diff options
| -rw-r--r-- | include/uapi/linux/bpf.h | 7 | ||||
| -rw-r--r-- | kernel/bpf/Makefile | 2 | ||||
| -rw-r--r-- | kernel/bpf/lpm_trie.c | 503 |
3 files changed, 511 insertions, 1 deletions
diff --git a/include/uapi/linux/bpf.h b/include/uapi/linux/bpf.h index 54a5894bb4ea..bd3068485410 100644 --- a/include/uapi/linux/bpf.h +++ b/include/uapi/linux/bpf.h | |||
| @@ -63,6 +63,12 @@ struct bpf_insn { | |||
| 63 | __s32 imm; /* signed immediate constant */ | 63 | __s32 imm; /* signed immediate constant */ |
| 64 | }; | 64 | }; |
| 65 | 65 | ||
| 66 | /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */ | ||
| 67 | struct bpf_lpm_trie_key { | ||
| 68 | __u32 prefixlen; /* up to 32 for AF_INET, 128 for AF_INET6 */ | ||
| 69 | __u8 data[0]; /* Arbitrary size */ | ||
| 70 | }; | ||
| 71 | |||
| 66 | /* BPF syscall commands, see bpf(2) man-page for details. */ | 72 | /* BPF syscall commands, see bpf(2) man-page for details. */ |
| 67 | enum bpf_cmd { | 73 | enum bpf_cmd { |
| 68 | BPF_MAP_CREATE, | 74 | BPF_MAP_CREATE, |
| @@ -89,6 +95,7 @@ enum bpf_map_type { | |||
| 89 | BPF_MAP_TYPE_CGROUP_ARRAY, | 95 | BPF_MAP_TYPE_CGROUP_ARRAY, |
| 90 | BPF_MAP_TYPE_LRU_HASH, | 96 | BPF_MAP_TYPE_LRU_HASH, |
| 91 | BPF_MAP_TYPE_LRU_PERCPU_HASH, | 97 | BPF_MAP_TYPE_LRU_PERCPU_HASH, |
| 98 | BPF_MAP_TYPE_LPM_TRIE, | ||
| 92 | }; | 99 | }; |
| 93 | 100 | ||
| 94 | enum bpf_prog_type { | 101 | enum bpf_prog_type { |
diff --git a/kernel/bpf/Makefile b/kernel/bpf/Makefile index 1276474ac3cd..e1ce4f4fd7fd 100644 --- a/kernel/bpf/Makefile +++ b/kernel/bpf/Makefile | |||
| @@ -1,7 +1,7 @@ | |||
| 1 | obj-y := core.o | 1 | obj-y := core.o |
| 2 | 2 | ||
| 3 | obj-$(CONFIG_BPF_SYSCALL) += syscall.o verifier.o inode.o helpers.o | 3 | obj-$(CONFIG_BPF_SYSCALL) += syscall.o verifier.o inode.o helpers.o |
| 4 | obj-$(CONFIG_BPF_SYSCALL) += hashtab.o arraymap.o percpu_freelist.o bpf_lru_list.o | 4 | obj-$(CONFIG_BPF_SYSCALL) += hashtab.o arraymap.o percpu_freelist.o bpf_lru_list.o lpm_trie.o |
| 5 | ifeq ($(CONFIG_PERF_EVENTS),y) | 5 | ifeq ($(CONFIG_PERF_EVENTS),y) |
| 6 | obj-$(CONFIG_BPF_SYSCALL) += stackmap.o | 6 | obj-$(CONFIG_BPF_SYSCALL) += stackmap.o |
| 7 | endif | 7 | endif |
diff --git a/kernel/bpf/lpm_trie.c b/kernel/bpf/lpm_trie.c new file mode 100644 index 000000000000..ba19241d1979 --- /dev/null +++ b/kernel/bpf/lpm_trie.c | |||
| @@ -0,0 +1,503 @@ | |||
| 1 | /* | ||
| 2 | * Longest prefix match list implementation | ||
| 3 | * | ||
| 4 | * Copyright (c) 2016,2017 Daniel Mack | ||
| 5 | * Copyright (c) 2016 David Herrmann | ||
| 6 | * | ||
| 7 | * This file is subject to the terms and conditions of version 2 of the GNU | ||
| 8 | * General Public License. See the file COPYING in the main directory of the | ||
| 9 | * Linux distribution for more details. | ||
| 10 | */ | ||
| 11 | |||
| 12 | #include <linux/bpf.h> | ||
| 13 | #include <linux/err.h> | ||
| 14 | #include <linux/slab.h> | ||
| 15 | #include <linux/spinlock.h> | ||
| 16 | #include <linux/vmalloc.h> | ||
| 17 | #include <net/ipv6.h> | ||
| 18 | |||
| 19 | /* Intermediate node */ | ||
