aboutsummaryrefslogtreecommitdiffstats
path: root/fs/xfs/libxfs
Commit message (Collapse)AuthorAge
...
| * | xfs: swap leaf buffer into path struct atomically during path shiftBrian Foster2015-08-18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The node directory lookup code uses a state structure that tracks the path of buffers used to search for the hash of a filename through the leaf blocks. When the lookup encounters a block that ends with the requested hash, but the entry has not yet been found, it must shift over to the next block and continue looking for the entry (i.e., duplicate hashes could continue over into the next block). This shift mechanism involves walking back up and down the state structure, replacing buffers at the appropriate btree levels as necessary. When a buffer is replaced, the old buffer is released and the new buffer read into the active slot in the path structure. Because the buffer is read directly into the path slot, a buffer read failure can result in setting a NULL buffer pointer in an active slot. This throws off the state cleanup code in xfs_dir2_node_lookup(), which expects to release a buffer from each active slot. Instead, a BUG occurs due to a NULL pointer dereference: BUG: unable to handle kernel NULL pointer dereference at 00000000000001e8 IP: [<ffffffffa0585063>] xfs_trans_brelse+0x2a3/0x3c0 [xfs] ... RIP: 0010:[<ffffffffa0585063>] [<ffffffffa0585063>] xfs_trans_brelse+0x2a3/0x3c0 [xfs] ... Call Trace: [<ffffffffa05250c6>] xfs_dir2_node_lookup+0xa6/0x2c0 [xfs] [<ffffffffa0519f7c>] xfs_dir_lookup+0x1ac/0x1c0 [xfs] [<ffffffffa055d0e1>] xfs_lookup+0x91/0x290 [xfs] [<ffffffffa05580b3>] xfs_vn_lookup+0x73/0xb0 [xfs] [<ffffffff8122de8d>] lookup_real+0x1d/0x50 [<ffffffff8123330e>] path_openat+0x91e/0x1490 [<ffffffff81235079>] do_filp_open+0x89/0x100 ... This has been reproduced via a parallel fsstress and filesystem shutdown workload in a loop. The shutdown triggers the read error in the aforementioned codepath and causes the BUG in xfs_dir2_node_lookup(). Update xfs_da3_path_shift() to update the active path slot atomically with respect to the caller when a buffer is replaced. This ensures that the caller always sees the old or new buffer in the slot and prevents the NULL pointer dereference. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | xfs: relocate sparse inode mount warningBrian Foster2015-08-18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The sparse inodes feature is currently considered experimental. We warn at mount time from xfs_mount_validate_sb(). This function is part of the superblock verifier codepath, however, which means it could be invoked repeatedly on superblock reads or writes. This is currently only noticeable from userspace, where mkfs produces multiple warnings at format time. As mkfs warnings were not the intent of this change, relocate the mount time warning to xfs_fs_fill_super(), which is only invoked once and only in kernel space. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | xfs: set XFS_DA_OP_OKNOENT in xfs_attr_getEric Sandeen2015-08-18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It's entirely possible for userspace to ask for an xattr which does not exist. Normally, there is no problem whatsoever when we ask for such a thing, but when we look at an obfuscated metadump image on a debug kernel with selinux, we trip over this ASSERT in xfs_da3_path_shift(): *result = -ENOENT; /* we're out of our tree */ ASSERT(args->op_flags & XFS_DA_OP_OKNOENT); It (more or less) only shows up in the above scenario, because xfs_metadump obfuscates attr names, but chooses names which keep the same hash value - and xfs_da3_node_lookup_int does: if (((retval == -ENOENT) || (retval == -ENOATTR)) && (blk->hashval == args->hashval)) { error = xfs_da3_path_shift(state, &state->path, 1, 1, &retval); IOWS, we only get down to the xfs_da3_path_shift() ASSERT if we are looking for an xattr which doesn't exist, but we find xattrs on disk which have the same hash, and so might be a hash collision, so we try the path shift. When *that* fails to find what we're looking for, we hit the assert about XFS_DA_OP_OKNOENT. Simply setting XFS_DA_OP_OKNOENT in xfs_attr_get solves this rather corner-case problem with no ill side effects. It's fine for an attr name lookup to fail. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | | Merge branch 'xfs-efi-rework' into for-nextDave Chinner2015-08-18
|\ \ \
| * | | xfs: add missing bmap cancel calls in error pathsBrian Foster2015-08-18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If a failure occurs after the bmap free list is populated and before xfs_bmap_finish() completes successfully (which returns a partial list on failure), the bmap free list must be cancelled. Otherwise, the extent items on the list are never freed and a memory leak occurs. Several random error paths throughout the code suffer this problem. Fix these up such that xfs_bmap_cancel() is always called on error. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: fix btree cursor error cleanupsBrian Foster2015-08-18
