aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/aes_ti.c
diff options
context:
space:
mode:
authorArd Biesheuvel <ard.biesheuvel@linaro.org>2019-07-02 15:41:22 -0400
committerHerbert Xu <herbert@gondor.apana.org.au>2019-07-26 00:55:33 -0400
commite59c1c98745637796df824c0177f279b6e9cad94 (patch)
tree7cd4e284c1634defc73581c5ac879cb17bb2c907 /crypto/aes_ti.c
parentb158fcbba857c71ffb05ab254aff3b32b5e3cfc3 (diff)
crypto: aes - create AES library based on the fixed time AES code
Take the existing small footprint and mostly time invariant C code and turn it into a AES library that can be used for non-performance critical, casual use of AES, and as a fallback for, e.g., SIMD code that needs a secondary path that can be taken in contexts where the SIMD unit is off limits (e.g., in hard interrupts taken from kernel context) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Diffstat (limited to 'crypto/aes_ti.c')
-rw-r--r--crypto/aes_ti.c303
1 files changed, 3 insertions, 300 deletions
diff --git a/crypto/aes_ti.c b/crypto/aes_ti.c
index b3ebdc5679cb..205c2c257d49 100644
--- a/crypto/aes_ti.c
+++ b/crypto/aes_ti.c
@@ -8,249 +8,19 @@
8#include <crypto/aes.h> 8#include <crypto/aes.h>
9#include <linux/crypto.h> 9#include <linux/crypto.h>
10#include <linux/module.h> 10#include <linux/module.h>
11#include <asm/unaligned.h>
12
13/*
14 * Emit the sbox as volatile const to prevent the compiler from doing
15 * constant folding on sbox references involving fixed indexes.
16 */
17static volatile const u8 __cacheline_aligned __aesti_sbox[] = {
18 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
19 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
20 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
21 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
22 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
23 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
24 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
25 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
26 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
27 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
28 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
29 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
30 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
31 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
32 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
33 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
34 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
35 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
36 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
37 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
38 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
39 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
40 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
41 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
42 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
43 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
44 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
45 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
46 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
47 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
48 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
49 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16,
50};
51
52static volatile const u8 __cacheline_aligned __aesti_inv_sbox[] = {
53 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38,
54 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
55 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87,
56 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
57 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d,
58 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
59 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2,
60 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
61 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16,
62 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
63 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
64 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
65 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a,
66 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
67 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,
68 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
69 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea,
