aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/vmac.c
diff options
context:
space:
mode:
authorEric Biggers <ebiggers@google.com>2018-06-18 13:22:38 -0400
committerHerbert Xu <herbert@gondor.apana.org.au>2018-07-01 09:00:42 -0400
commitbb29648102335586e9a66289a1d98a0cb392b6e5 (patch)
tree774c44127cdf8b60de47878351fcbf1c7a8c4de5 /crypto/vmac.c
parent73bf20ef3df262026c3470241ae4ac8196943ffa (diff)
crypto: vmac - separate tfm and request context
syzbot reported a crash in vmac_final() when multiple threads concurrently use the same "vmac(aes)" transform through AF_ALG. The bug is pretty fundamental: the VMAC template doesn't separate per-request state from per-tfm (per-key) state like the other hash algorithms do, but rather stores it all in the tfm context. That's wrong. Also, vmac_final() incorrectly zeroes most of the state including the derived keys and cached pseudorandom pad. Therefore, only the first VMAC invocation with a given key calculates the correct digest. Fix these bugs by splitting the per-tfm state from the per-request state and using the proper init/update/final sequencing for requests. Reproducer for the crash: #include <linux/if_alg.h> #include <sys/socket.h> #include <unistd.h> int main() { int fd; struct sockaddr_alg addr = { .salg_type = "hash", .salg_name = "vmac(aes)", }; char buf[256] = { 0 }; fd = socket(AF_ALG, SOCK_SEQPACKET, 0); bind(fd, (void *)&addr, sizeof(addr)); setsockopt(fd, SOL_ALG, ALG_SET_KEY, buf, 16); fork(); fd = accept(fd, NULL, NULL); for (;;) write(fd, buf, 256); } The immediate cause of the crash is that vmac_ctx_t.partial_size exceeds VMAC_NHBYTES, causing vmac_final() to memset() a negative length. Reported-by: syzbot+264bca3a6e8d645550d3@syzkaller.appspotmail.com Fixes: f1939f7c5645 ("crypto: vmac - New hash algorithm for intel_txt support") Cc: <stable@vger.kernel.org> # v2.6.32+ Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Diffstat (limited to 'crypto/vmac.c')
-rw-r--r--crypto/vmac.c408
1 files changed, 181 insertions, 227 deletions
diff --git a/crypto/vmac.c b/crypto/vmac.c
index 3034454a3713..bb2fc787d615 100644
--- a/crypto/vmac.c
+++ b/crypto/vmac.c
@@ -1,6 +1,10 @@
1/* 1/*
2 * Modified to interface to the Linux kernel 2 * VMAC: Message Authentication Code using Universal Hashing
3 *
4 * Reference: https://tools.ietf.org/html/draft-krovetz-vmac-01
5 *
3 * Copyright (c) 2009, Intel Corporation. 6 * Copyright (c) 2009, Intel Corporation.
7 * Copyright (c) 2018, Google Inc.
4 * 8 *
5 * This program is free software; you can redistribute it and/or modify it 9 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License, 10 * under the terms and conditions of the GNU General Public License,
@@ -16,14 +20,15 @@
16 * Place - Suite 330, Boston, MA 02111-1307 USA. 20 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 */ 21 */
18 22
19/* -------------------------------------------------------------------------- 23/*
20 * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai. 24 * Derived from:
21 * This implementation is herby placed in the public domain. 25 * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
22 * The authors offers no warranty. Use at your own risk. 26 * This implementation is herby placed in the public domain.
23 * Please send bug reports to the authors. 27 * The authors offers no warranty. Use at your own risk.
24 * Last modified: 17 APR 08, 1700 PDT 28 * Last modified: 17 APR 08, 1700 PDT
25 * ----------------------------------------------------------------------- */ 29 */
26 30
31#include <asm/unaligned.h>
27#include <linux/init.h> 32#include <linux/init.h>
28#include <linux/types.h> 33#include <linux/types.h>
29#include <linux/crypto.h> 34#include <linux/crypto.h>
@@ -31,10 +36,36 @@
31#include <linux/scatterlist.h> 36#include <linux/scatterlist.h>
32#include <asm/byteorder.h> 37#include <asm/byteorder.h>
33#include <crypto/scatterwalk.h> 38#include <crypto/scatterwalk.h>
34#include <crypto/vmac.h>
35#include <crypto/internal/hash.h> 39#include <crypto/internal/hash.h>
36 40
37/* 41/*
42 * User definable settings.
