break; 953 break;
711 } 954 }
712 } else 955
713 ret_val = acpi_os_write_memory((acpi_physical_address)reg->address,
714 val, reg->bit_width);
715 return ret_val; 956 return ret_val;
716} 957}
717 958
@@ -727,8 +968,8 @@ int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
727 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); 968 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
728 struct cpc_register_resource *highest_reg, *lowest_reg, *ref_perf, 969 struct cpc_register_resource *highest_reg, *lowest_reg, *ref_perf,
729 *nom_perf; 970 *nom_perf;
730 u64 high, low, ref, nom; 971 u64 high, low, nom;
731 int ret = 0; 972 int ret = 0, regs_in_pcc = 0;
732 973
733 if (!cpc_desc) { 974 if (!cpc_desc) {
734 pr_debug("No CPC descriptor for CPU:%d\n", cpunum); 975 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
@@ -740,13 +981,11 @@ int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
740 ref_perf = &cpc_desc->cpc_regs[REFERENCE_PERF]; 981 ref_perf = &cpc_desc->cpc_regs[REFERENCE_PERF];
741 nom_perf = &cpc_desc->cpc_regs[NOMINAL_PERF]; 982 nom_perf = &cpc_desc->cpc_regs[NOMINAL_PERF];
742 983
743 spin_lock(&pcc_lock);
744
745 /* Are any of the regs PCC ?*/ 984 /* Are any of the regs PCC ?*/
746 if ((highest_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) || 985 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
747 (lowest_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) || 986 CPC_IN_PCC(ref_perf) || CPC_IN_PCC(nom_perf)) {
748 (ref_perf->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) || 987 regs_in_pcc = 1;
749 (nom_perf->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM)) { 988 down_write(&pcc_data.pcc_lock);
750 /* Ring doorbell once to update PCC subspace */ 989 /* Ring doorbell once to update PCC subspace */
751 if (send_pcc_cmd(CMD_READ) < 0) { 990 if (send_pcc_cmd(CMD_READ) < 0) {
752 ret = -EIO; 991 ret = -EIO;
@@ -754,26 +993,21 @@ int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
754 } 993 }
755 } 994 }
756 995
757 cpc_read(&highest_reg->cpc_entry.reg, &high); 996 cpc_read(cpunum, highest_reg, &high);
758 perf_caps->highest_perf = high; 997 perf_caps->highest_perf = high;
759 998
760 cpc_read(&lowest_reg->cpc_entry.reg, &low); 999 cpc_read(cpunum, lowest_reg, &low);
761 perf_caps->lowest_perf = low; 1000 perf_caps->lowest_perf = low;
762 1001
763 cpc_read(&ref_perf->cpc_entry.reg, &ref); 1002 cpc_read(cpunum, nom_perf, &nom);
764 perf_caps->reference_perf = ref;
765
766 cpc_read(&nom_perf->cpc_entry.reg, &nom);
767 perf_caps->nominal_perf = nom; 1003 perf_caps->nominal_perf = nom;
768 1004
769 if (!ref)
770 perf_caps->reference_perf = perf_caps->nominal_perf;
771
772 if (!high || !low || !nom) 1005 if (!high || !low || !nom)
773 ret = -EFAULT; 1006 ret = -EFAULT;
774 1007
775out_err: 1008out_err:
776 spin_unlock(&pcc_lock); 1009 if (regs_in_pcc)
1010 up_write(&pcc_data.pcc_lock);
777 return ret; 1011 return ret;
778} 1012}
779EXPORT_SYMBOL_GPL(cppc_get_perf_caps); 1013EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
@@ -788,9 +1022,10 @@ EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
788int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs) 1022int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
789{ 1023{
790 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); 1024 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
791 struct cpc_register_resource *delivered_reg, *reference_reg; 1025 struct cpc_register_resource *delivered_reg, *reference_reg,
792 u64 delivered, reference; 1026 *ref_perf_reg, *ctr_wrap_reg;
793 int ret = 0; 1027 u64 delivered, reference, ref_perf, ctr_wrap_time;
1028 int ret = 0, regs_in_pcc = 0;
794 1029
795 if (!cpc_desc) { 1030 if (!cpc_desc) {
796 pr_debug("No CPC descriptor for CPU:%d\n", cpunum); 1031 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
@@ -799,12 +1034,21 @@ int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
799 1034
800 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR]; 1035 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
801 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR]; 1036 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1037 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1038 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
802 1039
803 spin_lock(&pcc_lock); 1040 /*
1041 * If refernce perf register is not supported then we should
1042 * use the nominal perf value
1043 */
1044 if (!CPC_SUPPORTED(ref_perf_reg))
1045 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
