aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/kvm/i8254.c
diff options
context:
space:
mode:
authorRadim Krčmář <rkrcmar@redhat.com>2016-03-02 16:56:41 -0500
committerPaolo Bonzini <pbonzini@redhat.com>2016-03-04 03:29:47 -0500
commitddf54503e2bbed01958cf5fb16ad6378971d2468 (patch)
treed9c327a9036e3118653ca67181c4a32fabf04608 /arch/x86/kvm/i8254.c
parentfd700a00dc2e821be92b0b56fd5d8ebf8c63f9ba (diff)
KVM: i8254: use atomic_t instead of pit.inject_lock
The lock was an overkill, the same can be done with atomics. A mb() was added in kvm_pit_ack_irq, to pair with implicit barrier between pit_timer_fn and pit_do_work. The mb() prevents a race that could happen if pending == 0 and irq_ack == 0: kvm_pit_ack_irq: | pit_timer_fn: p = atomic_read(&ps->pending); | | atomic_inc(&ps->pending); | queue_work(pit_do_work); | pit_do_work: | atomic_xchg(&ps->irq_ack, 0); | return; atomic_set(&ps->irq_ack, 1); | if (p == 0) return; | where the interrupt would not be delivered in this tick of pit_timer_fn. PIT would have eventually delivered the interrupt, but we sacrifice perofmance to make sure that interrupts are not needlessly delayed. sfence isn't enough: atomic_dec_if_positive does atomic_read first and x86 can reorder loads before stores. lfence isn't enough: store can pass lfence, turning it into a nop. A compiler barrier would be more than enough as CPU needs to stall for unbelievably long to use fences. This patch doesn't do anything in kvm_pit_reset_reinject, because any order of resets can race, but the result differs by at most one interrupt, which is ok, because it's the same result as if the reset happened at a slightly different time. (Original code didn't protect the reset path with a proper lock, so users have to be robust.) Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'arch/x86/kvm/i8254.c')
-rw-r--r--arch/x86/kvm/i8254.c56
1 files changed, 23 insertions, 33 deletions
diff --git a/arch/x86/kvm/i8254.c b/arch/x86/kvm/i8254.c
index bdbb3f076e72..0f5655c50e0c 100644
--- a/arch/x86/kvm/i8254.c
+++ b/arch/x86/kvm/i8254.c
@@ -237,11 +237,13 @@ static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
237 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state, 237 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
238 irq_ack_notifier); 238 irq_ack_notifier);
239 239
240 spin_lock(&ps->inject_lock); 240 atomic_set(&ps->irq_ack, 1);
241 /* irq_ack should be set before pending is read. Order accesses with
242 * inc(pending) in pit_timer_fn and xchg(irq_ack, 0) in pit_do_work.
243 */
244 smp_mb();
241 if (atomic_dec_if_positive(&ps->pending) > 0 && ps->reinject) 245 if (atomic_dec_if_positive(&ps->pending) > 0 && ps->reinject)
242 queue_kthread_work(&ps->pit->worker, &ps->pit->expired); 246 queue_kthread_work(&ps->pit->worker, &ps->pit->expired);
243 ps->irq_ack = 1;
244 spin_unlock(&ps->inject_lock);
245} 247}
246 248
247void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu) 249void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
@@ -272,36 +274,25 @@ static void pit_do_work(struct kthread_work *work)
272 struct kvm_vcpu *vcpu; 274 struct kvm_vcpu *vcpu;
273 int i; 275 int i;
274 struct kvm_kpit_state *ps = &pit->pit_state; 276 struct kvm_kpit_state *ps = &pit->pit_state;
275 int inject = 0;
276 277
277 /* Try to inject pending interrupts when 278 if (ps->reinject && !atomic_xchg(&ps->irq_ack, 0))
278 * last one has been acked. 279 return;
280
281 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1, false);
282 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0, false);
283
284 /*
285 * Provides NMI watchdog support via Virtual Wire mode.
286 * The route is: PIT -> LVT0 in NMI mode.
287 *
288 * Note: Our Virtual Wire implementation does not follow
289 * the MP specification. We propagate a PIT interrupt to all
290 * VCPUs and only when LVT0 is in NMI mode. The interrupt can
291 * also be simultaneously delivered through PIC and IOAPIC.
279 */ 292 */
280 spin_lock(&ps->inject_lock); 293 if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0)
281 if (!ps->reinject) 294 kvm_for_each_vcpu(i, vcpu, kvm)
282 inject = 1; 295 kvm_apic_nmi_wd_deliver(vcpu);
283 else if (ps->irq_ack) {
284 ps->irq_ack = 0;
285 inject = 1;
286 }
287 spin_unlock(&ps->inject_lock);
288 if (inject) {
289 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1, false);
290 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0, false);
291
292 /*
293 * Provides NMI watchdog support via Virtual Wire mode.
294 * The route is: PIT -> PIC -> LVT0 in NMI mode.
295 *
296 * Note: Our Virtual Wire implementation is simplified, only
297 * propagating PIT interrupts to all VCPUs when they have set
298 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
299 * VCPU0, and only if its LVT0 is in EXTINT mode.
300 */
301 if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0)
302 kvm_for_each_vcpu(i, vcpu, kvm)
303 kvm_apic_nmi_wd_deliver(vcpu);
304 }
305} 296}
306 297
307static enum hrtimer_restart pit_timer_fn(struct hrtimer *data) 298static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
@@ -324,7 +315,7 @@ static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
324static inline void kvm_pit_reset_reinject(struct kvm_pit *pit) 315static inline void kvm_pit_reset_reinject(struct kvm_pit *pit)
325{ 316{
326 atomic_set(&pit->pit_state.pending, 0); 317 atomic_set(&pit->pit_state.pending, 0);
327 pit->pit_state.irq_ack = 1; 318 atomic_set(&pit->pit_state.irq_ack, 1);
328} 319}
329 320
330static void create_pit_timer(struct kvm *kvm, u32 val, int is_period) 321static void create_pit_timer(struct kvm *kvm, u32 val, int is_period)
@@ -691,7 +682,6 @@ struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
691 682
692 mutex_init(&pit->pit_state.lock); 683 mutex_init(&pit->pit_state.lock);
693 mutex_lock(&pit->pit_state.lock); 684 mutex_lock(&pit->pit_state.lock);
694 spin_lock_init(&pit->pit_state.inject_lock);
695 685
696 pid = get_pid(task_tgid(current)); 686 pid = get_pid(task_tgid(current));
697 pid_nr = pid_vnr(pid); 687 pid_nr = pid_vnr(pid);