diff options
author | Nathan O <otternes@cs.unc.edu> | 2019-11-15 11:19:35 -0500 |
---|---|---|
committer | Nathan O <otternes@cs.unc.edu> | 2019-11-15 11:19:35 -0500 |
commit | 2627f203874e04500ea80f6e588cd659bec5866b (patch) | |
tree | feec07a6a87a24460a19808dcd88ba36ad03201d /litmus/sched_gsn_edf.c | |
parent | bf929479893052b1c7bfe23a4e7a903643076350 (diff) |
Re-add LITMUS files, but don't "connect the wires"
- Added the LITMUS^RT source files from the most recent version of
LITMUS (based on the old kernel).
- This change does *not* actually make use of any of the new files,
because I wanted to make sure that any changes for getting LITMUS to
actually work are clearly visible in future commits. If I made any
such changes before committing the files themselves, then it wouldn't
be as easy to see what needed to change in the LITMUS source files,
and the large number of changes would make it more difficult to see
what needed to change in the base Linux sources, too.
Diffstat (limited to 'litmus/sched_gsn_edf.c')
-rw-r--r-- | litmus/sched_gsn_edf.c | 1070 |
1 files changed, 1070 insertions, 0 deletions
diff --git a/litmus/sched_gsn_edf.c b/litmus/sched_gsn_edf.c new file mode 100644 index 000000000000..8f28dc4e5192 --- /dev/null +++ b/litmus/sched_gsn_edf.c | |||
@@ -0,0 +1,1070 @@ | |||
1 | /* | ||
2 | * litmus/sched_gsn_edf.c | ||
3 | * | ||
4 | * Implementation of the GSN-EDF scheduling algorithm. | ||
5 | * | ||
6 | * This version uses the simple approach and serializes all scheduling | ||
7 | * decisions by the use of a queue lock. This is probably not the | ||
8 | * best way to do it, but it should suffice for now. | ||
9 | */ | ||
10 | |||
11 | #include <linux/spinlock.h> | ||
12 | #include <linux/percpu.h> | ||
13 | #include <linux/sched.h> | ||
14 | #include <linux/slab.h> | ||
15 | |||
16 | #include <litmus/debug_trace.h> | ||
17 | #include <litmus/litmus.h> | ||
18 | #include <litmus/jobs.h> | ||
19 | #include <litmus/sched_plugin.h> | ||
20 | #include <litmus/edf_common.h> | ||
21 | #include <litmus/sched_trace.h> | ||
22 | #include <litmus/trace.h> | ||
23 | |||
24 | #include <litmus/preempt.h> | ||
25 | #include <litmus/budget.h> | ||
26 | #include <litmus/np.h> | ||
27 | |||
28 | #include <litmus/bheap.h> | ||
29 | |||
30 | #ifdef CONFIG_SCHED_CPU_AFFINITY | ||
31 | #include <litmus/affinity.h> | ||
32 | #endif | ||
33 | |||
34 | /* to set up domain/cpu mappings */ | ||
35 | #include <litmus/litmus_proc.h> | ||
36 | |||
37 | #include <linux/module.h> | ||
38 | |||
39 | /* Overview of GSN-EDF operations. | ||
40 | * | ||
41 | * For a detailed explanation of GSN-EDF have a look at the FMLP paper. This | ||
42 | * description only covers how the individual operations are implemented in | ||
43 | * LITMUS. | ||
44 | * | ||
45 | * link_task_to_cpu(T, cpu) - Low-level operation to update the linkage | ||
46 | * structure (NOT the actually scheduled | ||
47 | * task). If there is another linked task To | ||
48 | * already it will set To->linked_on = NO_CPU | ||
49 | * (thereby removing its association with this | ||
50 | * CPU). However, it will not requeue the | ||
51 | * previously linked task (if any). It will set | ||
52 | * T's state to not completed and check whether | ||
53 | * it is already running somewhere else. If T | ||
54 | * is scheduled somewhere else it will link | ||
55 | * it to that CPU instead (and pull the linked | ||
56 | * task to cpu). T may be NULL. | ||
57 | * | ||
58 | * unlink(T) - Unlink removes T from all scheduler data | ||
59 | * structures. If it is linked to some CPU it | ||
60 | * will link NULL to that CPU. If it is | ||
61 | * currently queued in the gsnedf queue it will | ||
62 | * be removed from the rt_domain. It is safe to | ||
63 | * call unlink(T) if T is not linked. T may not | ||
64 | * be NULL. | ||
65 | * | ||
66 | * requeue(T) - Requeue will insert T into the appropriate | ||
67 | * queue. If the system is in real-time mode and | ||
68 | * the T is released already, it will go into the | ||
69 | * ready queue. If the system is not in | ||
70 | * real-time mode is T, then T will go into the | ||
71 | * release queue. If T's release time is in the | ||
72 | * future, it will go into the release | ||
73 | * queue. That means that T's release time/job | ||
74 | * no/etc. has to be updated before requeu(T) is | ||
75 | * called. It is not safe to call requeue(T) | ||
76 | * when T is already queued. T may not be NULL. | ||
77 | * | ||
78 | * gsnedf_job_arrival(T) - This is the catch all function when T enters | ||
79 | * the system after either a suspension or at a | ||
80 | * job release. It will queue T (which means it | ||
81 | * is not safe to call gsnedf_job_arrival(T) if | ||
82 | * T is already queued) and then check whether a | ||
83 | * preemption is necessary. If a preemption is | ||
84 | * necessary it will update the linkage | ||
85 | * accordingly and cause scheduled to be called | ||
86 | * (either with an IPI or need_resched). It is | ||