804 1046
805 /* Are any of the regs PCC ?*/ 1047 /* Are any of the regs PCC ?*/
806 if ((delivered_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) || 1048 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
807 (reference_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM)) { 1049 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1050 down_write(&pcc_data.pcc_lock);
1051 regs_in_pcc = 1;
808 /* Ring doorbell once to update PCC subspace */ 1052 /* Ring doorbell once to update PCC subspace */
809 if (send_pcc_cmd(CMD_READ) < 0) { 1053 if (send_pcc_cmd(CMD_READ) < 0) {
810 ret = -EIO; 1054 ret = -EIO;
@@ -812,25 +1056,31 @@ int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
812 } 1056 }
813 } 1057 }
814 1058
815 cpc_read(&delivered_reg->cpc_entry.reg, &delivered); 1059 cpc_read(cpunum, delivered_reg, &delivered);
816 cpc_read(&reference_reg->cpc_entry.reg, &reference); 1060 cpc_read(cpunum, reference_reg, &reference);
1061 cpc_read(cpunum, ref_perf_reg, &ref_perf);
817 1062
818 if (!delivered || !reference) { 1063 /*
1064 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1065 * performance counters are assumed to never wrap during the lifetime of
1066 * platform
1067 */
1068 ctr_wrap_time = (u64)(~((u64)0));
1069 if (CPC_SUPPORTED(ctr_wrap_reg))
1070 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1071
1072 if (!delivered || !reference || !ref_perf) {
819 ret = -EFAULT; 1073 ret = -EFAULT;
820 goto out_err; 1074 goto out_err;
821 } 1075 }
822 1076
823 perf_fb_ctrs->delivered = delivered; 1077 perf_fb_ctrs->delivered = delivered;
824 perf_fb_ctrs->reference = reference; 1078 perf_fb_ctrs->reference = reference;
825 1079 perf_fb_ctrs->reference_perf = ref_perf;
826 perf_fb_ctrs->delivered -= perf_fb_ctrs->prev_delivered; 1080 perf_fb_ctrs->ctr_wrap_time = ctr_wrap_time;
827 perf_fb_ctrs->reference -= perf_fb_ctrs->prev_reference;
828
829 perf_fb_ctrs->prev_delivered = delivered;
830 perf_fb_ctrs->prev_reference = reference;
831
832out_err: 1081out_err:
833 spin_unlock(&pcc_lock); 1082 if (regs_in_pcc)
1083 up_write(&pcc_data.pcc_lock);
834 return ret; 1084 return ret;
835} 1085}
836EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs); 1086EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
@@ -855,30 +1105,142 @@ int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
855 1105
856 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF]; 1106 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
857 1107
858 spin_lock(&pcc_lock); 1108 /*
859 1109 * This is Phase-I where we want to write to CPC registers
860 /* If this is PCC reg, check if channel is free before writing */ 1110 * -> We want all CPUs to be able to execute this phase in parallel
861 if (desired_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { 1111 *
862 ret = check_pcc_chan(); 1112 * Since read_lock can be acquired by multiple CPUs simultaneously we
863 if (ret) 1113 * achieve that goal here
864 goto busy_channel; 1114 */
1115 if (CPC_IN_PCC(desired_reg)) {
1116 down_read(&pcc_data.pcc_lock); /* BEGIN Phase-I */
1117 if (pcc_data.platform_owns_pcc) {
1118 ret = check_pcc_chan(false);
1119 if (ret) {
1120 up_read(&pcc_data.pcc_lock);
1121 return ret;
1122 }
1123 }
1124 /*
1125 * Update the pending_write to make sure a PCC CMD_READ will not
1126 * arrive and steal the channel during the switch to write lock
1127 */
1128 pcc_data.pending_pcc_write_cmd = true;
1129 cpc_desc->write_cmd_id = pcc_data.pcc_write_cnt;
1130 cpc_desc->write_cmd_status = 0;
865 } 1131 }
866 1132
867 /* 1133 /*
868 * Skip writing MIN/MAX until Linux knows how to come up with 1134 * Skip writing MIN/MAX until Linux knows how to come up with
869 * useful values. 1135 * useful values.
870 */ 1136 */
871 cpc_write(&desired_reg->cpc_entry.reg, perf_ctrls->desired_perf); 1137 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
872 1138
873 /* Is this a PCC reg ?*/ 1139 if (CPC_IN_PCC(desired_reg))
874 if (desired_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { 1140 up_read(&pcc_data.pcc_lock); /* END Phase-I */
875 /* Ring doorbell so Remote can get our perf request. */ 1141 /*
876 if (send_pcc_cmd(CMD_WRITE) < 0) 1142 * This is Phase-II where we transfer the ownership of PCC to Platform
877 ret = -EIO; 1143 *
1144 * Short Summary: Basically if we think of a group of cppc_set_perf
1145 * requests that happened in short overlapping interval. The last CPU to
1146 * come out of Phase-I will enter Phase-II and ring the doorbell.