| 20 | #define LPM_TREE_NODE_FLAG_IM BIT(0) | ||
| 21 | |||
| 22 | struct lpm_trie_node; | ||
| 23 | |||
| 24 | struct lpm_trie_node { | ||
| 25 | struct rcu_head rcu; | ||
| 26 | struct lpm_trie_node __rcu *child[2]; | ||
| 27 | u32 prefixlen; | ||
| 28 | u32 flags; | ||
| 29 | u8 data[0]; | ||
| 30 | }; | ||
| 31 | |||
| 32 | struct lpm_trie { | ||
| 33 | struct bpf_map map; | ||
| 34 | struct lpm_trie_node __rcu *root; | ||
| 35 | size_t n_entries; | ||
| 36 | size_t max_prefixlen; | ||
| 37 | size_t data_size; | ||
| 38 | raw_spinlock_t lock; | ||
| 39 | }; | ||
| 40 | |||
| 41 | /* This trie implements a longest prefix match algorithm that can be used to | ||
| 42 | * match IP addresses to a stored set of ranges. | ||
| 43 | * | ||
| 44 | * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is | ||
| 45 | * interpreted as big endian, so data[0] stores the most significant byte. | ||
| 46 | * | ||
| 47 | * Match ranges are internally stored in instances of struct lpm_trie_node | ||
| 48 | * which each contain their prefix length as well as two pointers that may | ||
| 49 | * lead to more nodes containing more specific matches. Each node also stores | ||
| 50 | * a value that is defined by and returned to userspace via the update_elem | ||
| 51 | * and lookup functions. | ||
| 52 | * | ||
| 53 | * For instance, let's start with a trie that was created with a prefix length | ||
| 54 | * of 32, so it can be used for IPv4 addresses, and one single element that | ||
| 55 | * matches 192.168.0.0/16. The data array would hence contain | ||
| 56 | * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will | ||
| 57 | * stick to IP-address notation for readability though. | ||
| 58 | * | ||
| 59 | * As the trie is empty initially, the new node (1) will be places as root | ||
| 60 | * node, denoted as (R) in the example below. As there are no other node, both | ||
| 61 | * child pointers are %NULL. | ||
| 62 | * | ||
| 63 | * +----------------+ | ||
| 64 | * | (1) (R) | | ||
| 65 | * | 192.168.0.0/16 | | ||
| 66 | * | value: 1 | | ||
| 67 | * | [0] [1] | | ||
| 68 | * +----------------+ | ||
| 69 | * | ||
| 70 | * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already | ||
| 71 | * a node with the same data and a smaller prefix (ie, a less specific one), | ||
| 72 | * node (2) will become a child of (1). In child index depends on the next bit | ||
| 73 | * that is outside of what (1) matches, and that bit is 0, so (2) will be | ||
| 74 | * child[0] of (1): | ||
| 75 | * | ||
| 76 | * +----------------+ | ||
| 77 | * | (1) (R) | | ||
| 78 | * | 192.168.0.0/16 | | ||
| 79 | * | value: 1 | | ||
| 80 | * | [0] [1] | | ||
| 81 | * +----------------+ | ||
| 82 | * | | ||
| 83 | * +----------------+ | ||
| 84 | * | (2) | | ||
| 85 | * | 192.168.0.0/24 | | ||
| 86 | * | value: 2 | | ||
| 87 | * | [0] [1] | | ||
| 88 | * +----------------+ | ||
| 89 | * | ||
| 90 | * The child[1] slot of (1) could be filled with another node which has bit #17 | ||
| 91 | * (the next bit after the ones that (1) matches on) set to 1. For instance, | ||
