diff options
Diffstat (limited to 'drivers/spi/spi-ep93xx.c')
-rw-r--r-- | drivers/spi/spi-ep93xx.c | 1217 |
1 files changed, 1217 insertions, 0 deletions
diff --git a/drivers/spi/spi-ep93xx.c b/drivers/spi/spi-ep93xx.c new file mode 100644 index 000000000000..1cf645479bfe --- /dev/null +++ b/drivers/spi/spi-ep93xx.c | |||
@@ -0,0 +1,1217 @@ | |||
1 | /* | ||
2 | * Driver for Cirrus Logic EP93xx SPI controller. | ||
3 | * | ||
4 | * Copyright (C) 2010-2011 Mika Westerberg | ||
5 | * | ||
6 | * Explicit FIFO handling code was inspired by amba-pl022 driver. | ||
7 | * | ||
8 | * Chip select support using other than built-in GPIOs by H. Hartley Sweeten. | ||
9 | * | ||
10 | * For more information about the SPI controller see documentation on Cirrus | ||
11 | * Logic web site: | ||
12 | * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf | ||
13 | * | ||
14 | * This program is free software; you can redistribute it and/or modify | ||
15 | * it under the terms of the GNU General Public License version 2 as | ||
16 | * published by the Free Software Foundation. | ||
17 | */ | ||
18 | |||
19 | #include <linux/io.h> | ||
20 | #include <linux/clk.h> | ||
21 | #include <linux/err.h> | ||
22 | #include <linux/delay.h> | ||
23 | #include <linux/device.h> | ||
24 | #include <linux/dmaengine.h> | ||
25 | #include <linux/bitops.h> | ||
26 | #include <linux/interrupt.h> | ||
27 | #include <linux/platform_device.h> | ||
28 | #include <linux/workqueue.h> | ||
29 | #include <linux/sched.h> | ||
30 | #include <linux/scatterlist.h> | ||
31 | #include <linux/spi/spi.h> | ||
32 | |||
33 | #include <mach/dma.h> | ||
34 | #include <mach/ep93xx_spi.h> | ||
35 | |||
36 | #define SSPCR0 0x0000 | ||
37 | #define SSPCR0_MODE_SHIFT 6 | ||
38 | #define SSPCR0_SCR_SHIFT 8 | ||
39 | |||
40 | #define SSPCR1 0x0004 | ||
41 | #define SSPCR1_RIE BIT(0) | ||
42 | #define SSPCR1_TIE BIT(1) | ||
43 | #define SSPCR1_RORIE BIT(2) | ||
44 | #define SSPCR1_LBM BIT(3) | ||
45 | #define SSPCR1_SSE BIT(4) | ||
46 | #define SSPCR1_MS BIT(5) | ||
47 | #define SSPCR1_SOD BIT(6) | ||
48 | |||
49 | #define SSPDR 0x0008 | ||
50 | |||
51 | #define SSPSR 0x000c | ||
52 | #define SSPSR_TFE BIT(0) | ||
53 | #define SSPSR_TNF BIT(1) | ||
54 | #define SSPSR_RNE BIT(2) | ||
55 | #define SSPSR_RFF BIT(3) | ||
56 | #define SSPSR_BSY BIT(4) | ||
57 | #define SSPCPSR 0x0010 | ||
58 | |||
59 | #define SSPIIR 0x0014 | ||
60 | #define SSPIIR_RIS BIT(0) | ||
61 | #define SSPIIR_TIS BIT(1) | ||
62 | #define SSPIIR_RORIS BIT(2) | ||
63 | #define SSPICR SSPIIR | ||
64 | |||
65 | /* timeout in milliseconds */ | ||
66 | #define SPI_TIMEOUT 5 | ||
67 | /* maximum depth of RX/TX FIFO */ | ||
68 | #define SPI_FIFO_SIZE 8 | ||
69 | |||
70 | /** | ||
71 | * struct ep93xx_spi - EP93xx SPI controller structure | ||
72 | * @lock: spinlock that protects concurrent accesses to fields @running, | ||
73 | * @current_msg and @msg_queue | ||
74 | * @pdev: pointer to platform device | ||
75 | * @clk: clock for the controller | ||
76 | * @regs_base: pointer to ioremap()'d registers | ||
77 | * @sspdr_phys: physical address of the SSPDR register | ||
78 | * @irq: IRQ number used by the driver | ||
79 | * @min_rate: minimum clock rate (in Hz) supported by the controller | ||
80 | * @max_rate: maximum clock rate (in Hz) supported by the controller | ||
81 | * @running: is the queue running | ||
82 | * @wq: workqueue used by the driver | ||
83 | * @msg_work: work that is queued for the driver | ||
84 | * @wait: wait here until given transfer is completed | ||
85 | * @msg_queue: queue for the messages | ||
86 | * @current_msg: message that is currently processed (or %NULL if none) | ||
87 | * @tx: current byte in transfer to transmit | ||
88 | * @rx: current byte in transfer to receive | ||
89 | * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one | ||
90 | * frame decreases this level and sending one frame increases it. | ||
91 | * @dma_rx: RX DMA channel | ||
92 | * @dma_tx: TX DMA channel | ||
93 | * @dma_rx_data: RX parameters passed to the DMA engine | ||
94 | * @dma_tx_data: TX parameters passed to the DMA engine | ||
95 | * @rx_sgt: sg table for RX transfers | ||
96 | * @tx_sgt: sg table for TX transfers | ||
97 | * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by | ||
98 | * the client | ||
99 | * | ||
100 | * This structure holds EP93xx SPI controller specific information. When | ||
101 | * @running is %true, driver accepts transfer requests from protocol drivers. | ||
102 | * @current_msg is used to hold pointer to the message that is currently | ||
103 | * processed. If @current_msg is %NULL, it means that no processing is going | ||
104 | * on. | ||
105 | * | ||
106 | * Most of the fields are only written once and they can be accessed without | ||
107 | * taking the @lock. Fields that are accessed concurrently are: @current_msg, | ||
108 | * @running, and @msg_queue. | ||
109 | */ | ||
110 | struct ep93xx_spi { | ||
111 | spinlock_t lock; | ||
112 | const struct platform_device *pdev; | ||
113 | struct clk *clk; | ||
114 | void __iomem *regs_base; | ||
115 | unsigned long sspdr_phys; | ||
116 | int irq; | ||
117 | unsigned long min_rate; | ||
118 | unsigned long max_rate; | ||
119 | bool running; | ||
120 | struct workqueue_struct *wq; | ||
121 | struct work_struct msg_work; | ||
122 | struct completion wait; | ||
123 | struct list_head msg_queue; | ||
124 | struct spi_message *current_msg; | ||
125 | size_t tx; | ||
126 | size_t rx; | ||
127 | size_t fifo_level; | ||