1147 *
1148 * We have the following requirements for Phase-II:
1149 * 1. We want to execute Phase-II only when there are no CPUs
1150 * currently executing in Phase-I
1151 * 2. Once we start Phase-II we want to avoid all other CPUs from
1152 * entering Phase-I.
1153 * 3. We want only one CPU among all those who went through Phase-I
1154 * to run phase-II
1155 *
1156 * If write_trylock fails to get the lock and doesn't transfer the
1157 * PCC ownership to the platform, then one of the following will be TRUE
1158 * 1. There is at-least one CPU in Phase-I which will later execute
1159 * write_trylock, so the CPUs in Phase-I will be responsible for
1160 * executing the Phase-II.
1161 * 2. Some other CPU has beaten this CPU to successfully execute the
1162 * write_trylock and has already acquired the write_lock. We know for a
1163 * fact it(other CPU acquiring the write_lock) couldn't have happened
1164 * before this CPU's Phase-I as we held the read_lock.
1165 * 3. Some other CPU executing pcc CMD_READ has stolen the
1166 * down_write, in which case, send_pcc_cmd will check for pending
1167 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1168 * So this CPU can be certain that its request will be delivered
1169 * So in all cases, this CPU knows that its request will be delivered
1170 * by another CPU and can return
1171 *
1172 * After getting the down_write we still need to check for
1173 * pending_pcc_write_cmd to take care of the following scenario
1174 * The thread running this code could be scheduled out between
1175 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1176 * could have delivered the request to Platform by triggering the
1177 * doorbell and transferred the ownership of PCC to platform. So this
1178 * avoids triggering an unnecessary doorbell and more importantly before
1179 * triggering the doorbell it makes sure that the PCC channel ownership
1180 * is still with OSPM.
1181 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1182 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1183 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1184 * case during a CMD_READ and if there are pending writes it delivers
1185 * the write command before servicing the read command
1186 */
1187 if (CPC_IN_PCC(desired_reg)) {
1188 if (down_write_trylock(&pcc_data.pcc_lock)) { /* BEGIN Phase-II */
1189 /* Update only if there are pending write commands */
1190 if (pcc_data.pending_pcc_write_cmd)
1191 send_pcc_cmd(CMD_WRITE);
1192 up_write(&pcc_data.pcc_lock); /* END Phase-II */
1193 } else
1194 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1195 wait_event(pcc_data.pcc_write_wait_q,
1196 cpc_desc->write_cmd_id != pcc_data.pcc_write_cnt);
1197
1198 /* send_pcc_cmd updates the status in case of failure */
1199 ret = cpc_desc->write_cmd_status;
878 } 1200 }
879busy_channel:
880 spin_unlock(&pcc_lock);
881
882 return ret; 1201 return ret;
883} 1202}
884EXPORT_SYMBOL_GPL(cppc_set_perf); 1203EXPORT_SYMBOL_GPL(cppc_set_perf);
1204
1205/**
1206 * cppc_get_transition_latency - returns frequency transition latency in ns
1207 *
1208 * ACPI CPPC does not explicitly specifiy how a platform can specify the
1209 * transition latency for perfromance change requests. The closest we have
1210 * is the timing information from the PCCT tables which provides the info
1211 * on the number and frequency of PCC commands the platform can handle.
1212 */
1213unsigned int cppc_get_transition_latency(int cpu_num)
1214{
1215 /*
1216 * Expected transition latency is based on the PCCT timing values
1217 * Below are definition from ACPI spec:
1218 * pcc_nominal- Expected latency to process a command, in microseconds
1219 * pcc_mpar - The maximum number of periodic requests that the subspace
1220 * channel can support, reported in commands per minute. 0
1221 * indicates no limitation.
1222 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1223 * completion of a command before issuing the next command,
1224 * in microseconds.
1225 */
1226 unsigned int latency_ns = 0;
1227 struct cpc_desc *cpc_desc;
1228 struct cpc_register_resource *desired_reg;
1229
1230 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1231 if (!cpc_desc)
1232 return CPUFREQ_ETERNAL;
1233
1234 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1235 if (!CPC_IN_PCC(desired_reg))
1236 return CPUFREQ_ETERNAL;
1237
1238 if (pcc_data.pcc_mpar)
1239 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_data.pcc_mpar);
1240
1241 latency_ns = max(latency_ns, pcc_data.pcc_nominal * 1000);
1242 latency_ns = max(latency_ns, pcc_data.pcc_mrtt * 1000);
1243
1244 return latency_ns;
1245}
1246EXPORT_SYMBOL_GPL(cppc_get_transition_latency);