| 92 | * 192.168.128.0/24: | ||
| 93 | * | ||
| 94 | * +----------------+ | ||
| 95 | * | (1) (R) | | ||
| 96 | * | 192.168.0.0/16 | | ||
| 97 | * | value: 1 | | ||
| 98 | * | [0] [1] | | ||
| 99 | * +----------------+ | ||
| 100 | * | | | ||
| 101 | * +----------------+ +------------------+ | ||
| 102 | * | (2) | | (3) | | ||
| 103 | * | 192.168.0.0/24 | | 192.168.128.0/24 | | ||
| 104 | * | value: 2 | | value: 3 | | ||
| 105 | * | [0] [1] | | [0] [1] | | ||
| 106 | * +----------------+ +------------------+ | ||
| 107 | * | ||
| 108 | * Let's add another node (4) to the game for 192.168.1.0/24. In order to place | ||
| 109 | * it, node (1) is looked at first, and because (4) of the semantics laid out | ||
| 110 | * above (bit #17 is 0), it would normally be attached to (1) as child[0]. | ||
| 111 | * However, that slot is already allocated, so a new node is needed in between. | ||
| 112 | * That node does not have a value attached to it and it will never be | ||
| 113 | * returned to users as result of a lookup. It is only there to differentiate | ||
| 114 | * the traversal further. It will get a prefix as wide as necessary to | ||
| 115 | * distinguish its two children: | ||
| 116 | * | ||
| 117 | * +----------------+ | ||
| 118 | * | (1) (R) | | ||
| 119 | * | 192.168.0.0/16 | | ||
| 120 | * | value: 1 | | ||
| 121 | * | [0] [1] | | ||
| 122 | * +----------------+ | ||
| 123 | * | | | ||
| 124 | * +----------------+ +------------------+ | ||
| 125 | * | (4) (I) | | (3) | | ||
| 126 | * | 192.168.0.0/23 | | 192.168.128.0/24 | | ||
| 127 | * | value: --- | | value: 3 | | ||
| 128 | * | [0] [1] | | [0] [1] | | ||
| 129 | * +----------------+ +------------------+ | ||
| 130 | * | | | ||
| 131 | * +----------------+ +----------------+ | ||
| 132 | * | (2) | | (5) | | ||
| 133 | * | 192.168.0.0/24 | | 192.168.1.0/24 | | ||
| 134 | * | value: 2 | | value: 5 | | ||
| 135 | * | [0] [1] | | [0] [1] | | ||
| 136 | * +----------------+ +----------------+ | ||
| 137 | * | ||
| 138 | * 192.168.1.1/32 would be a child of (5) etc. | ||
| 139 | * | ||
| 140 | * An intermediate node will be turned into a 'real' node on demand. In the | ||
| 141 | * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie. | ||
| 142 | * | ||
| 143 | * A fully populated trie would have a height of 32 nodes, as the trie was | ||
| 144 | * created with a prefix length of 32. | ||
| 145 | * | ||
| 146 | * The lookup starts at the root node. If the current node matches and if there | ||
| 147 | * is a child that can be used to become more specific, the trie is traversed | ||
| 148 | * downwards. The last node in the traversal that is a non-intermediate one is | ||
| 149 | * returned. | ||
| 150 | */ | ||
| 151 | |||
| 152 | static inline int extract_bit(const u8 *data, size_t index) | ||
| 153 | { | ||
| 154 | return !!(data[index / 8] & (1 << (7 - (index % 8)))); | ||
| 155 | } | ||
| 156 | |||
| 157 | /** | ||
| 158 | * longest_prefix_match() - determine the longest prefix | ||
| 159 | * @trie: The trie to get internal sizes from | ||
| 160 | * @node: The node to operate on | ||