| | |/ | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The btree cursor cleanup function takes an error parameter that affects how buffers are released from the cursor. All buffers are released in the event of error. Several callers do not specify the XFS_BTREE_ERROR flag in the event of error, however. This can cause buffers to hang around locked or with an elevated hold count and thus lead to umount hangs in the event of errors. Fix up the xfs_btree_del_cursor() callers to pass XFS_BTREE_ERROR if the cursor is being torn down due to error. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | | Merge branch 'xfs-meta-uuid' into for-nextDave Chinner2015-07-28
|\ \ \ | | |/ | |/|
| * | xfs: create new metadata UUID field and incompat flagEric Sandeen2015-07-28
| |/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This adds a new superblock field, sb_meta_uuid. If set, along with a new incompat flag, the code will use that field on a V5 filesystem to compare to metadata UUIDs, which allows us to change the user- visible UUID at will. Userspace handles the setting and clearing of the incompat flag as appropriate, as the UUID gets changed; i.e. setting the user-visible UUID back to the original UUID (as stored in the new field) will remove the incompatible feature flag. If the incompat flag is not set, this copies the user-visible UUID into into the meta_uuid slot in memory when the superblock is read from disk; the meta_uuid field is not written back to disk in this case. The remainder of this patch simply switches verifiers, initializers, etc to use the new sb_meta_uuid field. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | Merge branch 'xfs-misc-fixes-for-4.3' into for-nextDave Chinner2015-07-28
|\ \
| * | libxfs: add xfs_bit.cDave Chinner2015-07-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The header side of xfs_bit.c is already in libxfs, and the sparse inode code requires the xfs_next_bit() function so pull in the xfs_bit.c file so that a sparse inode enabled libxfs compiles cleanly in userspace. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | xfs: Use consistent logging message prefixesJoe Perches2015-07-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The second and subsequent lines of multi-line logging messages are not prefixed with the same information as the first line. Separate messages with newlines into multiple calls to ensure consistent prefixing and allow easier grep use. Signed-off-by: Joe Perches <joe@perches.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | xfs: xfs_bunmapi() does not need XFS_BMAPI_METADATA flagDave Chinner2015-07-28
| |/ | | | | | | | | | | | | | | | | | | | | xfs_bunmapi() doesn't care what type of extent is being freed and does not look at the XFS_BMAPI_METADATA flag at all. As such we can remove the XFS_BMAPI_METADATA from all callers that use it. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | xfs: remote attributes need to be considered dataDave Chinner2015-07-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We don't log remote attribute contents, and instead write them synchronously before we commit the block allocation and attribute tree update transaction. As a result we are writing to the allocated space before the allcoation has been made permanent. As a result, we cannot consider this allocation to be a metadata allocation. Metadata allocation can take blocks from the free list and so reuse them before the transaction that freed the block is committed to disk. This behaviour is perfectly fine for journalled metadata changes as log recovery will ensure the free operation is replayed before the overwrite, but for remote attribute writes this is not the case. Hence we have to consider the remote attribute blocks to contain data and allocate accordingly. We do this by dropping the XFS_BMAPI_METADATA flag from the block allocation. This means the allocation will not use blocks that are on the busy list without first ensuring that the freeing transaction has been committed to disk and the blocks removed from the busy list. This ensures we will never overwrite a freed block without first ensuring that it is really free. cc: <stable@vger.kernel.org> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | xfs: remote attribute headers contain an invalid LSNDave Chinner2015-07-28
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In recent testing, a system that crashed failed log recovery on restart with a bad symlink buffer magic number: XFS (vda): Starting recovery (logdev: internal) XFS (vda): Bad symlink block magic! XFS: Assertion failed: 0, file: fs/xfs/xfs_log_recover.c, line: 2060 On examination of the log via xfs_logprint, none of the symlink buffers in the log had a bad magic number, nor were any other types of buffer log format headers mis-identified as symlink buffers. Tracing was used to find the buffer the kernel was tripping over, and xfs_db identified it's contents as: 000: 5841524d 00000000 00000346 64d82b48 8983e692 d71e4680 a5f49e2c b317576e 020: 00000000 00602038 00000000 006034ce d0020000 00000000 4d4d4d4d 4d4d4d4d 040: 