87 | * safe to call gsnedf_job_arrival(T) if T's | ||
88 | * next job has not been actually released yet | ||
89 | * (releast time in the future). T will be put | ||
90 | * on the release queue in that case. | ||
91 | * | ||
92 | * curr_job_completion() - Take care of everything that needs to be done | ||
93 | * to prepare the current task for its next | ||
94 | * release and place it in the right queue with | ||
95 | * gsnedf_job_arrival(). | ||
96 | * | ||
97 | * | ||
98 | * When we now that T is linked to CPU then link_task_to_cpu(NULL, CPU) is | ||
99 | * equivalent to unlink(T). Note that if you unlink a task from a CPU none of | ||
100 | * the functions will automatically propagate pending task from the ready queue | ||
101 | * to a linked task. This is the job of the calling function ( by means of | ||
102 | * __take_ready). | ||
103 | */ | ||
104 | |||
105 | |||
106 | /* cpu_entry_t - maintain the linked and scheduled state | ||
107 | */ | ||
108 | typedef struct { | ||
109 | int cpu; | ||
110 | struct task_struct* linked; /* only RT tasks */ | ||
111 | struct task_struct* scheduled; /* only RT tasks */ | ||
112 | struct bheap_node* hn; | ||
113 | } cpu_entry_t; | ||
114 | DEFINE_PER_CPU(cpu_entry_t, gsnedf_cpu_entries); | ||
115 | |||
116 | cpu_entry_t* gsnedf_cpus[NR_CPUS]; | ||
117 | |||
118 | /* the cpus queue themselves according to priority in here */ | ||
119 | static struct bheap_node gsnedf_heap_node[NR_CPUS]; | ||
120 | static struct bheap gsnedf_cpu_heap; | ||
121 | |||
122 | static rt_domain_t gsnedf; | ||
123 | #define gsnedf_lock (gsnedf.ready_lock) | ||
124 | |||
125 | |||
126 | /* Uncomment this if you want to see all scheduling decisions in the | ||
127 | * TRACE() log. | ||
128 | #define WANT_ALL_SCHED_EVENTS | ||
129 | */ | ||
130 | |||
131 | static int cpu_lower_prio(struct bheap_node *_a, struct bheap_node *_b) | ||
132 | { | ||
133 | cpu_entry_t *a, *b; | ||
134 | a = _a->value; | ||
135 | b = _b->value; | ||
136 | /* Note that a and b are inverted: we want the lowest-priority CPU at | ||
137 | * the top of the heap. | ||
138 | */ | ||
139 | return edf_higher_prio(b->linked, a->linked); | ||
140 | } | ||
141 | |||
142 | /* update_cpu_position - Move the cpu entry to the correct place to maintain | ||
143 | * order in the cpu queue. Caller must hold gsnedf lock. | ||
144 | */ | ||
145 | static void update_cpu_position(cpu_entry_t *entry) | ||
146 | { | ||
147 | if (likely(bheap_node_in_heap(entry->hn))) | ||
148 | bheap_delete(cpu_lower_prio, &gsnedf_cpu_heap, entry->hn); | ||
149 | bheap_insert(cpu_lower_prio, &gsnedf_cpu_heap, entry->hn); | ||
150 | } | ||
151 | |||
152 | /* caller must hold gsnedf lock */ | ||
153 | static cpu_entry_t* lowest_prio_cpu(void) | ||
154 | { | ||
155 | struct bheap_node* hn; | ||
156 | hn = bheap_peek(cpu_lower_prio, &gsnedf_cpu_heap); | ||
157 | return hn->value; | ||
158 | } | ||
159 | |||
160 | |||
161 | /* link_task_to_cpu - Update the link of a CPU. | ||
162 | * Handles the case where the to-be-linked task is already | ||
163 | * scheduled on a different CPU. | ||
164 | */ | ||
165 | static noinline void link_task_to_cpu(struct task_struct* linked, | ||
166 | cpu_entry_t *entry) | ||
167 | { | ||
168 | cpu_entry_t *sched; | ||
169 | struct task_struct* tmp; | ||
170 | int on_cpu; | ||
171 | |||
172 | BUG_ON(linked && !is_realtime(linked)); | ||
173 | |||
174 | /* Currently linked task is set to be unlinked. */ | ||
175 | if (entry->linked) { | ||
176 | entry->linked->rt_param.linked_on = NO_CPU; | ||
177 | } | ||
178 | |||
179 | /* Link new task to CPU. */ | ||
180 | if (linked) { | ||
181 | /* handle task is already scheduled somewhere! */ | ||
182 | on_cpu = linked->rt_param.scheduled_on; | ||
183 | if (on_cpu != NO_CPU) { | ||
184 | sched = &per_cpu(gsnedf_cpu_entries, on_cpu); | ||
185 | /* this should only happen if not linked already */ | ||
186 | BUG_ON(sched->linked == linked); | ||
187 | |||
188 | /* If we are already scheduled on the CPU to which we | ||
189 | * wanted to link, we don't need to do the swap -- | ||
190 | * we just link ourselves to the CPU and depend on | ||
191 | * the caller to get things right. | ||
192 | */ | ||
193 | if (entry != sched) { | ||
194 | TRACE_TASK(linked, | ||
195 | "already scheduled on %d, updating link.\n", | ||
196 | sched->cpu); | ||
197 | tmp = sched->linked; | ||
198 | linked->rt_param.linked_on = sched->cpu; | ||
199 | sched->linked = linked; | ||
200 | update_cpu_position(sched); | ||
201 | linked = tmp; | ||
202 | } | ||
203 | } | ||
204 | if (linked) /* might be NULL due to swap */ | ||
205 | linked->rt_param.linked_on = entry->cpu; | ||
206 | } | ||
207 | entry->linked = linked; | ||
208 | #ifdef WANT_ALL_SCHED_EVENTS | ||
209 | if (linked) | ||
210 | TRACE_TASK(linked, "linked to %d.\n", entry->cpu); | ||
211 | else | ||
212 | TRACE("NULL linked to %d.\n", entry->cpu); | ||
213 | #endif | ||
214 | update_cpu_position(entry); | ||
215 | } | ||
216 | |||
217 | /* unlink - Make sure a task is not linked any longer to an entry | ||