| 161 | * @key: The key to compare to @node | ||
| 162 | * | ||
| 163 | * Determine the longest prefix of @node that matches the bits in @key. | ||
| 164 | */ | ||
| 165 | static size_t longest_prefix_match(const struct lpm_trie *trie, | ||
| 166 | const struct lpm_trie_node *node, | ||
| 167 | const struct bpf_lpm_trie_key *key) | ||
| 168 | { | ||
| 169 | size_t prefixlen = 0; | ||
| 170 | size_t i; | ||
| 171 | |||
| 172 | for (i = 0; i < trie->data_size; i++) { | ||
| 173 | size_t b; | ||
| 174 | |||
| 175 | b = 8 - fls(node->data[i] ^ key->data[i]); | ||
| 176 | prefixlen += b; | ||
| 177 | |||
| 178 | if (prefixlen >= node->prefixlen || prefixlen >= key->prefixlen) | ||
| 179 | return min(node->prefixlen, key->prefixlen); | ||
| 180 | |||
| 181 | if (b < 8) | ||
| 182 | break; | ||
| 183 | } | ||
| 184 | |||
| 185 | return prefixlen; | ||
| 186 | } | ||
| 187 | |||
| 188 | /* Called from syscall or from eBPF program */ | ||
| 189 | static void *trie_lookup_elem(struct bpf_map *map, void *_key) | ||
| 190 | { | ||
| 191 | struct lpm_trie *trie = container_of(map, struct lpm_trie, map); | ||
| 192 | struct lpm_trie_node *node, *found = NULL; | ||
| 193 | struct bpf_lpm_trie_key *key = _key; | ||
| 194 | |||
| 195 | /* Start walking the trie from the root node ... */ | ||
| 196 | |||
| 197 | for (node = rcu_dereference(trie->root); node;) { | ||
| 198 | unsigned int next_bit; | ||
| 199 | size_t matchlen; | ||
| 200 | |||
| 201 | /* Determine the longest prefix of @node that matches @key. | ||
| 202 | * If it's the maximum possible prefix for this trie, we have | ||
| 203 | * an exact match and can return it directly. | ||
| 204 | */ | ||
| 205 | matchlen = longest_prefix_match(trie, node, key); | ||
| 206 | if (matchlen == trie->max_prefixlen) { | ||
| 207 | found = node; | ||
| 208 | break; | ||
| 209 | } | ||
| 210 | |||
| 211 | /* If the number of bits that match is smaller than the prefix | ||
| 212 | * length of @node, bail out and return the node we have seen | ||
| 213 | * last in the traversal (ie, the parent). | ||
| 214 | */ | ||
| 215 | if (matchlen < node->prefixlen) | ||
| 216 | break; | ||
| 217 | |||
| 218 | /* Consider this node as return candidate unless it is an | ||
| 219 | * artificially added intermediate one. | ||
| 220 | */ | ||
| 221 | if (!(node->flags & LPM_TREE_NODE_FLAG_IM)) | ||
| 222 | found = node; | ||
| 223 | |||
| 224 | /* If the node match is fully satisfied, let's see if we can | ||
| 225 | * become more specific. Determine the next bit in the key and | ||
| 226 | * traverse down. | ||
| 227 | */ | ||
| 228 | next_bit = extract_bit(key->data, node->prefixlen); | ||
| 229 | node = rcu_dereference(node->child[next_bit]); | ||
| 230 | } | ||
| 231 | |||
| 232 | if (!found) | ||
| 233 | return NULL; | ||
| 234 | |||
| 235 | return found->data + trie->data_size; | ||
| 236 | } | ||
| 237 | |||
| 238 | static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie, | ||
| 239 | const void *value) | ||
| 240 | { | ||
| 241 | struct lpm_trie_node *node; | ||