70 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
71 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85,
72 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
73 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89,
74 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
75 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20,
76 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
77 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31,
78 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
79 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d,
80 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
81 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0,
82 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
83 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26,
84 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d,
85};
86
87static u32 mul_by_x(u32 w)
88{
89 u32 x = w & 0x7f7f7f7f;
90 u32 y = w & 0x80808080;
91
92 /* multiply by polynomial 'x' (0b10) in GF(2^8) */
93 return (x << 1) ^ (y >> 7) * 0x1b;
94}
95
96static u32 mul_by_x2(u32 w)
97{
98 u32 x = w & 0x3f3f3f3f;
99 u32 y = w & 0x80808080;
100 u32 z = w & 0x40404040;
101
102 /* multiply by polynomial 'x^2' (0b100) in GF(2^8) */
103 return (x << 2) ^ (y >> 7) * 0x36 ^ (z >> 6) * 0x1b;
104}
105
106static u32 mix_columns(u32 x)
107{
108 /*
109 * Perform the following matrix multiplication in GF(2^8)
110 *
111 * | 0x2 0x3 0x1 0x1 | | x[0] |
112 * | 0x1 0x2 0x3 0x1 | | x[1] |
113 * | 0x1 0x1 0x2 0x3 | x | x[2] |
114 * | 0x3 0x1 0x1 0x2 | | x[3] |
115 */
116 u32 y = mul_by_x(x) ^ ror32(x, 16);
117
118 return y ^ ror32(x ^ y, 8);
119}
120
121static u32 inv_mix_columns(u32 x)
122{
123 /*
124 * Perform the following matrix multiplication in GF(2^8)
125 *
126 * | 0xe 0xb 0xd 0x9 | | x[0] |
127 * | 0x9 0xe 0xb 0xd | | x[1] |
128 * | 0xd 0x9 0xe 0xb | x | x[2] |
129 * | 0xb 0xd 0x9 0xe | | x[3] |
130 *
131 * which can conveniently be reduced to
132 *
133 * | 0x2 0x3 0x1 0x1 | | 0x5 0x0 0x4 0x0 | | x[0] |
134 * | 0x1 0x2 0x3 0x1 | | 0x0 0x5 0x0 0x4 | | x[1] |
135 * | 0x1 0x1 0x2 0x3 | x | 0x4 0x0 0x5 0x0 | x | x[2] |
136 * | 0x3 0x1 0x1 0x2 | | 0x0 0x4 0x0 0x5 | | x[3] |
137 */
138 u32 y = mul_by_x2(x);
139
140 return mix_columns(x ^ y ^ ror32(y, 16));
141}
142
143static __always_inline u32 subshift(u32 in[], int pos)
144{
145 return (__aesti_sbox[in[pos] & 0xff]) ^
146 (__aesti_sbox[(in[(pos + 1) % 4] >> 8) & 0xff] << 8) ^
147 (__aesti_sbox[(in[(pos + 2) % 4] >> 16) & 0xff] << 16) ^
148 (__aesti_sbox[(in[(pos + 3) % 4] >> 24) & 0xff] << 24);
149}
150
151static __always_inline u32 inv_subshift(u32 in[], int pos)
152{
153 return (__aesti_inv_sbox[in[pos] & 0xff]) ^
154 (__aesti_inv_sbox[(in[(pos + 3) % 4] >> 8) & 0xff] << 8) ^
155 (__aesti_inv_sbox[(in[(pos + 2) % 4] >> 16) & 0xff] << 16) ^
156 (__aesti_inv_sbox[(in[(pos + 1) % 4] >> 24) & 0xff] << 24);
157}
158
159static u32 subw(u32 in)
160{
161 return (__aesti_sbox[in & 0xff]) ^
162 (__aesti_sbox[(in >> 8) & 0xff] << 8) ^
163 (__aesti_sbox[(in >> 16) & 0xff] << 16) ^
164 (__aesti_sbox[(in >> 24) & 0xff] << 24);
165}
166
167static int aesti_expand_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
168 unsigned int key_len)
169{
170 u32 kwords = key_len / sizeof(u32);
171 u32 rc, i, j;
172
173 if (key_len != AES_KEYSIZE_128 &&
174 key_len != AES_KEYSIZE_192 &&
175 key_len != AES_KEYSIZE_256)
176 return -EINVAL;
177
178 ctx->key_length = key_len;
179
180 for (i = 0; i < kwords; i++)
181 ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32));
182
183 for (i = 0, rc = 1; i < 10; i++, rc = mul_by_x(rc)) {
184 u32 *rki = ctx->key_enc + (i * kwords);
185 u32 *rko = rki + kwords;
186
187 rko[0] = ror32(subw(rki[kwords - 1]), 8) ^ rc ^ rki[0];
188 rko[1] = rko[0] ^ rki[1];
189 rko[2] = rko[1] ^ rki[2];
190 rko[3] = rko[2] ^ rki[3];
191
192 if (key_len == 24) {
193 if (i >= 7)
194 break;
195 rko[4] = rko[3] ^ rki[4];
196 rko[5] = rko[4] ^ rki[5];
197 } else if (key_len == 32) {
198 if (i >= 6)
199 break;
200 rko[4] = subw(rko[3]) ^ rki[4];
201 rko[5] = rko[4] ^ rki[5];
202 rko[6] = rko[5] ^ rki[6];
203 rko[7] = rko[6] ^ rki[7];
204 }
205 }
206
207 /*
208 * Generate the decryption keys for the Equivalent Inverse Cipher.
209 * This involves reversing the order of the round keys, and applying
210 * the Inverse Mix Columns transformation to all but the first and
211 * the last one.