218 | * where it was linked before. Must hold gsnedf_lock. | ||
219 | */ | ||
220 | static noinline void unlink(struct task_struct* t) | ||
221 | { | ||
222 | cpu_entry_t *entry; | ||
223 | |||
224 | if (t->rt_param.linked_on != NO_CPU) { | ||
225 | /* unlink */ | ||
226 | entry = &per_cpu(gsnedf_cpu_entries, t->rt_param.linked_on); | ||
227 | t->rt_param.linked_on = NO_CPU; | ||
228 | link_task_to_cpu(NULL, entry); | ||
229 | } else if (is_queued(t)) { | ||
230 | /* This is an interesting situation: t is scheduled, | ||
231 | * but was just recently unlinked. It cannot be | ||
232 | * linked anywhere else (because then it would have | ||
233 | * been relinked to this CPU), thus it must be in some | ||
234 | * queue. We must remove it from the list in this | ||
235 | * case. | ||
236 | */ | ||
237 | remove(&gsnedf, t); | ||
238 | } | ||
239 | } | ||
240 | |||
241 | |||
242 | /* preempt - force a CPU to reschedule | ||
243 | */ | ||
244 | static void preempt(cpu_entry_t *entry) | ||
245 | { | ||
246 | preempt_if_preemptable(entry->scheduled, entry->cpu); | ||
247 | } | ||
248 | |||
249 | /* requeue - Put an unlinked task into gsn-edf domain. | ||
250 | * Caller must hold gsnedf_lock. | ||
251 | */ | ||
252 | static noinline void requeue(struct task_struct* task) | ||
253 | { | ||
254 | BUG_ON(!task); | ||
255 | /* sanity check before insertion */ | ||
256 | BUG_ON(is_queued(task)); | ||
257 | |||
258 | if (is_early_releasing(task) || is_released(task, litmus_clock())) | ||
259 | __add_ready(&gsnedf, task); | ||
260 | else { | ||
261 | /* it has got to wait */ | ||
262 | add_release(&gsnedf, task); | ||
263 | } | ||
264 | } | ||
265 | |||
266 | #ifdef CONFIG_SCHED_CPU_AFFINITY | ||
267 | static cpu_entry_t* gsnedf_get_nearest_available_cpu(cpu_entry_t *start) | ||
268 | { | ||
269 | cpu_entry_t *affinity; | ||
270 | |||
271 | get_nearest_available_cpu(affinity, start, gsnedf_cpu_entries, | ||
272 | #ifdef CONFIG_RELEASE_MASTER | ||
273 | gsnedf.release_master, | ||
274 | #else | ||
275 | NO_CPU, | ||
276 | #endif | ||
277 | cpu_online_mask); | ||
278 | |||
279 | return(affinity); | ||
280 | } | ||
281 | #endif | ||
282 | |||
283 | /* check for any necessary preemptions */ | ||
284 | static void check_for_preemptions(void) | ||
285 | { | ||
286 | struct task_struct *task; | ||
287 | cpu_entry_t *last; | ||
288 | |||
289 | |||
290 | #ifdef CONFIG_PREFER_LOCAL_LINKING | ||
291 | cpu_entry_t *local; | ||
292 | |||
293 | /* Before linking to other CPUs, check first whether the local CPU is | ||
294 | * idle. */ | ||
295 | local = this_cpu_ptr(&gsnedf_cpu_entries); | ||
296 | task = __peek_ready(&gsnedf); | ||
297 | |||
298 | if (task && !local->linked | ||
299 | #ifdef CONFIG_RELEASE_MASTER | ||
300 | && likely(local->cpu != gsnedf.release_master) | ||
301 | #endif | ||
302 | ) { | ||
303 | task = __take_ready(&gsnedf); | ||
304 | TRACE_TASK(task, "linking to local CPU %d to avoid IPI\n", local->cpu); | ||
305 | link_task_to_cpu(task, local); | ||
306 | preempt(local); | ||
307 | } | ||
308 | #endif | ||
309 | |||
310 | for (last = lowest_prio_cpu(); | ||
311 | edf_preemption_needed(&gsnedf, last->linked); | ||
312 | last = lowest_prio_cpu()) { | ||
313 | /* preemption necessary */ | ||
314 | task = __take_ready(&gsnedf); | ||
315 | TRACE("check_for_preemptions: attempting to link task %d to %d\n", | ||
316 | task->pid, last->cpu); | ||
317 | |||
318 | #ifdef CONFIG_SCHED_CPU_AFFINITY | ||
319 | { | ||
320 | cpu_entry_t *affinity = | ||
321 | gsnedf_get_nearest_available_cpu( | ||
322 | &per_cpu(gsnedf_cpu_entries, task_cpu(task))); | ||
323 | if (affinity) | ||
324 | last = affinity; | ||
325 | else if (requeue_preempted_job(last->linked)) | ||
326 | requeue(last->linked); | ||
327 | } | ||
328 | #else | ||
329 | if (requeue_preempted_job(last->linked)) | ||
330 | requeue(last->linked); | ||
331 | #endif | ||
332 | |||
333 | link_task_to_cpu(task, last); | ||
334 | preempt(last); | ||
335 | } | ||
336 | } | ||
337 | |||
338 | /* gsnedf_job_arrival: task is either resumed or released */ | ||
339 | static noinline void gsnedf_job_arrival(struct task_struct* task) | ||
340 | { | ||
341 | BUG_ON(!task); | ||
342 | |||
343 | requeue(task); | ||
344 | check_for_preemptions(); | ||
345 | } | ||
346 | |||
347 | static void gsnedf_release_jobs(rt_domain_t* rt, struct bheap* tasks) | ||
348 | { | ||
349 | unsigned long flags; | ||
350 | |||
351 | raw_spin_lock_irqsave(&gsnedf_lock, flags); | ||
352 | |||
353 | __merge_ready(rt, tasks); | ||
354 | check_for_preemptions(); | ||
355 | |||
356 | raw_spin_unlock_irqrestore(&gsnedf_lock, flags); | ||
357 | } | ||
358 | |||
359 | /* caller holds gsnedf_lock */ | ||
360 | static noinline void curr_job_completion(int forced) | ||
361 | { | ||
362 | struct task_struct *t = current; | ||
363 | BUG_ON(!t); | ||
364 | |||
365 | sched_trace_task_completion(t, forced); | ||
366 | |||
367 | TRACE_TASK(t, "job_completion(forced=%d).\n", forced); | ||
368 | |||
369 | /* set flags */ | ||