43 */
44#define VMAC_TAG_LEN 64
45#define VMAC_KEY_SIZE 128/* Must be 128, 192 or 256 */
46#define VMAC_KEY_LEN (VMAC_KEY_SIZE/8)
47#define VMAC_NHBYTES 128/* Must 2^i for any 3 < i < 13 Standard = 128*/
48
49/* per-transform (per-key) context */
50struct vmac_tfm_ctx {
51 struct crypto_cipher *cipher;
52 u64 nhkey[(VMAC_NHBYTES/8)+2*(VMAC_TAG_LEN/64-1)];
53 u64 polykey[2*VMAC_TAG_LEN/64];
54 u64 l3key[2*VMAC_TAG_LEN/64];
55};
56
57/* per-request context */
58struct vmac_desc_ctx {
59 union {
60 u8 partial[VMAC_NHBYTES]; /* partial block */
61 __le64 partial_words[VMAC_NHBYTES / 8];
62 };
63 unsigned int partial_size; /* size of the partial block */
64 bool first_block_processed;
65 u64 polytmp[2*VMAC_TAG_LEN/64]; /* running total of L2-hash */
66};
67
68/*
38 * Constants and masks 69 * Constants and masks
39 */ 70 */
40#define UINT64_C(x) x##ULL 71#define UINT64_C(x) x##ULL
@@ -318,13 +349,6 @@ static void poly_step_func(u64 *ahi, u64 *alo,
318 } while (0) 349 } while (0)
319#endif 350#endif
320 351
321static void vhash_abort(struct vmac_ctx *ctx)
322{
323 ctx->polytmp[0] = ctx->polykey[0] ;
324 ctx->polytmp[1] = ctx->polykey[1] ;
325 ctx->first_block_processed = 0;
326}
327
328static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len) 352static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len)
329{ 353{
330 u64 rh, rl, t, z = 0; 354 u64 rh, rl, t, z = 0;
@@ -364,280 +388,209 @@ static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len)
364 return rl; 388 return rl;
365} 389}
366 390
367static void vhash_update(const unsigned char *m, 391/* L1 and L2-hash one or more VMAC_NHBYTES-byte blocks */
368 unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */ 392static void vhash_blocks(const struct vmac_tfm_ctx *tctx,
369 struct vmac_ctx *ctx) 393 struct vmac_desc_ctx *dctx,
394 const __le64 *mptr, unsigned int blocks)
370{ 395{
371 u64 rh, rl, *mptr; 396 const u64 *kptr = tctx->nhkey;
372 const u64 *kptr = (u64 *)ctx->nhkey; 397 const u64 pkh = tctx->polykey[0];
373 int i; 398 const u64 pkl = tctx->polykey[1];
374 u64 ch, cl; 399 u64 ch = dctx->polytmp[0];
375 u64 pkh = ctx->polykey[0]; 400 u64 cl = dctx->polytmp[1];
376 u64 pkl = ctx->polykey[1]; 401 u64 rh, rl;
377 402
378 if (!mbytes) 403 if (!dctx->first_block_processed) {
379 return; 404 dctx->first_block_processed = true;
380
381 BUG_ON(mbytes % VMAC_NHBYTES);
382
383 mptr = (u64 *)m;
384 i = mbytes / VMAC_NHBYTES; /* Must be non-zero */
385
386 ch = ctx->polytmp[0];
387 cl = ctx->polytmp[1];
388
389 if (!ctx->first_block_processed) {
390 ctx->first_block_processed = 1;
391 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); 405 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
392 rh &= m62; 406 rh &= m62;
393 ADD128(ch, cl, rh, rl); 407 ADD128(ch, cl, rh, rl);
394 mptr += (VMAC_NHBYTES/sizeof(u64)); 408 mptr += (VMAC_NHBYTES/sizeof(u64));
395 i--; 409 blocks--;
396 } 410 }
397 411
398 while (i--) { 412 while (blocks--) {
399 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); 413 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
400 rh &= m62; 414 rh &= m62;
401 poly_step(ch, cl, pkh, pkl, rh, rl); 415 poly_step(ch, cl, pkh, pkl, rh, rl);