128 | struct dma_chan *dma_rx; | ||
129 | struct dma_chan *dma_tx; | ||
130 | struct ep93xx_dma_data dma_rx_data; | ||
131 | struct ep93xx_dma_data dma_tx_data; | ||
132 | struct sg_table rx_sgt; | ||
133 | struct sg_table tx_sgt; | ||
134 | void *zeropage; | ||
135 | }; | ||
136 | |||
137 | /** | ||
138 | * struct ep93xx_spi_chip - SPI device hardware settings | ||
139 | * @spi: back pointer to the SPI device | ||
140 | * @rate: max rate in hz this chip supports | ||
141 | * @div_cpsr: cpsr (pre-scaler) divider | ||
142 | * @div_scr: scr divider | ||
143 | * @dss: bits per word (4 - 16 bits) | ||
144 | * @ops: private chip operations | ||
145 | * | ||
146 | * This structure is used to store hardware register specific settings for each | ||
147 | * SPI device. Settings are written to hardware by function | ||
148 | * ep93xx_spi_chip_setup(). | ||
149 | */ | ||
150 | struct ep93xx_spi_chip { | ||
151 | const struct spi_device *spi; | ||
152 | unsigned long rate; | ||
153 | u8 div_cpsr; | ||
154 | u8 div_scr; | ||
155 | u8 dss; | ||
156 | struct ep93xx_spi_chip_ops *ops; | ||
157 | }; | ||
158 | |||
159 | /* converts bits per word to CR0.DSS value */ | ||
160 | #define bits_per_word_to_dss(bpw) ((bpw) - 1) | ||
161 | |||
162 | static inline void | ||
163 | ep93xx_spi_write_u8(const struct ep93xx_spi *espi, u16 reg, u8 value) | ||
164 | { | ||
165 | __raw_writeb(value, espi->regs_base + reg); | ||
166 | } | ||
167 | |||
168 | static inline u8 | ||
169 | ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg) | ||
170 | { | ||
171 | return __raw_readb(spi->regs_base + reg); | ||
172 | } | ||
173 | |||
174 | static inline void | ||
175 | ep93xx_spi_write_u16(const struct ep93xx_spi *espi, u16 reg, u16 value) | ||
176 | { | ||
177 | __raw_writew(value, espi->regs_base + reg); | ||
178 | } | ||
179 | |||
180 | static inline u16 | ||
181 | ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg) | ||
182 | { | ||
183 | return __raw_readw(spi->regs_base + reg); | ||
184 | } | ||
185 | |||
186 | static int ep93xx_spi_enable(const struct ep93xx_spi *espi) | ||
187 | { | ||
188 | u8 regval; | ||
189 | int err; | ||
190 | |||
191 | err = clk_enable(espi->clk); | ||
192 | if (err) | ||
193 | return err; | ||
194 | |||
195 | regval = ep93xx_spi_read_u8(espi, SSPCR1); | ||
196 | regval |= SSPCR1_SSE; | ||
197 | ep93xx_spi_write_u8(espi, SSPCR1, regval); | ||
198 | |||
199 | return 0; | ||
200 | } | ||
201 | |||
202 | static void ep93xx_spi_disable(const struct ep93xx_spi *espi) | ||
203 | { | ||
204 | u8 regval; | ||
205 | |||
206 | regval = ep93xx_spi_read_u8(espi, SSPCR1); | ||
207 | regval &= ~SSPCR1_SSE; | ||
208 | ep93xx_spi_write_u8(espi, SSPCR1, regval); | ||
209 | |||
210 | clk_disable(espi->clk); | ||
211 | } | ||
212 | |||
213 | static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi) | ||
214 | { | ||
215 | u8 regval; | ||
216 | |||
217 | regval = ep93xx_spi_read_u8(espi, SSPCR1); | ||
218 | regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); | ||
219 | ep93xx_spi_write_u8(espi, SSPCR1, regval); | ||
220 | } | ||
221 | |||
222 | static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi) | ||
223 | { | ||
224 | u8 regval; | ||
225 | |||
226 | regval = ep93xx_spi_read_u8(espi, SSPCR1); | ||
227 | regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); | ||
228 | ep93xx_spi_write_u8(espi, SSPCR1, regval); | ||
229 | } | ||
230 | |||
231 | /** | ||
232 | * ep93xx_spi_calc_divisors() - calculates SPI clock divisors | ||
233 | * @espi: ep93xx SPI controller struct | ||
234 | * @chip: divisors are calculated for this chip | ||
235 | * @rate: desired SPI output clock rate | ||
236 | * | ||
237 | * Function calculates cpsr (clock pre-scaler) and scr divisors based on | ||
238 | * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If, | ||
239 | * for some reason, divisors cannot be calculated nothing is stored and | ||
240 | * %-EINVAL is returned. | ||
241 | */ | ||
242 | static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi, | ||
243 | struct ep93xx_spi_chip *chip, | ||
244 | unsigned long rate) | ||
245 | { | ||
246 | unsigned long spi_clk_rate = clk_get_rate(espi->clk); | ||
247 | int cpsr, scr; | ||
248 | |||
249 | /* | ||
250 | * Make sure that max value is between values supported by the | ||
251 | * controller. Note that minimum value is already checked in | ||
252 | * ep93xx_spi_transfer(). | ||
253 | */ | ||
254 | rate = clamp(rate, espi->min_rate, espi->max_rate); | ||
255 | |||
256 | /* | ||
257 | * Calculate divisors so that we can get speed according the | ||
258 | * following formula: | ||
259 | * rate = spi_clock_rate / (cpsr * (1 + scr)) | ||
260 | * | ||
261 | * cpsr must be even number and starts from 2, scr can be any number | ||
262 | * between 0 and 255. | ||
263 | */ | ||
264 | for (cpsr = 2; cpsr <= 254; cpsr += 2) { | ||
265 | for (scr = 0; scr <= 255; scr++) { | ||
266 | if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) { | ||
267 | chip->div_scr = (u8)scr; | ||
268 | chip->div_cpsr = (u8)cpsr; | ||
269 | return 0; | ||
270 | } | ||
271 | } | ||
272 | } | ||
273 | |||
274 | return -EINVAL; | ||
275 | } | ||
276 | |||
277 | static void ep93xx_spi_cs_control(struct spi_device *spi, bool control) | ||
278 | { | ||
279 | struct ep93xx_spi_chip *chip = spi_get_ctldata(spi); | ||
280 | int value = (spi->mode & SPI_CS_HIGH) ? control : !control; | ||
281 | |||
282 | if (chip->ops && chip->ops->cs_control) | ||
283 | chip->ops->cs_control(spi, value); | ||
284 | } | ||
285 | |||