370 | tsk_rt(t)->completed = 0; | ||
371 | /* prepare for next period */ | ||
372 | prepare_for_next_period(t); | ||
373 | if (is_early_releasing(t) || is_released(t, litmus_clock())) | ||
374 | sched_trace_task_release(t); | ||
375 | /* unlink */ | ||
376 | unlink(t); | ||
377 | /* requeue | ||
378 | * But don't requeue a blocking task. */ | ||
379 | if (is_current_running()) | ||
380 | gsnedf_job_arrival(t); | ||
381 | } | ||
382 | |||
383 | /* Getting schedule() right is a bit tricky. schedule() may not make any | ||
384 | * assumptions on the state of the current task since it may be called for a | ||
385 | * number of reasons. The reasons include a scheduler_tick() determined that it | ||
386 | * was necessary, because sys_exit_np() was called, because some Linux | ||
387 | * subsystem determined so, or even (in the worst case) because there is a bug | ||
388 | * hidden somewhere. Thus, we must take extreme care to determine what the | ||
389 | * current state is. | ||
390 | * | ||
391 | * The CPU could currently be scheduling a task (or not), be linked (or not). | ||
392 | * | ||
393 | * The following assertions for the scheduled task could hold: | ||
394 | * | ||
395 | * - !is_running(scheduled) // the job blocks | ||
396 | * - scheduled->timeslice == 0 // the job completed (forcefully) | ||
397 | * - is_completed() // the job completed (by syscall) | ||
398 | * - linked != scheduled // we need to reschedule (for any reason) | ||
399 | * - is_np(scheduled) // rescheduling must be delayed, | ||
400 | * sys_exit_np must be requested | ||
401 | * | ||
402 | * Any of these can occur together. | ||
403 | */ | ||
404 | static struct task_struct* gsnedf_schedule(struct task_struct * prev) | ||
405 | { | ||
406 | cpu_entry_t* entry = this_cpu_ptr(&gsnedf_cpu_entries); | ||
407 | int out_of_time, sleep, preempt, np, exists, blocks; | ||
408 | struct task_struct* next = NULL; | ||
409 | |||
410 | #ifdef CONFIG_RELEASE_MASTER | ||
411 | /* Bail out early if we are the release master. | ||
412 | * The release master never schedules any real-time tasks. | ||
413 | */ | ||
414 | if (unlikely(gsnedf.release_master == entry->cpu)) { | ||
415 | sched_state_task_picked(); | ||
416 | return NULL; | ||
417 | } | ||
418 | #endif | ||
419 | |||
420 | raw_spin_lock(&gsnedf_lock); | ||
421 | |||
422 | /* sanity checking */ | ||
423 | BUG_ON(entry->scheduled && entry->scheduled != prev); | ||
424 | BUG_ON(entry->scheduled && !is_realtime(prev)); | ||
425 | BUG_ON(is_realtime(prev) && !entry->scheduled); | ||
426 | |||
427 | /* (0) Determine state */ | ||
428 | exists = entry->scheduled != NULL; | ||
429 | blocks = exists && !is_current_running(); | ||
430 | out_of_time = exists && budget_enforced(entry->scheduled) | ||
431 | && budget_exhausted(entry->scheduled); | ||
432 | np = exists && is_np(entry->scheduled); | ||
433 | sleep = exists && is_completed(entry->scheduled); | ||
434 | preempt = entry->scheduled != entry->linked; | ||
435 | |||
436 | #ifdef WANT_ALL_SCHED_EVENTS | ||
437 | TRACE_TASK(prev, "invoked gsnedf_schedule.\n"); | ||
438 | #endif | ||
439 | |||
440 | if (exists) | ||
441 | TRACE_TASK(prev, | ||
442 | "blocks:%d out_of_time:%d np:%d sleep:%d preempt:%d " | ||
443 | "state:%d sig:%d\n", | ||
444 | blocks, out_of_time, np, sleep, preempt, | ||
445 | prev->state, signal_pending(prev)); | ||
446 | if (entry->linked && preempt) | ||
447 | TRACE_TASK(prev, "will be preempted by %s/%d\n", | ||
448 | entry->linked->comm, entry->linked->pid); | ||
449 | |||
450 | |||
451 | /* If a task blocks we have no choice but to reschedule. | ||
452 | */ | ||
453 | if (blocks) | ||
454 | unlink(entry->scheduled); | ||
455 | |||
456 | /* Request a sys_exit_np() call if we would like to preempt but cannot. | ||
457 | * We need to make sure to update the link structure anyway in case | ||
458 | * that we are still linked. Multiple calls to request_exit_np() don't | ||
459 | * hurt. | ||
460 | */ | ||
461 | if (np && (out_of_time || preempt || sleep)) { | ||
462 | unlink(entry->scheduled); | ||
463 | request_exit_np(entry->scheduled); | ||
464 | } | ||
465 | |||
466 | /* Any task that is preemptable and either exhausts its execution | ||
467 | * budget or wants to sleep completes. We may have to reschedule after | ||
468 | * this. Don't do a job completion if we block (can't have timers running | ||
469 | * for blocked jobs). | ||
470 | */ | ||
471 | if (!np && (out_of_time || sleep)) | ||
472 | curr_job_completion(!sleep); | ||
473 | |||
474 | /* Link pending task if we became unlinked. | ||
475 | */ | ||
476 | if (!entry->linked) | ||
477 | link_task_to_cpu(__take_ready(&gsnedf), entry); | ||
478 | |||
479 | /* The final scheduling decision. Do we need to switch for some reason? | ||
480 | * If linked is different from scheduled, then select linked as next. | ||
481 | */ | ||
482 | if ((!np || blocks) && | ||
483 | entry->linked != entry->scheduled) { | ||
484 | /* Schedule a linked job? */ | ||
485 | if (entry->linked) { | ||