| 242 | size_t size = sizeof(struct lpm_trie_node) + trie->data_size; | ||
| 243 | |||
| 244 | if (value) | ||
| 245 | size += trie->map.value_size; | ||
| 246 | |||
| 247 | node = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN); | ||
| 248 | if (!node) | ||
| 249 | return NULL; | ||
| 250 | |||
| 251 | node->flags = 0; | ||
| 252 | |||
| 253 | if (value) | ||
| 254 | memcpy(node->data + trie->data_size, value, | ||
| 255 | trie->map.value_size); | ||
| 256 | |||
| 257 | return node; | ||
| 258 | } | ||
| 259 | |||
| 260 | /* Called from syscall or from eBPF program */ | ||
| 261 | static int trie_update_elem(struct bpf_map *map, | ||
| 262 | void *_key, void *value, u64 flags) | ||
| 263 | { | ||
| 264 | struct lpm_trie *trie = container_of(map, struct lpm_trie, map); | ||
| 265 | struct lpm_trie_node *node, *im_node, *new_node = NULL; | ||
| 266 | struct lpm_trie_node __rcu **slot; | ||
| 267 | struct bpf_lpm_trie_key *key = _key; | ||
| 268 | unsigned long irq_flags; | ||
| 269 | unsigned int next_bit; | ||
| 270 | size_t matchlen = 0; | ||
| 271 | int ret = 0; | ||
| 272 | |||
| 273 | if (unlikely(flags > BPF_EXIST)) | ||
| 274 | return -EINVAL; | ||
| 275 | |||
| 276 | if (key->prefixlen > trie->max_prefixlen) | ||
| 277 | return -EINVAL; | ||
| 278 | |||
| 279 | raw_spin_lock_irqsave(&trie->lock, irq_flags); | ||
| 280 | |||
| 281 | /* Allocate and fill a new node */ | ||
| 282 | |||
| 283 | if (trie->n_entries == trie->map.max_entries) { | ||
| 284 | ret = -ENOSPC; | ||
| 285 | goto out; | ||
| 286 | } | ||
| 287 | |||
| 288 | new_node = lpm_trie_node_alloc(trie, value); | ||
| 289 | if (!new_node) { | ||
| 290 | ret = -ENOMEM; | ||
| 291 | goto out; | ||
| 292 | } | ||
| 293 | |||
| 294 | trie->n_entries++; | ||
| 295 | |||
| 296 | new_node->prefixlen = key->prefixlen; | ||
| 297 | RCU_INIT_POINTER(new_node->child[0], NULL); | ||
| 298 | RCU_INIT_POINTER(new_node->child[1], NULL); | ||
| 299 | memcpy(new_node->data, key->data, trie->data_size); | ||
| 300 | |||
| 301 | /* Now find a slot to attach the new node. To do that, walk the tree | ||
| 302 | * from the root and match as many bits as possible for each node until | ||
| 303 | * we either find an empty slot or a slot that needs to be replaced by | ||
| 304 | * an intermediate node. | ||
| 305 | */ | ||
| 306 | slot = &trie->root; | ||
| 307 | |||
| 308 | while ((node = rcu_dereference_protected(*slot, | ||
| 309 | lockdep_is_held(&trie->lock)))) { | ||
| 310 | matchlen = longest_prefix_match(trie, node, key); | ||
| 311 | |||
| 312 | if (node->prefixlen != matchlen || | ||
| 313 | node->prefixlen == key->prefixlen || | ||
| 314 | node->prefixlen == trie->max_prefixlen) | ||
| 315 | break; | ||
| 316 | |||
| 317 | next_bit = extract_bit(key->data, node->prefixlen); | ||
| 318 | slot = &node->child[next_bit]; | ||
| 319 | } | ||
| 320 | |||
| 321 | /* If the slot is empty (a free child pointer or an empty root), | ||
| 322 | * simply assign the @new_node to that slot and be done. | ||
| 323 | */ | ||
| 324 | if (!node) { | ||
| 325 | rcu_assign_pointer(*slot, new_node); | ||
| 326 | goto out; | ||