212 */
213 ctx->key_dec[0] = ctx->key_enc[key_len + 24];
214 ctx->key_dec[1] = ctx->key_enc[key_len + 25];
215 ctx->key_dec[2] = ctx->key_enc[key_len + 26];
216 ctx->key_dec[3] = ctx->key_enc[key_len + 27];
217
218 for (i = 4, j = key_len + 20; j > 0; i += 4, j -= 4) {
219 ctx->key_dec[i] = inv_mix_columns(ctx->key_enc[j]);
220 ctx->key_dec[i + 1] = inv_mix_columns(ctx->key_enc[j + 1]);
221 ctx->key_dec[i + 2] = inv_mix_columns(ctx->key_enc[j + 2]);
222 ctx->key_dec[i + 3] = inv_mix_columns(ctx->key_enc[j + 3]);
223 }
224
225 ctx->key_dec[i] = ctx->key_enc[0];
226 ctx->key_dec[i + 1] = ctx->key_enc[1];
227 ctx->key_dec[i + 2] = ctx->key_enc[2];
228 ctx->key_dec[i + 3] = ctx->key_enc[3];
229
230 return 0;
231}
232 11
233static int aesti_set_key(struct crypto_tfm *tfm, const u8 *in_key, 12static int aesti_set_key(struct crypto_tfm *tfm, const u8 *in_key,
234 unsigned int key_len) 13 unsigned int key_len)
235{ 14{
236 struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); 15 struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
237 16
238 return aesti_expand_key(ctx, in_key, key_len); 17 return aes_expandkey(ctx, in_key, key_len);
239} 18}
240 19
241static void aesti_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) 20static void aesti_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
242{ 21{
243 const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); 22 const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
244 const u32 *rkp = ctx->key_enc + 4;
245 int rounds = 6 + ctx->key_length / 4;
246 u32 st0[4], st1[4];
247 unsigned long flags; 23 unsigned long flags;
248 int round;
249
250 st0[0] = ctx->key_enc[0] ^ get_unaligned_le32(in);
251 st0[1] = ctx->key_enc[1] ^ get_unaligned_le32(in + 4);
252 st0[2] = ctx->key_enc[2] ^ get_unaligned_le32(in + 8);
253 st0[3] = ctx->key_enc[3] ^ get_unaligned_le32(in + 12);
254 24
255 /* 25 /*
256 * Temporarily disable interrupts to avoid races where cachelines are 26 * Temporarily disable interrupts to avoid races where cachelines are
@@ -258,36 +28,7 @@ static void aesti_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
258 */ 28 */
259 local_irq_save(flags); 29 local_irq_save(flags);
260 30
261 /* 31 aes_encrypt(ctx, out, in);
262 * Force the compiler to emit data independent Sbox references,
263 * by xoring the input with Sbox values that are known to add up
264 * to zero. This pulls the entire Sbox into the D-cache before any
265 * data dependent lookups are done.
266 */
267 st0[0] ^= __aesti_sbox[ 0] ^ __aesti_sbox[ 64] ^ __aesti_sbox[134] ^ __aesti_sbox[195];
268 st0[1] ^= __aesti_sbox[16] ^ __aesti_sbox[ 82] ^ __aesti_sbox[158] ^ __aesti_sbox[221];
269 st0[2] ^= __aesti_sbox[32] ^ __aesti_sbox[ 96] ^ __aesti_sbox[160] ^ __aesti_sbox[234];
270 st0[3] ^= __aesti_sbox[48] ^ __aesti_sbox[112] ^ __aesti_sbox[186] ^ __aesti_sbox[241];
271
272 for (round = 0;; round += 2, rkp += 8) {
273 st1[0] = mix_columns(subshift(st0, 0)) ^ rkp[0];
274 st1[1] = mix_columns(subshift(st0, 1)) ^ rkp[1];
275 st1[2] = mix_columns(subshift(st0, 2)) ^ rkp[2];
276 st1[3] = mix_columns(subshift(st0, 3)) ^ rkp[3];
277
278 if (round == rounds - 2)
279 break;
280
281 st0[0] = mix_columns(subshift(st1, 0)) ^ rkp[4];