486 | entry->linked->rt_param.scheduled_on = entry->cpu; | ||
487 | next = entry->linked; | ||
488 | TRACE_TASK(next, "scheduled_on = P%d\n", smp_processor_id()); | ||
489 | } | ||
490 | if (entry->scheduled) { | ||
491 | /* not gonna be scheduled soon */ | ||
492 | entry->scheduled->rt_param.scheduled_on = NO_CPU; | ||
493 | TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n"); | ||
494 | } | ||
495 | } else | ||
496 | /* Only override Linux scheduler if we have a real-time task | ||
497 | * scheduled that needs to continue. | ||
498 | */ | ||
499 | if (exists) | ||
500 | next = prev; | ||
501 | |||
502 | sched_state_task_picked(); | ||
503 | |||
504 | raw_spin_unlock(&gsnedf_lock); | ||
505 | |||
506 | #ifdef WANT_ALL_SCHED_EVENTS | ||
507 | TRACE("gsnedf_lock released, next=0x%p\n", next); | ||
508 | |||
509 | if (next) | ||
510 | TRACE_TASK(next, "scheduled at %llu\n", litmus_clock()); | ||
511 | else if (exists && !next) | ||
512 | TRACE("becomes idle at %llu.\n", litmus_clock()); | ||
513 | #endif | ||
514 | |||
515 | |||
516 | return next; | ||
517 | } | ||
518 | |||
519 | |||
520 | /* _finish_switch - we just finished the switch away from prev | ||
521 | */ | ||
522 | static void gsnedf_finish_switch(struct task_struct *prev) | ||
523 | { | ||
524 | cpu_entry_t* entry = this_cpu_ptr(&gsnedf_cpu_entries); | ||
525 | |||
526 | entry->scheduled = is_realtime(current) ? current : NULL; | ||
527 | #ifdef WANT_ALL_SCHED_EVENTS | ||
528 | TRACE_TASK(prev, "switched away from\n"); | ||
529 | #endif | ||
530 | } | ||
531 | |||
532 | |||
533 | /* Prepare a task for running in RT mode | ||
534 | */ | ||
535 | static void gsnedf_task_new(struct task_struct * t, int on_rq, int is_scheduled) | ||
536 | { | ||
537 | unsigned long flags; | ||
538 | cpu_entry_t* entry; | ||
539 | |||
540 | TRACE("gsn edf: task new %d\n", t->pid); | ||
541 | |||
542 | raw_spin_lock_irqsave(&gsnedf_lock, flags); | ||
543 | |||
544 | /* setup job params */ | ||
545 | release_at(t, litmus_clock()); | ||
546 | |||
547 | if (is_scheduled) { | ||
548 | entry = &per_cpu(gsnedf_cpu_entries, task_cpu(t)); | ||
549 | BUG_ON(entry->scheduled); | ||
550 | |||
551 | #ifdef CONFIG_RELEASE_MASTER | ||
552 | if (entry->cpu != gsnedf.release_master) { | ||
553 | #endif | ||
554 | entry->scheduled = t; | ||
555 | tsk_rt(t)->scheduled_on = task_cpu(t); | ||
556 | #ifdef CONFIG_RELEASE_MASTER | ||
557 | } else { | ||
558 | /* do not schedule on release master */ | ||
559 | preempt(entry); /* force resched */ | ||
560 | tsk_rt(t)->scheduled_on = NO_CPU; | ||
561 | } | ||
562 | #endif | ||
563 | } else { | ||
564 | t->rt_param.scheduled_on = NO_CPU; | ||
565 | } | ||
566 | t->rt_param.linked_on = NO_CPU; | ||
567 | |||
568 | if (on_rq || is_scheduled) | ||
569 | gsnedf_job_arrival(t); | ||
570 | raw_spin_unlock_irqrestore(&gsnedf_lock, flags); | ||
571 | } | ||
572 | |||
573 | static void gsnedf_task_wake_up(struct task_struct *task) | ||
574 | { | ||
575 | unsigned long flags; | ||
576 | lt_t now; | ||
577 | |||
578 | TRACE_TASK(task, "wake_up at %llu\n", litmus_clock()); | ||
579 | |||
580 | raw_spin_lock_irqsave(&gsnedf_lock, flags); | ||
581 | now = litmus_clock(); | ||
582 | if (is_sporadic(task) && is_tardy(task, now)) { | ||
583 | inferred_sporadic_job_release_at(task, now); | ||
584 | } | ||
585 | gsnedf_job_arrival(task); | ||
586 | raw_spin_unlock_irqrestore(&gsnedf_lock, flags); | ||
587 | } | ||
588 | |||
589 | static void gsnedf_task_block(struct task_struct *t) | ||
590 | { | ||
591 | unsigned long flags; | ||
592 | |||
593 | TRACE_TASK(t, "block at %llu\n", litmus_clock()); | ||
594 | |||
595 | /* unlink if necessary */ | ||
596 | raw_spin_lock_irqsave(&gsnedf_lock, flags); | ||
597 | unlink(t); | ||
598 | raw_spin_unlock_irqrestore(&gsnedf_lock, flags); | ||
599 | |||
600 | BUG_ON(!is_realtime(t)); | ||
601 | } | ||
602 | |||
603 | |||
604 | static void gsnedf_task_exit(struct task_struct * t) | ||
605 | { | ||
606 | unsigned long flags; | ||
607 | |||
608 | /* unlink if necessary */ | ||
609 | raw_spin_lock_irqsave(&gsnedf_lock, flags); | ||
610 | unlink(t); | ||
611 | if (tsk_rt(t)->scheduled_on != NO_CPU) { | ||
612 | gsnedf_cpus[tsk_rt(t)->scheduled_on]->scheduled = NULL; | ||
613 | tsk_rt(t)->scheduled_on = NO_CPU; | ||
614 | } | ||
615 | raw_spin_unlock_irqrestore(&gsnedf_lock, flags); | ||
616 | |||
617 | BUG_ON(!is_realtime(t)); | ||
618 | TRACE_TASK(t, "RIP\n"); | ||
619 | } | ||
620 | |||
621 | |||
622 | static long gsnedf_admit_task(struct task_struct* tsk) | ||
623 | { | ||
624 | return 0; | ||
625 | } | ||
626 | |||
627 | #ifdef CONFIG_LITMUS_LOCKING | ||
628 | |||
629 | #include <litmus/fdso.h> | ||
630 | |||
631 | /* called with IRQs off */ | ||
632 | static void set_priority_inheritance(struct task_struct* t, struct task_struct* prio_inh) | ||
633 | { | ||
634 | int linked_on; | ||
635 | int check_preempt = 0; | ||
636 | |||
637 | raw_spin_lock(&gsnedf_lock); | ||
638 | |||
639 | TRACE_TASK(t, "inherits priority from %s/%d\n", prio_inh->comm, prio_inh->pid); | ||