| 327 | } | ||
| 328 | |||
| 329 | /* If the slot we picked already exists, replace it with @new_node | ||
| 330 | * which already has the correct data array set. | ||
| 331 | */ | ||
| 332 | if (node->prefixlen == matchlen) { | ||
| 333 | new_node->child[0] = node->child[0]; | ||
| 334 | new_node->child[1] = node->child[1]; | ||
| 335 | |||
| 336 | if (!(node->flags & LPM_TREE_NODE_FLAG_IM)) | ||
| 337 | trie->n_entries--; | ||
| 338 | |||
| 339 | rcu_assign_pointer(*slot, new_node); | ||
| 340 | kfree_rcu(node, rcu); | ||
| 341 | |||
| 342 | goto out; | ||
| 343 | } | ||
| 344 | |||
| 345 | /* If the new node matches the prefix completely, it must be inserted | ||
| 346 | * as an ancestor. Simply insert it between @node and *@slot. | ||
| 347 | */ | ||
| 348 | if (matchlen == key->prefixlen) { | ||
| 349 | next_bit = extract_bit(node->data, matchlen); | ||
| 350 | rcu_assign_pointer(new_node->child[next_bit], node); | ||
| 351 | rcu_assign_pointer(*slot, new_node); | ||
| 352 | goto out; | ||
| 353 | } | ||
| 354 | |||
| 355 | im_node = lpm_trie_node_alloc(trie, NULL); | ||
| 356 | if (!im_node) { | ||
| 357 | ret = -ENOMEM; | ||
| 358 | goto out; | ||
| 359 | } | ||
| 360 | |||
| 361 | im_node->prefixlen = matchlen; | ||
| 362 | im_node->flags |= LPM_TREE_NODE_FLAG_IM; | ||
| 363 | memcpy(im_node->data, node->data, trie->data_size); | ||
| 364 | |||
| 365 | /* Now determine which child to install in which slot */ | ||
| 366 | if (extract_bit(key->data, matchlen)) { | ||
| 367 | rcu_assign_pointer(im_node->child[0], node); | ||
| 368 | rcu_assign_pointer(im_node->child[1], new_node); | ||
| 369 | } else { | ||
| 370 | rcu_assign_pointer(im_node->child[0], new_node); | ||
| 371 | rcu_assign_pointer(im_node->child[1], node); | ||
| 372 | } | ||
| 373 | |||
| 374 | /* Finally, assign the intermediate node to the determined spot */ | ||
| 375 | rcu_assign_pointer(*slot, im_node); | ||
| 376 | |||
| 377 | out: | ||
| 378 | if (ret) { | ||
| 379 | if (new_node) | ||
| 380 | trie->n_entries--; | ||
| 381 | |||
| 382 | kfree(new_node); | ||
| 383 | kfree(im_node); | ||
| 384 | } | ||
| 385 | |||
| 386 | raw_spin_unlock_irqrestore(&trie->lock, irq_flags); | ||
| 387 | |||
| 388 | return ret; | ||
| 389 | } | ||
| 390 | |||
| 391 | static int trie_delete_elem(struct bpf_map *map, void *key) | ||
| 392 | { | ||
| 393 | /* TODO */ | ||
| 394 | return -ENOSYS; | ||
| 395 | } | ||
| 396 | |||
| 397 | static struct bpf_map *trie_alloc(union bpf_attr *attr) | ||
| 398 | { | ||
| 399 | size_t cost, cost_per_node; | ||
| 400 | struct lpm_trie *trie; | ||
| 401 | int ret; | ||
| 402 | |||
| 403 | if (!capable(CAP_SYS_ADMIN)) | ||
| 404 | return ERR_PTR(-EPERM); | ||
| 405 | |||
| 406 | /* check sanity of attributes */ | ||
| 407 | if (attr->max_entries == 0 || | ||
| 408 | attr->map_flags != BPF_F_NO_PREALLOC || | ||
| 409 | attr->key_size < sizeof(struct bpf_lpm_trie_key) + 1 || | ||
| 410 | attr->key_size > sizeof(struct bpf_lpm_trie_key) + 256 || | ||
| 411 | attr->value_size == 0) | ||
| 412 | return ERR_PTR(-EINVAL); | ||
| 413 | |||