402 mptr += (VMAC_NHBYTES/sizeof(u64)); 416 mptr += (VMAC_NHBYTES/sizeof(u64));
403 } 417 }
404 418
405 ctx->polytmp[0] = ch; 419 dctx->polytmp[0] = ch;
406 ctx->polytmp[1] = cl; 420 dctx->polytmp[1] = cl;
407} 421}
408 422
409static u64 vhash(unsigned char m[], unsigned int mbytes, 423static int vmac_setkey(struct crypto_shash *tfm,
410 u64 *tagl, struct vmac_ctx *ctx) 424 const u8 *key, unsigned int keylen)
411{ 425{
412 u64 rh, rl, *mptr; 426 struct vmac_tfm_ctx *tctx = crypto_shash_ctx(tfm);
413 const u64 *kptr = (u64 *)ctx->nhkey; 427 __be64 out[2];
414 int i, remaining; 428 u8 in[16] = { 0 };
415 u64 ch, cl; 429 unsigned int i;
416 u64 pkh = ctx->polykey[0]; 430 int err;
417 u64 pkl = ctx->polykey[1];
418
419 mptr = (u64 *)m;
420 i = mbytes / VMAC_NHBYTES;
421 remaining = mbytes % VMAC_NHBYTES;
422
423 if (ctx->first_block_processed) {
424 ch = ctx->polytmp[0];
425 cl = ctx->polytmp[1];
426 } else if (i) {
427 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, ch, cl);
428 ch &= m62;
429 ADD128(ch, cl, pkh, pkl);
430 mptr += (VMAC_NHBYTES/sizeof(u64));
431 i--;
432 } else if (remaining) {
433 nh_16(mptr, kptr, 2*((remaining+15)/16), ch, cl);
434 ch &= m62;
435 ADD128(ch, cl, pkh, pkl);
436 mptr += (VMAC_NHBYTES/sizeof(u64));
437 goto do_l3;
438 } else {/* Empty String */
439 ch = pkh; cl = pkl;
440 goto do_l3;
441 }
442
443 while (i--) {
444 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
445 rh &= m62;
446 poly_step(ch, cl, pkh, pkl, rh, rl);
447 mptr += (VMAC_NHBYTES/sizeof(u64));
448 }
449 if (remaining) {
450 nh_16(mptr, kptr, 2*((remaining+15)/16), rh, rl);
451 rh &= m62;
452 poly_step(ch, cl, pkh, pkl, rh, rl);
453 }
454
455do_l3:
456 vhash_abort(ctx);
457 remaining *= 8;
458 return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1], remaining);
459}
460 431
461static u64 vmac(unsigned char m[], unsigned int mbytes, 432 if (keylen != VMAC_KEY_LEN) {
462 const unsigned char n[16], u64 *tagl, 433 crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
463 struct vmac_ctx_t *ctx) 434 return -EINVAL;
464{
465 u64 *in_n, *out_p;
466 u64 p, h;
467 int i;
468
469 in_n = ctx->__vmac_ctx.cached_nonce;
470 out_p = ctx->__vmac_ctx.cached_aes;
471
472 i = n[15] & 1;
473 if ((*(u64 *)(n+8) != in_n[1]) || (*(u64 *)(n) != in_n[0])) {
474 in_n[0] = *(u64 *)(n);
475 in_n[1] = *(u64 *)(n+8);
476 ((unsigned char *)in_n)[15] &= 0xFE;
477 crypto_cipher_encrypt_one(ctx->child,
478 (unsigned char *)out_p, (unsigned char *)in_n);
479
480 ((unsigned char *)in_n)[15] |= (unsigned char)(1-i);
481 } 435 }
482 p = be64_to_cpup(out_p + i);
483 h = vhash(m, mbytes, (u64 *)0, &ctx->__vmac_ctx);
484 return le64_to_cpu(p + h);
485}
486 436
487static int vmac_set_key(unsigned char user_key[], struct vmac_ctx_t *ctx) 437 err = crypto_cipher_setkey(tctx->cipher, key, keylen);
488{
489 u64 in[2] = {0}, out[2];
490 unsigned i;
491 int err = 0;
492
493 err = crypto_cipher_setkey(ctx->child, user_key, VMAC_KEY_LEN);
494 if (err) 438 if (err)
495 return err; 439 return err;
496 440
497 /* Fill nh key */ 441 /* Fill nh key */
498 ((unsigned char *)in)[0] = 0x80; 442 in[0] = 0x80;
499 for (i = 0; i < sizeof(ctx->__vmac_ctx.nhkey)/8; i += 2) { 443 for (i = 0; i < ARRAY_SIZE(tctx->nhkey); i += 2) {