286 | /** | ||
287 | * ep93xx_spi_setup() - setup an SPI device | ||
288 | * @spi: SPI device to setup | ||
289 | * | ||
290 | * This function sets up SPI device mode, speed etc. Can be called multiple | ||
291 | * times for a single device. Returns %0 in case of success, negative error in | ||
292 | * case of failure. When this function returns success, the device is | ||
293 | * deselected. | ||
294 | */ | ||
295 | static int ep93xx_spi_setup(struct spi_device *spi) | ||
296 | { | ||
297 | struct ep93xx_spi *espi = spi_master_get_devdata(spi->master); | ||
298 | struct ep93xx_spi_chip *chip; | ||
299 | |||
300 | if (spi->bits_per_word < 4 || spi->bits_per_word > 16) { | ||
301 | dev_err(&espi->pdev->dev, "invalid bits per word %d\n", | ||
302 | spi->bits_per_word); | ||
303 | return -EINVAL; | ||
304 | } | ||
305 | |||
306 | chip = spi_get_ctldata(spi); | ||
307 | if (!chip) { | ||
308 | dev_dbg(&espi->pdev->dev, "initial setup for %s\n", | ||
309 | spi->modalias); | ||
310 | |||
311 | chip = kzalloc(sizeof(*chip), GFP_KERNEL); | ||
312 | if (!chip) | ||
313 | return -ENOMEM; | ||
314 | |||
315 | chip->spi = spi; | ||
316 | chip->ops = spi->controller_data; | ||
317 | |||
318 | if (chip->ops && chip->ops->setup) { | ||
319 | int ret = chip->ops->setup(spi); | ||
320 | if (ret) { | ||
321 | kfree(chip); | ||
322 | return ret; | ||
323 | } | ||
324 | } | ||
325 | |||
326 | spi_set_ctldata(spi, chip); | ||
327 | } | ||
328 | |||
329 | if (spi->max_speed_hz != chip->rate) { | ||
330 | int err; | ||
331 | |||
332 | err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz); | ||
333 | if (err != 0) { | ||
334 | spi_set_ctldata(spi, NULL); | ||
335 | kfree(chip); | ||
336 | return err; | ||
337 | } | ||
338 | chip->rate = spi->max_speed_hz; | ||
339 | } | ||
340 | |||
341 | chip->dss = bits_per_word_to_dss(spi->bits_per_word); | ||
342 | |||
343 | ep93xx_spi_cs_control(spi, false); | ||
344 | return 0; | ||
345 | } | ||
346 | |||
347 | /** | ||
348 | * ep93xx_spi_transfer() - queue message to be transferred | ||
349 | * @spi: target SPI device | ||
350 | * @msg: message to be transferred | ||
351 | * | ||
352 | * This function is called by SPI device drivers when they are going to transfer | ||
353 | * a new message. It simply puts the message in the queue and schedules | ||
354 | * workqueue to perform the actual transfer later on. | ||
355 | * | ||
356 | * Returns %0 on success and negative error in case of failure. | ||
357 | */ | ||
358 | static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg) | ||
359 | { | ||
360 | struct ep93xx_spi *espi = spi_master_get_devdata(spi->master); | ||
361 | struct spi_transfer *t; | ||
362 | unsigned long flags; | ||
363 | |||
364 | if (!msg || !msg->complete) | ||
365 | return -EINVAL; | ||
366 | |||
367 | /* first validate each transfer */ | ||
368 | list_for_each_entry(t, &msg->transfers, transfer_list) { | ||
369 | if (t->bits_per_word) { | ||
370 | if (t->bits_per_word < 4 || t->bits_per_word > 16) | ||
371 | return -EINVAL; | ||
372 | } | ||
373 | if (t->speed_hz && t->speed_hz < espi->min_rate) | ||
374 | return -EINVAL; | ||
375 | } | ||
376 | |||
377 | /* | ||
378 | * Now that we own the message, let's initialize it so that it is | ||
379 | * suitable for us. We use @msg->status to signal whether there was | ||
380 | * error in transfer and @msg->state is used to hold pointer to the | ||
381 | * current transfer (or %NULL if no active current transfer). | ||
382 | */ | ||
383 | msg->state = NULL; | ||
384 | msg->status = 0; | ||
385 | msg->actual_length = 0; | ||
386 | |||
387 | spin_lock_irqsave(&espi->lock, flags); | ||
388 | if (!espi->running) { | ||
389 | spin_unlock_irqrestore(&espi->lock, flags); | ||
390 | return -ESHUTDOWN; | ||
391 | } | ||
392 | list_add_tail(&msg->queue, &espi->msg_queue); | ||
393 | queue_work(espi->wq, &espi->msg_work); | ||
394 | spin_unlock_irqrestore(&espi->lock, flags); | ||
395 | |||
396 | return 0; | ||
397 | } | ||
398 | |||
399 | /** | ||
400 | * ep93xx_spi_cleanup() - cleans up master controller specific state | ||
401 | * @spi: SPI device to cleanup | ||
402 | * | ||
403 | * This function releases master controller specific state for given @spi | ||
404 | * device. | ||
405 | */ | ||
406 | static void ep93xx_spi_cleanup(struct spi_device *spi) | ||
407 | { | ||
408 | struct ep93xx_spi_chip *chip; | ||
409 | |||
410 | chip = spi_get_ctldata(spi); | ||
411 | if (chip) { | ||
412 | if (chip->ops && chip->ops->cleanup) | ||
413 | chip->ops->cleanup(spi); | ||
414 | spi_set_ctldata(spi, NULL); | ||
415 | kfree(chip); | ||
416 | } | ||
417 | } | ||
418 | |||
419 | /** | ||
420 | * ep93xx_spi_chip_setup() - configures hardware according to given @chip | ||
421 | * @espi: ep93xx SPI controller struct | ||
422 | * @chip: chip specific settings | ||
423 | * | ||
424 | * This function sets up the actual hardware registers with settings given in | ||
425 | * @chip. Note that no validation is done so make sure that callers validate | ||
426 | * settings before calling this. | ||
427 | */ | ||
428 | static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi, | ||
429 | const struct ep93xx_spi_chip *chip) | ||
430 | { | ||
431 | u16 cr0; | ||
432 | |||
433 | cr0 = chip->div_scr << SSPCR0_SCR_SHIFT; | ||
434 | cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT; | ||
435 | cr0 |= chip->dss; | ||
436 | |||
437 | dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n", | ||
438 | chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss); | ||