| 414 | trie = kzalloc(sizeof(*trie), GFP_USER | __GFP_NOWARN); | ||
| 415 | if (!trie) | ||
| 416 | return ERR_PTR(-ENOMEM); | ||
| 417 | |||
| 418 | /* copy mandatory map attributes */ | ||
| 419 | trie->map.map_type = attr->map_type; | ||
| 420 | trie->map.key_size = attr->key_size; | ||
| 421 | trie->map.value_size = attr->value_size; | ||
| 422 | trie->map.max_entries = attr->max_entries; | ||
| 423 | trie->data_size = attr->key_size - | ||
| 424 | offsetof(struct bpf_lpm_trie_key, data); | ||
| 425 | trie->max_prefixlen = trie->data_size * 8; | ||
| 426 | |||
| 427 | cost_per_node = sizeof(struct lpm_trie_node) + | ||
| 428 | attr->value_size + trie->data_size; | ||
| 429 | cost = sizeof(*trie) + attr->max_entries * cost_per_node; | ||
| 430 | trie->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; | ||
| 431 | |||
| 432 | ret = bpf_map_precharge_memlock(trie->map.pages); | ||
| 433 | if (ret) { | ||
| 434 | kfree(trie); | ||
| 435 | return ERR_PTR(ret); | ||
| 436 | } | ||
| 437 | |||
| 438 | raw_spin_lock_init(&trie->lock); | ||
| 439 | |||
| 440 | return &trie->map; | ||
| 441 | } | ||
| 442 | |||
| 443 | static void trie_free(struct bpf_map *map) | ||
| 444 | { | ||
| 445 | struct lpm_trie *trie = container_of(map, struct lpm_trie, map); | ||
| 446 | struct lpm_trie_node __rcu **slot; | ||
| 447 | struct lpm_trie_node *node; | ||
| 448 | |||
| 449 | raw_spin_lock(&trie->lock); | ||
| 450 | |||
| 451 | /* Always start at the root and walk down to a node that has no | ||
| 452 | * children. Then free that node, nullify its reference in the parent | ||
| 453 | * and start over. | ||
| 454 | */ | ||
| 455 | |||
| 456 | for (;;) { | ||
| 457 | slot = &trie->root; | ||
| 458 | |||
| 459 | for (;;) { | ||
| 460 | node = rcu_dereference_protected(*slot, | ||
| 461 | lockdep_is_held(&trie->lock)); | ||
| 462 | if (!node) | ||
| 463 | goto unlock; | ||
| 464 | |||
| 465 | if (rcu_access_pointer(node->child[0])) { | ||
| 466 | slot = &node->child[0]; | ||
| 467 | continue; | ||
| 468 | } | ||
| 469 | |||
| 470 | if (rcu_access_pointer(node->child[1])) { | ||
| 471 | slot = &node->child[1]; | ||
| 472 | continue; | ||
| 473 | } | ||
| 474 | |||
| 475 | kfree(node); | ||
| 476 | RCU_INIT_POINTER(*slot, NULL); | ||
| 477 | break; | ||
| 478 | } | ||
| 479 | } | ||
| 480 | |||
| 481 | unlock: | ||
| 482 | raw_spin_unlock(&trie->lock); | ||
| 483 | } | ||
| 484 | |||
| 485 | static const struct bpf_map_ops trie_ops = { | ||
| 486 | .map_alloc = trie_alloc, | ||
| 487 | .map_free = trie_free, | ||
| 488 | .map_lookup_elem = trie_lookup_elem, | ||
| 489 | .map_update_elem = trie_update_elem, | ||
| 490 | .map_delete_elem = trie_delete_elem, | ||
| 491 | }; | ||
| 492 | |||
| 493 | static struct bpf_map_type_list trie_type __read_mostly = { | ||
| 494 | .ops = &trie_ops, | ||
| 495 | .type = BPF_MAP_TYPE_LPM_TRIE, | ||
| 496 | }; | ||
| 497 | |||
| 498 | static int __init register_trie_map(void) | ||
| 499 | { | ||
| 500 | bpf_register_map_type(&trie_type); | ||
| 501 | return 0; | ||
| 502 | } | ||
| 503 | late_initcall(register_trie_map); | ||