500 crypto_cipher_encrypt_one(ctx->child, 444 crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
501 (unsigned char *)out, (unsigned char *)in); 445 tctx->nhkey[i] = be64_to_cpu(out[0]);
502 ctx->__vmac_ctx.nhkey[i] = be64_to_cpup(out); 446 tctx->nhkey[i+1] = be64_to_cpu(out[1]);
503 ctx->__vmac_ctx.nhkey[i+1] = be64_to_cpup(out+1); 447 in[15]++;
504 ((unsigned char *)in)[15] += 1;
505 } 448 }
506 449
507 /* Fill poly key */ 450 /* Fill poly key */
508 ((unsigned char *)in)[0] = 0xC0; 451 in[0] = 0xC0;
509 in[1] = 0; 452 in[15] = 0;
510 for (i = 0; i < sizeof(ctx->__vmac_ctx.polykey)/8; i += 2) { 453 for (i = 0; i < ARRAY_SIZE(tctx->polykey); i += 2) {
511 crypto_cipher_encrypt_one(ctx->child, 454 crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
512 (unsigned char *)out, (unsigned char *)in); 455 tctx->polykey[i] = be64_to_cpu(out[0]) & mpoly;
513 ctx->__vmac_ctx.polytmp[i] = 456 tctx->polykey[i+1] = be64_to_cpu(out[1]) & mpoly;
514 ctx->__vmac_ctx.polykey[i] = 457 in[15]++;
515 be64_to_cpup(out) & mpoly;
516 ctx->__vmac_ctx.polytmp[i+1] =
517 ctx->__vmac_ctx.polykey[i+1] =
518 be64_to_cpup(out+1) & mpoly;
519 ((unsigned char *)in)[15] += 1;
520 } 458 }
521 459
522 /* Fill ip key */ 460 /* Fill ip key */
523 ((unsigned char *)in)[0] = 0xE0; 461 in[0] = 0xE0;
524 in[1] = 0; 462 in[15] = 0;
525 for (i = 0; i < sizeof(ctx->__vmac_ctx.l3key)/8; i += 2) { 463 for (i = 0; i < ARRAY_SIZE(tctx->l3key); i += 2) {
526 do { 464 do {
527 crypto_cipher_encrypt_one(ctx->child, 465 crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
528 (unsigned char *)out, (unsigned char *)in); 466 tctx->l3key[i] = be64_to_cpu(out[0]);
529 ctx->__vmac_ctx.l3key[i] = be64_to_cpup(out); 467 tctx->l3key[i+1] = be64_to_cpu(out[1]);
530 ctx->__vmac_ctx.l3key[i+1] = be64_to_cpup(out+1); 468 in[15]++;
531 ((unsigned char *)in)[15] += 1; 469 } while (tctx->l3key[i] >= p64 || tctx->l3key[i+1] >= p64);
532 } while (ctx->__vmac_ctx.l3key[i] >= p64
533 || ctx->__vmac_ctx.l3key[i+1] >= p64);
534 } 470 }
535 471
536 /* Invalidate nonce/aes cache and reset other elements */ 472 return 0;
537 ctx->__vmac_ctx.cached_nonce[0] = (u64)-1; /* Ensure illegal nonce */
538 ctx->__vmac_ctx.cached_nonce[1] = (u64)0; /* Ensure illegal nonce */
539 ctx->__vmac_ctx.first_block_processed = 0;
540
541 return err;
542} 473}
543 474
544static int vmac_setkey(struct crypto_shash *parent, 475static int vmac_init(struct shash_desc *desc)
545 const u8 *key, unsigned int keylen)
546{ 476{
547 struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); 477 const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
548 478 struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
549 if (keylen != VMAC_KEY_LEN) {
550 crypto_shash_set_flags(parent, CRYPTO_TFM_RES_BAD_KEY_LEN);
551 return -EINVAL;
552 }
553
554 return vmac_set_key((u8 *)key, ctx);
555}
556 479
557static int vmac_init(struct shash_desc *pdesc) 480 dctx->partial_size = 0;
558{ 481 dctx->first_block_processed = false;
482 memcpy(dctx->polytmp, tctx->polykey, sizeof(dctx->polytmp));
559 return 0; 483 return 0;
560} 484}
561 485
562static int vmac_update(struct shash_desc *pdesc, const u8 *p, 486static int vmac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