439 | dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0); | ||
440 | |||
441 | ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr); | ||
442 | ep93xx_spi_write_u16(espi, SSPCR0, cr0); | ||
443 | } | ||
444 | |||
445 | static inline int bits_per_word(const struct ep93xx_spi *espi) | ||
446 | { | ||
447 | struct spi_message *msg = espi->current_msg; | ||
448 | struct spi_transfer *t = msg->state; | ||
449 | |||
450 | return t->bits_per_word ? t->bits_per_word : msg->spi->bits_per_word; | ||
451 | } | ||
452 | |||
453 | static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t) | ||
454 | { | ||
455 | if (bits_per_word(espi) > 8) { | ||
456 | u16 tx_val = 0; | ||
457 | |||
458 | if (t->tx_buf) | ||
459 | tx_val = ((u16 *)t->tx_buf)[espi->tx]; | ||
460 | ep93xx_spi_write_u16(espi, SSPDR, tx_val); | ||
461 | espi->tx += sizeof(tx_val); | ||
462 | } else { | ||
463 | u8 tx_val = 0; | ||
464 | |||
465 | if (t->tx_buf) | ||
466 | tx_val = ((u8 *)t->tx_buf)[espi->tx]; | ||
467 | ep93xx_spi_write_u8(espi, SSPDR, tx_val); | ||
468 | espi->tx += sizeof(tx_val); | ||
469 | } | ||
470 | } | ||
471 | |||
472 | static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t) | ||
473 | { | ||
474 | if (bits_per_word(espi) > 8) { | ||
475 | u16 rx_val; | ||
476 | |||
477 | rx_val = ep93xx_spi_read_u16(espi, SSPDR); | ||
478 | if (t->rx_buf) | ||
479 | ((u16 *)t->rx_buf)[espi->rx] = rx_val; | ||
480 | espi->rx += sizeof(rx_val); | ||
481 | } else { | ||
482 | u8 rx_val; | ||
483 | |||
484 | rx_val = ep93xx_spi_read_u8(espi, SSPDR); | ||
485 | if (t->rx_buf) | ||
486 | ((u8 *)t->rx_buf)[espi->rx] = rx_val; | ||
487 | espi->rx += sizeof(rx_val); | ||
488 | } | ||
489 | } | ||
490 | |||
491 | /** | ||
492 | * ep93xx_spi_read_write() - perform next RX/TX transfer | ||
493 | * @espi: ep93xx SPI controller struct | ||
494 | * | ||
495 | * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If | ||
496 | * called several times, the whole transfer will be completed. Returns | ||
497 | * %-EINPROGRESS when current transfer was not yet completed otherwise %0. | ||
498 | * | ||
499 | * When this function is finished, RX FIFO should be empty and TX FIFO should be | ||
500 | * full. | ||
501 | */ | ||
502 | static int ep93xx_spi_read_write(struct ep93xx_spi *espi) | ||
503 | { | ||
504 | struct spi_message *msg = espi->current_msg; | ||
505 | struct spi_transfer *t = msg->state; | ||
506 | |||
507 | /* read as long as RX FIFO has frames in it */ | ||
508 | while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) { | ||
509 | ep93xx_do_read(espi, t); | ||
510 | espi->fifo_level--; | ||
511 | } | ||
512 | |||
513 | /* write as long as TX FIFO has room */ | ||
514 | while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) { | ||
515 | ep93xx_do_write(espi, t); | ||
516 | espi->fifo_level++; | ||
517 | } | ||
518 | |||
519 | if (espi->rx == t->len) | ||
520 | return 0; | ||
521 | |||
522 | return -EINPROGRESS; | ||
523 | } | ||
524 | |||
525 | static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi) | ||
526 | { | ||
527 | /* | ||
528 | * Now everything is set up for the current transfer. We prime the TX | ||
529 | * FIFO, enable interrupts, and wait for the transfer to complete. | ||
530 | */ | ||
531 | if (ep93xx_spi_read_write(espi)) { | ||
532 | ep93xx_spi_enable_interrupts(espi); | ||
533 | wait_for_completion(&espi->wait); | ||
534 | } | ||
535 | } | ||
536 | |||
537 | /** | ||
538 | * ep93xx_spi_dma_prepare() - prepares a DMA transfer | ||
539 | * @espi: ep93xx SPI controller struct | ||
540 | * @dir: DMA transfer direction | ||
541 | * | ||
542 | * Function configures the DMA, maps the buffer and prepares the DMA | ||
543 | * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR | ||
544 | * in case of failure. | ||
545 | */ | ||
546 | static struct dma_async_tx_descriptor * | ||
547 | ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_data_direction dir) | ||
548 | { | ||
549 | struct spi_transfer *t = espi->current_msg->state; | ||
550 | struct dma_async_tx_descriptor *txd; | ||
551 | enum dma_slave_buswidth buswidth; | ||
552 | struct dma_slave_config conf; | ||
553 | struct scatterlist *sg; | ||
554 | struct sg_table *sgt; | ||
555 | struct dma_chan *chan; | ||
556 | const void *buf, *pbuf; | ||
557 | size_t len = t->len; | ||
558 | int i, ret, nents; | ||
559 | |||
560 | if (bits_per_word(espi) > 8) | ||
561 | buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; | ||
562 | else | ||
563 | buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; | ||
564 | |||
565 | memset(&conf, 0, sizeof(conf)); | ||
566 | conf.direction = dir; | ||
567 | |||
568 | if (dir == DMA_FROM_DEVICE) { | ||
569 | chan = espi->dma_rx; | ||
570 | buf = t->rx_buf; | ||
571 | sgt = &espi->rx_sgt; | ||
572 | |||
573 | conf.src_addr = espi->sspdr_phys; | ||
574 | conf.src_addr_width = buswidth; | ||
575 | } else { | ||
576 | chan = espi->dma_tx; | ||
577 | buf = t->tx_buf; | ||
578 | sgt = &espi->tx_sgt; | ||
579 | |||
580 | conf.dst_addr = espi->sspdr_phys; | ||
581 | conf.dst_addr_width = buswidth; | ||
582 | } | ||
583 | |||
584 | ret = dmaengine_slave_config(chan, &conf); | ||
585 | if (ret) | ||
586 | return ERR_PTR(ret); | ||
587 | |||
588 | /* | ||
589 | * We need to split the transfer into PAGE_SIZE'd chunks. This is | ||
590 | * because we are using @espi->zeropage to provide a zero RX buffer | ||
591 | * for the TX transfers and we have only allocated one page for that. | ||
592 | * | ||