640 | tsk_rt(t)->inh_task = prio_inh; | ||
641 | |||
642 | linked_on = tsk_rt(t)->linked_on; | ||
643 | |||
644 | /* If it is scheduled, then we need to reorder the CPU heap. */ | ||
645 | if (linked_on != NO_CPU) { | ||
646 | TRACE_TASK(t, "%s: linked on %d\n", | ||
647 | __FUNCTION__, linked_on); | ||
648 | /* Holder is scheduled; need to re-order CPUs. | ||
649 | * We can't use heap_decrease() here since | ||
650 | * the cpu_heap is ordered in reverse direction, so | ||
651 | * it is actually an increase. */ | ||
652 | bheap_delete(cpu_lower_prio, &gsnedf_cpu_heap, | ||
653 | gsnedf_cpus[linked_on]->hn); | ||
654 | bheap_insert(cpu_lower_prio, &gsnedf_cpu_heap, | ||
655 | gsnedf_cpus[linked_on]->hn); | ||
656 | } else { | ||
657 | /* holder may be queued: first stop queue changes */ | ||
658 | raw_spin_lock(&gsnedf.release_lock); | ||
659 | if (is_queued(t)) { | ||
660 | TRACE_TASK(t, "%s: is queued\n", | ||
661 | __FUNCTION__); | ||
662 | /* We need to update the position of holder in some | ||
663 | * heap. Note that this could be a release heap if we | ||
664 | * budget enforcement is used and this job overran. */ | ||
665 | check_preempt = | ||
666 | !bheap_decrease(edf_ready_order, | ||
667 | tsk_rt(t)->heap_node); | ||
668 | } else { | ||
669 | /* Nothing to do: if it is not queued and not linked | ||
670 | * then it is either sleeping or currently being moved | ||
671 | * by other code (e.g., a timer interrupt handler) that | ||
672 | * will use the correct priority when enqueuing the | ||
673 | * task. */ | ||
674 | TRACE_TASK(t, "%s: is NOT queued => Done.\n", | ||
675 | __FUNCTION__); | ||
676 | } | ||
677 | raw_spin_unlock(&gsnedf.release_lock); | ||
678 | |||
679 | /* If holder was enqueued in a release heap, then the following | ||
680 | * preemption check is pointless, but we can't easily detect | ||
681 | * that case. If you want to fix this, then consider that | ||
682 | * simply adding a state flag requires O(n) time to update when | ||
683 | * releasing n tasks, which conflicts with the goal to have | ||
684 | * O(log n) merges. */ | ||
685 | if (check_preempt) { | ||
686 | /* heap_decrease() hit the top level of the heap: make | ||
687 | * sure preemption checks get the right task, not the | ||
688 | * potentially stale cache. */ | ||
689 | bheap_uncache_min(edf_ready_order, | ||
690 | &gsnedf.ready_queue); | ||
691 | check_for_preemptions(); | ||
692 | } | ||
693 | } | ||
694 | |||
695 | raw_spin_unlock(&gsnedf_lock); | ||
696 | } | ||
697 | |||
698 | /* called with IRQs off */ | ||
699 | static void clear_priority_inheritance(struct task_struct* t) | ||
700 | { | ||
701 | raw_spin_lock(&gsnedf_lock); | ||
702 | |||
703 | /* A job only stops inheriting a priority when it releases a | ||
704 | * resource. Thus we can make the following assumption.*/ | ||
705 | BUG_ON(tsk_rt(t)->scheduled_on == NO_CPU); | ||
706 | |||
707 | TRACE_TASK(t, "priority restored\n"); | ||
708 | tsk_rt(t)->inh_task = NULL; | ||
709 | |||
710 | /* Check if rescheduling is necessary. We can't use heap_decrease() | ||
711 | * since the priority was effectively lowered. */ | ||
712 | unlink(t); | ||
713 | gsnedf_job_arrival(t); | ||
714 | |||
715 | raw_spin_unlock(&gsnedf_lock); | ||
716 | } | ||
717 | |||
718 | |||
719 | /* ******************** FMLP support ********************** */ | ||
720 | |||
721 | /* struct for semaphore with priority inheritance */ | ||
722 | struct fmlp_semaphore { | ||
723 | struct litmus_lock litmus_lock; | ||
724 | |||
725 | /* current resource holder */ | ||
726 | struct task_struct *owner; | ||
727 | |||
728 | /* highest-priority waiter */ | ||
729 | struct task_struct *hp_waiter; | ||
730 | |||
731 | /* FIFO queue of waiting tasks */ | ||
732 | wait_queue_head_t wait; | ||
733 | }; | ||
734 | |||
735 | static inline struct fmlp_semaphore* fmlp_from_lock(struct litmus_lock* lock) | ||
736 | { | ||
737 | return container_of(lock, struct fmlp_semaphore, litmus_lock); | ||
738 | } | ||
739 | |||
740 | /* caller is responsible for locking */ | ||
741 | struct task_struct* find_hp_waiter(struct fmlp_semaphore *sem, | ||
742 | struct task_struct* skip) | ||
743 | { | ||
744 | struct list_head *pos; | ||
745 | struct task_struct *queued, *found = NULL; | ||
746 | |||
747 | list_for_each(pos, &sem->wait.task_list) { | ||
748 | queued = (struct task_struct*) list_entry(pos, wait_queue_t, | ||
749 | task_list)->private; | ||
750 | |||
751 | /* Compare task prios, find high prio task. */ | ||
752 | if (queued != skip && edf_higher_prio(queued, found)) | ||
753 | found = queued; | ||
754 | } | ||
755 | return found; | ||
756 | } | ||
757 | |||
758 | int gsnedf_fmlp_lock(struct litmus_lock* l) | ||
759 | { | ||
760 | struct task_struct* t = current; | ||
761 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
762 | wait_queue_t wait; | ||
763 | unsigned long flags; | ||
764 | |||
765 | if (!is_realtime(t)) | ||
766 | return -EPERM; | ||
767 | |||