563 unsigned int len)
564{ 487{
565 struct crypto_shash *parent = pdesc->tfm; 488 const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
566 struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); 489 struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
567 int expand; 490 unsigned int n;
568 int min; 491
569 492 if (dctx->partial_size) {
570 expand = VMAC_NHBYTES - ctx->partial_size > 0 ? 493 n = min(len, VMAC_NHBYTES - dctx->partial_size);
571 VMAC_NHBYTES - ctx->partial_size : 0; 494 memcpy(&dctx->partial[dctx->partial_size], p, n);
572 495 dctx->partial_size += n;
573 min = len < expand ? len : expand; 496 p += n;
574 497 len -= n;
575 memcpy(ctx->partial + ctx->partial_size, p, min); 498 if (dctx->partial_size == VMAC_NHBYTES) {
576 ctx->partial_size += min; 499 vhash_blocks(tctx, dctx, dctx->partial_words, 1);
577 500 dctx->partial_size = 0;
578 if (len < expand) 501 }
579 return 0; 502 }
580
581 vhash_update(ctx->partial, VMAC_NHBYTES, &ctx->__vmac_ctx);
582 ctx->partial_size = 0;
583
584 len -= expand;
585 p += expand;
586 503
587 if (len % VMAC_NHBYTES) { 504 if (len >= VMAC_NHBYTES) {
588 memcpy(ctx->partial, p + len - (len % VMAC_NHBYTES), 505 n = round_down(len, VMAC_NHBYTES);
589 len % VMAC_NHBYTES); 506 /* TODO: 'p' may be misaligned here */
590 ctx->partial_size = len % VMAC_NHBYTES; 507 vhash_blocks(tctx, dctx, (const __le64 *)p, n / VMAC_NHBYTES);
508 p += n;
509 len -= n;
591 } 510 }
592 511
593 vhash_update(p, len - len % VMAC_NHBYTES, &ctx->__vmac_ctx); 512 if (len) {
513 memcpy(dctx->partial, p, len);
514 dctx->partial_size = len;
515 }
594 516
595 return 0; 517 return 0;
596} 518}
597 519
598static int vmac_final(struct shash_desc *pdesc, u8 *out) 520static u64 vhash_final(const struct vmac_tfm_ctx *tctx,
521 struct vmac_desc_ctx *dctx)
599{ 522{
600 struct crypto_shash *parent = pdesc->tfm; 523 unsigned int partial = dctx->partial_size;
601 struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); 524 u64 ch = dctx->polytmp[0];
602 vmac_t mac; 525 u64 cl = dctx->polytmp[1];
603 u8 nonce[16] = {}; 526
604 527 /* L1 and L2-hash the final block if needed */
605 /* vmac() ends up accessing outside the array bounds that 528 if (partial) {
606 * we specify. In appears to access up to the next 2-word 529 /* Zero-pad to next 128-bit boundary */
607 * boundary. We'll just be uber cautious and zero the 530 unsigned int n = round_up(partial, 16);
608 * unwritten bytes in the buffer. 531 u64 rh, rl;
609 */ 532
610 if (ctx->partial_size) { 533 memset(&dctx->partial[partial], 0, n - partial);
611 memset(ctx->partial + ctx->partial_size, 0, 534 nh_16(dctx->partial_words, tctx->nhkey, n / 8, rh, rl);
612 VMAC_NHBYTES - ctx->partial_size); 535 rh &= m62;
536 if (dctx->first_block_processed)
537 poly_step(ch, cl, tctx->polykey[0], tctx->polykey[1],
538 rh, rl);
539 else
540 ADD128(ch, cl, rh, rl);
613 } 541 }
614 mac = vmac(ctx->partial, ctx->partial_size, nonce, NULL, ctx); 542
615 memcpy(out, &mac, sizeof(vmac_t)); 543 /* L3-hash the 128-bit output of L2-hash */
616 memzero_explicit(&mac, sizeof(vmac_t)); 544 return l3hash(ch, cl, tctx->l3key[0], tctx->l3key[1], partial * 8);
617 memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx)); 545}