593 | * For performance reasons we allocate a new sg_table only when | ||
594 | * needed. Otherwise we will re-use the current one. Eventually the | ||
595 | * last sg_table is released in ep93xx_spi_release_dma(). | ||
596 | */ | ||
597 | |||
598 | nents = DIV_ROUND_UP(len, PAGE_SIZE); | ||
599 | if (nents != sgt->nents) { | ||
600 | sg_free_table(sgt); | ||
601 | |||
602 | ret = sg_alloc_table(sgt, nents, GFP_KERNEL); | ||
603 | if (ret) | ||
604 | return ERR_PTR(ret); | ||
605 | } | ||
606 | |||
607 | pbuf = buf; | ||
608 | for_each_sg(sgt->sgl, sg, sgt->nents, i) { | ||
609 | size_t bytes = min_t(size_t, len, PAGE_SIZE); | ||
610 | |||
611 | if (buf) { | ||
612 | sg_set_page(sg, virt_to_page(pbuf), bytes, | ||
613 | offset_in_page(pbuf)); | ||
614 | } else { | ||
615 | sg_set_page(sg, virt_to_page(espi->zeropage), | ||
616 | bytes, 0); | ||
617 | } | ||
618 | |||
619 | pbuf += bytes; | ||
620 | len -= bytes; | ||
621 | } | ||
622 | |||
623 | if (WARN_ON(len)) { | ||
624 | dev_warn(&espi->pdev->dev, "len = %d expected 0!", len); | ||
625 | return ERR_PTR(-EINVAL); | ||
626 | } | ||
627 | |||
628 | nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); | ||
629 | if (!nents) | ||
630 | return ERR_PTR(-ENOMEM); | ||
631 | |||
632 | txd = chan->device->device_prep_slave_sg(chan, sgt->sgl, nents, | ||
633 | dir, DMA_CTRL_ACK); | ||
634 | if (!txd) { | ||
635 | dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); | ||
636 | return ERR_PTR(-ENOMEM); | ||
637 | } | ||
638 | return txd; | ||
639 | } | ||
640 | |||
641 | /** | ||
642 | * ep93xx_spi_dma_finish() - finishes with a DMA transfer | ||
643 | * @espi: ep93xx SPI controller struct | ||
644 | * @dir: DMA transfer direction | ||
645 | * | ||
646 | * Function finishes with the DMA transfer. After this, the DMA buffer is | ||
647 | * unmapped. | ||
648 | */ | ||
649 | static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi, | ||
650 | enum dma_data_direction dir) | ||
651 | { | ||
652 | struct dma_chan *chan; | ||
653 | struct sg_table *sgt; | ||
654 | |||
655 | if (dir == DMA_FROM_DEVICE) { | ||
656 | chan = espi->dma_rx; | ||
657 | sgt = &espi->rx_sgt; | ||
658 | } else { | ||
659 | chan = espi->dma_tx; | ||
660 | sgt = &espi->tx_sgt; | ||
661 | } | ||
662 | |||
663 | dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); | ||
664 | } | ||
665 | |||
666 | static void ep93xx_spi_dma_callback(void *callback_param) | ||
667 | { | ||
668 | complete(callback_param); | ||
669 | } | ||
670 | |||
671 | static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi) | ||
672 | { | ||
673 | struct spi_message *msg = espi->current_msg; | ||
674 | struct dma_async_tx_descriptor *rxd, *txd; | ||
675 | |||
676 | rxd = ep93xx_spi_dma_prepare(espi, DMA_FROM_DEVICE); | ||
677 | if (IS_ERR(rxd)) { | ||
678 | dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd)); | ||
679 | msg->status = PTR_ERR(rxd); | ||
680 | return; | ||
681 | } | ||
682 | |||
683 | txd = ep93xx_spi_dma_prepare(espi, DMA_TO_DEVICE); | ||
684 | if (IS_ERR(txd)) { | ||
685 | ep93xx_spi_dma_finish(espi, DMA_FROM_DEVICE); | ||
686 | dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd)); | ||
687 | msg->status = PTR_ERR(txd); | ||
688 | return; | ||
689 | } | ||
690 | |||
691 | /* We are ready when RX is done */ | ||
692 | rxd->callback = ep93xx_spi_dma_callback; | ||
693 | rxd->callback_param = &espi->wait; | ||
694 | |||
695 | /* Now submit both descriptors and wait while they finish */ | ||
696 | dmaengine_submit(rxd); | ||
697 | dmaengine_submit(txd); | ||
698 | |||
699 | dma_async_issue_pending(espi->dma_rx); | ||
700 | dma_async_issue_pending(espi->dma_tx); | ||
701 | |||
702 | wait_for_completion(&espi->wait); | ||
703 | |||
704 | ep93xx_spi_dma_finish(espi, DMA_TO_DEVICE); | ||
705 | ep93xx_spi_dma_finish(espi, DMA_FROM_DEVICE); | ||
706 | } | ||
707 | |||
708 | /** | ||
709 | * ep93xx_spi_process_transfer() - processes one SPI transfer | ||
710 | * @espi: ep93xx SPI controller struct | ||
711 | * @msg: current message | ||
712 | * @t: transfer to process | ||
713 | * | ||
714 | * This function processes one SPI transfer given in @t. Function waits until | ||
715 | * transfer is complete (may sleep) and updates @msg->status based on whether | ||
716 | * transfer was successfully processed or not. | ||
717 | */ | ||
718 | static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi, | ||
719 | struct spi_message *msg, | ||
720 | struct spi_transfer *t) | ||
721 | { | ||
722 | struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi); | ||
723 | |||
724 | msg->state = t; | ||
725 | |||
726 | /* | ||
727 | * Handle any transfer specific settings if needed. We use | ||
728 | * temporary chip settings here and restore original later when | ||
729 | * the transfer is finished. | ||
730 | */ | ||
731 | if (t->speed_hz || t->bits_per_word) { | ||
732 | struct ep93xx_spi_chip tmp_chip = *chip; | ||
733 | |||
734 | if (t->speed_hz) { | ||
735 | int err; | ||
736 | |||
737 | err = ep93xx_spi_calc_divisors(espi, &tmp_chip, | ||
738 | t->speed_hz); | ||
739 | if (err) { | ||
740 | dev_err(&espi->pdev->dev, | ||
741 | "failed to adjust speed\n"); | ||
742 | msg->status = err; | ||
743 | return; | ||
744 | } | ||
745 | } | ||
746 | |||
747 | if (t->bits_per_word) | ||
748 | tmp_chip.dss = bits_per_word_to_dss(t->bits_per_word); | ||
749 | |||
750 | /* | ||
751 | * Set up temporary new hw settings for this transfer. | ||
752 | */ | ||
753 | ep93xx_spi_chip_setup(espi, &tmp_chip); | ||
754 | } | ||
755 | |||
756 | espi->rx = 0; | ||