768 | /* prevent nested lock acquisition --- not supported by FMLP */ | ||
769 | if (tsk_rt(t)->num_locks_held) | ||
770 | return -EBUSY; | ||
771 | |||
772 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
773 | |||
774 | if (sem->owner) { | ||
775 | /* resource is not free => must suspend and wait */ | ||
776 | |||
777 | init_waitqueue_entry(&wait, t); | ||
778 | |||
779 | /* FIXME: interruptible would be nice some day */ | ||
780 | set_task_state(t, TASK_UNINTERRUPTIBLE); | ||
781 | |||
782 | __add_wait_queue_tail_exclusive(&sem->wait, &wait); | ||
783 | |||
784 | /* check if we need to activate priority inheritance */ | ||
785 | if (edf_higher_prio(t, sem->hp_waiter)) { | ||
786 | sem->hp_waiter = t; | ||
787 | if (edf_higher_prio(t, sem->owner)) | ||
788 | set_priority_inheritance(sem->owner, sem->hp_waiter); | ||
789 | } | ||
790 | |||
791 | TS_LOCK_SUSPEND; | ||
792 | |||
793 | /* release lock before sleeping */ | ||
794 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
795 | |||
796 | /* We depend on the FIFO order. Thus, we don't need to recheck | ||
797 | * when we wake up; we are guaranteed to have the lock since | ||
798 | * there is only one wake up per release. | ||
799 | */ | ||
800 | |||
801 | schedule(); | ||
802 | |||
803 | TS_LOCK_RESUME; | ||
804 | |||
805 | /* Since we hold the lock, no other task will change | ||
806 | * ->owner. We can thus check it without acquiring the spin | ||
807 | * lock. */ | ||
808 | BUG_ON(sem->owner != t); | ||
809 | } else { | ||
810 | /* it's ours now */ | ||
811 | sem->owner = t; | ||
812 | |||
813 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
814 | } | ||
815 | |||
816 | tsk_rt(t)->num_locks_held++; | ||
817 | |||
818 | return 0; | ||
819 | } | ||
820 | |||
821 | int gsnedf_fmlp_unlock(struct litmus_lock* l) | ||
822 | { | ||
823 | struct task_struct *t = current, *next; | ||
824 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
825 | unsigned long flags; | ||
826 | int err = 0; | ||
827 | |||
828 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
829 | |||
830 | if (sem->owner != t) { | ||
831 | err = -EINVAL; | ||
832 | goto out; | ||
833 | } | ||
834 | |||
835 | tsk_rt(t)->num_locks_held--; | ||
836 | |||
837 | /* check if there are jobs waiting for this resource */ | ||
838 | next = __waitqueue_remove_first(&sem->wait); | ||
839 | if (next) { | ||
840 | /* next becomes the resouce holder */ | ||
841 | sem->owner = next; | ||
842 | TRACE_CUR("lock ownership passed to %s/%d\n", next->comm, next->pid); | ||
843 | |||
844 | /* determine new hp_waiter if necessary */ | ||
845 | if (next == sem->hp_waiter) { | ||
846 | TRACE_TASK(next, "was highest-prio waiter\n"); | ||
847 | /* next has the highest priority --- it doesn't need to | ||
848 | * inherit. However, we need to make sure that the | ||
849 | * next-highest priority in the queue is reflected in | ||
850 | * hp_waiter. */ | ||
851 | sem->hp_waiter = find_hp_waiter(sem, next); | ||
852 | if (sem->hp_waiter) | ||
853 | TRACE_TASK(sem->hp_waiter, "is new highest-prio waiter\n"); | ||
854 | else | ||
855 | TRACE("no further waiters\n"); | ||
856 | } else { | ||
857 | /* Well, if next is not the highest-priority waiter, | ||
858 | * then it ought to inherit the highest-priority | ||
859 | * waiter's priority. */ | ||
860 | set_priority_inheritance(next, sem->hp_waiter); | ||
861 | } | ||
862 | |||
863 | /* wake up next */ | ||
864 | wake_up_process(next); | ||
865 | } else | ||
866 | /* becomes available */ | ||
867 | sem->owner = NULL; | ||
868 | |||
869 | /* we lose the benefit of priority inheritance (if any) */ | ||
870 | if (tsk_rt(t)->inh_task) | ||
871 | clear_priority_inheritance(t); | ||
872 | |||
873 | out: | ||
874 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
875 | |||
876 | return err; | ||
877 | } | ||
878 | |||
879 | int gsnedf_fmlp_close(struct litmus_lock* l) | ||
880 | { | ||
881 | struct task_struct *t = current; | ||
882 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
883 | unsigned long flags; | ||
884 | |||
885 | int owner; | ||
886 | |||
887 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
888 | |||
889 | owner = sem->owner == t; | ||
890 | |||
891 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
892 | |||
893 | if (owner) | ||
894 | gsnedf_fmlp_unlock(l); | ||
895 | |||
896 | return 0; | ||
897 | } | ||
898 | |||
899 | void gsnedf_fmlp_free(struct litmus_lock* lock) | ||
900 | { | ||
901 | kfree(fmlp_from_lock(lock)); | ||
902 | } | ||
903 | |||
904 | static struct litmus_lock_ops gsnedf_fmlp_lock_ops = { | ||
905 | .close = gsnedf_fmlp_close, | ||
906 | .lock = gsnedf_fmlp_lock, | ||
907 | .unlock = gsnedf_fmlp_unlock, | ||
908 | .deallocate = gsnedf_fmlp_free, | ||
909 | }; | ||
910 | |||
911 | static struct litmus_lock* gsnedf_new_fmlp(void) | ||
912 | { | ||
913 | struct fmlp_semaphore* sem; | ||
914 | |||
915 | sem = kmalloc(sizeof(*sem), GFP_KERNEL); | ||
916 | if (!sem) | ||
917 | return NULL; | ||
918 | |||
919 | sem->owner = NULL; | ||