618 ctx->partial_size = 0; 546
547static int vmac_final(struct shash_desc *desc, u8 *out)
548{
549 const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
550 struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
551 static const u8 nonce[16] = {}; /* TODO: this is insecure */
552 union {
553 u8 bytes[16];
554 __be64 pads[2];
555 } block;
556 int index;
557 u64 hash, pad;
558
559 /* Finish calculating the VHASH of the message */
560 hash = vhash_final(tctx, dctx);
561
562 /* Generate pseudorandom pad by encrypting the nonce */
563 memcpy(&block, nonce, 16);
564 index = block.bytes[15] & 1;
565 block.bytes[15] &= ~1;
566 crypto_cipher_encrypt_one(tctx->cipher, block.bytes, block.bytes);
567 pad = be64_to_cpu(block.pads[index]);
568
569 /* The VMAC is the sum of VHASH and the pseudorandom pad */
570 put_unaligned_le64(hash + pad, out);
619 return 0; 571 return 0;
620} 572}
621 573
622static int vmac_init_tfm(struct crypto_tfm *tfm) 574static int vmac_init_tfm(struct crypto_tfm *tfm)
623{ 575{
624 struct crypto_cipher *cipher; 576 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
625 struct crypto_instance *inst = (void *)tfm->__crt_alg;
626 struct crypto_spawn *spawn = crypto_instance_ctx(inst); 577 struct crypto_spawn *spawn = crypto_instance_ctx(inst);
627 struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm); 578 struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
579 struct crypto_cipher *cipher;
628 580
629 cipher = crypto_spawn_cipher(spawn); 581 cipher = crypto_spawn_cipher(spawn);
630 if (IS_ERR(cipher)) 582 if (IS_ERR(cipher))
631 return PTR_ERR(cipher); 583 return PTR_ERR(cipher);
632 584
633 ctx->child = cipher; 585 tctx->cipher = cipher;
634 return 0; 586 return 0;
635} 587}
636 588
637static void vmac_exit_tfm(struct crypto_tfm *tfm) 589static void vmac_exit_tfm(struct crypto_tfm *tfm)
638{ 590{
639 struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm); 591 struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
640 crypto_free_cipher(ctx->child); 592
593 crypto_free_cipher(tctx->cipher);
641} 594}
642 595
643static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb) 596static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
@@ -674,11 +627,12 @@ static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
674 inst->alg.base.cra_blocksize = alg->cra_blocksize; 627 inst->alg.base.cra_blocksize = alg->cra_blocksize;
675 inst->alg.base.cra_alignmask = alg->cra_alignmask; 628 inst->alg.base.cra_alignmask = alg->cra_alignmask;
676 629
677 inst->alg.digestsize = sizeof(vmac_t); 630 inst->alg.base.cra_ctxsize = sizeof(struct vmac_tfm_ctx);
678 inst->alg.base.cra_ctxsize = sizeof(struct vmac_ctx_t);
679 inst->alg.base.cra_init = vmac_init_tfm; 631 inst->alg.base.cra_init = vmac_init_tfm;
680 inst->alg.base.cra_exit = vmac_exit_tfm; 632 inst->alg.base.cra_exit = vmac_exit_tfm;
681 633
634 inst->alg.descsize = sizeof(struct vmac_desc_ctx);
635 inst->alg.digestsize = VMAC_TAG_LEN / 8;
682 inst->alg.init = vmac_init; 636 inst->alg.init = vmac_init;
683 inst->alg.update = vmac_update; 637 inst->alg.update = vmac_update;
684 inst->alg.final = vmac_final; 638 inst->alg.final = vmac_final;