757 | espi->tx = 0; | ||
758 | |||
759 | /* | ||
760 | * There is no point of setting up DMA for the transfers which will | ||
761 | * fit into the FIFO and can be transferred with a single interrupt. | ||
762 | * So in these cases we will be using PIO and don't bother for DMA. | ||
763 | */ | ||
764 | if (espi->dma_rx && t->len > SPI_FIFO_SIZE) | ||
765 | ep93xx_spi_dma_transfer(espi); | ||
766 | else | ||
767 | ep93xx_spi_pio_transfer(espi); | ||
768 | |||
769 | /* | ||
770 | * In case of error during transmit, we bail out from processing | ||
771 | * the message. | ||
772 | */ | ||
773 | if (msg->status) | ||
774 | return; | ||
775 | |||
776 | msg->actual_length += t->len; | ||
777 | |||
778 | /* | ||
779 | * After this transfer is finished, perform any possible | ||
780 | * post-transfer actions requested by the protocol driver. | ||
781 | */ | ||
782 | if (t->delay_usecs) { | ||
783 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
784 | schedule_timeout(usecs_to_jiffies(t->delay_usecs)); | ||
785 | } | ||
786 | if (t->cs_change) { | ||
787 | if (!list_is_last(&t->transfer_list, &msg->transfers)) { | ||
788 | /* | ||
789 | * In case protocol driver is asking us to drop the | ||
790 | * chipselect briefly, we let the scheduler to handle | ||
791 | * any "delay" here. | ||
792 | */ | ||
793 | ep93xx_spi_cs_control(msg->spi, false); | ||
794 | cond_resched(); | ||
795 | ep93xx_spi_cs_control(msg->spi, true); | ||
796 | } | ||
797 | } | ||
798 | |||
799 | if (t->speed_hz || t->bits_per_word) | ||
800 | ep93xx_spi_chip_setup(espi, chip); | ||
801 | } | ||
802 | |||
803 | /* | ||
804 | * ep93xx_spi_process_message() - process one SPI message | ||
805 | * @espi: ep93xx SPI controller struct | ||
806 | * @msg: message to process | ||
807 | * | ||
808 | * This function processes a single SPI message. We go through all transfers in | ||
809 | * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is | ||
810 | * asserted during the whole message (unless per transfer cs_change is set). | ||
811 | * | ||
812 | * @msg->status contains %0 in case of success or negative error code in case of | ||
813 | * failure. | ||
814 | */ | ||
815 | static void ep93xx_spi_process_message(struct ep93xx_spi *espi, | ||
816 | struct spi_message *msg) | ||
817 | { | ||
818 | unsigned long timeout; | ||
819 | struct spi_transfer *t; | ||
820 | int err; | ||
821 | |||
822 | /* | ||
823 | * Enable the SPI controller and its clock. | ||
824 | */ | ||
825 | err = ep93xx_spi_enable(espi); | ||
826 | if (err) { | ||
827 | dev_err(&espi->pdev->dev, "failed to enable SPI controller\n"); | ||
828 | msg->status = err; | ||
829 | return; | ||
830 | } | ||
831 | |||
832 | /* | ||
833 | * Just to be sure: flush any data from RX FIFO. | ||
834 | */ | ||
835 | timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT); | ||
836 | while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) { | ||
837 | if (time_after(jiffies, timeout)) { | ||
838 | dev_warn(&espi->pdev->dev, | ||
839 | "timeout while flushing RX FIFO\n"); | ||
840 | msg->status = -ETIMEDOUT; | ||
841 | return; | ||
842 | } | ||
843 | ep93xx_spi_read_u16(espi, SSPDR); | ||
844 | } | ||
845 | |||
846 | /* | ||
847 | * We explicitly handle FIFO level. This way we don't have to check TX | ||
848 | * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns. | ||
849 | */ | ||
850 | espi->fifo_level = 0; | ||
851 | |||
852 | /* | ||
853 | * Update SPI controller registers according to spi device and assert | ||
854 | * the chipselect. | ||
855 | */ | ||
856 | ep93xx_spi_chip_setup(espi, spi_get_ctldata(msg->spi)); | ||
857 | ep93xx_spi_cs_control(msg->spi, true); | ||
858 | |||
859 | list_for_each_entry(t, &msg->transfers, transfer_list) { | ||
860 | ep93xx_spi_process_transfer(espi, msg, t); | ||
861 | if (msg->status) | ||
862 | break; | ||
863 | } | ||
864 | |||
865 | /* | ||
866 | * Now the whole message is transferred (or failed for some reason). We | ||
867 | * deselect the device and disable the SPI controller. | ||
868 | */ | ||
869 | ep93xx_spi_cs_control(msg->spi, false); | ||
870 | ep93xx_spi_disable(espi); | ||
871 | } | ||
872 | |||
873 | #define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work)) | ||
874 | |||
875 | /** | ||
876 | * ep93xx_spi_work() - EP93xx SPI workqueue worker function | ||
877 | * @work: work struct | ||
878 | * | ||
879 | * Workqueue worker function. This function is called when there are new | ||
880 | * SPI messages to be processed. Message is taken out from the queue and then | ||
881 | * passed to ep93xx_spi_process_message(). | ||
882 | * | ||
883 | * After message is transferred, protocol driver is notified by calling | ||
884 | * @msg->complete(). In case of error, @msg->status is set to negative error | ||
885 | * number, otherwise it contains zero (and @msg->actual_length is updated). | ||
886 | */ | ||
887 | static void ep93xx_spi_work(struct work_struct *work) | ||
888 | { | ||
889 | struct ep93xx_spi *espi = work_to_espi(work); | ||
890 | struct spi_message *msg; | ||
891 | |||
892 | spin_lock_irq(&espi->lock); | ||
893 | if (!espi->running || espi->current_msg || | ||
894 | list_empty(&espi->msg_queue)) { | ||
895 | spin_unlock_irq(&espi->lock); | ||
896 | return; | ||
897 | } | ||
898 | msg = list_first_entry(&espi->msg_queue, struct spi_message, queue); | ||
899 | list_del_init(&msg->queue); | ||
900 | espi->current_msg = msg; | ||
901 | spin_unlock_irq(&espi->lock); | ||
902 | |||
903 | ep93xx_spi_process_message(espi, msg); | ||
904 | |||