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 060: 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d ..... This is a remote attribute buffer, which are notable in that they are not logged but are instead written synchronously by the remote attribute code so that they exist on disk before the attribute transactions are committed to the journal. The above remote attribute block has an invalid LSN in it - cycle 0xd002000, block 0 - which means when log recovery comes along to determine if the transaction that writes to the underlying block should be replayed, it sees a block that has a future LSN and so does not replay the buffer data in the transaction. Instead, it validates the buffer magic number and attaches the buffer verifier to it. It is this buffer magic number check that is failing in the above assert, indicating that we skipped replay due to the LSN of the underlying buffer. The problem here is that the remote attribute buffers cannot have a valid LSN placed into them, because the transaction that contains the attribute tree pointer changes and the block allocation that the attribute data is being written to hasn't yet been committed. Hence the LSN field in the attribute block is completely unwritten, thereby leaving the underlying contents of the block in the LSN field. It could have any value, and hence a future overwrite of the block by log recovery may or may not work correctly. Fix this by always writing an invalid LSN to the remote attribute block, as any buffer in log recovery that needs to write over the remote attribute should occur. We are protected from having old data written over the attribute by the fact that freeing the block before the remote attribute is written will result in the buffer being marked stale in the log and so all changes prior to the buffer stale transaction will be cancelled by log recovery. Hence it is safe to ignore the LSN in the case or synchronously written, unlogged metadata such as remote attribute blocks, and to ensure we do that correctly, we need to write an invalid LSN to all remote attribute blocks to trigger immediate recovery of metadata that is written over the top. As a further protection for filesystems that may already have remote attribute blocks with bad LSNs on disk, change the log recovery code to always trigger immediate recovery of metadata over remote attribute blocks. cc: <stable@vger.kernel.org> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* Merge branch 'xfs-misc-fixes-for-4.2-3' into for-nextDave Chinner2015-06-22
|\
| * xfs: return a void pointer from xfs_buf_offsetChristoph Hellwig2015-06-21
| | | | | | | | | | | | | | | | | | | | This avoids all kinds of unessecary casts in an envrionment like Linux where we can assume that pointer arithmetics are support on void pointers. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | Merge branch 'xfs-freelist-cleanup' into for-nextDave Chinner2015-06-22
|\ \
| * | xfs: clean up XFS_MIN_FREELIST macrosDave Chinner2015-06-21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We no longer calculate the minimum freelist size from the on-disk AGF, so we don't need the macros used for this. That means the nested macros can be cleaned up, and turn this into an actual function so the logic is clear and concise. This will make it much easier to add support for the rmap btree when the time comes. This also gets rid of the XFS_AG_MAXLEVELS macro used by these freelist macros as it is simply a wrapper around a single variable. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | xfs: sanitise error handling in xfs_alloc_fix_freelistDave Chinner2015-06-21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The error handling is currently an inconsistent mess as every error condition handles return values and releasing buffers individually. Clean this up by using gotos and a sane error label stack. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | xfs: factor out free space extent length checkDave Chinner2015-06-21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The longest extent length checks in xfs_alloc_fix_freelist() are now essentially identical. Factor them out into a helper function, so we know they are checking exactly the same thing before and after we lock the AGF. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | xfs: xfs_alloc_fix_freelist() can use incore perag structuresDave Chinner2015-06-21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | At the moment, xfs_alloc_fix_freelist() uses a mix of per-ag based access and agf buffer based access to freelist and space usage information. However, once the AGF buffer is locked inside this function, it is guaranteed that both the in-memory and on-disk values are identical. xfs_alloc_fix_freelist() doesn't modify the values in the structures directly, so it is a read-only user of the infomration, and hence can use the per-ag structure exclusively for determining what it should do. This opens up an avenue for cleaning up a lot of duplicated logic whose only difference is the structure it gets the data from, and in doing so removes a lot of needless byte swapping overhead when fixing up the free list. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | | Merge branch 'xfs-commit-cleanup' into for-nextDave Chinner2015-06-03