920 | sem->hp_waiter = NULL; | ||
921 | init_waitqueue_head(&sem->wait); | ||
922 | sem->litmus_lock.ops = &gsnedf_fmlp_lock_ops; | ||
923 | |||
924 | return &sem->litmus_lock; | ||
925 | } | ||
926 | |||
927 | /* **** lock constructor **** */ | ||
928 | |||
929 | |||
930 | static long gsnedf_allocate_lock(struct litmus_lock **lock, int type, | ||
931 | void* __user unused) | ||
932 | { | ||
933 | int err = -ENXIO; | ||
934 | |||
935 | /* GSN-EDF currently only supports the FMLP for global resources. */ | ||
936 | switch (type) { | ||
937 | |||
938 | case FMLP_SEM: | ||
939 | /* Flexible Multiprocessor Locking Protocol */ | ||
940 | *lock = gsnedf_new_fmlp(); | ||
941 | if (*lock) | ||
942 | err = 0; | ||
943 | else | ||
944 | err = -ENOMEM; | ||
945 | break; | ||
946 | |||
947 | }; | ||
948 | |||
949 | return err; | ||
950 | } | ||
951 | |||
952 | #endif | ||
953 | |||
954 | static struct domain_proc_info gsnedf_domain_proc_info; | ||
955 | static long gsnedf_get_domain_proc_info(struct domain_proc_info **ret) | ||
956 | { | ||
957 | *ret = &gsnedf_domain_proc_info; | ||
958 | return 0; | ||
959 | } | ||
960 | |||
961 | static void gsnedf_setup_domain_proc(void) | ||
962 | { | ||
963 | int i, cpu; | ||
964 | int release_master = | ||
965 | #ifdef CONFIG_RELEASE_MASTER | ||
966 | atomic_read(&release_master_cpu); | ||
967 | #else | ||
968 | NO_CPU; | ||
969 | #endif | ||
970 | int num_rt_cpus = num_online_cpus() - (release_master != NO_CPU); | ||
971 | struct cd_mapping *map; | ||
972 | |||
973 | memset(&gsnedf_domain_proc_info, 0, sizeof(gsnedf_domain_proc_info)); | ||
974 | init_domain_proc_info(&gsnedf_domain_proc_info, num_rt_cpus, 1); | ||
975 | gsnedf_domain_proc_info.num_cpus = num_rt_cpus; | ||
976 | gsnedf_domain_proc_info.num_domains = 1; | ||
977 | |||
978 | gsnedf_domain_proc_info.domain_to_cpus[0].id = 0; | ||
979 | for (cpu = 0, i = 0; cpu < num_online_cpus(); ++cpu) { | ||
980 | if (cpu == release_master) | ||
981 | continue; | ||
982 | map = &gsnedf_domain_proc_info.cpu_to_domains[i]; | ||
983 | map->id = cpu; | ||
984 | cpumask_set_cpu(0, map->mask); | ||
985 | ++i; | ||
986 | |||
987 | /* add cpu to the domain */ | ||
988 | cpumask_set_cpu(cpu, | ||
989 | gsnedf_domain_proc_info.domain_to_cpus[0].mask); | ||
990 | } | ||
991 | } | ||
992 | |||
993 | static long gsnedf_activate_plugin(void) | ||
994 | { | ||
995 | int cpu; | ||
996 | cpu_entry_t *entry; | ||
997 | |||
998 | bheap_init(&gsnedf_cpu_heap); | ||
999 | #ifdef CONFIG_RELEASE_MASTER | ||
1000 | gsnedf.release_master = atomic_read(&release_master_cpu); | ||
1001 | #endif | ||
1002 | |||
1003 | for_each_online_cpu(cpu) { | ||
1004 | entry = &per_cpu(gsnedf_cpu_entries, cpu); | ||
1005 | bheap_node_init(&entry->hn, entry); | ||
1006 | entry->linked = NULL; | ||
1007 | entry->scheduled = NULL; | ||
1008 | #ifdef CONFIG_RELEASE_MASTER | ||
1009 | if (cpu != gsnedf.release_master) { | ||
1010 | #endif | ||
1011 | TRACE("GSN-EDF: Initializing CPU #%d.\n", cpu); | ||
1012 | update_cpu_position(entry); | ||
1013 | #ifdef CONFIG_RELEASE_MASTER | ||
1014 | } else { | ||
1015 | TRACE("GSN-EDF: CPU %d is release master.\n", cpu); | ||
1016 | } | ||
1017 | #endif | ||
1018 | } | ||
1019 | |||
1020 | gsnedf_setup_domain_proc(); | ||
1021 | |||
1022 | return 0; | ||
1023 | } | ||
1024 | |||
1025 | static long gsnedf_deactivate_plugin(void) | ||
1026 | { | ||
1027 | destroy_domain_proc_info(&gsnedf_domain_proc_info); | ||
1028 | return 0; | ||
1029 | } | ||
1030 | |||
1031 | /* Plugin object */ | ||
1032 | static struct sched_plugin gsn_edf_plugin __cacheline_aligned_in_smp = { | ||
1033 | .plugin_name = "GSN-EDF", | ||
1034 | .finish_switch = gsnedf_finish_switch, | ||
1035 | .task_new = gsnedf_task_new, | ||
1036 | .complete_job = complete_job, | ||
1037 | .task_exit = gsnedf_task_exit, | ||
1038 | .schedule = gsnedf_schedule, | ||
1039 | .task_wake_up = gsnedf_task_wake_up, | ||
1040 | .task_block = gsnedf_task_block, | ||
1041 | .admit_task = gsnedf_admit_task, | ||
1042 | .activate_plugin = gsnedf_activate_plugin, | ||
1043 | .deactivate_plugin = gsnedf_deactivate_plugin, | ||
1044 | .get_domain_proc_info = gsnedf_get_domain_proc_info, | ||
1045 | #ifdef CONFIG_LITMUS_LOCKING | ||
1046 | .allocate_lock = gsnedf_allocate_lock, | ||
1047 | #endif | ||
1048 | }; | ||
1049 | |||
1050 | |||
1051 | static int __init init_gsn_edf(void) | ||
1052 | { | ||
1053 | int cpu; | ||
1054 | cpu_entry_t *entry; | ||
1055 | |||
1056 | bheap_init(&gsnedf_cpu_heap); | ||
1057 | /* initialize CPU state */ | ||
1058 | for (cpu = 0; cpu < NR_CPUS; cpu++) { | ||
1059 | entry = &per_cpu(gsnedf_cpu_entries, cpu); | ||
1060 | gsnedf_cpus[cpu] = entry; | ||
1061 | entry->cpu = cpu; | ||
1062 | entry->hn = &gsnedf_heap_node[cpu]; | ||
1063 | bheap_node_init(&entry->hn, entry); | ||
1064 | } | ||
1065 | edf_domain_init(&gsnedf, NULL, gsnedf_release_jobs); | ||
1066 | return register_sched_plugin(&gsn_edf_plugin); | ||
1067 | } | ||
1068 | |||
1069 | |||
1070 | module_init(init_gsn_edf); | ||