905 | /* | ||
906 | * Update the current message and re-schedule ourselves if there are | ||
907 | * more messages in the queue. | ||
908 | */ | ||
909 | spin_lock_irq(&espi->lock); | ||
910 | espi->current_msg = NULL; | ||
911 | if (espi->running && !list_empty(&espi->msg_queue)) | ||
912 | queue_work(espi->wq, &espi->msg_work); | ||
913 | spin_unlock_irq(&espi->lock); | ||
914 | |||
915 | /* notify the protocol driver that we are done with this message */ | ||
916 | msg->complete(msg->context); | ||
917 | } | ||
918 | |||
919 | static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id) | ||
920 | { | ||
921 | struct ep93xx_spi *espi = dev_id; | ||
922 | u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR); | ||
923 | |||
924 | /* | ||
925 | * If we got ROR (receive overrun) interrupt we know that something is | ||
926 | * wrong. Just abort the message. | ||
927 | */ | ||
928 | if (unlikely(irq_status & SSPIIR_RORIS)) { | ||
929 | /* clear the overrun interrupt */ | ||
930 | ep93xx_spi_write_u8(espi, SSPICR, 0); | ||
931 | dev_warn(&espi->pdev->dev, | ||
932 | "receive overrun, aborting the message\n"); | ||
933 | espi->current_msg->status = -EIO; | ||
934 | } else { | ||
935 | /* | ||
936 | * Interrupt is either RX (RIS) or TX (TIS). For both cases we | ||
937 | * simply execute next data transfer. | ||
938 | */ | ||
939 | if (ep93xx_spi_read_write(espi)) { | ||
940 | /* | ||
941 | * In normal case, there still is some processing left | ||
942 | * for current transfer. Let's wait for the next | ||
943 | * interrupt then. | ||
944 | */ | ||
945 | return IRQ_HANDLED; | ||
946 | } | ||
947 | } | ||
948 | |||
949 | /* | ||
950 | * Current transfer is finished, either with error or with success. In | ||
951 | * any case we disable interrupts and notify the worker to handle | ||
952 | * any post-processing of the message. | ||
953 | */ | ||
954 | ep93xx_spi_disable_interrupts(espi); | ||
955 | complete(&espi->wait); | ||
956 | return IRQ_HANDLED; | ||
957 | } | ||
958 | |||
959 | static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param) | ||
960 | { | ||
961 | if (ep93xx_dma_chan_is_m2p(chan)) | ||
962 | return false; | ||
963 | |||
964 | chan->private = filter_param; | ||
965 | return true; | ||
966 | } | ||
967 | |||
968 | static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi) | ||
969 | { | ||
970 | dma_cap_mask_t mask; | ||
971 | int ret; | ||
972 | |||
973 | espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL); | ||
974 | if (!espi->zeropage) | ||
975 | return -ENOMEM; | ||
976 | |||
977 | dma_cap_zero(mask); | ||
978 | dma_cap_set(DMA_SLAVE, mask); | ||
979 | |||
980 | espi->dma_rx_data.port = EP93XX_DMA_SSP; | ||
981 | espi->dma_rx_data.direction = DMA_FROM_DEVICE; | ||
982 | espi->dma_rx_data.name = "ep93xx-spi-rx"; | ||
983 | |||
984 | espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter, | ||
985 | &espi->dma_rx_data); | ||
986 | if (!espi->dma_rx) { | ||
987 | ret = -ENODEV; | ||
988 | goto fail_free_page; | ||
989 | } | ||
990 | |||
991 | espi->dma_tx_data.port = EP93XX_DMA_SSP; | ||
992 | espi->dma_tx_data.direction = DMA_TO_DEVICE; | ||
993 | espi->dma_tx_data.name = "ep93xx-spi-tx"; | ||
994 | |||
995 | espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter, | ||
996 | &espi->dma_tx_data); | ||
997 | if (!espi->dma_tx) { | ||
998 | ret = -ENODEV; | ||
999 | goto fail_release_rx; | ||
1000 | } | ||
1001 | |||
1002 | return 0; | ||
1003 | |||
1004 | fail_release_rx: | ||
1005 | dma_release_channel(espi->dma_rx); | ||
1006 | espi->dma_rx = NULL; | ||
1007 | fail_free_page: | ||
1008 | free_page((unsigned long)espi->zeropage); | ||
1009 | |||
1010 | return ret; | ||
1011 | } | ||
1012 | |||
1013 | static void ep93xx_spi_release_dma(struct ep93xx_spi *espi) | ||
1014 | { | ||
1015 | if (espi->dma_rx) { | ||
1016 | dma_release_channel(espi->dma_rx); | ||
1017 | sg_free_table(&espi->rx_sgt); | ||
1018 | } | ||
1019 | if (espi->dma_tx) { | ||
1020 | dma_release_channel(espi->dma_tx); | ||
1021 | sg_free_table(&espi->tx_sgt); | ||
1022 | } | ||
1023 | |||
1024 | if (espi->zeropage) | ||
1025 | free_page((unsigned long)espi->zeropage); | ||
1026 | } | ||
1027 | |||
1028 | static int __init ep93xx_spi_probe(struct platform_device *pdev) | ||
1029 | { | ||
1030 | struct spi_master *master; | ||
1031 | struct ep93xx_spi_info *info; | ||
1032 | struct ep93xx_spi *espi; | ||
1033 | struct resource *res; | ||
1034 | int error; | ||
1035 | |||
1036 | info = pdev->dev.platform_data; | ||
1037 | |||
1038 | master = spi_alloc_master(&pdev->dev, sizeof(*espi)); | ||
1039 | if (!master) { | ||
1040 | dev_err(&pdev->dev, "failed to allocate spi master\n"); | ||
1041 | return -ENOMEM; | ||
1042 | } | ||
1043 | |||
1044 | master->setup = ep93xx_spi_setup; | ||
1045 | master->transfer = ep93xx_spi_transfer; | ||
1046 | master->cleanup = ep93xx_spi_cleanup; | ||
1047 | master->bus_num = pdev->id; | ||
1048 | master->num_chipselect = info->num_chipselect; | ||
1049 | master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; | ||
1050 | |||
1051 | platform_set_drvdata(pdev, master); | ||
1052 | |||
1053 | espi = spi_master_get_devdata(master); | ||
1054 | |||
1055 | espi->clk = clk_get(&pdev->dev, NULL); | ||
1056 | if (IS_ERR(espi->clk)) { | ||
1057 | dev_err(&pdev->dev, "unable to get spi clock\n"); | ||
1058 | error = PTR_ERR(espi->clk); | ||
1059 | goto fail_release_master; | ||
1060 | } | ||
1061 | |||
1062 | spin_lock_init(&espi->lock); | ||
1063 | init_completion(&espi->wait); | ||