|\ \ \ | | | | | | | | | | | | | | | | Conflicts: fs/xfs/xfs_attr_inactive.c
| * | | xfs: saner xfs_trans_commit interfaceChristoph Hellwig2015-06-03
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The flags argument to xfs_trans_commit is not useful for most callers, as a commit of a transaction without a permanent log reservation must pass 0 here, and all callers for a transaction with a permanent log reservation except for xfs_trans_roll must pass XFS_TRANS_RELEASE_LOG_RES. So remove the flags argument from the public xfs_trans_commit interfaces, and introduce low-level __xfs_trans_commit variant just for xfs_trans_roll that regrants a log reservation instead of releasing it. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: remove the flags argument to xfs_trans_cancelChristoph Hellwig2015-06-03
| |/ / | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | xfs_trans_cancel takes two flags arguments: XFS_TRANS_RELEASE_LOG_RES and XFS_TRANS_ABORT. Both of them are a direct product of the transaction state, and can be deducted: - any dirty transaction needs XFS_TRANS_ABORT to be properly canceled, and XFS_TRANS_ABORT is a noop for a transaction that is not dirty. - any transaction with a permanent log reservation needs XFS_TRANS_RELEASE_LOG_RES to be properly canceled, and passing XFS_TRANS_RELEASE_LOG_RES for a transaction without a permanent log reservation is invalid. So just remove the flags argument and do the right thing. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | | Merge branch 'xfs-misc-fixes-for-4.2-2' into for-nextDave Chinner2015-06-03
|\ \ \
| * | | xfs: check min blks for random debug mode sparse allocationsBrian Foster2015-06-03
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The inode allocator enables random sparse inode chunk allocations in DEBUG mode to facilitate testing. Sparse inode allocations are not always possible, however, depending on the fs geometry. For example, there is no possibility for a sparse inode allocation on filesystems where the block size is large enough to fit one or more inode chunks within a single block. Fix up the DEBUG mode sparse inode allocation logic to trigger random sparse allocations only when the geometry of the fs allows it. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | | | Merge branch 'xfs-sparse-inode' into for-nextDave Chinner2015-05-31
|\| | |
| * | | xfs: enable sparse inode chunks for v5 superblocksBrian Foster2015-05-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Enable mounting of filesystems with sparse inode support enabled. Add the incompat. feature bit to the *_ALL mask. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: skip unallocated regions of inode chunks in xfs_ifree_cluster()Brian Foster2015-05-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | xfs_ifree_cluster() is called to mark all in-memory inodes and inode buffers as stale. This occurs after we've removed the inobt records and dropped any references of inobt data. xfs_ifree_cluster() uses the starting inode number to walk the namespace of inodes expected for a single chunk a cluster buffer at a time. The cluster buffer disk addresses are calculated by decoding the sequential inode numbers expected from the chunk. The problem with this approach is that if the inode chunk being removed is a sparse chunk, not all of the buffer addresses that are calculated as part of this sequence may be inode clusters. Attempting to acquire the buffer based on expected inode characterstics (i.e., cluster length) can lead to errors and is generally incorrect. We already use a couple variables to carry requisite state from xfs_difree() to xfs_ifree_cluster(). Rather than add a third, define a new internal structure to carry the existing parameters through these functions. Add an alloc field that represents the physical allocation bitmap of inodes in the chunk being removed. Modify xfs_ifree_cluster() to check each inode against the bitmap and skip the clusters that were never allocated as real inodes on disk. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: only free allocated regions of inode chunksBrian Foster2015-05-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | An inode chunk is currently added to the transaction free list based on a simple fsb conversion and hardcoded chunk length. The nature of sparse chunks is such that the physical chunk of inodes on disk may consist of one or more discontiguous parts. Blocks that reside in the holes of the inode chunk are not inodes and could be allocated to any other use or not allocated at all. Refactor the existing xfs_bmap_add_free() call into the xfs_difree_inode_chunk() helper. The new helper uses the existing calculation if a chunk is not sparse. Otherwise, use the inobt record holemask to free the contiguous regions of the chunk. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: filter out sparse regions from individual inode allocationBrian Foster2015-05-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Inode allocation from an existing record with free inodes traditionally selects the first inode available according to the ir_free mask. With sparse inode chunks, the ir_free mask could refer to an unallocated region. We must mask the unallocated regions out of ir_free before using it to select a free inode in the chunk. Update the xfs_inobt_first_free_inode() helper to find the first free inode available of the allocated regions of the inode chunk. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: randomly do sparse inode allocations in DEBUG modeBrian Foster2015-05-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Sparse inode allocations generally only occur when full inode chunk allocation fails. This requires some level of filesystem space usage and fragmentation. For filesystems formatted with sparse inode chunks enabled, do random sparse inode chunk allocs when compiled in DEBUG mode to increase test coverage. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: allocate sparse inode chunks on full chunk allocation failureBrian Foster2015-05-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | xfs_ialloc_ag_alloc() makes several attempts to allocate a full inode chunk. If all else fails, reduce the allocation to the sparse length and alignment and attempt to allocate a sparse inode chunk. If sparse chunk allocation succeeds, check whether an inobt record already exists that can track the chunk. If so, inherit and update the existing record. Otherwise, insert a new record for the sparse chunk. Create helpers to align sparse chunk inode records and insert or update existing records in the inode btrees. The xfs_inobt_insert_sprec() helper implements the merge or update semantics required for sparse inode records with respect to both the inobt and finobt. To update the inobt, either insert a new record or merge with an existing record. To update the finobt, use the updated inobt record to either insert or replace an existing record. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: helper to convert holemask to inode alloc. bitmapBrian Foster2015-05-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The inobt record holemask field is a condensed data type designed to fit into the existing on-disk record and is zero based (allocated regions are set to 0, sparse regions are set to 1) to provide backwards compatibility. This makes the type somewhat complex for use in higher level inode manipulations such as individual inode allocation, etc. Rather than foist the complexity of dealing with this field to every bit of logic that requires inode granular information, create a helper to convert the holemask to an inode allocation bitmap. The inode allocation bitmap is inode granularity similar to the inobt record free mask and indicates which inodes of the chunk are physically allocated on disk, irrespective of whether the inode is considered allocated or free by the filesystem. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: pass inode count through ordered icreate log itemBrian Foster2015-05-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | v5 superblocks use an ordered log item for logging the initialization of inode chunks. The icreate log item is currently hardcoded to an inode count of 64 inodes. The agbno and extent length are used to initialize the inode chunk from log recovery. While an incorrect inode count does not lead to bad inode chunk initialization, we should pass the correct inode count such that log recovery has enough data to perform meaningful validity checks on the chunk. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: introduce inode record hole mask for sparse inode chunksBrian Foster2015-05-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The inode btrees track 64 inodes per record regardless of inode size. Thus, inode chunks on disk vary in size depending on the size of the inodes. This creates a contiguous allocation requirement for new inode chunks that can be difficult to satisfy on an aged and fragmented (free space) filesystems. The inode record freecount currently uses 4 bytes on disk to track the free inode count. With a maximum freecount value of 64, only one byte is required. Convert the freecount field to a single byte and use two of the remaining 3 higher order bytes left for the hole mask field. Use the final leftover byte for the total count field. The hole mask field tracks holes in the chunks of physical space that the inode record refers to. This facilitates the sparse allocation of inode chunks when contiguous chunks are not available and allows the inode btrees to identify what portions of the chunk contain valid inodes. The total count field contains the total number of valid inodes referred to by the record. This can also be deduced from the hole mask. The count field provides clarity and redundancy for internal record verification. Note that neither of the new fields can be written to disk on fs' without sparse inode support. Doing so writes to the high-order bytes of freecount and causes corruption from the perspective of older kernels. The on-disk inobt record data structure is updated with a union to distinguish between the original, "full" format and the new, "sparse" format. The conversion routines to get, insert and update records are updated to translate to and from the on-disk record accordingly such that freecount remains a 4-byte value on non-supported fs, yet the new fields of the in-core record are always valid with respect to the record. This means that higher level code can refer to the current in-core record format unconditionally and lower level code ensures that records are translated to/from disk according to the capabilities of the fs. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: add fs geometry bit for sparse inode chunksBrian Foster2015-05-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Define an fs geometry bit for sparse inode chunks such that the characteristic of the fs can be identified by userspace. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: sparse inode chunks feature helpers and mount requirementsBrian Foster2015-05-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The sparse inode chunks feature uses the helper function to enable the allocation of sparse inode chunks. The incompatible feature bit is set on disk at mkfs time to prevent mount from unsupported kernels. Also, enforce the inode alignment requirements required for sparse inode chunks at mount time. When enabled, full inode chunks (and all inode record) alignment is increased from cluster size to inode chunk size. Sparse inode alignment must match the cluster size of the fs. Both superblock alignment fields are set as such by mkfs when sparse inode support is enabled. Finally, warn that sparse inode chunks is an experimental feature until further notice. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: use sparse chunk alignment for min. inode allocation requirementBrian Foster2015-05-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | xfs_ialloc_ag_select() iterates through the allocation groups looking for free inodes or free space to determine whether to allow an inode allocation to proceed. If no free inodes are available, it assumes that an AG must have an extent longer than mp->m_ialloc_blks. Sparse inode chunk support currently allows for allocations smaller than the traditional inode chunk size specified in m_ialloc_blks. The current minimum sparse allocation is set in the superblock sb_spino_align field at mkfs time. Create a new m_ialloc_min_blks field in xfs_mount and use this to represent the minimum supported allocation size for inode chunks. Initialize m_ialloc_min_blks at mount time based on whether sparse inodes are supported. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: add sparse inode chunk alignment superblock fieldBrian Foster2015-05-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add sb_spino_align to the superblock to specify sparse inode chunk alignment. This also currently represents the minimum allowable sparse chunk allocation size. Signed-off-by: Brian Foster <bfoster@redhat.com>
| * | | xfs: support min/max agbno args in block allocatorBrian Foster2015-05-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The block allocator supports various arguments to tweak block allocation behavior and set allocation requirements. The sparse inode chunk feature introduces a new requirement not supported by the current arguments. Sparse inode allocations must convert or merge into an inode record that describes a fixed length chunk (64 inodes x inodesize). Full inode chunk allocations by definition always result in valid inode records. Sparse chunk allocations are smaller and the associated records can refer to blocks not owned by the inode chunk. This model can result in invalid inode records in certain cases. For example, if a sparse allocation occurs near the start of an AG, the aligned inode record for that chunk might refer to agbno 0. If an allocation occurs towards the end of the AG and the AG size is not aligned, the inode record could refer to blocks beyond the end of the AG. While neither of these scenarios directly result in corruption, they both insert invalid inode records and at minimum cause repair to complain, are unlikely to merge into full chunks over time and set land mines for other areas of code. To guarantee sparse inode chunk allocation creates valid inode records, support the ability to specify an agbno range limit for XFS_ALLOCTYPE_NEAR_BNO block allocations. The min/max agbno's are specified in the allocation arguments and limit the block allocation algorithms to that range. The starting 'agbno' hint is clamped to the range if the specified agbno is out of range. If no sufficient extent is available within the range, the allocation fails. For backwards compatibility, the min/max fields can be initialized to 0 to disable range limiting (e.g., equivalent to min=0,max=agsize). Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: update free inode record logic to support sparse inode recordsBrian Foster2015-05-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | xfs_difree_inobt() uses logic in a couple places that assume inobt records refer to fully allocated chunks. Specifically, the use of mp->m_ialloc_inos can cause problems for inode chunks that are sparsely allocated. Sparse inode chunks can, by definition, define a smaller number of inodes than a full inode chunk. Fix the logic that determines whether an inode record should be removed from the inobt to use the ir_free mask rather than ir_freecount. Fix the agi counters modification to use ir_freecount to add the actual number of inodes freed rather than assuming a full inode chunk. Also make sure that we preserve the behavior to not remove inode chunks if the block size is large enough for multiple inode chunks (e.g., bsize=64k, isize=512). This behavior was previously implicit in that in such configurations, ir.freecount of a single record never matches m_ialloc_inos. Hence, add some comments as well. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: create individual inode alloc. helperBrian Foster2015-05-28
| |/ / | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Inode allocation from sparse inode records must filter the ir_free mask against ir_holemask. In preparation for this requirement, create a helper to allocate an individual inode from an inode record. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | | Merge branch 'xfs-misc-fixes-for-4.2' into for-nextDave Chinner2015-05-31
|\ \ \ | |_|/ |/| |
| * | xfs: don't cast string literalsEric Sandeen2015-05-31
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The commit: a9273ca5 xfs: convert attr to use unsigned names added these (unsigned char *) casts, but then the _SIZE macros return "7" - size of a pointer minus one - not the length of the string. This is harmless in the kernel, because the _SIZE macros are not used, but as we sync up with userspace, this will matter. I don't think the cast is necessary; i.e. assigning the string literal to an unsigned char *, or passing it to a function expecting an unsigned char *, should be ok, right? Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | xfs: always log the inode on unwritten extent conversionBrian Foster2015-05-31
| |/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The fsync() requirements for crash consistency on XFS are to flush file data and force any in-core inode updates to the log. We currently check whether the inode is pinned to identify whether the log needs to be forced, since a non-zero pin count generally represents an inode that has transactions awaiting a flush to the on-disk log. This is not sufficient in all cases, however. Reports of xfstests test generic/311 failures on ppc64/s390x hosts have identified failures to fsync outstanding inode modifications due to the inode not being pinned at the time of the fsync. This occurs because certain bmap updates can complete by logging bmapbt buffers but without ever dirtying (and thus pinning) the core inode. The following is a specific incarnation of this problem: $ mount $dev /mnt -o noatime,nobarrier $ for i in $(seq 0 2 31); do \ xfs_io -f -c "falloc $((i * 32768)) 32k" -c fsync /mnt/file; \ done $ xfs_io -c "pwrite -S 0 80k 16k" -c fsync -c "pwrite 76k 4k" -c fsync /mnt/file; \ hexdump /mnt/file; \ ./xfstests-dev/src/godown /mnt ... 0000000 0000 0000 0000 0000 0000 0000 0000 0000 * 0013000 cdcd cdcd cdcd cdcd cdcd cdcd cdcd cdcd * 0014000 0000 0000 0000 0000 0000 0000 0000 0000 * 00f8000 $ umount /mnt; mount ... $ hexdump /mnt/file 0000000 0000 0000 0000 0000 0000 0000 0000 0000 * 00f8000 In short, the unwritten extent conversion for the last write is lost despite the fact that an fsync executed before the filesystem was shutdown. Note that this is impossible to reproduce on v5 supers due to unconditional time callbacks for di_changecount and highly difficult to reproduce on CONFIG_HZ=1000 kernels due to those same callbacks frequently updating cmtime prior to the bmap update. CONFIG_HZ=100 reduces timer granularity enough to increase the odds that time updates are skipped and allows this to reproduce within a handful of attempts. To deal with this problem, unconditionally log the core in the unwritten extent conversion path. Fix up logflags after the extent conversion to keep the extent update code consistent with the other extent update helpers. This fixup is not necessary for the other (hole, delay) extent helpers because they execute in the block allocation codepath, which already logs the inode for other reasons (e.g., for di_nblocks). Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | xfs: xfs_attr_inactive leaves inconsistent attr fork state behindDave Chinner2015-05-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | xfs_attr_inactive() is supposed to clean up the attribute fork when the inode is being freed. While it removes attribute fork extents, it completely ignores attributes in local format, which means that there can still be active attributes on the inode after xfs_attr_inactive() has run. This leads to problems with concurrent inode writeback - the in-core inode attribute fork is removed without locking on the assumption that nothing will be attempting to access the attribute fork after a call to xfs_attr_inactive() because it isn't supposed to exist on disk any more. To fix this, make xfs_attr_inactive() completely remove all traces of the attribute fork from the inode, regardless of it's state. Further, also remove the in-core attribute fork structure safely so that there is nothing further that needs to be done by callers to clean up the attribute fork. This means we can remove the in-core and on-disk attribute forks atomically. Also, on error simply remove the in-memory attribute fork. There's nothing that can be done with it once we have failed to remove the on-disk attribute fork, so we may as well just blow it away here anyway. cc: <stable@vger.kernel.org> # 3.12 to 4.0 Reported-by: Waiman Long <waiman.long@hp.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | xfs: extent size hints can round up extents past MAXEXTLENDave Chinner2015-05-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This results in BMBT corruption, as seen by this test: # mkfs.xfs -f -d size=40051712b,agcount=4 /dev/vdc .... # mount /dev/vdc /mnt/scratch # xfs_io -ft -c "extsize 16m" -c "falloc 0 30g" -c "bmap -vp" /mnt/scratch/foo which results in this failure on a debug kernel: XFS: Assertion failed: (blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN)) == 0, file: fs/xfs/libxfs/xfs_bmap_btree.c, line: 211 .... Call Trace: [<ffffffff814cf0ff>] xfs_bmbt_set_allf+0x8f/0x100 [<ffffffff814cf18d>] xfs_bmbt_set_all+0x1d/0x20 [<ffffffff814f2efe>] xfs_iext_insert+0x9e/0x120 [<ffffffff814c7956>] ? xfs_bmap_add_extent_hole_real+0x1c6/0xc70 [<ffffffff814c7956>] xfs_bmap_add_extent_hole_real+0x1c6/0xc70 [<ffffffff814caaab>] xfs_bmapi_write+0x72b/0xed0 [<ffffffff811c72ac>] ? kmem_cache_alloc+0x15c/0x170 [<ffffffff814fe070>] xfs_alloc_file_space+0x160/0x400 [<ffffffff81ddcc29>] ? down_write+0x29/0x60 [<ffffffff815063eb>] xfs_file_fallocate+0x29b/0x310 [<ffffffff811d2bc8>] ? __sb_start_write+0x58/0x120 [<ffffffff811e3e18>] ? do_vfs_ioctl+0x318/0x570 [<ffffffff811cd680>] vfs_fallocate+0x140/0x260 [<ffffffff811ce6f8>] SyS_fallocate+0x48/0x80 [<ffffffff81ddec09>] system_call_fastpath+0x12/0x17 The tracepoint that indicates the extent that triggered the assert failure is: xfs_iext_insert: idx 0 offset 0 block 16777224 count 2097152 flag 1 Clearly indicating that the extent length is greater than MAXEXTLEN, which is 2097151. A prior trace point shows the allocation was an exact size match and that a length greater than MAXEXTLEN was asked for: xfs_alloc_size_done: agno 1 agbno 8 minlen 2097152 maxlen 2097152 ^^^^^^^ ^^^^^^^ We don't see this problem with extent size hints through the IO path because we can't do single IOs large enough to trigger MAXEXTLEN allocation. fallocate(), OTOH, is not limited in it's allocation sizes and so needs help here. The issue is that the extent size hint alignment is rounding up the extent size past MAXEXTLEN, because xfs_bmapi_write() is not taking into account extent size hints when calculating the maximum extent length to allocate. xfs_bmapi_reserve_delalloc() is already doing this, but direct extent allocation is not. Unfortunately, the calculation in xfs_bmapi_reserve_delalloc() is wrong, and it works only because delayed allocation extents are not limited in size to MAXEXTLEN in the in-core extent tree. hence this calculation does not work for direct allocation, and the delalloc code needs fixing. This may, in fact be the underlying bug that occassionally causes transaction overruns in delayed allocation extent conversion, so now we know it's wrong we should fix it, too. Many thanks to Brian Foster for finding this problem during review of this patch. Hence the fix, after much code reading, is to allow xfs_bmap_extsize_align() to align partial extents when full alignment would extend the alignment past MAXEXTLEN. We can safely do this because all callers have higher layer allocation loops that already handle short allocations, and so will simply run another allocation to cover the remainder of the requested allocation range that we ignored during alignment. The advantage of this approach is that it also removes the need for callers to do anything other than limit their requests to MAXEXTLEN - they don't really need to be aware of extent size hints at all. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | xfs: use percpu_counter_read_positive for mp->m_icountGeorge Wang2015-05-28
|/ | | | | | | | | | | | | | Function percpu_counter_read just return the current counter, which can be negative. This will cause the checking of "allocated inode counts <= m_maxicount" false positive. Use percpu_counter_read_positive can solve this problem, and be consistent with the purpose to introduce percpu mechanism to xfs. Signed-off-by: George Wang <xuw2015@gmail.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* Merge branch 'xfs-misc-fixes-for-4.1-3' into for-nextDave Chinner2015-04-12
|\ | | | | | | | | Conflicts: fs/xfs/xfs_iops.c