282 st0[1] = mix_columns(subshift(st1, 1)) ^ rkp[5];
283 st0[2] = mix_columns(subshift(st1, 2)) ^ rkp[6];
284 st0[3] = mix_columns(subshift(st1, 3)) ^ rkp[7];
285 }
286
287 put_unaligned_le32(subshift(st1, 0) ^ rkp[4], out);
288 put_unaligned_le32(subshift(st1, 1) ^ rkp[5], out + 4);
289 put_unaligned_le32(subshift(st1, 2) ^ rkp[6], out + 8);
290 put_unaligned_le32(subshift(st1, 3) ^ rkp[7], out + 12);
291 32
292 local_irq_restore(flags); 33 local_irq_restore(flags);
293} 34}
@@ -295,16 +36,7 @@ static void aesti_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
295static void aesti_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) 36static void aesti_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
296{ 37{
297 const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); 38 const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
298 const u32 *rkp = ctx->key_dec + 4;
299 int rounds = 6 + ctx->key_length / 4;
300 u32 st0[4], st1[4];
301 unsigned long flags; 39 unsigned long flags;
302 int round;
303
304 st0[0] = ctx->key_dec[0] ^ get_unaligned_le32(in);
305 st0[1] = ctx->key_dec[1] ^ get_unaligned_le32(in + 4);
306 st0[2] = ctx->key_dec[2] ^ get_unaligned_le32(in + 8);
307 st0[3] = ctx->key_dec[3] ^ get_unaligned_le32(in + 12);
308 40
309 /* 41 /*
310 * Temporarily disable interrupts to avoid races where cachelines are 42 * Temporarily disable interrupts to avoid races where cachelines are
@@ -312,36 +44,7 @@ static void aesti_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
312 */ 44 */
313 local_irq_save(flags); 45 local_irq_save(flags);
314 46
315 /* 47 aes_decrypt(ctx, out, in);
316 * Force the compiler to emit data independent Sbox references,
317 * by xoring the input with Sbox values that are known to add up
318 * to zero. This pulls the entire Sbox into the D-cache before any
319 * data dependent lookups are done.
320 */
321 st0[0] ^= __aesti_inv_sbox[ 0] ^ __aesti_inv_sbox[ 64] ^ __aesti_inv_sbox[129] ^ __aesti_inv_sbox[200];
322 st0[1] ^= __aesti_inv_sbox[16] ^ __aesti_inv_sbox[ 83] ^ __aesti_inv_sbox[150] ^ __aesti_inv_sbox[212];
323 st0[2] ^= __aesti_inv_sbox[32] ^ __aesti_inv_sbox[ 96] ^ __aesti_inv_sbox[160] ^ __aesti_inv_sbox[236];
324 st0[3] ^= __aesti_inv_sbox[48] ^ __aesti_inv_sbox[112] ^ __aesti_inv_sbox[187] ^ __aesti_inv_sbox[247];
325
326 for (round = 0;; round += 2, rkp += 8) {
327 st1[0] = inv_mix_columns(inv_subshift(st0, 0)) ^ rkp[0];
328 st1[1] = inv_mix_columns(inv_subshift(st0, 1)) ^ rkp[1];
329 st1[2] = inv_mix_columns(inv_subshift(st0, 2)) ^ rkp[2];
330 st1[3] = inv_mix_columns(inv_subshift(st0, 3)) ^ rkp[3];
331
332 if (round == rounds - 2)
333 break;
334
335 st0[0] = inv_mix_columns(inv_subshift(st1, 0)) ^ rkp[4];
336 st0[1] = inv_mix_columns(inv_subshift(st1, 1)) ^ rkp[5];
337 st0[2] = inv_mix_columns(inv_subshift(st1, 2)) ^ rkp[6];
338 st0[3] = inv_mix_columns(inv_subshift(st1, 3)) ^ rkp[7];
339 }
340
341 put_unaligned_le32(inv_subshift(st1, 0) ^ rkp[4], out);
342 put_unaligned_le32(inv_subshift(st1, 1) ^ rkp[5], out + 4);
343 put_unaligned_le32(inv_subshift(st1, 2) ^ rkp[6], out + 8);
344 put_unaligned_le32(inv_subshift(st1, 3) ^ rkp[7], out + 12);
345 48
346 local_irq_restore(flags); 49 local_irq_restore(flags);
347} 50}