1064 | |||
1065 | /* | ||
1066 | * Calculate maximum and minimum supported clock rates | ||
1067 | * for the controller. | ||
1068 | */ | ||
1069 | espi->max_rate = clk_get_rate(espi->clk) / 2; | ||
1070 | espi->min_rate = clk_get_rate(espi->clk) / (254 * 256); | ||
1071 | espi->pdev = pdev; | ||
1072 | |||
1073 | espi->irq = platform_get_irq(pdev, 0); | ||
1074 | if (espi->irq < 0) { | ||
1075 | error = -EBUSY; | ||
1076 | dev_err(&pdev->dev, "failed to get irq resources\n"); | ||
1077 | goto fail_put_clock; | ||
1078 | } | ||
1079 | |||
1080 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | ||
1081 | if (!res) { | ||
1082 | dev_err(&pdev->dev, "unable to get iomem resource\n"); | ||
1083 | error = -ENODEV; | ||
1084 | goto fail_put_clock; | ||
1085 | } | ||
1086 | |||
1087 | res = request_mem_region(res->start, resource_size(res), pdev->name); | ||
1088 | if (!res) { | ||
1089 | dev_err(&pdev->dev, "unable to request iomem resources\n"); | ||
1090 | error = -EBUSY; | ||
1091 | goto fail_put_clock; | ||
1092 | } | ||
1093 | |||
1094 | espi->sspdr_phys = res->start + SSPDR; | ||
1095 | espi->regs_base = ioremap(res->start, resource_size(res)); | ||
1096 | if (!espi->regs_base) { | ||
1097 | dev_err(&pdev->dev, "failed to map resources\n"); | ||
1098 | error = -ENODEV; | ||
1099 | goto fail_free_mem; | ||
1100 | } | ||
1101 | |||
1102 | error = request_irq(espi->irq, ep93xx_spi_interrupt, 0, | ||
1103 | "ep93xx-spi", espi); | ||
1104 | if (error) { | ||
1105 | dev_err(&pdev->dev, "failed to request irq\n"); | ||
1106 | goto fail_unmap_regs; | ||
1107 | } | ||
1108 | |||
1109 | if (info->use_dma && ep93xx_spi_setup_dma(espi)) | ||
1110 | dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n"); | ||
1111 | |||
1112 | espi->wq = create_singlethread_workqueue("ep93xx_spid"); | ||
1113 | if (!espi->wq) { | ||
1114 | dev_err(&pdev->dev, "unable to create workqueue\n"); | ||
1115 | goto fail_free_dma; | ||
1116 | } | ||
1117 | INIT_WORK(&espi->msg_work, ep93xx_spi_work); | ||
1118 | INIT_LIST_HEAD(&espi->msg_queue); | ||
1119 | espi->running = true; | ||
1120 | |||
1121 | /* make sure that the hardware is disabled */ | ||
1122 | ep93xx_spi_write_u8(espi, SSPCR1, 0); | ||
1123 | |||
1124 | error = spi_register_master(master); | ||
1125 | if (error) { | ||
1126 | dev_err(&pdev->dev, "failed to register SPI master\n"); | ||
1127 | goto fail_free_queue; | ||
1128 | } | ||
1129 | |||
1130 | dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n", | ||
1131 | (unsigned long)res->start, espi->irq); | ||
1132 | |||
1133 | return 0; | ||
1134 | |||
1135 | fail_free_queue: | ||
1136 | destroy_workqueue(espi->wq); | ||
1137 | fail_free_dma: | ||
1138 | ep93xx_spi_release_dma(espi); | ||
1139 | free_irq(espi->irq, espi); | ||
1140 | fail_unmap_regs: | ||
1141 | iounmap(espi->regs_base); | ||
1142 | fail_free_mem: | ||
1143 | release_mem_region(res->start, resource_size(res)); | ||
1144 | fail_put_clock: | ||
1145 | clk_put(espi->clk); | ||
1146 | fail_release_master: | ||
1147 | spi_master_put(master); | ||
1148 | platform_set_drvdata(pdev, NULL); | ||
1149 | |||
1150 | return error; | ||
1151 | } | ||
1152 | |||
1153 | static int __exit ep93xx_spi_remove(struct platform_device *pdev) | ||
1154 | { | ||
1155 | struct spi_master *master = platform_get_drvdata(pdev); | ||
1156 | struct ep93xx_spi *espi = spi_master_get_devdata(master); | ||
1157 | struct resource *res; | ||
1158 | |||
1159 | spin_lock_irq(&espi->lock); | ||
1160 | espi->running = false; | ||
1161 | spin_unlock_irq(&espi->lock); | ||
1162 | |||
1163 | destroy_workqueue(espi->wq); | ||
1164 | |||
1165 | /* | ||
1166 | * Complete remaining messages with %-ESHUTDOWN status. | ||
1167 | */ | ||
1168 | spin_lock_irq(&espi->lock); | ||
1169 | while (!list_empty(&espi->msg_queue)) { | ||
1170 | struct spi_message *msg; | ||
1171 | |||
1172 | msg = list_first_entry(&espi->msg_queue, | ||
1173 | struct spi_message, queue); | ||
1174 | list_del_init(&msg->queue); | ||
1175 | msg->status = -ESHUTDOWN; | ||
1176 | spin_unlock_irq(&espi->lock); | ||
1177 | msg->complete(msg->context); | ||
1178 | spin_lock_irq(&espi->lock); | ||
1179 | } | ||
1180 | spin_unlock_irq(&espi->lock); | ||
1181 | |||
1182 | ep93xx_spi_release_dma(espi); | ||
1183 | free_irq(espi->irq, espi); | ||
1184 | iounmap(espi->regs_base); | ||
1185 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | ||
1186 | release_mem_region(res->start, resource_size(res)); | ||
1187 | clk_put(espi->clk); | ||
1188 | platform_set_drvdata(pdev, NULL); | ||
1189 | |||
1190 | spi_unregister_master(master); | ||
1191 | return 0; | ||
1192 | } | ||
1193 | |||
1194 | static struct platform_driver ep93xx_spi_driver = { | ||
1195 | .driver = { | ||
1196 | .name = "ep93xx-spi", | ||
1197 | .owner = THIS_MODULE, | ||
1198 | }, | ||
1199 | .remove = __exit_p(ep93xx_spi_remove), | ||
1200 | }; | ||
1201 | |||
1202 | static int __init ep93xx_spi_init(void) | ||
1203 | { | ||
1204 | return platform_driver_probe(&ep93xx_spi_driver, ep93xx_spi_probe); | ||
1205 | } | ||
1206 | module_init(ep93xx_spi_init); | ||
1207 | |||
1208 | static void __exit ep93xx_spi_exit(void) | ||
1209 | { | ||
1210 | platform_driver_unregister(&ep93xx_spi_driver); | ||
1211 | } | ||
1212 | module_exit(ep93xx_spi_exit); | ||
1213 | |||
1214 | MODULE_DESCRIPTION("EP93xx SPI Controller driver"); | ||
1215 | MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>"); | ||
1216 | MODULE_LICENSE("GPL"); | ||
1217 | MODULE_ALIAS("platform:ep93xx-spi"); | ||